1
|
Pradhan B, Ki JS. Seaweed-derived laminarin and alginate as potential chemotherapeutical agents: An updated comprehensive review considering cancer treatment. Int J Biol Macromol 2024:136593. [PMID: 39426775 DOI: 10.1016/j.ijbiomac.2024.136593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Seaweed-derived bioactive substances such as polysaccharides have proven to be effective chemotherapeutic and chemopreventive agents. Laminarin and alginate antioxidant properties aid in the prevention of cancer through dynamic modulation of critical intracellular signaling pathways via apoptosis which produce low cytotoxicity and potential chemotherapeutic effects. Understanding the effects of laminarin and alginate on human cancer cells and their molecular roles in cell death pathways can help to develop a novel chemoprevention strategy. This review emphasizes the importance of apoptosis-modulating laminarin and alginate in a range of malignancies as well as their extraction, molecular structure, and weight. In addition, future nano-formulation enhancements for greater clinical efficacy are discussed. Laminarin and alginate are perfect ingredients because of their distinct physicochemical and biological characteristics and their use-based delivery systems in cancer. The effectiveness of laminarin and alginate against cancer and more preclinical and clinical trials will open up as new chemotherapeutic natural drugs which lead to established as potential cancer drugs.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea; Department of Botany, Model Degree College, Rayagada 765017, Odisha, India
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
2
|
Wei S, Wang L, Yang J, Xu R, Jia R, He P. Protective Effect of Polysaccharides Isolated from Sargassum horneri against H 2O 2-Induced Oxidative Stress Both In Vitro, in Vero Cells, and In Vivo in Zebrafish. BIOLOGY 2024; 13:651. [PMID: 39336079 PMCID: PMC11444143 DOI: 10.3390/biology13090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
The extensive outbreak of Sargassum horneri in China has not merely imposed a severe threat to the ecological environment and human life in coastal waters but also impeded the development of waterway transportation and the local economy. Consequently, we isolated polysaccharides from S. horneri, designated as SHP, and evaluated the antioxidant activity of SHP both in vitro and in vivo by investigating the effect of SHP on H2O2-induced African green monkey kidney cells (Vero cells) and zebrafish. The results demonstrated that SHP can enhance the activities of superoxide dismutase, catalase, and glutathione peroxidase in zebrafish. It also effectively inhibits micro malondialdehyde and ROS levels in Vero cells and zebrafish to mitigate the oxidative damage caused by H2O2, thereby achieving the protective effect of SHP on Vero cells and zebrafish. In conclusion, SHP holds the potential as a natural antioxidant. SHP can be contemplated for utilization as a natural antioxidant in the biomedical, cosmetic, and food industries, thereby alleviating the environmental stress caused by S. horneri and achieving resource utilization.
Collapse
Affiliation(s)
- Shuangyan Wei
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Li Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Jia Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Ruihang Xu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
| | - Rui Jia
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (S.W.); (L.W.); (J.Y.); (R.X.)
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| |
Collapse
|
3
|
Santana I, Felix M, Bengoechea C. Seaweed as Basis of Eco-Sustainable Plastic Materials: Focus on Alginate. Polymers (Basel) 2024; 16:1662. [PMID: 38932012 PMCID: PMC11207399 DOI: 10.3390/polym16121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Seaweed, a diverse and abundant marine resource, holds promise as a renewable feedstock for bioplastics due to its polysaccharide-rich composition. This review explores different methods for extracting and processing seaweed polysaccharides, focusing on the production of alginate plastic materials. Seaweed emerges as a promising solution, due to its abundance, minimal environmental impact, and diverse industrial applications, such as feed and food, plant and soil nutrition, nutraceutical hydrocolloids, personal care, and bioplastics. Various manufacturing techniques, such as solvent casting, injection moulding, and extrusion, are discussed for producing seaweed-based bioplastics. Alginate, obtained mainly from brown seaweed, is particularly known for its gel-forming properties and presents versatile applications in many sectors (food, pharmaceutical, agriculture). This review further examines the current state of the bioplastics market, highlighting the growing demand for sustainable alternatives to conventional plastics. The integration of seaweed-derived bioplastics into mainstream markets presents opportunities for reducing plastic pollution and promoting sustainability in material production.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Escuela Politécnica Superior, Universidad de Sevilla, Calle Virgen de África, 7, 41011 Sevilla, Spain; (I.S.); (M.F.)
| |
Collapse
|
4
|
Geetha V, Mayookha VP, Das M, Kumar GS. Bioactive carbohydrate polymers from marine sources as potent nutraceuticals in modulating obesity: a review. Food Sci Biotechnol 2024; 33:1517-1528. [PMID: 38623423 PMCID: PMC11016051 DOI: 10.1007/s10068-024-01525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024] Open
Abstract
The majority of bioactive polysaccharides are present in some marine creatures. These polysaccharides are considered as promising anti-obesity agents, their anti-obesity properties involve a number of mechanisms, including suppression of lipid metabolism and absorption, impact on satiety, and prevention of adipocyte differentiation. Obesity is linked to type 2 diabetes, cardiovascular disease, and other metabolic syndromes. In this review various bioactive polysaccharides like chitin, chitosan, fucosylated chondroitin sulphate, chitooligosaccharides and glycosaminoglycans have been discussed for their anti-obesity effects through various pathways. Critical evaluation of observational studies and intervention trials on obesity, lipid hypertrophy, dyslipidemia, and type 2 diabetes was done with a primary focus on specific marine fauna polysaccharide as a source of seafood that is consumed all over the world. It has been observed that consumption of individual seafood constituents was effective in reducing obesity. Thus, marine derived novel bioactive polysaccharides have potential applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- V. Geetha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, Karnataka 574199 India
| | - V. P. Mayookha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Moumita Das
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - G. Suresh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, Karnataka 574199 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
5
|
Sadeghi A, Rajabiyan A, Meygoli Nezhad N, Nabizade N, Alvani A, Zarei-Ahmady A. A review on Persian Gulf brown algae as potential source for anticancer drugs. ALGAL RES 2024; 79:103446. [DOI: 10.1016/j.algal.2024.103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
6
|
Wang Y, Rehman A, Jafari SM, Shehzad Q, Yu L, Su Y, Wu G, Jin Q, Zhang H, Suleria HAR, Wang X. Micro/nano-encapsulation of marine dietary oils: A review on biomacromolecule-based delivery systems and their role in preventing cardiovascular diseases. Int J Biol Macromol 2024; 261:129820. [PMID: 38286385 DOI: 10.1016/j.ijbiomac.2024.129820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.
