1
|
Häselbarth L, Gamali S, Saul D, Krumbholz M, Böttcher-Loschinski R, Böttcher M, Zou D, Metzler M, Karow A, Mougiakakos D. Synergistic lethality in chronic myeloid leukemia - targeting oxidative phosphorylation and unfolded protein response effectively complements tyrosine kinase inhibitor treatment. BMC Cancer 2023; 23:1153. [PMID: 38012567 PMCID: PMC10680331 DOI: 10.1186/s12885-023-11623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.
Collapse
Affiliation(s)
- Lukas Häselbarth
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Erlangen, Germany.
- Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, Germany.
| | - Sara Gamali
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Domenica Saul
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Manuela Krumbholz
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Erlangen, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, Medical Center, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Böttcher
- Department of Hematology and Oncology, Medical Center, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Deyu Zou
- Department of Hematology and Oncology, Medical Center, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Erlangen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, Germany
| | - Axel Karow
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area Nuremberg (CCC-ER-EMN), Erlangen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Althaher AR, Alwahsh M. An overview of ATP synthase, inhibitors, and their toxicity. Heliyon 2023; 9:e22459. [PMID: 38106656 PMCID: PMC10722325 DOI: 10.1016/j.heliyon.2023.e22459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Mitochondrial complex V (ATP synthase) is a remarkable molecular motor crucial in generating ATP and sustaining mitochondrial function. Its importance in cellular metabolism cannot be overstated, as malfunction of ATP synthase has been linked to various pathological conditions. Both natural and synthetic ATP synthase inhibitors have been extensively studied, revealing their inhibitory sites and modes of action. These findings have opened exciting avenues for developing new therapeutics and discovering new pesticides and herbicides to safeguard global food supplies. However, it is essential to remember that these compounds can also adversely affect human and animal health, impacting vital organs such as the nervous system, heart, and kidneys. This review aims to provide a comprehensive overview of mitochondrial ATP synthase, its structural and functional features, and the most common inhibitors and their potential toxicities.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammad Alwahsh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
3
|
Júnior MA, Silva LC, Rocha OB, Oliveira AA, Portis IG, Alonso A, Alonso L, Silva KS, Gomes MN, Andrade CH, Soares CM, Pereira M. Proteomic identification of metabolic changes in Paracoccidioides brasiliensis induced by a nitroheteroarylchalcone. Future Microbiol 2023; 18:1077-1093. [PMID: 37424510 DOI: 10.2217/fmb-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aim: To access the metabolic changes caused by a chalcone derivative (LabMol-75) through a proteomic approach. Methods: Proteomic analysis was performed after 9 h of Paracoccidioides brasiliensis yeast (Pb18) cell incubation with the LabMol-75 at MIC. The proteomic findings were validated through in vitro and in silico assays. Results: Exposure to the compound led to the downregulation of proteins associated with glycolysis and gluconeogenesis, β-oxidation, the citrate cycle and the electron transport chain. Conclusion: LabMol-75 caused an energetic imbalance in the fungus metabolism and deep oxidative stress. Additionally, the in silico molecular docking approach pointed to this molecule as a putative competitive inhibitor of DHPS.
Collapse
Affiliation(s)
- Marcos Abc Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia C Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olivia B Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Amanda A Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Igor G Portis
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kleber Sf Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marcelo N Gomes
- InsiChem, Goiás State University, Anápolis, Goiás, Brazil
- Faculdade Metropolitana de Anápolis, Anápolis, Goiás, Brazil
| | - Carolina H Andrade
- Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Ma Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
4
|
Pedriali G, Ramaccini D, Bouhamida E, Branchini A, Turrin G, Tonet E, Scala A, Patergnani S, Pinotti M, Trapella C, Giorgi C, Tremoli E, Campo G, Morciano G, Pinton P. 1,3,8-Triazaspiro[4.5]decane Derivatives Inhibit Permeability Transition Pores through a FO-ATP Synthase c Subunit Glu119-Independent Mechanism That Prevents Oligomycin A-Related Side Effects. Int J Mol Sci 2023; 24:ijms24076191. [PMID: 37047160 PMCID: PMC10094280 DOI: 10.3390/ijms24076191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Permeability transition pore (PTP) molecular composition and activity modulation have been a matter of research for several years, especially due to their importance in ischemia reperfusion injury (IRI). Notably, c subunit of ATP synthase (Csub) has been identified as one of the PTP-forming proteins and as a target for cardioprotection. Oligomycin A is a well-known Csub interactor that has been chemically modified in-depth for proposed new pharmacological approaches against cardiac reperfusion injury. Indeed, by taking advantage of its scaffold and through focused chemical improvements, innovative Csub-dependent PTP inhibitors (1,3,8-Triazaspiro[4.5]decane) have been synthetized in the past. Interestingly, four critical amino acids have been found to be involved in Oligomycin A-Csub binding in yeast. However, their position on the human sequence is unknown, as is their function in PTP inhibition. The aims of this study are to (i) identify for the first time the topologically equivalent residues in the human Csub sequence; (ii) provide their in vitro validation in Oligomycin A-mediated PTP inhibition and (iii) understand their relevance in the binding of 1,3,8-Triazaspiro[4.5]decane small molecules, as Oligomycin A derivatives, in order to provide insights into Csub interactions. Notably, in this study we demonstrated that 1,3,8-Triazaspiro[4.5]decane derivatives inhibit permeability transition pores through a FO-ATP synthase c subunit Glu119-independent mechanism that prevents Oligomycin A-related side effects.
Collapse
|
5
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
6
|
Reisman BJ, Guo H, Ramsey HE, Wright MT, Reinfeld BI, Ferrell PB, Sulikowski GA, Rathmell WK, Savona MR, Plate L, Rubinstein JL, Bachmann BO. Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase. Nat Chem Biol 2022; 18:360-367. [PMID: 34857958 PMCID: PMC8967781 DOI: 10.1038/s41589-021-00900-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
Cancer cells have long been recognized to exhibit unique bioenergetic requirements. The apoptolidin family of glycomacrolides are distinguished by their selective cytotoxicity towards oncogene-transformed cells, yet their molecular mechanism remains uncertain. We used photoaffinity analogs of the apoptolidins to identify the F1 subcomplex of mitochondrial ATP synthase as the target of apoptolidin A. Cryogenic electron microscopy (cryo-EM) of apoptolidin and ammocidin-ATP synthase complexes revealed a novel shared mode of inhibition that was confirmed by deep mutational scanning of the binding interface to reveal resistance mutations which were confirmed using CRISPR-Cas9. Ammocidin A was found to suppress leukemia progression in vivo at doses that were tolerated with minimal toxicity. The combination of cellular, structural, mutagenesis, and in vivo evidence defines the mechanism of action of apoptolidin family glycomacrolides and establishes a path to address oxidative phosphorylation-dependent cancers.
