1
|
Scheil KKA, Sánchez-Lafuente CL, Reive BS, Halvorson CS, Floyd J, Reid HMO, Johnston JN, Kalynchuk LE, Caruncho HJ. Time-dependent antidepressant-like effects of reelin and ketamine in the repeated-corticosterone model of chronic stress. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110998. [PMID: 38552775 DOI: 10.1016/j.pnpbp.2024.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
There is an urgent need for novel antidepressants, given that approximately 30% of those diagnosed with depression do not respond adequately to first-line treatment. Additionally, monoaminergic-based antidepressants have a substantial therapeutic time-lag, often taking months to reach full therapeutic effect. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist is the only current effective rapid-acting antidepressant, demonstrating efficacy within hours and lasting up to two weeks with an acute dose. Reelin, an extracellular matrix glycoprotein, has demonstrated rapid-acting antidepressant-like effects at 24 h, however the exact timescale of these effects has not been investigated. To determine the short and long-term effects of reelin, female Long Evans rats (n = 120) underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 days). On day 21, rats were treated with reelin (3μg; i.v.), ketamine (10 mg/kg; i.p.), both reelin and ketamine (same doses), or vehicle (saline). Behavioural and biological effects were then evaluated at 1 h, 6 h, 12 h, and 1 week after treatment. The 1-week cohort continued CORT injections to ensure the effect of chronic stress was not lost. Individually, both reelin and ketamine significantly rescued CORT-induced behaviour and hippocampal reelin expression at all timepoints. Ketamine rescued a decrease in dendritic maturity as induced by CORT. Synergistic effects of reelin and ketamine appeared at 1-week, suggesting a potential additive effect of the antidepressant-like actions. Taken together, this study provides further support for reelin-based therapeutics to develop rapid-acting antidepressant.
Collapse
Affiliation(s)
- Kaylene K A Scheil
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Brady S Reive
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ciara S Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jennifer Floyd
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jenessa N Johnston
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
2
|
Long non-coding RNA LINC00926 regulates WNT10B signaling pathway thereby altering inflammatory gene expression in PTSD. Transl Psychiatry 2022; 12:200. [PMID: 35551428 PMCID: PMC9098154 DOI: 10.1038/s41398-022-01971-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), which frequently occurs in the aftermath of a psychologically traumatic event is characterized by heightened inflammation. People with PTSD also suffer from a number of comorbid clinical and behavioral disorders that are related to chronic inflammation. Thus, understanding the mechanisms of enhanced inflammation in PTSD can provide insights into the relationship between PTSD and associated comorbid disorders. In the current study, we investigated the role of large intervening non-coding RNAs (lincRNAs) in the regulation of inflammation in people diagnosed with PTSD. We observed that WNT ligand, WNT10B, was upregulated in the peripheral blood mononuclear cells (PBMCs) of PTSD patients. This observation was associated with higher H3K4me3 signals around WNT10B promotor in PTSD patients compared to those without PTSD. Increased H3K4me3 resulted from LINC00926, which we found to be upregulated in the PTSD sample, bringing in histone methyltransferase, MLL1, onto WNT10B promotor leading to the introduction of H3K4 trimethylation. The addition of recombinant human WNT10B to pre-activated peripheral blood mononuclear cells (PBMCs) led to increased expression of inflammatory genes such as IFNG and IL17A, suggesting that WNT10B is involved in their upregulation. Together, our data suggested that LINC00926 interacts physically with MLL1 and thereby controls the expression of IFNG and IL17A. This is the first time a long non-coding RNA is shown to regulate the expression of WNT10B and consequently inflammation. This observation has high relevance to our understanding of disease mechanisms of PTSD and comorbidities associated with PTSD.