Collapse
Affiliation(s)
- Yongjin Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Abdur Rehman
- Jiangsu University, School of Food and Biological Engineering, Zhenjiang, Jiangsu 212013, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Qayyum Shehzad
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Le Yu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yijia Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hafiz Ansar Rasul Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
8
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
9
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
10
|
Elbandy M. Anti-Inflammatory Effects of Marine Bioactive Compounds and Their Potential as Functional Food Ingredients in the Prevention and Treatment of Neuroinflammatory Disorders. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010002. [PMID: 36615197 PMCID: PMC9822486 DOI: 10.3390/molecules28010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Functional foods include enhanced, enriched, fortified, or whole foods that impart health benefits beyond their nutritional value, particularly when consumed as part of a varied diet on a regular basis at effective levels. Marine sources can serve as the sources of various healthy foods and numerous functional food ingredients with biological effects can be derived from these sources. Microalgae, macroalgae, crustaceans, fungi, bacteria fish, and fish by-products are the most common marine sources that can provide many potential functional food ingredients including phenolic compounds, proteins and peptides, and polysaccharides. Neuroinflammation is closely linked with the initiation and progression of various neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease. Activation of astrocytes and microglia is a defense mechanism of the brain to counter damaged tissues and detrimental pathogens, wherein their chronic activation triggers neuroinflammation that can further exacerbate or induce neurodegeneration. Currently, available therapeutic agents only provide symptomatic relief from these disorders and no therapies are available to stop or slow down the advancement of neurodegeneration. Thereffore, natural compounds that can exert a protective effect against these disorders have therapeutic potential. Numerous chemical compounds, including bioactive peptides, fatty acids, pigments, alkaloids, and polysaccharides, have already been isolated from marine sources that show anti-inflammatory properties, which can be effective in the treatment and prevention of neuroinflammatory disorders. The anti-inflammatory potential of marine-derived compounds as functional food ingredients in the prevention and treatment of neurological disorders is covered in this review.
Collapse
Affiliation(s)
- Mohamed Elbandy
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
11
|
Farag MA, Mansour ST, Nouh RA, Khattab AR. Crustaceans (shrimp, crab, and lobster): A comprehensive review of their potential health hazards and detection methods to assure their biosafety. J Food Saf 2022. [DOI: 10.1111/jfs.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Somaia T. Mansour
- Chemistry Department, School of Sciences & Engineering The American University in Cairo New Cairo Egypt
| | - Roua A. Nouh
- Chemistry Department, School of Sciences & Engineering The American University in Cairo New Cairo Egypt
| | - Amira R. Khattab
- Pharmacognosy Department, College of Pharmacy Arab Academy for Science, Technology and Maritime Transport Alexandria Egypt
| |
Collapse
|
12
|
Preparation, Characterization and Study of the Dissociation of Naproxen from Its Chitosan Salt. Molecules 2022; 27:molecules27185801. [PMID: 36144537 PMCID: PMC9504068 DOI: 10.3390/molecules27185801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Salts of naproxen (NAP) with chitosan (CTS) and reticulated chitosan (CEP) were prepared under optimized conditions to maximize the yield of reaction. The objective was to evaluate the dissociation in water, which can guide studies of release of the drug from biopolymeric salts in pharmaceutical applications. Higher salification was found after 24 h of reaction at 60 °C in a molar ratio 1:1.05 (CTS:NAP, mol/mol), resulting in a degree of substitution (DS) of 17% according to 13C NMR, after neutralization of the –NH2 group of the biopolymer by the carboxylic group of the drug. The presence of NAP salt is evidenced by FTIR bands related to the –NH3+ group at 856 cm−1, a decrease in crystallinity index in XRD diffractograms as well as changes in mass loss ratios (TG/DTG/DTA) and increased thermal stability of the salt regarding CTS itself. The CEPN crosslinked salt presented a DS = 3.6%, probably due to the shielding of the –NH2 groups. Dissociation studies revealed that at pH 2.00, dissociation occurred faster when compared to at pH 7.00 in the non-reticulated salt, while the opposite was observed for the reticulated one.
Collapse
|
13
|
Lu Y, Teo JN, Liu SQ. Fermented shellfish condiments: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:4447-4477. [PMID: 36038528 DOI: 10.1111/1541-4337.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Fermented shellfish condiments are globally consumed especially among Asian countries. Condiments, commonly used as flavor enhancers, have unique sensory characteristics and are associated with umami and meaty aroma. The main reactions that occur during fermentation of shellfish include proteolysis by endogenous enzymes and microbial activities to produce peptides and amino acids. The actions of proteolytic enzymes and microorganisms (predominantly bacteria) are found to be largely responsible for the formation of taste and aroma compounds. This review elaborates different aspects of shellfish fermentation including classification, process, substrates, microbiota, changes in both physicochemical and biochemical components, alterations in nutritional composition, flavor characteristics and sensory profiles, and biological activities and their undesirable impacts on health. The characteristics of traditional shellfish production such as long duration and high salt concentration not only limit nutritional value but also inhibit the formation of toxic biogenic amines. In addition, this review article also covers novel bioprocesses such as low salt fermentation and use of novel starter cultures and/or novel enzymes to accelerate fermentation and produce shellfish condiments that are of better quality and safer for consumption. Practical Application: The review paper summarized the comprehensive information on shellfish fermentation to provide alternative strategies to produce shellfish comdiments that are of better quality and safer for consumption.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Jun Ning Teo
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Shao Quan Liu
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
14
|
Sudhakar MP, Venkatnarayanan S, Dharani G. Fabrication and characterization of bio-nanocomposite films using κ-Carrageenan and Kappaphycus alvarezii seaweed for multiple industrial applications. Int J Biol Macromol 2022; 219:138-149. [PMID: 35926675 DOI: 10.1016/j.ijbiomac.2022.07.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
In the present study, the whole seaweed from Kappaphycus alvarezii (containing carrageenan) was used for preparation of bio-nanocomposite films by blending with metal oxide nanoparticles such as zinc oxide (ZnONPs), cupric oxide (CuONPs) and silicon dioxide (SiO2NPs) for multiple applications, and their properties were compared with standard refined κ-Carrageenan (commercial grade). Simultaneously, the antibacterial activity and biodegradation profile of the prepared bio-nanocomposite film were also studied. The incorporation of nanoparticles into the bioplastic film matrices altered the surface morphology, increased the roughness and significantly (p < 0.05) reduced the UV transmittance, water uptake ratio (WUR), moisture content and solubility in both standard carrageenan-based bio-nanocomposite films (CBF) and Kappaphycus- based bio-nanocomposite films (KBF) compared to control. The average roughness (Ra) of KBF increased compared to CBF; however, CBF showed better tensile strength compared to KBF. Both KBF and CBF loaded with nanoparticles exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli. However, KBF performed better compared to CBF. Antimicrobial effect of nanoparticles delayed the degradation of the bio-nanocomposite films. The present study proposes that the whole seaweed (Kappaphycus alvarezii) can be used directly for multiple industrial applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India; Department of Biomaterials, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai 600 077, Tamil Nadu, India.
| | - Srinivas Venkatnarayanan
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India
| | - Gopal Dharani
- National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai 600 100, Tamil Nadu, India.
