1
|
Bakthavatsalam D, Craft JW, Kazansky A, Nguyen N, Bae G, Caivano AR, Gundlach CW, Aslam A, Ali S, Gupta S, Lin SY, Parthiban HD, Vanderslice P, Stephan CC, Woodside DG. Identification of Inhibitors of Integrin Cytoplasmic Domain Interactions With Syk. Front Immunol 2021; 11:575085. [PMID: 33488575 PMCID: PMC7819857 DOI: 10.3389/fimmu.2020.575085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Leukocyte inflammatory responses require integrin cell-adhesion molecule signaling through spleen tyrosine kinase (Syk), a non-receptor kinase that binds directly to integrin β-chain cytoplasmic domains. Here, we developed a high-throughput screen to identify small molecule inhibitors of the Syk-integrin cytoplasmic domain interactions. Screening small molecule compound libraries identified the β-lactam antibiotics cefsulodin and ceftazidime, which inhibited integrin β-subunit cytoplasmic domain binding to the tandem SH2 domains of Syk (IC50 range, 1.02-4.9 µM). Modeling suggested antagonist binding to Syk outside the pITAM binding site. Ceftazidime inhibited integrin signaling via Syk, including inhibition of adhesion-dependent upregulation of interleukin-1β and monocyte chemoattractant protein-1, but did not inhibit ITAM-dependent phosphorylation of Syk mediated by FcγRI signaling. Our results demonstrate a novel means to target Syk independent of its kinase and pITAM binding sites such that integrin signaling via this kinase is abrogated but ITAM-dependent signaling remains intact. As integrin signaling through Syk is essential for leukocyte activation, this may represent a novel approach to target inflammation.
Collapse
Affiliation(s)
| | - John W. Craft
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
- Department of Biology and Chemistry, University of Houston, Houston, TX, United States
| | - Anna Kazansky
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Nghi Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Goeun Bae
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Amy R. Caivano
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - C. William Gundlach
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Asra Aslam
- Department of Biology and Chemistry, University of Houston, Houston, TX, United States
| | - Safa Ali
- Department of Biology and Chemistry, University of Houston, Houston, TX, United States
| | - Shashikant Gupta
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Sophie Y. Lin
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Hema D. Parthiban
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Peter Vanderslice
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| | - Clifford C. Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Darren G. Woodside
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
2
|
Beta 1 integrin signaling mediates pancreatic ductal adenocarcinoma resistance to MEK inhibition. Sci Rep 2020; 10:11133. [PMID: 32636409 PMCID: PMC7340786 DOI: 10.1038/s41598-020-67814-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer, one of the deadliest human malignancies, has a dismal 5-year survival rate of 9%. KRAS is the most commonly mutated gene in pancreatic cancer, but clinical agents that directly target mutant KRAS are not available. Several effector pathways are activated downstream of oncogenic Kras, including MAPK signaling. MAPK signaling can be inhibited by targeting MEK1/2; unfortunately, this approach has been largely ineffective in pancreatic cancer. Here, we set out to identify mechanisms of MEK inhibitor resistance in pancreatic cancer. We optimized the culture of pancreatic tumor 3D clusters that utilized Matrigel as a basement membrane mimetic. Pancreatic tumor 3D clusters recapitulated mutant KRAS dependency and recalcitrance to MEK inhibition. Treatment of the clusters with trametinib, a MEK inhibitor, had only a modest effect on these cultures. We observed that cells adjacent to the basement membrane mimetic Matrigel survived MEK inhibition, while the cells in the interior layers underwent apoptosis. Our findings suggested that basement membrane attachment provided survival signals. We thus targeted integrin β1, a mediator of extracellular matrix contact, and found that combined MEK and integrin β1 inhibition bypassed trametinib resistance. Our data support exploring integrin signaling inhibition as a component of combination therapy in pancreatic cancer.
Collapse
|
3
|
Otrubova K, Srinivasan V, Boger DL. Discovery libraries targeting the major enzyme classes: the serine hydrolases. Bioorg Med Chem Lett 2014; 24:3807-13. [PMID: 25037918 PMCID: PMC4130767 DOI: 10.1016/j.bmcl.2014.06.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022]
Abstract
Two libraries of modestly reactive ureas containing either electron-deficient acyl anilines or acyl pyrazoles were prepared and are reported as screening libraries for candidate serine hydrolase inhibitors. Within each library is a small but powerful subset of compounds that serve as a chemotype fragment screening library capable of subsequent structural diversification. Elaboration of the pyrazole-based ureas provided remarkably potent irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki=100-200 pM) complementary to those previously disclosed enlisting electron-deficient aniline-based ureas.