Collapse
|
3
|
Ho AMC, Winham SJ, McCauley BM, Kundakovic M, Robertson KD, Sun Z, Ordog T, Webb LM, Frye MA, Veldic M. Plasma Cell-Free DNA Methylomics of Bipolar Disorder With and Without Rapid Cycling. Front Neurosci 2021; 15:774037. [PMID: 34916903 PMCID: PMC8669968 DOI: 10.3389/fnins.2021.774037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Rapid cycling (RC) burdens bipolar disorder (BD) patients further by causing more severe disability and increased suicidality. Because diagnosing RC can be challenging, RC patients are at risk of rapid decline due to delayed suitable treatment. Here, we aimed to identify the differences in the circulating cell-free DNA (cfDNA) methylome between BD patients with and without RC. The cfDNA methylome could potentially be developed as a diagnostic test for BD RC. We extracted cfDNA from plasma samples of BD1 patients (46 RC and 47 non-RC). cfDNA methylation levels were measured by 850K Infinium MethylationEPIC array. Principal component analysis (PCA) was conducted to assess global differences in methylome. cfDNA methylation levels were compared between RC groups using a linear model adjusted for age and sex. PCA suggested differences in methylation profiles between RC groups (p = 0.039) although no significant differentially methylated probes (DMPs; q > 0.15) were found. The top four CpG sites which differed between groups at p < 1E-05 were located in CGGPB1, PEX10, NR0B2, and TP53I11. Gene set enrichment analysis (GSEA) on top DMPs (p < 0.05) showed significant enrichment of gene sets related to nervous system tissues, such as neurons, synapse, and glutamate neurotransmission. Other top notable gene sets were related to parathyroid regulation and calcium signaling. To conclude, our study demonstrated the feasibility of utilizing a microarray method to identify circulating cfDNA methylation sites associated with BD RC and found the top differentially methylated CpG sites were mostly related to the nervous system and the parathyroid.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Stacey J Winham
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Bryan M McCauley
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, New York, NY, United States
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Zhifu Sun
- Department of Health Science Research, Mayo Clinic, Rochester, MN, United States
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Lauren M Webb
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
5
|
Weber-Stadlbauer U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl Psychiatry 2017; 7:e1113. [PMID: 28463237 PMCID: PMC5534947 DOI: 10.1038/tp.2017.78] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal infection is an environmental risk factor for various brain disorders with neurodevelopmental components, including autism spectrum disorder and schizophrenia. Modeling this association in animals shows that maternal immune activation negatively affects fetal brain development and leads to the emergence of behavioral disturbances later in life. Recent discoveries in these preclinical models suggest that epigenetic modifications may be a critical molecular mechanism by which prenatal immune activation can mediate changes in brain development and functions, even across generations. This review discusses the potential epigenetic mechanisms underlying the effects of prenatal infections, thereby highlighting how infection-mediated epigenetic reprogramming may contribute to the transgenerational transmission of pathological traits. The identification of epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders appears relevant to brain disorders independently of existing diagnostic classifications and may help identifying complex patterns of transgenerational disease transmission beyond genetic inheritance. The consideration of ancestral infectious histories may be of great clinical interest and may be pivotal for developing new preventive treatment strategies against infection-mediated neurodevelopmental disorders.