| |
Collapse
|
15
|
Lisov AV, Kiselev SS, Trubitsina LI, Belova OV, Andreeva-Kovalevskaya ZI, Trubitsin IV, Shushkova TV, Leontievsky AA. Multifunctional Enzyme with Endoglucanase and Alginase/Glucuronan Lyase Activities from Bacterium Cellulophaga lytica. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:617-627. [PMID: 36154882 DOI: 10.1134/s0006297922070045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
Cellulophaga lytica is a Gram-negative aerobic bacterium in the genome of which there are many genes encoding polysaccharide degrading enzymes. One of the enzymes named ClGP contains a glycoside hydrolase domain from the GH5 family and a polysaccharide lyase domain from the PL31 family. The enzyme also contains the TAT signaling peptide and the TIGR04183 domain that indicates extracellular nature of the enzyme. Phylogenetic analysis has shown that the enzymes most closely related to ClGP and containing all four domains (TAT, GH5, PL31, TIGR04183) are widespread among bacterial species belonging to the Flavobacteriaceae family. ClGP produced by the recombinant strain of E. coli was purified and characterized. ClGP exhibited activity of endoglucanase (EC 3.2.1.4) and catalyzed hydrolysis of β-D-glucan, carboxymethyl cellulose sodium salt (CMC-Na), and amorphous cellulose, but failed to hydrolyze microcrystalline cellulose and xylan. Products of CMC hydrolysis were cellobiose and cellotriose, whereas β-D-glucan was hydrolyzed to glucose, cellobiose, cellotetraose, and cellopentaose. ClGP was more active against the poly-β-D-mannuronate blocks than against the poly-α-L-glucuronate blocks of alginic acid. This indicates that the enzyme is a polyM lyase (EC 4.2.2.3). ClGP was active against polyglucuronic acid, so it displayed a glucuronan lyase (EC 4.2.2.14) activity. The enzyme had a neutral pH-optimum, was stable in the pH range 6.0-8.0, and displayed moderate thermal stability. ClGP effectively saccharified two species of brown algae, Saccharina latissima and Laminaria digitata, that suggests its potential for use in the production of biofuel from macroalgae.
Collapse
Affiliation(s)
- Alexander V Lisov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei S Kiselev
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Liubov I Trubitsina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oxana V Belova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Zhanna I Andreeva-Kovalevskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ivan V Trubitsin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tatyana V Shushkova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Leontievsky
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
16
|
Abstract
Marine-derived natural products are rich source of secondary metabolites with huge potentials including novel therapeutic agents. Marine algae are considered to be a good source of secondary metabolites with versatile bioactivities. During the last few decades, researches related to natural products obtained from brown algae have remarkably escalated as they contain active compounds with varied biologically activities like antimicrobial, anticancer, antioxidant, anti-inflammatory, antidiabetic, and antiparasitic properties. The main bioactive components such as phlorotannin, fucoxanthin, alginic acid, fucoidan, and laminarin have been briefly discussed here, together with their composition and biological activities. In this review, the biological function of extracts and the metabolites of brown algae as well as their pharmacological impacts with the description of the possible mechanism of their action are described and discussed. Also, this study is expected to examine the multifunctional properties of brown algae that facilitate natural algal products, including the ability to integrate these functional properties in a variety of applications.
Collapse
|
17
|
Purification and Characterization of a Fibrinolytic Enzyme from Marine Bacillus velezensis Z01 and Assessment of Its Therapeutic Efficacy In Vivo. Microorganisms 2022; 10:microorganisms10050843. [PMID: 35630289 PMCID: PMC9145925 DOI: 10.3390/microorganisms10050843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrinolytic enzymes are the most effective agents for the treatment of thrombotic diseases. In the present study, we purified and characterized an extracellular fibrinolytic serine metalloprotease (named Velefibrinase) that is produced by marine Bacillus velezensis Z01 and assessed its thrombolysis in vivo. SDS-PAGE and MALDI-TOF-MS analyses showed that the molecular mass of Velefibrinase was 32.3 KDa and belonged to the peptidase S8 family. The optimal fibrinolytic activity conditions of Velefibrinase were 40 °C and pH 7.0. Moreover, Velefibrinase exhibited high substrate specificity to fibrin, and a higher ratio of fibrinolytic/caseinolytic (1.48) values, which indicated that Velefibrinase had excellent fibrinolytic properties. Based on the degradation pattern of fibrin and fibrinogen, Velefibrinase could be classified as α/β-fibrinogenase. In vitro, Velefibrinase demonstrated efficient thrombolytic ability, anti-platelet aggregation, and amelioration of blood coagulation (APTT, PT, TT, and FIB), which were superior to those of commercial anticoagulant urokinase. Velefibrinase showed no hemolysis for erythrocyte in vitro and no hemorrhagic activity in vivo. Finally, Velefibrinase effectively prevented mouse tail thrombosis in a dose-dependent (0.22–0.88 mg/kg) manner. These findings suggested that Velefibrinase has the potential to becoming a new thrombolytic agent.
Collapse
|
18
|
An insight into Synthetic, Physiological aspect of Superabsorbent Hydrogels based on Carbohydrate type polymers for various Applications: A Review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
|
20
|
Nazarudin MF, Alias NH, Balakrishnan S, Wan Hasnan WNI, Noor Mazli NAI, Ahmad MI, Md Yasin IS, Isha A, Aliyu-Paiko M. Chemical, Nutrient and Physicochemical Properties of Brown Seaweed, Sargassum polycystum C. Agardh (Phaeophyceae) Collected from Port Dickson, Peninsular Malaysia. Molecules 2021; 26:5216. [PMID: 34500650 PMCID: PMC8434233 DOI: 10.3390/molecules26175216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/15/2023] Open
Abstract
Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.
Collapse
Affiliation(s)
- Muhammad Farhan Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Nurul Haziqah Alias
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Seentusha Balakrishnan
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Wan Nurazween Izatee Wan Hasnan
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Nur Amirah Izyan Noor Mazli
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Mohd Ihsanuddin Ahmad
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Ina-Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.H.A.); (S.B.); (W.N.I.W.H.); (N.A.I.N.M.); (M.I.A.); (I.-S.M.Y.)
| | - Azizul Isha
- Laboratory of Natural Medicines and Products Research, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohamed Aliyu-Paiko
- Biochemistry Department, Ibrahim Badamasi Babangida University (IBBU), Lapai 911101, Nigeria;
| |
Collapse
|
21
|
Anti- Salmonella Activity and Peptidomic Profiling of Peptide Fractions Produced from Sturgeon Fish Skin Collagen ( Huso huso) Using Commercial Enzymes. Nutrients 2021; 13:nu13082657. [PMID: 34444819 PMCID: PMC8398703 DOI: 10.3390/nu13082657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
This study investigated peptide fractions from fish skin collagen for antibacterial activity against Escherichia coli and Salmonella strains. The collagen was hydrolyzed with six commercial proteases, including trypsin, Alcalase, Neutrase, Flavourzyme, pepsin and papain. Hydrolyzed samples obtained with trypsin and Alcalase had the largest number of small peptides (molecular weight <10 kDa), while the hydrolysate produced with papain showed the lowest degree of hydrolysis and highest number of large peptides. Four hydrolysates were found to inhibit the growth of the Gram-negative bacteria, with papain hydrolysate showing the best activity against E. coli, and Neutrase and papain hydrolysates showing the best activity against S. abony; hydrolysates produced with trypsin and pepsin did not show detectable antibacterial activity. After acetone fractionation of the latter hydrolysates, the peptide fractions demonstrated enhanced dose-dependent inhibition of the growth (colony-forming units) of four Salmonella strains, including S. abony (NCTC 6017), S. typhimurium (ATCC 13311), S. typhimurium (ATCC 14028) and S. chol (ATCC 10708). Shotgun peptidomics analysis of the acetone fractions of Neutrase and papain hydrolysates resulted in the identification of 71 and 103 peptides, respectively, with chain lengths of 6–22 and 6–24, respectively. This work provided an array of peptide sequences from fish skin collagen for pharmacophore identification, structure–activity relationship studies, and further investigation as food-based antibacterial agents against pathogenic microorganisms.