Collapse
Affiliation(s)
- Benjamin J Reisman
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Hui Guo
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Haley E Ramsey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Bradley I Reinfeld
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:82-95. [PMID: 34703878 PMCID: PMC8517097 DOI: 10.1016/j.omto.2021.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Mitochondrial ATP synthase (MAS) produces most of the ATP that drives the cell. High expression of the MAS-composing proteins is found during cancer and is linked to a poor prognosis in glioblastoma, ovarian cancer, prostate cancer, breast cancer, and clear cell renal cell carcinoma. Cell surface-expressed ATP synthase, translocated from mitochondrion to cell membrane, involves the angiogenesis, tumorigenesis, and metastasis of cancer. ATP synthase has therefore been considered a therapeutic target. We review recent various ATP synthase inhibitors that suppress tumor growth and are being tested for the clinic.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Expeditious Asymmetric Synthesis of Polypropionates Relying on Sulfur Dioxide-Induced C–C Bond Forming Reactions. Catalysts 2021. [DOI: 10.3390/catal11111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For a long time, the organic chemistry of sulfur dioxide (SO2) consisted of sulfinates that react with carbon electrophiles to generate sulfones. With alkenes and other unsaturated compounds, SO2 generates polymeric materials such as polysulfones. More recently, H-ene, sila-ene and hetero-Diels–Alder reactions of SO2 have been realized under conditions that avoid polymer formation. Sultines resulting from the hetero-Diels–Alder reactions of conjugated dienes and SO2 are formed more rapidly than the corresponding more stable sulfolenes resulting from the cheletropic additions. In the presence of a protic or Lewis acid catalyst, the sultines derived from 1-alkoxydienes are ionized into zwitterionic intermediates bearing 1-alkoxyallylic cation moieties which react with electro-rich alkenes such as enol silyl ethers and allylsilanes with high stereoselectivity. (C–C-bond formation through Umpolung induced by SO2). This produces silyl sulfinates that react with carbon electrophiles to give sulfones (one-pot four component asymmetric synthesis of sulfones), or with Cl2, generating the corresponding sulfonamides that can be reacted in situ with primary and secondary amines (one-pot four component asymmetric synthesis of sulfonamides). Alternatively, Pd-catalyzed desulfinylation generates enantiomerically pure polypropionate stereotriads in one-pot operations. The chirons so obtained are flanked by an ethyl ketone moiety on one side and by a prop-1-en-1-yl carboxylate group on the other. They are ready for two-directional chain elongations, realizing expeditious synthesis of long-chain polypropionates and polyketides. The stereotriads have also been converted into simpler polypropionates such as the cyclohexanone moiety of baconipyrone A and B, Kishi’s stereoheptad unit of rifamycin S, Nicolaou’s C1–C11-fragment and Koert’s C16–CI fragment of apoptolidin A. This has also permitted the first total synthesis of (-)-dolabriferol.
Collapse
|
9
|
Axenov-Gribanov DV, Morgunova MM, Vasilieva UA, Gamaiunov SV, Dmitrieva (Krasnova) ME, Pereliaeva EV, Belyshenko AY, Luzhetskyy AN. Composition of nutrient media and temperature of cultivation imposes effect on the content of secondary metabolites of Nocardiopsis sp. isolated from a Siberian Cave. 3 Biotech 2021; 11:386. [PMID: 34350091 PMCID: PMC8319253 DOI: 10.1007/s13205-021-02926-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Growth of human population leads to many global and medical problems. The problems include the crisis of health, antibiotic resistance, drug discovery, etc. Increasing antimicrobial resistance of microorganisms results in the need to screen natural products (incl. antibiotics and antimicrobial peptides) and their producers in different ecological niches. The purpose of this study was to estimate antibiotic activity and biotechnological potential of rare actinobacteria Nocardiopsis sp. The strain was isolated from Okhotnichya cave located in Siberia. Here, we cultivated the strain at 3 temperature modes (13 °C, 28 °C, 37 °C) in 11 liquid nutrient (rich and poor) media. Using modern assays of liquid chromatography and high-resolution mass spectrometry, we estimated the content and number of produced natural products, distribution of their masses, and potential rate of novel secondary metabolites. We demonstrated that minimal nutrient media with l-asparagine and SM25 media with malt extract were less productive at current experimental parameters. As it was shown, this strain was characterized by antibiotic properties against Bacillus subtilis when cultivated at 28 °C. Also, weak antibiotic activity of crude extracts was found in strain cultivation at 13 °C. Also, we detected a high number of novel amphiphilic and hydrophobic NPs produced by this strain. We demonstrated both the influence of the nutrient media composition and cultivation temperature on biosynthetic capabilities of rare strain Nocardiopsis sp. Finally, high level of natural products that were predicted as novel confirms high biotechnological value of rare genera of Actinobacteria that could be explained by the evolution of microorganisms in the isolated environment of cave ecosystem.
Collapse
Affiliation(s)
| | | | - Ulyana A. Vasilieva
- Irkutsk State University, 1 Karl Marx St, 664003 Irkutsk, Russia
- Siberian Institute of Plant Physiology and Biochemistry, 132 Lermontov Str, 664033 Irkutsk, Russia
| | - Stanislav V. Gamaiunov
- Irkutsk State University, 1 Karl Marx St, 664003 Irkutsk, Russia
- Speleology Club Arabica, 11 Berezovaya Rosha Str, 664043 Irkutsk, Russia
| | | | | | | | - Andriy N. Luzhetskyy
- Pharmaceutical Biotechnology, University of Saarland, Campus, C2.3, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Campus, C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Omelchuk OA, Malyshev VI, Medvedev MG, Lysenkova LN, Belov NM, Dezhenkova LG, Grammatikova NE, Scherbakov AM, Shchekotikhin AE. Stereochemistries and Biological Properties of Oligomycin A Diels-Alder Adducts. J Org Chem 2021; 86:7975-7986. [PMID: 34043357 DOI: 10.1021/acs.joc.1c00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oligomycin A is a potent antibiotic and antitumor agent. However, its applications are restricted by its high toxicity and low bioavailability. In this study, we obtained Oligomycin A Diels-Alder adducts with benzoquinone and N-benzylmaleimide and determined their absolute configurations by combining 1H and ROESY NMR data with molecular mechanics conformational analysis and quantum chemical reaction modeling. The latter showed that adduct stereochemistry is controlled by hydrogen bonding of the Oligomycin A side-chain isopropanol moiety with the carbonyl group of the dienophile. Biological studies showed that the Diels-Alder modification of the Oligomycin A diene system resulted in a complex antiproliferative potential pattern. The synthesized adducts were determined to be more active against the triple-negative (ERα, PR, and HER2 negative) breast cancer cell line MDA-MB-231 and lung carcinoma cell line A-549 compared to Oligomycin A. Meanwhile, Oligomycin A was more potent against myeloid leukemia cell line K-562 and breast carcinoma cell line MCF-7 than its derivatives. Thus, modification of the diene moiety of Oligomycin A is a promising strategy for developing novel antitumor agents based on its scaffold.
Collapse
Affiliation(s)
- Olga A Omelchuk
- Gause Institute of New Antibiotics, Moscow 119021, Russian Federation
| | - Vadim I Malyshev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, Moscow 101000, Russian Federation
| | | | - Nikita M Belov
- Gause Institute of New Antibiotics, Moscow 119021, Russian Federation
| | | | | | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russian Federation
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, Moscow 119021, Russian Federation.,D. I. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russian Federation
| |
Collapse
|
11
|
Glucose starvation greatly enhances antiproliferative and antiestrogenic potency of oligomycin A in MCF-7 breast cancer cells. Biochimie 2021; 186:51-58. [PMID: 33872751 DOI: 10.1016/j.biochi.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
Energy imbalance is one of the key properties of tumour cells, which in certain cases supports fast cancer progression and resistance to therapy. The simultaneous blocking of glycolytic processes and oxidative phosphorylation pathways seems to be a promising strategy for antitumor therapies. The study aimed to evaluate the effect of glucose starvation on the antiproliferative and antiestrogenic potency of oligomycin A against hormone-dependent breast cancer cells. Cell viability was assessed by the MTT test. Estrogen receptor alpha (ERα) activity was evaluated by reporter assay. mTOR, AMPK, Akt, and S6 kinase expression was assessed by immunoblotting. Glucose starvation caused multiple increases in the antiproliferative potency of oligomycin A in the hormone-dependent breast cancer MCF-7 cells, while its effect on the sensitivity of the second hormone-dependent cancer cell line, named T47D, was weak and limited. Glycolytic inhibitors, 3-bromopyruvate and 2-deoxyglucose, greatly enhanced the antiproliferative potency of oligomycin A in MCF-7 cells. Glucose starvation leads to remarkable activation of Akt in MCF-7 cells, whereas oligomycin A enhances its effect. The mTOR, S6 kinase, and AMPK signalling pathways are significantly modulated by oligomycin A under glucose starvation. Oligomycin A demonstrates more pronounced antiestrogenic effects under glucose starvation. Thus, glucose starvation and pharmacological inhibition of glycolysis are of interest for revealing the antitumor potential of macrolide oligomycin A against hormone-dependent breast cancers.