Collapse
Affiliation(s)
- U Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| |
Collapse
|
6
|
Genome-wide DNA Methylation Changes in a Mouse Model of Infection-Mediated Neurodevelopmental Disorders. Biol Psychiatry 2017; 81:265-276. [PMID: 27769567 DOI: 10.1016/j.biopsych.2016.08.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/12/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prenatal exposure to infectious or inflammatory insults increases the risk of neurodevelopmental disorders. Using a well-established mouse model of prenatal viral-like immune activation, we examined whether this pathological association involves genome-wide DNA methylation differences at single nucleotide resolution. METHODS Prenatal immune activation was induced by maternal treatment with the viral mimetic polyriboinosinic-polyribocytidylic acid in middle or late gestation. Following behavioral and cognitive characterization of the adult offspring (n = 12 per group), unbiased capture array bisulfite sequencing was combined with subsequent matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitative real-time polymerase chain reaction analyses to quantify DNA methylation changes and transcriptional abnormalities in the medial prefrontal cortex of immune-challenged and control offspring. Gene ontology term enrichment analysis was used to explore shared functional pathways of genes with differential DNA methylation. RESULTS Adult offspring of immune-challenged mothers displayed hyper- and hypomethylated CpGs at numerous loci and at distinct genomic regions, including genes relevant for gamma-aminobutyric acidergic differentiation and signaling (e.g., Dlx1, Lhx5, Lhx8), Wnt signaling (Wnt3, Wnt8a, Wnt7b), and neural development (e.g., Efnb3, Mid1, Nlgn1, Nrxn2). Altered DNA methylation was associated with transcriptional changes of the corresponding genes. The epigenetic and transcriptional effects were dependent on the offspring's age and were markedly influenced by the precise timing of prenatal immune activation. CONCLUSIONS Prenatal viral-like immune activation is capable of inducing stable DNA methylation changes in the medial prefrontal cortex. These long-term epigenetic modifications are a plausible mechanism underlying the disruption of prefrontal gene transcription and behavioral functions in subjects with prenatal infectious histories.
Collapse
|
7
|
Karsli-Ceppioglu S. Epigenetic Mechanisms in Psychiatric Diseases and Epigenetic Therapy. Drug Dev Res 2016; 77:407-413. [PMID: 27594444 DOI: 10.1002/ddr.21340] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical Research Epigenetic mechanisms refer covalent modification of DNA and histone proteins that control transcriptional regulation of gene expression. Epigenetic regulation is involved in the development of the nervous system and plays an important role in the pathophysiology of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Epigenetic drugs, including histone deacetylation and DNA methylation inhibitors have received increased attention for the management of psychiatric diseases. The purpose of this review is to discuss the potential of epigenetic drugs to treat these disorders and to clarify the mechanisms by which they regulate the dysfunctional genes in the brain. Drug Dev Res 77 : 407-413, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|
8
|
Jawahar MC, Murgatroyd C, Harrison EL, Baune BT. Epigenetic alterations following early postnatal stress: a review on novel aetiological mechanisms of common psychiatric disorders. Clin Epigenetics 2015; 7:122. [PMID: 26583053 PMCID: PMC4650349 DOI: 10.1186/s13148-015-0156-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/08/2015] [Indexed: 11/10/2022] Open
Abstract
Stressor exposure during early life has the potential to increase an individual’s susceptibility to a number of neuropsychiatric conditions such as mood and anxiety disorders and schizophrenia in adulthood. This occurs in part due to the dysfunctional stress axis that persists following early adversity impairing stress responsivity across life. The mechanisms underlying the prolonged nature of this vulnerability remain to be established. Alterations in the epigenetic signature of genes involved in stress responsivity may represent one of the neurobiological mechanisms. The overall aim of this review is to provide current evidence demonstrating changes in the epigenetic signature of candidate gene(s) in response to early environmental adversity. More specifically, this review analyses the epigenetic signatures of postnatal adversity such as childhood abuse or maltreatment and later-life psychopathology in human and animal models of early life stress. The results of this review shows that focus to date has been on genes involved in the regulation of hypothalamic-pituitary-adrenal (HPA) axis and its correlation to subsequent neurobiology, for example, the role of glucocorticoid receptor gene. However, epigenetic changes in other candidate genes such as brain-derived neurotrophic factor (BDNF) and serotonin transporter are also implicated in early life stress (ELS) and susceptibility to adult psychiatric disorders. DNA methylation is the predominantly studied epigenetic mark followed by histone modifications specifically acetylation and methylation. Further, these epigenetic changes are cell/tissue-specific in regulating expression of genes, providing potential biomarkers for understanding the trajectory of early stress-induced susceptibility to adult psychiatric disorders.