Collapse
|
22
|
Shannon E, Conlon M, Hayes M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar Drugs 2021; 19:358. [PMID: 34201794 PMCID: PMC8303941 DOI: 10.3390/md19070358] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
Collapse
Affiliation(s)
- Emer Shannon
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Michael Conlon
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
23
|
Abstract
More than 50% of the UK coastline is situated in Scotland under legislative jurisdiction; therefore, there is a great opportunity for regionally focused economic development by the rational use of sustainable marine bio-sources. We review the importance of seaweeds in general, and more specifically, wrack brown seaweeds which are washed from the sea and accumulated in the wrack zone and their economic impact. Rules and regulations governing the harvesting of seaweed, potential sites for harvesting, along with the status of industrial application are discussed. We describe extraction and separation methods of natural products from these seaweeds along with their phytochemical profiles. Many potential applications for these derivatives exist in agriculture, energy, nutrition, biomaterials, waste treatment (composting), pharmaceuticals, cosmetics and other applications. The chemical diversity of the natural compounds present in these seaweeds is an opportunity to further investigate a range of chemical scaffolds, evaluate their biological activities, and develop them for better pharmaceutical or biotechnological applications. The key message is the significant opportunity for the development of high value products from a seaweed processing industry in Scotland, based on a sustainable resource, and locally regulated.
Collapse
|
24
|
Abdullah MA, Hussein HA. Integrated algal and oil palm biorefinery as a model system for bioenergy co-generation with bioproducts and biopharmaceuticals. BIORESOUR BIOPROCESS 2021; 8:40. [PMID: 38650258 PMCID: PMC10992906 DOI: 10.1186/s40643-021-00396-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There has been a greater call for greener and eco-friendly processes and bioproducts to meet the 2030's core agenda on 17 global sustainable development goals. The challenge lies in incorporating systems thinking with a comprehensive worldview as a guiding principle to develop the economy, whilst taking cognisance of the need to safeguard the environment, and to embrace the socio-cultural diversity dimension as an equal component. Any discussion on climate change, destruction of eco-system and habitat for wildlife, poverty and starvation, and the spread of infectious diseases, must be addressed together with the emphasis on the development of cleaner energy, air and water, better management of resources and biodiversity, improved agro-practices for food production and distribution, and affordable health care, as the outcomes and key performance indicators to be evaluated. Strict regulation, monitoring and enforcement to minimize emission, pollution and wastage must also be put in place. CONCLUSION This review article focuses on the research and development efforts to achieve sustainable bioenergy production, environmental remediation, and transformation of agro-materials into value-added bioproducts through the integrated algal and oil palm biorefinery. Recent development in microalgal research with nanotechnology as anti-cancer and antimicrobial agents and for biopharmaceutical applications are discussed. The life-cycle analysis in the context of palm oil mill processes is evaluated. The way forward from this integrated biorefinery concept is to strive for inclusive development strategies, and to address the immediate and pressing problems facing the Planet and the People, whilst still reaping the Profit.
Collapse
Affiliation(s)
- Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | | |
Collapse
|
25
|
Resende DI, Ferreira M, Magalhães C, Sousa Lobo J, Sousa E, Almeida IF. Trends in the use of marine ingredients in anti-aging cosmetics. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Kumar V, Al Momin S, Kumar VV, Ahmed J, Al-Musallam L, Shajan AB, Al-Aqeel H, Al-Mansour H, Al-Zakri WM. Distribution and diversity of eukaryotic microalgae in Kuwait waters assessed using 18S rRNA gene sequencing. PLoS One 2021; 16:e0250645. [PMID: 33901235 PMCID: PMC8075240 DOI: 10.1371/journal.pone.0250645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
The microbial communities play a crucial role in ecosystem functioning through interactions among individuals and taxonomic groups in a highly dynamic marine ecosystem. The structure and functioning of the microbial communities are often influenced by the changes in the surrounding environment. Monitoring the microbial diversity of the marine ecosystem helps to understand spatial patterns of microbial community and changes due to season, climate, and various drivers of biological diversity. Kuwait is characterized by an arid environment with a high degree of temperature variation during summer and winter. Our understanding of spatial distribution patterns of microbial communities, their diversity, and the influence of human activities on the degree of changes in the diversity of the microbial community in Kuwait territorial waters remain unclear. In this study, we employed 18S rRNA sequencing to explore marine microalgal community composition and dynamics in seawater samples collected from Kuwait waters over two seasonal cycles across six locations. A total of 448,184 sequences across 36 replicates corresponding to 12 samples from six stations were obtained. The quality-filtered sequences were clustered into 1,293 representative sequences, which were then classified into different eukaryotic taxa. This study reveals that the phytoplankton community in Kuwait waters is diverse and shows significant variations among different taxa during summer and winter. Dinoflagellates and diatoms were the most abundant season-dependent microalgae taxa in Kuwait waters. Alexandrium and Pyrophacus were abundant in summer, whereas Gonyaulax was abundant during the winter. The abundance of Coscinodiscus and Navicula, of the diatom genera, were also dependent upon both seasonal and possible anthropogenic factors. Our results demonstrate the effectiveness of a sequencing-based approach, which could be used to improve the accuracy of quantitative eukaryotic microbial community profiles.
Collapse
Affiliation(s)
- Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
- * E-mail:
| | - Sabah Al Momin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Vanitha V. Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Lamya Al-Musallam
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Anisha B. Shajan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Hamed Al-Aqeel
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Hamad Al-Mansour
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Walid M. Al-Zakri
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| |
Collapse
|
27
|
Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:ijms22094383. [PMID: 33922258 PMCID: PMC8122763 DOI: 10.3390/ijms22094383] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae are known to produce a plethora of compounds derived from the primary and secondary metabolism. Different studies have shown that these compounds may have allelopathic, antimicrobial, and antipredator activities. In addition, in vitro and in vivo screenings have shown that several compounds have interesting bioactivities (such as antioxidant, anti-inflammatory, anticancer, and antimicrobial) for the possible prevention and treatment of human pathologies. Additionally, the enzymatic pathways responsible for the synthesis of these compounds, and the targets and mechanisms of their action have also been investigated for a few species. However, further research is necessary for their full exploitation and possible pharmaceutical and other industrial applications. Here, we review the current knowledge on the chemical characteristics, biological activities, mechanism of action, and the enzymes involved in the synthesis of microalgal metabolites with potential benefits for human health.