Collapse
|
12
|
Inhibitors of F 1F 0-ATP synthase enzymes for the treatment of tuberculosis and cancer. Future Med Chem 2021; 13:911-926. [PMID: 33845594 DOI: 10.4155/fmc-2021-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The spectacular success of the mycobacterial F1F0-ATP synthase inhibitor bedaquiline for the treatment of drug-resistant tuberculosis has generated wide interest in the development of other inhibitors of this enzyme. Work in this realm has included close analogues of bedaquiline with better safety profiles and 'bedaquiline-like' compounds, some of which show potent antibacterial activity in vitro although none have yet progressed to clinical trials. The search has lately extended to a range of new scaffolds as potential inhibitors, including squaramides, diaminoquinazolines, chloroquinolines, dihydropyrazolo[1,5-a]pyrazin-4-ones, thiazolidinediones, diaminopyrimidines and tetrahydroquinolines. Because of the ubiquitous expression of ATP synthase enzymes, there has also been interest in inhibitors of other bacterial ATP synthases, as well as inhibitors of human mitochondrial ATP synthase for cancer therapy. The latter encompass both complex natural products and simpler small molecules. The review seeks to demonstrate the breadth of the structural types of molecules able to effectively inhibit the function of variants of this intriguing enzyme.
Collapse
|
13
|
Xu Y, Xue D, Bankhead A, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 2020; 63:14276-14307. [PMID: 33103432 DOI: 10.1021/acs.jmedchem.0c01013] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Certain subtypes of cancer cells require oxidative phosphorylation (OXPHOS) to survive. Increased OXPHOS dependency is frequently a hallmark of cancer stem cells and cells resistant to chemotherapy and targeted therapies. Suppressing the OXPHOS function might also influence the tumor microenvironment by alleviating hypoxia and improving the antitumor immune response. Thus, targeting OXPHOS is a promising strategy to treat various cancers. A growing arsenal of therapeutic agents is under development to inhibit this biological process. This Perspective provides an overview of the structure and function of OXPHOS complexes, their biological functions in cancer, relevant research tools and models, as well as the limitations of OXPHOS as drug targets. We also focus on the current development status of OXPHOS inhibitors and potential therapeutic strategies to strengthen their clinical applications.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Macasoi I, Mioc A, Mioc M, Racoviceanu R, Soica I, Chevereșan A, Dehelean C, Dumitrașcu V. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents. Curr Med Chem 2020; 27:5730-5757. [DOI: 10.2174/0929867326666190712150638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria are key players with a multi-functional role in many vital cellular processes,
such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species
(ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated
through important enzyme signaling cascades, which if altered may influence the outcome of cell
viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways
are emerging as important targets for new anticancer agent development. Mitocans are compounds
aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus
causing cell growth inhibition or apoptosis. This review summarizes the till present known classes
of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.
Collapse
Affiliation(s)
- Ioana Macasoi
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Irina Soica
- Earlscliffe Sixth Form, Earlscliffe, 29 Shorncliffe Road, Folkestone, CT20 2NB, United Kingdom
| | - Adelina Chevereșan
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Victor Dumitrașcu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| |
Collapse
|
15
|
Heravi MM, Momeni T, Zadsirjan V, Mohammadi L. Application of The Dess-Martin Oxidation in Total Synthesis of Natural Products. Curr Org Synth 2020; 18:125-196. [PMID: 32940184 DOI: 10.2174/1570179417666200917102634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Dess-Martin periodinane (DMP), a commercially available chemical, is frequently utilized as a mild oxidative agent for the selective oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively. DMP shows several merits over other common oxidative agents such as chromiumand DMSO-based oxidants; thus, it is habitually employed in the total synthesis of natural products. In this review, we try to underscore the applications of DMP as an effective oxidant in an appropriate step (steps) in the multi-step total synthesis of natural products.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Tayebe Momeni
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| | - Leila Mohammadi
- Department of Chemistry, School of Science, Alzahra University, POBox 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
16
|
Natural products and other inhibitors of F 1F O ATP synthase. Eur J Med Chem 2020; 207:112779. [PMID: 32942072 DOI: 10.1016/j.ejmech.2020.112779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
F1FO ATP synthase is responsible for the production of >95% of all ATP synthesis within the cell. Dysregulation of its expression, activity or localization is linked to various human diseases including cancer, diabetes, and Alzheimer's and Parkinson's disease. In addition, ATP synthase is a novel and viable drug target for the development of antimicrobials as evidenced by bedaquiline, which was approved in 2012 for the treatment of tuberculosis. Historically, natural products have been a rich source of ATP synthase inhibitors that help unravel the role of F1FO ATP synthase in cellular bioenergetics. During the last decade, new modulators of ATP synthase have been discovered through the isolation of novel natural products as well as through a ligand-based drug design process. In addition, new data has been obtained with regards to the structure and function of ATP synthase under physiological and pathological conditions. Crystal structure studies have provided a significant insight into the rotary function of the enzyme and may provide additional opportunities to design a new generation of inhibitors. This review provides an update on recently discovered ATP synthase modulators as well as an update on existing scaffolds.