Collapse
Affiliation(s)
- Magdalene C Jawahar
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA 5005 Australia
| | - Chris Murgatroyd
- School of HealthCare Science, Manchester Metropolitan University, Manchester, UK
| | - Emma L Harrison
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA 5005 Australia ; School of Medicine and Dentistry, James Cook University, Townsville City, Australia
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
9
|
Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 2015; 14:461-74. [DOI: 10.1038/nrd4580] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Fass DM, Schroeder FA, Perlis RH, Haggarty SJ. Epigenetic mechanisms in mood disorders: targeting neuroplasticity. Neuroscience 2014; 264:112-30. [PMID: 23376737 PMCID: PMC3830721 DOI: 10.1016/j.neuroscience.2013.01.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/19/2013] [Indexed: 12/22/2022]
Abstract
Developing novel therapeutics and diagnostic tools based upon an understanding of neuroplasticity is critical in order to improve the treatment and ultimately the prevention of a broad range of nervous system disorders. In the case of mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), where diagnoses are based solely on nosology rather than pathophysiology, there exists a clear unmet medical need to advance our understanding of the underlying molecular mechanisms and to develop fundamentally new mechanism experimental medicines with improved efficacy. In this context, recent preclinical molecular, cellular, and behavioral findings have begun to reveal the importance of epigenetic mechanisms that alter chromatin structure and dynamically regulate patterns of gene expression that may play a critical role in the pathophysiology of mood disorders. Here, we will review recent advances involving the use of animal models in combination with genetic and pharmacological probes to dissect the underlying molecular mechanisms and neurobiological consequence of targeting this chromatin-mediated neuroplasticity. We discuss evidence for the direct and indirect effects of mood stabilizers, antidepressants, and antipsychotics, among their many other effects, on chromatin-modifying enzymes and on the epigenetic state of defined genomic loci, in defined cell types and in specific regions of the brain. These data, as well as findings from patient-derived tissue, have also begun to reveal alterations of epigenetic mechanisms in the pathophysiology and treatment of mood disorders. We summarize growing evidence supporting the notion that selectively targeting chromatin-modifying complexes, including those containing histone deacetylases (HDACs), provides a means to reversibly alter the acetylation state of neuronal chromatin and beneficially impact neuronal activity-regulated gene transcription and mood-related behaviors. Looking beyond current knowledge, we discuss how high-resolution, whole-genome methodologies, such as RNA-sequencing (RNA-Seq) for transcriptome analysis and chromatin immunoprecipitation-sequencing (ChIP-Seq) for analyzing genome-wide occupancy of chromatin-associated factors, are beginning to provide an unprecedented view of both specific genomic loci as well as global properties of chromatin in the nervous system. These methodologies when applied to the characterization of model systems, including those of patient-derived induced pluripotent cell (iPSC) and induced neurons (iNs), will greatly shape our understanding of epigenetic mechanisms and the impact of genetic variation on the regulatory regions of the human genome that can affect neuroplasticity. Finally, we point out critical unanswered questions and areas where additional data are needed in order to better understand the potential to target mechanisms of chromatin-mediated neuroplasticity for novel treatments of mood and other psychiatric disorders.