Collapse
|
28
|
Identification of a novel tailor-made chitinase from white shrimp Fenneropenaeus merguiensis. Colloids Surf B Biointerfaces 2021; 203:111747. [PMID: 33839476 DOI: 10.1016/j.colsurfb.2021.111747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for many industrial applications. In the present study, a putative chitinase-encoding cDNA was synthesized from mRNA from F. merguiensis hepatopancreas tissue. Subsequently, the corresponding cDNA was cloned, sequenced and functionally expressed in Escherichia coli, and the recombinant F. merguiensis chitinase (rFmCHI) was purified by His-tag affinity chromatography. The bioinformatics analysis of aminoacid sequence of rFmCHI displayed a cannonical multidomain architecture in chitinases which belongs to glycoside hydrolase family 18 (GH18 chitinase). Biochemical characterization revealed rFmCHI as a monomeric enzyme of molecular weight 52 kDa with maximum activity at 40 °C and pH 6.0 Moreover, the recombinant enzyme is also stable up to 60 °C, and in the pH range 5.0-8.0. Steady-state kinetic studies for colloidal chitin revealed KM, Vmax and kcat values of 78.18 μM, 0.07261 μM. min-1 and 43.37 s-1, respectively. Overall, our results aim to demonstrate the potential of rFmCHI as suitable catalyst for bioconversion of chitin waste.
Collapse
|
29
|
Li X, Wang D, Zhang P, Yu G, Cai C. Recent Advances in the Chemical Synthesis of Marine Acidic Carbohydrates. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201230120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ocean supplies abundant active compounds, including small organic molecules,
proteins, lipids, and carbohydrates, with diverse biological functions. The high-value
transformation of marine carbohydrates primarily refers to their pharmaceutical, food, and
cosmetic applications. However, it is still a big challenge to obtain these marine carbohydrates
in well-defined structures. Synthesis is a powerful approach to access marine oligosaccharides,
polysaccharide derivatives, and glycomimetics. In this review, we focus on the
chemical synthesis of marine acidic carbohydrates with uronic acid building blocks such as
alginate, and glycosaminoglycans. Regioselective sulfation using a chemical approach is also
highlighted in the synthesis of marine oligosaccharides, as well as the multivalent glycodendrimers
and glycopolymers for achieving specific functions. This review summarizes recent
advances in the synthesis of marine acidic carbohydrates, as well as their preliminary structure activity relationship
(SAR) studies, which establishes a foundation for the development of novel marine carbohydrate-based drugs and
functional reagents.
Collapse
Affiliation(s)
- Xinru Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Depeng Wang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
30
|
Doshi G, Nailwal N. A Review on Molecular Mechanisms and Patents of Marine-derived Anti-thrombotic Agents. Curr Drug Targets 2021; 22:318-335. [PMID: 33081673 DOI: 10.2174/1389450121666201020151927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Thrombosis is a condition of major concern worldwide as it is associated with life-threatening diseases related to the cardiovascular system. The condition affects 1 in 1000 adults annually, whereas 1 in 4 dies due to thrombosis, and this increases as the age group increases. The major outcomes are considered to be a recurrence, bleeding due to commercially available anti-coagulants, and deaths. The side effects associated with available anti-thrombotic drugs are a point of concern. Therefore, it is necessary to discover and develop an improvised benefit-risk profile drug, therefore, in search of alternative therapy for the treatment of thrombosis, marine sources have been used as promising treatment agents. They have shown the presence of sulfated fucans/galactans, fibrinolytic proteases, diterpenes, glycosaminoglycan, glycoside, peptides, amino acids, sterols, polysaccharides, polyphenols, vitamins, and minerals. Out of these marine sources, many chemicals were found to have anti-thrombotic activities. This review focuses on the recent discovery of anti-thrombotic agents obtained from marine algae, sponges, mussels, and sea cucumber, along with their mechanism of action and patents on its extraction process, preparation methods, and their applications. Further, the article concludes with the author's insight related to marine drugs, which have a promising future.
Collapse
Affiliation(s)
- Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| | - Namrata Nailwal
- M. Pharm Research Scholar, Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, Maharashtra, India
| |
Collapse
|
31
|
Moga MA, Dima L, Balan A, Blidaru A, Dimienescu OG, Podasca C, Toma S. Are Bioactive Molecules from Seaweeds a Novel and Challenging Option for the Prevention of HPV Infection and Cervical Cancer Therapy?-A Review. Int J Mol Sci 2021; 22:E629. [PMID: 33435168 PMCID: PMC7826946 DOI: 10.3390/ijms22020629] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer represents one of the leading causes of cancer-related death in women all over the world. The infection with human papilloma virus (HPV) is one of the major risk factors for the development of premalignant lesions, which will progress to cervical cancer. Seaweeds are marine organisms with increased contents of bioactive compounds, which are described as potential anti-HPV and anti-cervical cancer agents. Our study aims to bring together all the results of the previous studies, conducted in order to highlight the potency of bioactive molecules from seaweeds, as anti-HPV and anti-cervical agents. This paper is a review of the English literature published between January 2010 and August 2020. We performed a systematic study in the Google Academic and PubMed databases using the key words "HPV infection", "anticancer", "seaweeds", "cervical cancer" and "carcinogenesis process", aiming to evaluate the effects of different bioactive molecules from marine algae on cervical cancer cell lines and on HPV-infected cells. Only original studies were considered for our research. None of the papers was excluded due to language usage or affiliation. Recent discoveries pointed out that sulfated polysaccharides, such as dextran sulfate heparan or cellulose sulfate, blocked the ability of HPV to infect cells, and inhibited the carcinogenesis process. Carrageenans inhibited the virions of HPV from binding the cellular wall. Fucoidan induced the growth inhibition of HeLa cervical cells in vitro. Heterofucans exhibited antiproliferative effects on cancer cell lines. Terpenoids from brown algae are also promising agents with anti-cervical cancer activity. Considering all the results of the previous studies, we observed that great amounts of bioactive molecules from seaweeds could treat both unapparent HPV infection and clinical visible disease. Furthermore, these molecules were very efficient in the treatment of invasive cervical carcinomas. In these conditions, we consider seaweeds extracts as a novel and challenging therapeutic strategy, and we hope that our study paves the way for further clinical trials in the field.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| | - Andreea Balan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Alexandru Blidaru
- Department of Surgical Oncology, Oncological Institute “Al. Trestioneanu” of Bucharest, University of Medicine and Pharmacy Carol Davila Bucharest, 020021 Bucharest, Romania
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Cezar Podasca
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transylvania University of Brasov, 500019 Brasov, Romania; (M.A.M.); (O.G.D.); (C.P.)
| | - Sebastian Toma
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania of Brasov, 500019 Brasov, Romania; (L.D.); (S.T.)
| |
Collapse
|
32
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
33
|
Shanthi Kumari K, Shivakrishna P, Ganduri VR. Wound healing Activities of the bioactive compounds from Micrococcus sp. OUS9 isolated from marine water. Saudi J Biol Sci 2020; 27:2398-2402. [PMID: 32884422 PMCID: PMC7451693 DOI: 10.1016/j.sjbs.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/16/2020] [Accepted: 05/03/2020] [Indexed: 12/24/2022] Open
Abstract
Marine species are increasingly important as a source of specific biological active metabolites. Marine species comprise almost half of global biodiversity. Oceans and sea are thus the biggest source of positive natural compounds that could be utilized in the pharmaceutical industry as functional constituents. In the present study was to find out the wound healing property of the bioactive compounds from Micrococcus sp. OUS9 isolated from marine source. The in vivo wound healing activity was studied using excision wound model. The KLUF 10 and KLUF13 ointment was prepared and used to determine wound healing activity in albino rats. Topical application of the ointment enhanced the contraction of wound in contrast with rat control group. KLUF13 had shown strong healing ability in wounds and had a positive influence on the various phases of wound repair.