Collapse
|
17
|
Chakraborty M, Mahmud NU, Muzahid ANM, Rabby SMF, Islam T. Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease. PLoS One 2020; 15:e0233665. [PMID: 32804955 PMCID: PMC7430738 DOI: 10.1371/journal.pone.0233665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Oligomycins are macrolide antibiotics, produced by Streptomyces spp. that show antagonistic effects against several microorganisms such as bacteria, fungi, nematodes and the oomycete Plasmopara viticola. Conidiogenesis, germination of conidia and formation of appressoria are determining factors pertaining to pathogenicity and successful diseases cycles of filamentous fungal phytopathogens. The goal of this research was to evaluate the in vitro suppressive effects of two oligomycins, oligomycin B and F along with a commercial fungicide Nativo® 75WG on hyphal growth, conidiogenesis, conidial germination, and appressorial formation of the wheat blast fungus, Magnaporthe oryzae Triticum (MoT) pathotype. We also determined the efficacy of these two oligomycins and the fungicide product in vivo in suppressing wheat blast with a detached leaf assay. Both oligomycins suppressed the growth of MoT mycelium in a dose dependent manner. Between the two natural products, oligomycin F provided higher inhibition of MoT hyphal growth compared to oligomycin B with a minimum inhibitory concentration of 0.005 and 0.05 μg/disk, respectively. The application of the compounds completely halted conidial formation of the MoT mycelium in agar medium. Further bioassays showed that these compounds significantly inhibited MoT conidia germination and induced lysis. The compounds also caused abnormal germ tube formation and suppressed appressorial formation of germinated spores. Interestingly, the application of these macrolides significantly inhibited wheat blast on detached leaves of wheat. This is the first report on the inhibition of mycelial growth, conidiogenesis, germination of conidia, deleterious morphological changes in germinated conidia, and suppression of blast disease of wheat by oligomycins from Streptomyces spp. Further study is needed to unravel the precise mode of action of these natural compounds and consider them as biopesticides for controlling wheat blast.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abu Naim Md. Muzahid
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S. M. Fajle Rabby
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- * E-mail:
| |
Collapse
|
18
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
19
|
Nesci S, Trombetti F, Algieri C, Pagliarani A. A Therapeutic Role for the F 1F O-ATP Synthase. SLAS DISCOVERY 2019; 24:893-903. [PMID: 31266411 DOI: 10.1177/2472555219860448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, the F1FO-ATP synthase, due to its dual role of life enzyme as main adenosine triphosphate (ATP) maker and of death enzyme, as ATP dissipator and putative structural component of the mitochondrial permeability transition pore (mPTP), which triggers cell death, has been increasingly considered as a drug target. Accordingly, the enzyme offers new strategies to counteract the increased antibiotic resistance. The challenge is to find or synthesize compounds able to discriminate between prokaryotic and mitochondrial F1FO-ATP synthase, exploiting subtle structural differences to kill pathogens without affecting the host. From this perspective, the eukaryotic enzyme could also be made refractory to macrolide antibiotics by chemically produced posttranslational modifications. Moreover, because the mitochondrial F1FO-ATPase activity stimulated by Ca2+ instead of by the natural modulator Mg2+ is most likely involved in mPTP formation, effectors preferentially targeting the Ca2+-activated enzyme may modulate the mPTP. If the enzyme involvement in the mPTP is confirmed, Ca2+-ATPase inhibitors may counteract conditions featured by an increased mPTP activity, such as neurodegenerative and cardiovascular diseases and physiological aging. Conversely, mPTP opening could be pharmacologically stimulated to selectively kill unwanted cells. On the basis of recent literature and promising lab findings, the action mechanism of F1 and FO inhibitors is considered. These molecules may act as enzyme modifiers and constitute new drugs to kill pathogens, improve compromised enzyme functions, and limit the deathly enzyme role in pathologies. The enzyme offers a wide spectrum of therapeutic strategies to fight at the molecular level diseases whose treatment is still insufficient or merely symptomatic.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
20
|
Cytochrome P450 Monooxygenase CYP139 Family Involved in the Synthesis of Secondary Metabolites in 824 Mycobacterial Species. Int J Mol Sci 2019; 20:ijms20112690. [PMID: 31159249 PMCID: PMC6600245 DOI: 10.3390/ijms20112690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is one of the top infectious diseases causing numerous human deaths in the world. Despite enormous efforts, the physiology of the causative agent, Mycobacterium tuberculosis, is poorly understood. To contribute to better understanding the physiological capacity of these microbes, we have carried out extensive in silico analyses of the 1111 mycobacterial species genomes focusing on revealing the role of the orphan cytochrome P450 monooxygenase (CYP) CYP139 family. We have found that CYP139 members are present in 894 species belonging to three mycobacterial groups: M. tuberculosis complex (850-species), Mycobacterium avium complex (34-species), and non-tuberculosis mycobacteria (10-species), with all CYP139 members belonging to the subfamily “A”. CYP139 members have unique amino acid patterns at the CXG motif. Amino acid conservation analysis placed this family in the 8th among CYP families belonging to different biological domains and kingdoms. Biosynthetic gene cluster analyses have revealed that 92% of CYP139As might be associated with producing different secondary metabolites. Such enhanced secondary metabolic potentials with the involvement of CYP139A members might have provided mycobacterial species with advantageous traits in diverse niches competing with other microbial or viral agents, and might help these microbes infect hosts by interfering with the hosts’ metabolism and immune system.
Collapse
|
21
|
Lysenkova LN, Saveljev OY, Omelchuk OA, Zatonsky GV, Korolev AM, Grammatikova NE, Bekker OB, Danilenko VN, Dezhenkova LG, Mavletova DA, Scherbakov AM, Shchekotikhin AE. Synthesis, antimicrobial and antiproliferative properties of epi-oligomycin A, the (33S)-diastereomer of oligomycin A. Nat Prod Res 2019; 34:3073-3081. [DOI: 10.1080/14786419.2019.1608540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Oleg Y. Saveljev
- Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Olga A. Omelchuk
- Gause Institute of New Antibiotics, Moscow, 119021, Russian Federation
- Mendeleev University of Chemical Technology, Moscow, Russian Federation
| | | | | | | | - Olga B. Bekker
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Dilara A. Mavletova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, Moscow, 119021, Russian Federation
- Mendeleev University of Chemical Technology, Moscow, Russian Federation
| |
Collapse
|
22
|
Bilyk O, Samborskyy M, Leadlay PF. The biosynthetic pathway to ossamycin, a macrocyclic polyketide bearing a spiroacetal moiety. PLoS One 2019; 14:e0215958. [PMID: 31039188 PMCID: PMC6490886 DOI: 10.1371/journal.pone.0215958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Ossamycin from Streptomyces hygroscopicus var. ossamyceticus is an antifungal and cytotoxic polyketide and a potent inhibitor of the mitochondrial ATPase. Analysis of a near-complete genome sequence of the ossamycin producer has allowed the identification of the 127-kbp ossamycin biosynthetic gene cluster. The presence in the cluster of a specific crotonyl-CoA carboxylase/reductase homologue suggests that the 5-methylhexanoate extension unit used in construction of the macrocyclic core is incorporated intact from the unusual precursor isobutyrylmalonyl-CoA. Surprisingly, the modular polyketide synthase uses only 14 extension modules to accomplish 15 cycles of polyketide chain extension, a rare example of programmed iteration on a modular polyketide synthase. Specific deletion of genes encoding cytochrome P450 enzymes has given insight into the late-stage tailoring of the ossamycin macrocycle required for the attachment of the unusual 2,3,4,6-deoxyaminohexose sugar l-ossamine to C-8 of the ossamycin macrocycle. The ossamycin cluster also encodes a putative spirocyclase enzyme, OssO, which may play a role in establishing the characteristic spiroketal moiety of the natural product.
Collapse
Affiliation(s)
- Oksana Bilyk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Markiyan Samborskyy
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Peter F. Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Neupane P, Bhuju S, Thapa N, Bhattarai HK. ATP Synthase: Structure, Function and Inhibition. Biomol Concepts 2019; 10:1-10. [PMID: 30888962 DOI: 10.1515/bmc-2019-0001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative phosphorylation is carried out by five complexes, which are the sites for electron transport and ATP synthesis. Among those, Complex V (also known as the F1F0 ATP Synthase or ATPase) is responsible for the generation of ATP through phosphorylation of ADP by using electrochemical energy generated by proton gradient across the inner membrane of mitochondria. A multi subunit structure that works like a pump functions along the proton gradient across the membranes which not only results in ATP synthesis and breakdown, but also facilitates electron transport. Since ATP is the major energy currency in all living cells, its synthesis and function have widely been studied over the last few decades uncovering several aspects of ATP synthase. This review intends to summarize the structure, function and inhibition of the ATP synthase.