Collapse
Affiliation(s)
- D M Fass
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - F A Schroeder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 149, 13th Street, Charlestown, MA 02129, USA
| | - R H Perlis
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA
| | - S J Haggarty
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Kofink D, Boks MP, Timmers HM, Kas MJ. Epigenetic dynamics in psychiatric disorders: Environmental programming of neurodevelopmental processes. Neurosci Biobehav Rev 2013; 37:831-45. [DOI: 10.1016/j.neubiorev.2013.03.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 12/13/2022]
|
12
|
Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology 2013; 38:138-66. [PMID: 22948975 PMCID: PMC3521968 DOI: 10.1038/npp.2012.125] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023]
Abstract
Major psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BP) with psychosis (BP+) express a complex symptomatology characterized by positive symptoms, negative symptoms, and cognitive impairment. Postmortem studies of human SZ and BP+ brains show considerable alterations in the transcriptome of a variety of cortical structures, including multiple mRNAs that are downregulated in both inhibitory GABAergic and excitatory pyramidal neurons compared with non-psychiatric subjects (NPS). Several reports show increased expression of DNA methyltransferases in telencephalic GABAergic neurons. Accumulating evidence suggests a critical role for altered DNA methylation processes in the pathogenesis of SZ and related psychiatric disorders. The establishment and maintenance of CpG site methylation is essential during central nervous system differentiation and this methylation has been implicated in synaptic plasticity, learning, and memory. Atypical hypermethylation of candidate gene promoters expressed in GABAergic neurons is associated with transcriptional downregulation of the corresponding mRNAs, including glutamic acid decarboxylase 67 (GAD67) and reelin (RELN). Recent reports indicate that the methylation status of promoter proximal CpG dinucleotides is in a dynamic balance between DNA methylation and DNA hydroxymethylation. Hydroxymethylation and subsequent DNA demethylation is more complex and involves additional proteins downstream of 5-hydroxymethylcytosine, including members of the base excision repair (BER) pathway. Recent advances in our understanding of altered CpG methylation, hydroxymethylation, and active DNA demethylation provide a framework for the identification of new targets, which may be exploited for the pharmacological intervention of the psychosis associated with SZ and possibly BP+.
Collapse
Affiliation(s)
- Dennis R Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
13
|
Guidotti A, Grayson DR. A neurochemical basis for an epigenetic vision of psychiatric disorders (1994-2009). Pharmacol Res 2011; 64:344-9. [PMID: 21699980 DOI: 10.1016/j.phrs.2011.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 1996, Dr. Costa was invited by Prof. Boris Astrachan, Chairman of the Department of Psychiatry at the University of Illinois at Chicago, to direct the research of the "Psychiatric Institute, Department of Psychiatry, School of Medicine, at the University of Illinois at Chicago." He was asked to develop a seminal research program on psychiatric disorders. Viewed in retrospect, Dr. Costa met and surpassed the challenge, as was usual for him. To elucidate the molecular mechanisms whereby nurture (epigenetic factors) and nature (genetic factors) interact to cause major psychiatric disorders was at the center of Dr. Costa's mission for the last 15 years of his research at the Psychiatric Institute. The challenge for Dr. Costa and his colleagues (Auta, Caruncho, Davis, Grayson, Guidotti, Impagnatiello, Kiedrowski, Larson, Manev, Pappas, Pesold, Pinna, Sharma, Smalheiser, Sugaya, Tueting, Veldic [1-111]) had always been to find new ways to prevent and treat psychiatric disorders with pharmacological agents that failed to have major unwanted side effects. In this list, we have quoted the first authors of the papers pertaining to the field of research highlighted in the title. As you know, Dr. Costa was an eclectic scientist and in his 15 years of studies at UIC, he touched many other aspects of neuroscience research that are not discussed in this overview.
Collapse
Affiliation(s)
- Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 Taylor, Chicago, IL 60612, United States.