Collapse
Affiliation(s)
- K. Shanthi Kumari
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, A.P., India
- Department of Microbiology, Osmania University, Hyderabad 500 007, Telangana, India
| | | | - V.S. Ramakrishna Ganduri
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, A.P., India
| |
Collapse
|
34
|
Aziz E, Batool R, Khan MU, Rauf A, Akhtar W, Heydari M, Rehman S, Shahzad T, Malik A, Mosavat SH, Plygun S, Shariati MA. An overview on red algae bioactive compounds and their pharmaceutical applications. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 17:/j/jcim.ahead-of-print/jcim-2019-0203/jcim-2019-0203.xml. [PMID: 32697756 DOI: 10.1515/jcim-2019-0203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
Abstract
Objectives To review red algae bioactive compounds and their pharmaceutical applications. Content Seaweed sources are becoming attractive to be used in health and therapeutics. Among these red algae is the largest group containing bioactive compounds utilized in cosmetic, pharmaceutical, food industry, manure and various supplements in food formula. Various significant bioactive compounds such as polysaccharides (aginate, agar, and carrageenan), lipids and polyphenols, steroids, glycosides, flavanoids, tannins, saponins, alkaloids, triterpenoids, antheraquinones and cardiac glycosides have been reported in red algae. The red algae have rich nutritional components Different polysaccharides of red algae possess the antiviral potential namely agarans, carrageenan, alginate, fucan, laminaran and naviculan. Sulfated polysaccharides and carraginans of red algae are rich source of soluble fibers which can account for antitumor activities depending upon chemistry of various secondary metabolites and metabolism of cell line. Flavons-3-ols containing catechins from many red algae block the telomerase activity in colon cancer cells. Contraceptive agents were tested from red algae as a source for post-coital. Lectin of red algae showed pro-healing properties and anti-ulcerogenic activities. Carragenates from red algae also conferred a positive influence on diabetes. Red algae depicted a reducing effect on plasma lipids and obesity. Porphyran from red alga can act as anti-hyperlipidemic agent also reduces the apolipoprotein B100 via suppression of lipid synthesis in human liver. Summary The polyphenolic extracts of Laurencia undulate, Melanothamnus afaqhusainii and Solieria robusta extract show anti-inflammatory effects against multiple genera of devastating fungi. Antioxidants such as phlorotannins, ascorbic acids, tocopherols, carotenoids from red algae showed toxicity on some cancer cells without side effects. Red algae Laurencia nipponica was found insecticidal against mosquito larvae. Red algae fibers are very important in laxative and purgative activities. Gracilaria tenuistipitat resisted in agricultural lands polluted with cadmium and copper. Outlook In the recent decades biotechnological applications of red algae has been increased. Polysaccharides derived from red algae are important tool for formulation of drugs delivery system via nanotechnology.
Collapse
Affiliation(s)
- Ejaz Aziz
- Department of Botany, Government Degree College Khanpur, Haripur 22650, Pakistan
| | - Riffat Batool
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Punjab, 46000, Pakistan
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, 99354, WA, USA
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, KPK, Pakistan
| | - Wasim Akhtar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Mojtaba Heydari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shazia Rehman
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tasmeena Shahzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ayesha Malik
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Seyed Hamdollah Mosavat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Sergey Plygun
- European Society of Clinical Microbiology and Infectious Diseases, Basel, 4051, Switzerland
- Researcher, All Russian Research Institute of Phytopathology, Moscow Region, 143050, Russia
- Head of laboratory, Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russia
| | - Mohammad Ali Shariati
- Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel City, 302026, Russia
| |
Collapse
|
35
|
Hussein HA, Abdullah MA. Anticancer Compounds Derived from Marine Diatoms. Mar Drugs 2020; 18:E356. [PMID: 32660006 PMCID: PMC7401293 DOI: 10.3390/md18070356] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/24/2022] Open
Abstract
Cancer is the main cause of death worldwide, so the discovery of new and effective therapeutic agents must be urgently addressed. Diatoms are rich in minerals and secondary metabolites such as saturated and unsaturated fatty acids, esters, acyl lipids, sterols, proteins, and flavonoids. These bioactive compounds have been reported as potent anti-cancer, anti-oxidant and anti-bacterial agents. Diatoms are unicellular photosynthetic organisms, which are important in the biogeochemical circulation of silica, nitrogen, and carbon, attributable to their short growth-cycle and high yield. The biosilica of diatoms is potentially effective as a carrier for targeted drug delivery in cancer therapy due to its high surface area, nano-porosity, bio-compatibility, and bio-degradability. In vivo studies have shown no significant symptoms of tissue damage in animal models, suggesting the suitability of a diatoms-based system as a safe nanocarrier in nano-medicine applications. This review presents an overview of diatoms' microalgae possessing anti-cancer activities and the potential role of the diatoms and biosilica in the delivery of anticancer drugs. Diatoms-based antibodies and vitamin B12 as drug carriers are also elaborated.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- College of Dentistry, University of Basrah, Basrah 00964, Iraq
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| |
Collapse
|
36
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
37
|
Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, Dragović-Uzelac V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar Drugs 2020; 18:E168. [PMID: 32197494 PMCID: PMC7143672 DOI: 10.3390/md18030168] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Over the years, brown algae bioactive polysaccharides laminarin, alginate and fucoidan have been isolated and used in functional foods, cosmeceutical and pharmaceutical industries. The extraction process of these polysaccharides includes several complex and time-consuming steps and the correct adjustment of extraction parameters (e.g., time, temperature, power, pressure, solvent and sample to solvent ratio) greatly influences the yield, physical, chemical and biochemical properties as well as their biological activities. This review includes the most recent conventional procedures for brown algae polysaccharides extraction along with advanced extraction techniques (microwave-assisted extraction, ultrasound assisted extraction, pressurized liquid extraction and enzymes assisted extraction) which can effectively improve extraction process. The influence of these extraction techniques and their individual parameters on yield, chemical structure and biological activities from the most current literature is discussed, along with their potential for commercial applications as bioactive compounds and drug delivery systems.
Collapse
Affiliation(s)
- Ana Dobrinčić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.B.); (Z.Z.); (S.P.); (D.B.K.); (I.E.G.); (V.D.-U.)
| | | | | | | | | | | | | |
Collapse
|
38
|
Singh A, Jabin G, Joshi BD, Thakur M, Sharma LK, Chandra K. DNA barcodes and ethnomedicinal use of Sharpnose guitarfish Glaucostegus granulatus by the locals at Keylong, Lahaul and Spiti, Himachal Pradesh. Mitochondrial DNA B Resour 2019; 5:113-114. [PMID: 33366445 PMCID: PMC7720993 DOI: 10.1080/23802359.2019.1698329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
Illegal trade of fishes is common and has been in practice since ages for the support of livelihood and as dietary supplements. However, several species are protected in the Wildlife (Protection) Act, 1972 of India and their trade is restricted under CITES. In this article, we report trade of Sharpnose guitarfish (Glaucostegus granulatus) for the ethnomedicinal remedy, identified using DNA barcoding in the Keylong district of Lahaul and Spiti, Himachal Pradesh. This study provides the first DNA barcode of Sharpnose guitarfish. In order to handle wildlife offense cases we emphasize that a large reference database for other fishes in trade is needed.