Collapse
Affiliation(s)
| | - Sudina Bhuju
- Department of Biotechnology, Kathmandu University Dhulikhel, Nepal India
| | - Nita Thapa
- Department of Biotechnology, Kathmandu University Dhulikhel, Nepal India
| | | |
Collapse
|
24
|
e Silva KSF, da S Neto BR, Zambuzzi-Carvalho PF, de Oliveira CMA, Pires LB, Kato L, Bailão AM, Parente-Rocha JA, Hernández O, Ochoa JGM, de A Soares CM, Pereira M. Response of Paracoccidioides lutzii to the antifungal camphene thiosemicarbazide determined by proteomic analysis. Future Microbiol 2018; 13:1473-1496. [DOI: 10.2217/fmb-2018-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To perform the proteomic profile of Paracoccidioides lutzii after treatment with the compound camphene thiosemicarbazide (TSC-C) in order to study its mode of action. Methods: Proteomic analysis was carried out after cells were incubated with TSC-C in a subinhibitory concentration. Validation of the proteomic results comprised the azocasein assay, western blot and determination of the susceptibility of a mutant to the compound. Results: Proteins related to metabolism, energy and protein fate were regulated after treatment. In addition, TSC-C reduces the proteolytic activity of the protein extract similarly to different types of protease inhibitors. Conclusion: TSC-C showed encouraging antifungal activity, working as a protease inhibitor and downregulating important pathways impairing the ability of the fungi cells to produce important precursors.
Collapse
Affiliation(s)
- Kleber SF e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Benedito R da S Neto
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia F Zambuzzi-Carvalho
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Cecília MA de Oliveira
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ludmila B Pires
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucilia Kato
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana A Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Orville Hernández
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Escuela de Microbiología Universidad de Antioquia, Medellín, Colombia
| | - Juan GM Ochoa
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Facultad de Medicina Universidad de Antioquia, Medellín, Colombia
| | - Célia M de A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
25
|
Kitamura K, Itoh H, Sakurai K, Dan S, Inoue M. Target Identification of Yaku’amide B and Its Two Distinct Activities against Mitochondrial FoF1-ATP Synthase. J Am Chem Soc 2018; 140:12189-12199. [DOI: 10.1021/jacs.8b07339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kai Kitamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Chemoproteomic identification of molecular targets of antifungal prototypes, thiosemicarbazide and a camphene derivative of thiosemicarbazide, in Paracoccidioides brasiliensis. PLoS One 2018; 13:e0201948. [PMID: 30148835 PMCID: PMC6110461 DOI: 10.1371/journal.pone.0201948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a neglected human systemic disease caused by species of the genus Paracoccidioides. The disease attacks the host’s lungs and may disseminate to many other organs. Treatment involves amphotericin B, sulfadiazine, trimethoprim-sulfamethoxazole, itraconazole, ketoconazole, or fluconazole. The treatment duration is usually long, from 6 months to 2 years, and many adverse effects may occur in relation to the treatment; co-morbidities and poor treatment adherence have been noted. Therefore, the discovery of more effective and less toxic drugs is needed. Thiosemicarbazide (TSC) and a camphene derivative of thiosemicarbazide (TSC-C) were able to inhibit P. brasiliensis growth at a low dosage and were not toxic to fibroblast cells. In order to investigate the mode of action of those compounds, we used a chemoproteomic approach to determine which fungal proteins were bound to each of these compounds. The compounds were able to inhibit the activities of the enzyme formamidase and interfered in P. brasiliensis dimorphism. In comparison with the transcriptomic and proteomic data previously obtained by our group, we determined that TSC and TSC-C were multitarget compounds that exerted effects on the electron-transport chain and cell cycle regulation, increased ROS formation, inhibited proteasomes and peptidases, modulated glycolysis, lipid, protein and carbohydrate metabolisms, and caused suppressed the mycelium to yeast transition.
Collapse
|
27
|
Chen H, Wan C, Zhang L. A new diketopiperazine isolated from a Nocardiopsis strain TRM20105 guided by bioassay against Candida albicans. Nat Prod Res 2018; 33:3421-3425. [PMID: 29865888 DOI: 10.1080/14786419.2018.1475389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An actinomycete strain TRM20105 with antifungal activity was identified as Nocardiopsis dassonvillei subsp. dassonvillei DSM43111 (98.34% similarity) by 16S rDNA phylogenetic analysis and morphology observation. The fermentation broth of TRM20105 cultured with oat-soybean medium was subjected to discover bioactive compounds. Guided by antifungal bioassay against Candida albicans, a new diketopiperazine compound was purified via various column chromatographies together with pHPLC. The purified active compound was identified as 1-demethylnocazine A, (3Z,6Z)-5-methoxy-3,6-bis(4-methoxybenzylidene) -1,6-dihydropyrazin-2(3H)-one by the analyses of 1D & 2D NMR data.
Collapse
Affiliation(s)
- Haolun Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University , Alar , China
| | - Chuanxing Wan
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University , Alar , China
| | - Lili Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, College of Life Science, Tarim University , Alar , China
| |
Collapse
|
28
|
Zhou W, Faraldo-Gómez JD. Membrane plasticity facilitates recognition of the inhibitor oligomycin by the mitochondrial ATP synthase rotor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:789-796. [PMID: 29630891 DOI: 10.1016/j.bbabio.2018.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Enzymes in the respiratory chain are increasingly seen as potential targets against multi-drug resistance of human pathogens and cancerous cells. However, a detailed understanding of the mechanism and specificity determinants of known inhibitors is still lacking. Oligomycin, for example, has been known to be an inhibitor of the membrane motor of the mitochondrial ATP synthase for over five decades, and yet little is known about its mode of action at the molecular level. In a recent breakthrough, a crystal structure of the S. cerevisiae c-subunit ring with bound oligomycin revealed the inhibitor docked on the outer face of the proton-binding sites, deep into the transmembrane region. However, the structure of the complex was obtained in an organic solvent rather than detergent or a lipid bilayer, and therefore it has been unclear whether this mode of recognition is physiologically relevant. Here, we use molecular dynamics simulations to address this question and gain insights into the mechanism of oligomycin inhibition. Our findings lead us to propose that oligomycin naturally partitions into the lipid/water interface, and that in this environment the inhibitor can indeed bind to any of the c-ring proton-carrying sites that are exposed to the membrane, thereby becoming an integral component of the proton-coordinating network. As the c-ring rotates within the membrane, driven either by downhill proton permeation or ATP hydrolysis, one of the protonated, oligomycin-bound sites eventually reaches the subunit-a interface and halts the rotary mechanism of the enzyme.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 5N307A, Bethesda, MD 20892, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Room 5N307A, Bethesda, MD 20892, United States.
| |
Collapse
|
29
|
Earl DC, Ferrell PB, Leelatian N, Froese JT, Reisman BJ, Irish JM, Bachmann BO. Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics. Nat Commun 2018; 9:39. [PMID: 29295987 PMCID: PMC5750220 DOI: 10.1038/s41467-017-02470-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
Discovering bioactive metabolites within a metabolome is challenging because there is generally little foreknowledge of metabolite molecular and cell-targeting activities. Here, single-cell response profiles and primary human tissue comprise a response platform used to discover novel microbial metabolites with cell-type-selective effector properties in untargeted metabolomic inventories. Metabolites display diverse effector mechanisms, including targeting protein synthesis, cell cycle status, DNA damage repair, necrosis, apoptosis, or phosphoprotein signaling. Arrayed metabolites are tested against acute myeloid leukemia patient bone marrow and molecules that specifically targeted blast cells or nonleukemic immune cell subsets within the same tissue biopsy are revealed. Cell-targeting polyketides are identified in extracts from biosynthetically prolific bacteria, including a previously unreported leukemia blast-targeting anthracycline and a polyene macrolactam that alternates between targeting blasts or nonmalignant cells by way of light-triggered photochemical isomerization. High-resolution cell profiling with mass cytometry confirms response mechanisms and is used to validate initial observations.
Collapse
Affiliation(s)
- David C Earl
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - P Brent Ferrell
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, D-3100 Medical Center North, Nashville, TN, 37232, USA
| | - Nalin Leelatian
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-2220 Medical Center North, Nashville, TN, 37232, USA
| | - Jordan T Froese
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - Benjamin J Reisman
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, D-2220 Medical Center North, Nashville, TN, 37232, USA.