| | | |
Collapse
|
14
|
Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci 2010; 30:13130-7. [PMID: 20881131 DOI: 10.1523/jneurosci.1039-10.2010] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parenting and the early environment influence the risk for various psychopathologies. Studies in the rat suggest that variations in maternal care stably influence DNA methylation, gene expression, and neural function in the offspring. Maternal care affects neural development, including the GABAergic system, the function of which is linked to the pathophysiology of diseases including schizophrenia and depression. Postmortem studies of human schizophrenic brains have revealed decreased forebrain expression of glutamic acid decarboxylase 1 (GAD1) accompanied by increased methylation of a GAD1 promoter. We examined whether maternal care affects GAD1 promoter methylation in the hippocampus of adult male offspring of high and low pup licking/grooming (high-LG and low-LG) mothers. Compared with the offspring of low-LG mothers, those reared by high-LG dams showed enhanced hippocampal GAD1 mRNA expression, decreased cytosine methylation, and increased histone 3-lysine 9 acetylation (H3K9ac) of the GAD1 promoter. DNA methyltransferase 1 expression was significantly higher in the offspring of low- compared with high-LG mothers. Pup LG increases hippocampal serotonin (5-HT) and nerve growth factor-inducible factor A (NGFI-A) expression. Chromatin immunoprecipitation assays revealed enhanced NGFI-A association with and H3K9ac of the GAD1 promoter in the hippocampus of high-LG pups after a nursing bout. Treatment of hippocampal neuronal cultures with either 5-HT or an NGFI-A expression plasmid significantly increased GAD1 mRNA levels. The effect of 5-HT was blocked by a short interfering RNA targeting NGFI-A. These results suggest that maternal care influences the development of the GABA system by altering GAD1 promoter methylation levels through the maternally induced activation of NGFI-A and its association with the GAD1 promoter.
Collapse
|
15
|
Muir WJ, McKechanie AG. Can epigenetics help in the discovery of therapeutics for psychiatric disorders, especially schizophrenia? Expert Opin Drug Discov 2009; 4:621-7. [PMID: 23489155 DOI: 10.1517/17460440902895446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Psychiatric disorders have a heterogeneous biological basis, where environmental factors interplay with non-mendelian genetics to produce complex cognitive/behavioural syndromes such as schizophrenia. Recent findings indicate a proportion of schizophrenia is associated with genomic copy number variation, suggesting that alteration of gene expression levels rather than direct mutation may play a role. Epigenetic mechanisms could be the crucial link between external stimuli and gene expression, influencing schizophrenia risk. These are dynamic reversible systems that offer much promise as targets for future therapies.
Collapse
Affiliation(s)
- Walter J Muir
- Reader in Psychiatry University of Edinburgh, Royal Edinburgh Hospital, School of Molecular and Clinical Medicine, Division of Psychiatry, EH10 5HF, Edinburgh, UK
| | | |
Collapse
|
16
|
Kundakovic M, Chen Y, Guidotti A, Grayson DR. The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 2009; 75:342-54. [PMID: 19029285 PMCID: PMC2684898 DOI: 10.1124/mol.108.051763] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/24/2008] [Indexed: 11/22/2022] Open
Abstract
The epigenetic down-regulation of genes is emerging as a possible underlying mechanism of the GABAergic neuron dysfunction in schizophrenia. For example, evidence has been presented to show that the promoters associated with reelin and GAD67 are down-regulated as a consequence of DNA methyltransferase (DNMT)-mediated hypermethylation. Using neuronal progenitor cells to study this regulation, we have previously demonstrated that DNMT inhibitors coordinately increase reelin and GAD67 mRNAs. Here, we report that another group of epigenetic drugs, histone deacetylase (HDAC) inhibitors, activate these two genes with dose and time dependence comparable with that of DNMT inhibitors. In parallel, both groups of drugs decrease DNMT1, DNMT3A, and DNMT3B protein levels and reduce DNMT enzyme activity. Furthermore, induction of the reelin and GAD67 mRNAs is accompanied by the dissociation of repressor complexes containing all three DNMTs, MeCP2, and HDAC1 from the corresponding promoters and by increased local histone acetylation. Our data imply that drug-induced promoter demethylation is relevant for maximal activation of reelin and GAD67 transcription. The results suggest that HDAC and DNMT inhibitors activate reelin and GAD67 expression through similar mechanisms. Both classes of drugs attenuate, directly or indirectly, the enzymatic and transcriptional repressor activities of DNMTs and HDACs. These data provide a mechanistic rationale for the use of epigenetic drugs, individually or in combination, as a potential novel therapeutic strategy to alleviate deficits associated with schizophrenia.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