Collapse
Affiliation(s)
| | - Gul Jabin
- Zoological Survey of India, Kolkata, West Bengal
| | | | | | | | | |
Collapse
|
39
|
DURMUŞ M. Fish oil for human health: omega-3 fatty acid profiles of marine seafood species. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.21318] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Melanie H, Taarji N, Zhao Y, Khalid N, Neves MA, Kobayashi I, Tuwo A, Nakajima M. Formulation and characterisation of O/W emulsions stabilised with modified seaweed polysaccharides. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hakiki Melanie
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA) University of Tsukuba 1-1-1 Tennoudai Tsukuba Ibaraki 305-8572 Japan
- Research Center for Chemistry Indonesian Institute of Sciences, Kawasan Puspiptek Serpong Tangerang Selatan 15314 Indonesia
| | - Noamane Taarji
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA) University of Tsukuba 1-1-1 Tennoudai Tsukuba Ibaraki 305-8572 Japan
| | - Yiguo Zhao
- School of Agriculture and Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Nauman Khalid
- School of Food and Agricultural Sciences University of Management and Technology Lahore 54000 Pakistan
| | - Marcos A. Neves
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA) University of Tsukuba 1-1-1 Tennoudai Tsukuba Ibaraki 305-8572 Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennoudai Tsukuba Ibaraki 305‐8572 Japan
| | - Isao Kobayashi
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA) University of Tsukuba 1-1-1 Tennoudai Tsukuba Ibaraki 305-8572 Japan
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki305‐8642 Japan
| | - Ambo Tuwo
- Multitrophic Research Group, Faculty of Marine Sciences and Fisheries Hasanuddin University Makassar 90245 Indonesia
| | - Mitsutoshi Nakajima
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA) University of Tsukuba 1-1-1 Tennoudai Tsukuba Ibaraki 305-8572 Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennoudai Tsukuba Ibaraki 305‐8572 Japan
| |
Collapse
|
41
|
Stabili L, Acquaviva MI, Angilè F, Cavallo RA, Cecere E, Del Coco L, Fanizzi FP, Gerardi C, Narracci M, Petrocelli A. Screening of Chaetomorpha linum Lipidic Extract as A New Potential Source of Bioactive Compounds. Mar Drugs 2019; 17:md17060313. [PMID: 31142027 PMCID: PMC6627440 DOI: 10.3390/md17060313] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that marine algae represent a great source of natural compounds with several properties. The lipidic extract of the seaweed Chaetomorpha linum (Chlorophyta, Cladophorales), one of the dominant species in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea), revealed an antibacterial activity against Vibrio ordalii and Vibrio vulnificus, common pathogens in aquaculture, suggesting its potential employment to control fish and shellfish diseases due to vibriosis and to reduce the public health hazards related to antibiotic use in aquaculture. This extract showed also an antioxidant activity, corresponding to 170.960 ± 16. mmol Trolox equivalent/g (oxygen radical absorbance capacity assay-ORAC) and to 30.554 ± 2.30 mmol Trolox equivalent/g (Trolox equivalent antioxidant capacity assay-TEAC). The chemical characterization of the extract, performed by 1D and 2D NMR spectroscopy, highlighted the presence of free, saturated (SAFAs), unsaturated (UFAs) and polyunsaturated (PUFAs) fatty acids. The high content of ω-6 and ω-3 PUFAs confirmed also by gas chromatography indicates the potentiality of this algal species in the production of fortified food. The antibacterial activity seems related to the presence of linolenic acid present at high density, while the antioxidant activity could be likely ascribable to molecules such as carotenoids and chlorophylls (characterized also by thin-layer chromatography), known for this property. The presence of polyhydroxybutyrate, a biopolymer with potentiality in the field of biodegradable bioplastics was also detected. The exploitation of C. linum for a future biotechnological application is also encouraged by the results from a first attempt of cultivating this species in an integrated multi-trophic aquaculture (IMTA) system.
Collapse
Affiliation(s)
- Loredana Stabili
- Institute of Water Research (IRSA) C.N.R, 74123 Taranto, Italy.
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | | | - Federica Angilè
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | | | - Ester Cecere
- Institute of Water Research (IRSA) C.N.R, 74123 Taranto, Italy.
| | - Laura Del Coco
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | - Carmela Gerardi
- Institute of Sciences of Food Production, U.O.S. di Lecce, Via Prov.le Lecce-Monteroni, 72100 Lecce, Italy.
| | | | | |
Collapse
|
42
|
Lefranc F, Koutsaviti A, Ioannou E, Kornienko A, Roussis V, Kiss R, Newman D. Algae metabolites: from in vitro growth inhibitory effects to promising anticancer activity. Nat Prod Rep 2019; 36:810-841. [PMID: 30556575 DOI: 10.1039/c8np00057c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 1957 to 2017 Algae constitute a heterogeneous group of eukaryotic photosynthetic organisms, mainly found in the marine environment. Algae produce numerous metabolites that help them cope with the harsh conditions of the marine environment. Because of their structural diversity and uniqueness, these molecules have recently gained a lot of interest for the identification of medicinally useful agents, including those with potential anticancer activities. In the current review, which is not a catalogue-based one, we first highlight the major biological events that lead to various types of cancer, including metastatic ones, to chemoresistance, thus to any types of current anticancer treatment relating to the use of chemotherapeutics. We then review algal metabolites for which scientific literature reports anticancer activity. Lastly, we focus on algal metabolites with promising anticancer activity based on their ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. Thus, we highlight compounds that have, among others, one or more of the following characteristics: selectivity in reducing the proliferation of cancer cells over normal ones, potential for killing cancer cells through non-apoptotic signaling pathways, ability to circumvent MDR-related efflux pumps, and activity in vivo in relevant pre-clinical models.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sosa-Hernández JE, Romero-Castillo KD, Parra-Arroyo L, Aguilar-Aguila-Isaías MA, García-Reyes IE, Ahmed I, Parra-Saldivar R, Bilal M, Iqbal HMN. Mexican Microalgae Biodiversity and State-Of-The-Art Extraction Strategies to Meet Sustainable Circular Economy Challenges: High-Value Compounds and Their Applied Perspectives. Mar Drugs 2019; 17:E174. [PMID: 30889823 PMCID: PMC6470790 DOI: 10.3390/md17030174] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
In recent years, the demand for naturally derived products has hiked with enormous pressure to propose or develop state-of-the-art strategies to meet sustainable circular economy challenges. Microalgae possess the flexibility to produce a variety of high-value products of industrial interests. From pigments such as phycobilins or lutein to phycotoxins and several polyunsaturated fatty acids (PUFAs), microalgae have the potential to become the primary producers for the pharmaceutical, food, and agronomical industries. Also, microalgae require minimal resources to grow due to their autotrophic nature or by consuming waste matter, while allowing for the extraction of several valuable side products such as hydrogen gas and biodiesel in a single process, following a biorefinery agenda. From a Mexican microalgae biodiversity perspective, more than 70 different local species have been characterized and isolated, whereas, only a minimal amount has been explored to produce commercially valuable products, thus ignoring their potential as a locally available resource. In this paper, we discuss the microalgae diversity present in Mexico with their current applications and potential, while expanding on their future applications in bioengineering along with other industrial sectors. In conclusion, the use of available microalgae to produce biochemically revenuable products currently represents an untapped potential that could lead to the solution of several problems through green technologies. As such, if the social, industrial and research communities collaborate to strive towards a greener economy by preserving the existing biodiversity and optimizing the use of the currently available resources, the enrichment of our society and the solution to several environmental problems could be attained.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Kenya D Romero-Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Mauricio A Aguilar-Aguila-Isaías