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN, 37235, USA.
| |
Collapse
|
30
|
Ahmad Z, Hassan SS, Azim S. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase. Curr Med Chem 2017; 24:3894-3906. [PMID: 28831918 PMCID: PMC5738703 DOI: 10.2174/0929867324666170823125330] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 01/01/1970] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phy-tochemicals is based on tradition or word of mouth with few evidence-based studies. Moreo-ver, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become perti-nent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of die-tary phytochemicals are known to inhibit ATP synthase. Structural modifications of phyto-chemicals have been shown to increase the inhibitory potency and extent of inhibition. Site-directed mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can re-sult in selective binding and inhibition of microbial ATP synthase. In this review, the therapeu-tic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective target-ing of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri 63501, USA
| | - Sherif S Hassan
- Department of Medical Education, California University of Sciences and Medicine, School of Medicine (Cal Med-SOM), Colton, California 92324, USA
| | - Sofiya Azim
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri 63501, USA
| |
Collapse
|
31
|
Govindarajan M. Amphiphilic glycoconjugates as potential anti-cancer chemotherapeutics. Eur J Med Chem 2017; 143:1208-1253. [PMID: 29126728 DOI: 10.1016/j.ejmech.2017.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022]
Abstract
Amphiphilicity is one of the desirable features in the process of drug development which improves the biological as well as the pharmacokinetics profile of bioactive molecule. Carbohydrate moieties present in anti-cancer natural products and synthetic molecules influence the amphiphilicity and hence their bioactivity. This review focuses on natural and synthetic amphiphilic anti-cancer glycoconjugates. Different classes of molecules with varying degree of amphiphilicity are covered with discussions on their structure-activity relationship and mechanism of action.
Collapse
Affiliation(s)
- Mugunthan Govindarajan
- Emory Institute for Drug Development, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States.
| |
Collapse
|
32
|
Niedzwiecka K, Tisi R, Penna S, Lichocka M, Plochocka D, Kucharczyk R. Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:117-131. [PMID: 28986220 DOI: 10.1016/j.bbamcr.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis.
Collapse
Affiliation(s)
- Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Renata Tisi
- Dept. Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Milan Center for Neuroscience, Milan, Italy
| | - Sara Penna
- Dept. Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Malgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Danuta Plochocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
33
|
Nazari M, Serrill JD, Wan X, Nguyen MH, Anklin C, Gallegos DA, Smith AB, Ishmael JE, McPhail KL. New Mandelalides Expand a Macrolide Series of Mitochondrial Inhibitors. J Med Chem 2017; 60:7850-7862. [PMID: 28841379 DOI: 10.1021/acs.jmedchem.7b00990] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mandelalides A-D (1-4) are macrocyclic polyketides known to have an unusual bioactivity profile influenced by compound glycosylation and growth phase of cultured cells. The isolation and characterization of additional natural congeners, mandelalides E-L (5-12), and the supply of synthetic compounds 1 and 12, as well as seco-mandelalide A methyl ester (13), have now facilitated mechanism of action and structure-activity relationship studies. Glycosylated mandelalides are effective inhibitors of aerobic respiration in living cells. Macrolides 1 and 2 inhibit mitochondrial function similar to oligomycin A and apoptolidin A, selective inhibitors of the mammalian ATP synthase (complex V). 1 inhibits ATP synthase activity from isolated mitochondria and triggers caspase-dependent apoptosis in HeLa cells, which are more sensitive to inhibition by 1 in the presence of the glycolysis inhibitor 2-deoxyglucose. Thus, mandelalide cytotoxicity depends on basal metabolic phenotype; cells with an oxidative phenotype are most likely to be inhibited by the mandelalides.
Collapse
Affiliation(s)
- Mohamad Nazari
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | - Jeffrey D Serrill
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | - Xuemei Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | - Minh H Nguyen
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Clemens Anklin
- Bruker BioSpin , 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - David A Gallegos
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Jane E Ishmael
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
34
|
Salim AA, Tan L, Huang XC, Cho KJ, Lacey E, Hancock JF, Capon RJ. Oligomycins as inhibitors of K-Ras plasma membrane localisation. Org Biomol Chem 2016; 14:711-715. [PMID: 26565618 DOI: 10.1039/c5ob02020d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frequently present in pancreatic, colorectal and non-small cell lung carcinomas, oncogenic mutant K-Ras must be localised to the plasma membrane (PM) to be functional. Inhibitors of K-Ras PM localisation are therefore putative cancer chemotherapeutics. By screening a microbial extract library in a high content cell-based assay we detected the rare oligomycin class of Streptomyces polyketides as inhibitors of K-Ras PM localisation. Cultivation and fractionation of three unique oligomycin producing Streptomyces strains yielded oligomycins A-E (1-5) and 21-hydroxy-oligomycin A (6), together with the new 21-hydroxy-oligomycin C (7) and 40-hydroxy-oligomycin B (8). Structures for 1-8 were assigned by detailed spectroscopic analysis. Cancer cell viability screening confirmed 1-8 were cytotoxic to human colorectal carcinoma cells (IC50 > 3 μM), and were inhibitors of the ABC transporter efflux pump P-glycoprotein (P-gp), with 5 being comparable in potency to the positive control verapamil. Significantly, oligomycins 1-8 proved to be exceptionally potent inhibitors of K-Ras PM localisation (Emax 0.67-0.75 with an IC50 ~ 1.5-14 nM).
Collapse
Affiliation(s)
- A A Salim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
The use of fluorescently-tagged apoptolidins in cellular uptake and response studies. J Antibiot (Tokyo) 2016; 69:327-30. [PMID: 26956792 DOI: 10.1038/ja.2016.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Abstract
The apoptolidins are glycomacrolide microbial metabolites reported to be selectively cytotoxic against tumor cells. Using fluorescently tagged active derivatives we demonstrate selective uptake of these four tagged glycomacrolides in cancer cells over healthy human blood cells. We also demonstrate the utility of these five fluorescently tagged glycomacrolides in fluorescent flow cytometry to monitor cellular uptake of the six glycomacrolides and cellular response.