17
|
Abdolmaleky HM, Zhou JR, Thiagalingam S, Smith CL. Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics 2008; 9:1809-23. [DOI: 10.2217/14622416.9.12.1809] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Individuals with neuropsychiatric diseases have epigenetic programming disturbances, both in the brain, which is the primary affected organ, and in secondary tissues. Epigenetic modulations are molecular modifications made to DNA, RNA and proteins that fine-tune genotype into phenotype and do not include DNA base changes. For instance, gene-expression modulation is linked to epigenetic codes in chromatin that consist of post-replication DNA methylation and histone protein modifications (e.g., methylation, acetylation and so on), particularly in gene-promoter regions. Epigenetic coding is modulated globally, and in a gene-specific manner by environmental exposures that include nutrition, toxins, drugs and so on. Analysis of epigenetic aberrations in diseases helps to identify dysfunctional genes and pathways, establish more robust cause–effect relationships than genetic studies alone, and identify new pharmaceutical targets and drugs, including nucleic acid reagents such as inhibitory RNAs. The emerging science of pharmacoepigenomics can impact the treatment of psychiatric and other complex diseases. In fact, some therapeutics now in use target epigenetic programming. In the near future, epigenetic interventions should help stabilize affected individuals and lead to prevention strategies.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Laboratory of Nutrition and Metabolism at BIDMC, Harvard Medical School, Boston, MA, USA
- Biomedical Engineering Department, Boston University, USA
- Department of Medicine, Genetics & Genomics, Boston University School of Medicine, USA
- Department of Psychiatry and Tehran Psychiatric Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Jin-Rong Zhou
- Laboratory of Nutrition and Metabolism at BIDMC, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Department of Medicine, Genetics & Genomics, Boston University School of Medicine, USA
| | | |
Collapse
|
18
|
Hoffmann K, Czapp M, Löscher W. Increase in antiepileptic efficacy during prolonged treatment with valproic acid: role of inhibition of histone deacetylases? Epilepsy Res 2008; 81:107-13. [PMID: 18538545 DOI: 10.1016/j.eplepsyres.2008.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 11/25/2022]
Abstract
Valproic acid (VPA) is a major antiepileptic drug (AED) with efficacy against multiple seizure types. It has a rapid onset of action but its anticonvulsant activity increases during prolonged treatment, which cannot be explained by drug or metabolite accumulation in plasma or brain. Among numerous other effects on diverse drug targets, VPA is an inhibitor of histone deacetylases (HDACs) that are involved in modulation of gene expression. The functional consequences of HDAC inhibition typically develop slowly during treatment with HDAC inhibitors such as VPA. We therefore hypothesized that inhibition of brain HDACs by VPA and resultant increases in gene expression could explain the increase in anticonvulsant activity during prolonged treatment with this drug. This hypothesis was tested by comparing the effects of VPA and the selective HDAC inhibitor, trichostatin A (TSA), in a mouse model of generalized seizures. Intravenous infusion of pentylenetetrazole (PTZ) was used to determine the effects of the drugs on different seizure types, i.e., myoclonic, clonic and tonic seizures. VPA (200mg/kg b.i.d.) rapidly increased PTZ thresholds to all seizure types, but this effect increased up to threefold during prolonged treatment. Following low (0.5mg/kg b.i.d.) or high (5mg/kg b.i.d.) dose treatment with TSA, no dose-dependent anticonvulsant effects were determined. This finding argues against a role of HDAC inhibition for the anticonvulsant activity of VPA. In view of the multiple extra- and intracellular targets of VPA, the experimental strategy used in the present study may be helpful to assess which specific molecular effects of VPA are relevant for the antiepileptic activity of this drug, and which are not.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, and Center for Systems Neuroscience, Bünteweg 17, D-30559 Hannover, Germany
| | | | | |
Collapse
|