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Isaac E García-Reyes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| |
Collapse
|
44
|
Hira K, Sultana V, Khatoon N, Ara J, Ehteshamul-Haque S. Protective effect of crude sulphated polysaccharides from Sargassum Swartzii (Turn.) C.Ag. against acetaminophen induced liver toxicity in rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0108-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Kang DU, Lee YS, Lee JW. Enhanced purification of histidine-tagged carboxymethylcellulase produced by Escherichia coli BL21/LBH-10 and comparison of its characteristics with carboxymethylcellulase without histidine-tag. Mol Biol Rep 2019; 46:1973-1983. [PMID: 30712248 DOI: 10.1007/s11033-019-04647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/24/2019] [Indexed: 11/26/2022]
Abstract
To enhance purification yield of the carboxymethylcellulase (CMCase) of P. aquimaris LBH-10, E. coli BL21/LBH-10 was constructed to produce the six histidine-tagged CMCase (CMCase with a His-tag). The purification yield of the CMCase with a His-tag produced by E. coli BL21/LBH-10 was 44.4%. The molecular weight of the CMCase with a His-tag was determined as 56 kDa. Its Km and Vmax were 7.4 g/L and 70.9 g/L min, respectively. The CMCase with a His-tag hydrolyzed avicel, carboxymethylcellulose (CMC), filter paper, pullulan, and xylan but did not hydrolyze cellobiose and p-nitrophenyl-β-D-glucopyranoside. The optimal temperature for reaction was 50 °C and more than 75% of its original activity was maintained at broad temperatures ranging from 20 to 70 °C after 24 h. The optimal pH was 4.0 and more than 60% of its original activity was maintained at pH ranging from 4.0 to 7.0. The activity of the CMCase with a His-tag was enhanced by CoCl2, KCl, PbCl2, RbCl2, and SrCl2 until the concentration of 100 mM, but inhibited by EDTA, HgCl2, MnCl2, and NiCl2. The characteristics of the CMCase with a His-tag produced by E. coli BL21/LBH-10 were little different from the CMCase without a His-tag, which seemed to resulted from the conformational change in the structure due to a His-tag. The purification yield of the CMCase with a His-tag using affinity chromatography from the cell broth after cell breakdown was proven to be more economic than that from the supernatant with its low concentration of cellulase.
Collapse
Affiliation(s)
- Duk-Un Kang
- Department of Applied Biology, Graduate School, Dong-A University, Busan, 49315, Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan, 49315, Korea
| | - Jin-Woo Lee
- Department of Applied Biology, Graduate School, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
46
|
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2018; 37:193-222. [PMID: 30500354 DOI: 10.1016/j.biotechadv.2018.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
Abstract
Research on marine microalgae has been abundantly published and patented these last years leading to the production and/or the characterization of some biomolecules such as pigments, proteins, enzymes, biofuels, polyunsaturated fatty acids, enzymes and hydrocolloids. This literature focusing on metabolic pathways, structural characterization of biomolecules, taxonomy, optimization of culture conditions, biorefinery and downstream process is often optimistic considering the valorization of these biocompounds. However, the accumulation of knowledge associated with the development of processes and technologies for biomass production and its treatment has sometimes led to success in the commercial arena. In the history of the microalgae market, red marine microalgae are well positioned particularly for applications in the field of high value pigment and hydrocolloid productions. This review aims to establish the state of the art of the diversity of red marine microalgae, the advances in characterization of their metabolites and the developments of bioprocesses to produce this biomass.
Collapse
Affiliation(s)
- Clement Gaignard
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nesrine Gargouch
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cedric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Celine Laroche
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
47
|
Cheong SH, Lee SH, Jeon YJ, Lee DS. Mussel (Mytilus coruscus) Water Extract Containing Taurine Prevents LPS-Induced Inflammatory Responses in Zebrafish Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:931-942. [PMID: 28849512 DOI: 10.1007/978-94-024-1079-2_74] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mussel (Mytilus coruscus) water extract had strong anti-inflammatory activities, but the effects and its mechanisms of mussel on anti-inflammatory properties in vivo remain to be determined. This study, therefore, was designed to investigate anti-inflammatory activities of mussel water extract containing a large amounts of taurine (151.96 nmol/mg) using the lipopolysaccharide (LPS)-induced inflammatory zebrafish model. In this study, mussel water extract containing taurine shows potent protective effects against the cell death stimulated by LPS exposure in zebrafish embryos. In addition, zebrafish subjected to LPS treatment exhibited significantly increased reactive oxygen species (ROS) and nitric oxide (NO) levels. However, mussel water extract markedly suppressed LPS-induced ROS and NO production. Our results indicate that mussel water extract attenuated inflammation by inhibiting the LPS-induced intracellular ROS and NO production in zebrafish embryos. These findings could demonstrate the anti-inflammatory activity of mussel water extract containing taurine, which might have a protective effects on inflammatory diseases.
Collapse
Affiliation(s)
- Sun Hee Cheong
- Department of Marine Bio Food Science, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 550-749, South Korea
| | - Seung-Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, 27478, South Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243, South Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, South Korea.
| |
Collapse
|
48
|
Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean? Appl Microbiol Biotechnol 2018; 102:9937-9948. [PMID: 30276711 DOI: 10.1007/s00253-018-9385-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.
Collapse
|
49
|
Bioactive Compounds from Marine Organisms: Potential for Bone Growth and Healing. Mar Drugs 2018; 16:md16090340. [PMID: 30231464 PMCID: PMC6163760 DOI: 10.3390/md16090340] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023] Open
Abstract
Marine organisms represent a highly diverse reserve of bioactives which could aid in the treatment of a wide range of diseases, including various musculoskeletal conditions. Osteoporosis in particular would benefit from a novel and effective marine-based treatment, due to its large disease burden and the inefficiencies of current treatment options. Osteogenic bioactives have been isolated from many marine organisms, including nacre powder derived from molluscan shells and fucoidan—the sulphated polysaccharide commonly sourced from brown macroalgae. Such extracts and compounds are known to have a range of osteogenic effects, including stimulation of osteoblast activity and mineralisation, as well as suppression of osteoclast resorption. This review describes currently known soluble osteogenic extracts and compounds from marine invertebrates and algae, and assesses their preclinical potential.
Collapse
|
50
|
Poza AM, Fernández C, Gauna MC, Parodi ER. Biochemical properties and culture optimization of Leathesia marina (Phaeophyceae). ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|