Collapse
|
36
|
Huang C, Leung RKK, Guo M, Tuo L, Guo L, Yew WW, Lou I, Lee SMY, Sun C. Genome-guided Investigation of Antibiotic Substances produced by Allosalinactinospora lopnorensis CA15-2(T) from Lop Nor region, China. Sci Rep 2016; 6:20667. [PMID: 26864220 PMCID: PMC4749953 DOI: 10.1038/srep20667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023] Open
Abstract
Microbial secondary metabolites are valuable resources for novel drug discovery. In particular, actinomycetes expressed a range of antibiotics against a spectrum of bacteria. In genus level, strain Allosalinactinospora lopnorensis CA15-2T is the first new actinomycete isolated from the Lop Nor region, China. Antimicrobial assays revealed that the strain could inhibit the growth of certain types of bacteria, including Acinetobacter baumannii and Staphylococcus aureus, highlighting its clinical significance. Here we report the 5,894,259 base pairs genome of the strain, containing 5,662 predicted genes, and 832 of them cannot be detected by sequence similarity-based methods, suggesting the new species may carry a novel gene pool. Furthermore, our genome-mining investigation reveals that A. lopnorensis CA15-2T contains 17 gene clusters coding for known or novel secondary metabolites. Meanwhile, at least six secondary metabolites were disclosed from ethyl acetate (EA) extract of the fermentation broth of the strain by high-resolution UPLC-MS. Compared with reported clusters of other species, many new genes were found in clusters, and the physical chromosomal location and order of genes in the clusters are distinct. This study presents evidence in support of A. lopnorensis CA15-2T as a potent natural products source for drug discovery.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ross Ka-Kit Leung
- Stanley HoCentre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,School of Public Health, The University of Hong Kong, Hong Kong
| | - Min Guo
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Tuo
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lin Guo
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wing Wai Yew
- Stanley HoCentre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Inchio Lou
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macao, China
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
37
|
Bennur T, Ravi Kumar A, Zinjarde S, Javdekar V. Nocardiopsis
species: a potential source of bioactive compounds. J Appl Microbiol 2015; 120:1-16. [DOI: 10.1111/jam.12950] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Affiliation(s)
- T. Bennur
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - A. Ravi Kumar
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - S.S. Zinjarde
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - V. Javdekar
- Department of Biotechnology; Abasaheb Garware College; Pune India
| |
Collapse
|
38
|
Sheng Y, Fotso S, Serrill JD, Shahab S, Santosa DA, Ishmael JE, Proteau PJ, Zabriskie TM, Mahmud T. Succinylated Apoptolidins from Amycolatopsis sp. ICBB 8242. Org Lett 2015; 17:2526-9. [PMID: 25945812 DOI: 10.1021/acs.orglett.5b01055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new apoptolidins, 2'-O-succinyl-apoptolidin A (11) and 3'-O-succinyl-apoptolidin A (12), were isolated from the culture broth of an Indonesian Amycolatopsis sp. ICBB 8242. These compounds inhibit the proliferation and viability of human H292 and HeLa cells. However, in contrast to apoptolidin A (1), they do not inhibit cellular respiration in H292 cells. It is proposed that apoptolidins are produced and secreted in their succinylated forms and 1 is the hydrolysis product of 11 and 12.
Collapse
Affiliation(s)
- Yan Sheng
- †Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Serge Fotso
- †Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Jeffrey D Serrill
- †Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Salmah Shahab
- ‡Indonesian Center for Biodiversity and Biotechnology, ICBB-Complex, Jl. Cilubang Nagrak No. 62, Situgede, Bogor 16115, Indonesia
| | - Dwi Andreas Santosa
- ‡Indonesian Center for Biodiversity and Biotechnology, ICBB-Complex, Jl. Cilubang Nagrak No. 62, Situgede, Bogor 16115, Indonesia.,§Department of Soil Science and Land Resources, Faculty of Agriculture, Bogor Agricultural University, Bogor, Indonesia
| | - Jane E Ishmael
- †Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Philip J Proteau
- †Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - T Mark Zabriskie
- †Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- †Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
39
|
Serrill JD, Tan M, Fotso S, Sikorska J, Kasanah N, Hau AM, McPhail KL, Santosa DA, Zabriskie TM, Mahmud T, Viollet B, Proteau PJ, Ishmael JE. Apoptolidins A and C activate AMPK in metabolically sensitive cell types and are mechanistically distinct from oligomycin A. Biochem Pharmacol 2015; 93:251-65. [DOI: 10.1016/j.bcp.2014.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023]
|
40
|
Yadav J, Rahman MA, Reddy NM, Prasad A. Synthesis of spiroketal fragment of ossamycin via Prins cyclization. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
DeGuire SM, Earl DC, Du Y, Crews BA, Jacobs AT, Ustione A, Daniel C, Chong KM, Marnett LJ, Piston DW, Bachmann BO, Sulikowski GA. Fluorescent Probes of the Apoptolidins and their Utility in Cellular Localization Studies. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
DeGuire SM, Earl DC, Du Y, Crews BA, Jacobs AT, Ustione A, Daniel C, Chong KM, Marnett LJ, Piston DW, Bachmann BO, Sulikowski GA. Fluorescent probes of the apoptolidins and their utility in cellular localization studies. Angew Chem Int Ed Engl 2014; 54:961-4. [PMID: 25430909 DOI: 10.1002/anie.201408906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/27/2014] [Indexed: 11/05/2022]
Abstract
Apoptolidin A has been described among the top 0.1% most-cell-selective cytotoxic agents to be evaluated in the NCI 60 cell line panel. The molecular structure of apoptolidin A consists of a 20-membered macrolide with mono- and disaccharide moieties. In contrast to apoptolidin A, the aglycone (apoptolidinone) shows no cytotoxicity (>10 μM) when evaluated against several tumor cell lines. Apoptolidin H, the C27 deglycosylated analogue of apoptolidin A, displayed sub-micromolar activity against H292 lung carcinoma cells. Selective esterification of apoptolidins A and H with 5-azidopentanoic acid afforded azido-functionalized derivatives of potency equal to that of the parent macrolide. They also underwent strain-promoted alkyne-azido cycloaddition reactions to provide access to fluorescent and biotin-functionalized probes. Microscopy studies demonstrate apoptolidins A and H localize in the mitochondria of H292 human lung carcinoma cells.
Collapse
Affiliation(s)
- Sean M DeGuire
- Department of Chemistry, Vanderbilt University, Vanderbilt Institute of Chemical Biology, Nashville, TN 37232 (USA)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bruner JK, Zou B, Zhang H, Zhang Y, Schmidt K, Li M. Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur J Pharmacol 2014; 740:603-10. [PMID: 24972239 DOI: 10.1016/j.ejphar.2014.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022]
Abstract
Two-pore domain potassium (K2P) channels are responsible for background potassium (K+) current, which is crucial for the maintenance of resting membrane potential. K2P18.1, also called TWIK-related spinal cord K+ channel (TRESK) or KCNK18, is thought to be a major contributor to background K+ currents, particularly in sensory neurons where it is abundantly expressed. Despite its critical role and potential therapeutic implication, pharmacological tools for probing K2P18.1 activity remain unavailable. Here, we report a high-throughput screen against a collection of bioactive compounds that yielded 26 inhibitors and 8 activators of K2P18.1 channel activity with more than 10-fold selectivity over the homologous channel K2P9.1. Among these modulators, the antihistamine loratadine inhibited K2P18.1 activity with IC50 of 0.49±0.23 µM and is considerably more potent than existing K2P18.1 inhibitors. Importantly, the inhibition by loratadine remains equally efficacious upon potentiation of K2P18.1 by calcium signaling. Furthermore, the loratadine effect is dependent on transmembrane residues F145 and F352, providing orthogonal evidence that the inhibition is caused by a direct compound-channel interaction. This study reveals new pharmacological modulators of K2P18.1 activity useful in dissecting native K2P18.1 function.
Collapse
Affiliation(s)
- J Kyle Bruner
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21205, USA; Johns Hopkins Ion Channel Center (JHICC), Johns Hopkins University, Baltimore, MD 21205, USA
| | - Beiyan Zou
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21205, USA; Johns Hopkins Ion Channel Center (JHICC), Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hongkang Zhang
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21205, USA; Johns Hopkins Ion Channel Center (JHICC), Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yixin Zhang
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21205, USA; Johns Hopkins Ion Channel Center (JHICC), Johns Hopkins University, Baltimore, MD 21205, USA
| | - Katharina Schmidt
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Min Li
- The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center, Johns Hopkins University, Baltimore, MD 21205, USA; Johns Hopkins Ion Channel Center (JHICC), Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. J Antibiot (Tokyo) 2013; 67:223-30. [PMID: 24252813 PMCID: PMC3969387 DOI: 10.1038/ja.2013.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/06/2013] [Indexed: 11/08/2022]
Abstract
Venturicidin C (1), a new 20-membered macrolide along with the known venturicidins A (2) and B (3) were isolated from the crude extract of the Appalachian bacterial strain Streptomyces sp. TS-2-2. Additionally, nine other known compounds namely nocardamine, dehydroxynocardamine, desmethylenylnocardamine, ferrioxamine E, adenosine, riboflavin, cyclo(D)-trans-4-OH-Pro-(D)-Phe, cyclo(D)-Pro-(D)-Phe and N-(2-phenylethyl)-acetamide were also isolated and identified. The structure of the new macrolide 1 was elucidated by the cumulative analyses of NMR spectroscopy and HR-MS data. Complete NMR assignments for the known venturicidins A (2) and B (3) are also provided, for the first time, in this report. Venturicidins A-C did not inhibit the proliferation of A549 lung cancer cell line but all displayed potent antifungal activity.
Collapse
|
45
|
Pacilli A, Calienni M, Margarucci S, D'Apolito M, Petillo O, Rocchi L, Pasquinelli G, Nicolai R, Koverech A, Calvani M, Peluso G, Montanaro L. Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis. J Natl Cancer Inst 2013; 105:489-98. [PMID: 23486551 DOI: 10.1093/jnci/djt030] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The metabolic alterations of cancer cells represent an opportunity for developing selective antineoplastic treatments. We investigated the therapeutic potential of ST1326, an inhibitor of carnitine-palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid (FA) import into mitochondria. METHODS ST1326 was tested on in vitro and in vivo models of Burkitt's lymphoma, in which c-myc, which drives cellular demand for FA metabolism, is highly overexpressed. We performed assays to evaluate the effect of ST1326 on proliferation, FA oxidation, and FA mitochondrial channeling in Raji cells. The therapeutic efficacy of ST1326 was tested by treating Eµ-myc mice (control: n = 29; treatment: n = 24 per group), an established model of c-myc-mediated lymphomagenesis. Experiments were performed on spleen-derived c-myc-overexpressing B cells to clarify the role of c-myc in conferring sensitivity to ST1326. Survival was evaluated with Kaplan-Meier analyses. All statistical tests were two-sided. RESULTS ST1326 blocked both long- and short-chain FA oxidation and showed a strong cytotoxic effect on Burkitt's lymphoma cells (on Raji cells at 72 hours: half maximal inhibitory concentration = 8.6 μM). ST1326 treatment induced massive cytoplasmic lipid accumulation, impairment of proper mitochondrial FA channeling, and reduced availability of cytosolic acetyl coenzyme A, a fundamental substrate for de novo lipogenesis. Moreover, treatment with ST1326 in Eµ-myc transgenic mice prevented tumor formation (P = .01), by selectively impairing the growth of spleen-derived primary B cells overexpressing c-myc (wild-type cells + ST1326 vs. Eµ-myc cells + ST1326: 99.75% vs. 57.5%, difference = 42.25, 95% confidence interval of difference = 14% to 70%; P = .01). CONCLUSIONS Our data indicate that it is possible to tackle c-myc-driven tumorigenesis by altering lipid metabolism and exploiting the neoplastic cell addiction to FA oxidation.
Collapse
Affiliation(s)
- Annalisa Pacilli
- Dipartimento di Patologia Sperimentale, Università di Bologna, Via San Giacomo 14, 40126, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nie XP, Liu BY, Yu HJ, Liu WQ, Yang YF. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 172:23-32. [PMID: 22982550 DOI: 10.1016/j.envpol.2012.08.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/04/2012] [Accepted: 08/18/2012] [Indexed: 05/17/2023]
Abstract
We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate-glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P. subcapitata, but in different ways the alga was more tolerant to CPF and SMZ exposures than to ETM exposure. ETM caused reductions in AsA and GSH biosynthesis, ascorbate-glutathione cycle, xanthophylls cycle and antioxidant enzyme activities. The toxicity of CPF seems to be mainly overcome via induction of the ascorbate-glutathione cycle and CAT, SOD and GPX activities, while the toxicity of SMZ on the photosynthetic apparatus is predominantly reduced by the xanthophyll cycle and GST activity.
Collapse
Affiliation(s)
- Xiang-Ping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | | | | | | | | |
Collapse
|
47
|
Mitocans, Mitochondria-Targeting Anticancer Drugs. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b12308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Rohlena J, Dong LF, Ralph SJ, Neuzil J. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid Redox Signal 2011; 15:2951-74. [PMID: 21777145 DOI: 10.1089/ars.2011.3990] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Mitochondria are emerging as highly intriguing organelles showing promise but that are yet to be fully exploited as targets for anticancer drugs. RECENT ADVANCES A group of compounds that induce mitochondrial destabilization, thereby affecting the physiology of cancer cells, has been defined and termed 'mitocans.' Based on their mode of action of targeting in and around mitochondria, we have placed these agents into several groups including hexokinase inhibitors, compounds targeting Bcl-2 family proteins, thiol redox inhibitors, VDAC/ANT targeting drugs, electron transport chain-targeting drugs, lipophilic cations targeting the inner membrane, agents affecting the tricarboxylic acid cycle, drugs targeting mtDNA, and agents targeting other presently unknown sites. CRITICAL ISSUES Mitocans have a potential to prove highly efficient in suppressing various malignant diseases in a selective manner. They include compounds that are currently in clinical trial and offer substantial promise to become clinically applied drugs. Here we update and redefine the individual classes of mitocans, providing examples of the various members of these groups with a particular focus on agents targeting the electron transport chain, and indicate their potential application in clinical practice. FUTURE DIRECTIONS Even though reactive oxygen species induction is important for the anticancer activity of many mitocans, the precise sequence of events preceding and following this pivotal event are not yet fully clarified, and warrant further investigation. This is imperative for effective deployment of these compounds in the clinic.
Collapse
Affiliation(s)
- Jakub Rohlena
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
49
|
Du Y, Derewacz DK, Deguire SM, Teske J, Ravel J, Sulikowski GA, Bachmann BO. Biosynthesis of the Apoptolidins in Nocardiopsis sp. FU 40. Tetrahedron 2011; 67:6568-6575. [PMID: 21869849 PMCID: PMC3159176 DOI: 10.1016/j.tet.2011.05.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The apoptolidins are 20/21-membered macrolides produced by Nocardiopsis sp. FU40. Several members of this family are potent and remarkably selective inducers of apoptosis in cancer cell lines, likely via a distinct mitochondria associated target. To investigate the biosynthesis of this natural product, the complete genome of the apoptolidin producer Nocardiopsis sp. FU40 was sequenced and a 116 Kb region was identified containing a putative apoptolidin biosynthetic gene cluster. The apoptolidin gene cluster comprises a type I polyketide synthase, with 13 homologating modules, apparently initiated in an unprecedented fashion via transfer from a methoxymalonyl-acyl carrier protein loading module. Spanning approximately 39 open reading frames, the gene cluster was cloned into a series of overlapping cosmids and functionally validated by targeted gene disruption experiments in the producing organism. Disruption of putative PKS and P(450) genes delineated the roles of these genes in apoptolidin biosynthesis and chemical complementation studies demonstrated intact biosynthesis peripheral to the disrupted genes. This work provides insight into details of the biosynthesis of this biologically significant natural product and provides a basis for future mutasynthetic methods for the generation of non-natural apopotolidins.
Collapse
Affiliation(s)
- Yu Du
- Departments of Chemistry and Biochemistry, Institute of Chemical Biology, Vanderbilt University, Nashville, TN 77842-3012, U.S.A
| | | | | | | | | | | | | |
Collapse
|
50
|
Srinivasarao M, Park T, Chen Y, Fuchs PL. Noteworthy observations accompanying synthesis of the apoptolidin disaccharide. Chem Commun (Camb) 2011; 47:5858-60. [DOI: 10.1039/c1cc11448d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|