Collapse
Affiliation(s)
- Katerina Otrubova
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037, United States
| | - Venkat Srinivasan
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037, United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037, United States.
| |
Collapse
|
4
|
Whitby LR, Boyle KE, Cai L, Yu X, Gochin M, Boger DL. Discovery of HIV fusion inhibitors targeting gp41 using a comprehensive α-helix mimetic library. Bioorg Med Chem Lett 2012; 22:2861-5. [PMID: 22424973 PMCID: PMC3321071 DOI: 10.1016/j.bmcl.2012.02.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/19/2022]
Abstract
The evaluation of a comprehensive α-helix mimetic library for binding the gp41 NHR hydrophobic pocket recognizing an intramolecular CHR α-helix provided a detailed depiction of structural features required for binding and led to the discovery of small molecule inhibitors (K(i) 0.6-1.3 μM) that not only match or exceed the potency of those disclosed over the past decade, but that also exhibit effective activity in a cell-cell fusion assay (IC(50) 5-8 μM).
Collapse
Affiliation(s)
- Landon R. Whitby
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Kristopher E. Boyle
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| | - Lifeng Cai
- Department of Basic Sciences, Touro University – California, 1310 Club Drive, Mare Island, Vallejo, CA 94592
| | - Xiaoqian Yu
- Department of Basic Sciences, Touro University – California, 1310 Club Drive, Mare Island, Vallejo, CA 94592
| | - Miriam Gochin
- Department of Basic Sciences, Touro University – California, 1310 Club Drive, Mare Island, Vallejo, CA 94592
| | - Dale L. Boger
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037
| |
Collapse
|
5
|
Abstract
This chapter outlines the evolution of high throughput chemistry from its origins in the genome revolution of the early 1990's to its current practice as an integral tool in drug discovery, via the concept of the large “universal library” to the practice of small targeted arrays for structure–activity relationship generation. The technologies developed as part of this evolution are also outlined including early ACT peptide synthesisers and other automated and non-automated devices for both solid-supported and solution-based approaches. Finally, the chapter outlines several case studies of the application of high throughput synthesis to drug discovery.
Collapse
|
6
|
Whitby LR, Ando Y, Setola V, Vogt PK, Roth BL, Boger DL. Design, synthesis, and validation of a β-turn mimetic library targeting protein-protein and peptide-receptor interactions. J Am Chem Soc 2011; 133:10184-94. [PMID: 21609016 DOI: 10.1021/ja201878v] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design and synthesis of a β-turn mimetic library as a key component of a small-molecule library targeting the major recognition motifs involved in protein-protein interactions is described. Analysis of a geometric characterization of 10,245 β-turns in the protein data bank (PDB) suggested that trans-pyrrolidine-3,4-dicarboxamide could serve as an effective and synthetically accessible library template. This was confirmed by initially screening select compounds against a series of peptide-activated GPCRs that recognize a β-turn structure in their endogenous ligands. This validation study was highlighted by identification of both nonbasic and basic small molecules with high affinities (K(i) = 390 and 23 nM, respectively) for the κ-opioid receptor (KOR). Consistent with the screening capabilities of collaborators and following the design validation, the complete library was assembled as 210 mixtures of 20 compounds, providing a total of 4200 compounds designed to mimic all possible permutations of 3 of the 4 residues in a naturally occurring β-turn. Unique to the design and because of the C(2) symmetry of the template, a typical 20 × 20 × 20-mix (8000 compounds prepared as 400 mixtures of 20 compounds) needed to represent 20 variations in the side chains of three amino acid residues reduces to a 210 × 20-mix, thereby simplifying the library synthesis and subsequent screening. The library was prepared using a solution-phase synthetic protocol with liquid-liquid or liquid-solid extractions for purification and conducted on a scale that insures its long-term availability for screening campaigns. Screening the library against the human opioid receptors (KOR, MOR, and DOR) identified not only the activity of library members expected to mimic the opioid receptor peptide ligands but also additional side-chain combinations that provided enhanced receptor binding selectivities (>100-fold) and affinities (as low as K(i) = 80 nM for KOR). A key insight to emerge from the studies is that the phenol of Tyr in endogenous ligands bearing the H-Tyr-Pro-Trp/Phe-Phe-NH(2) β-turn is important for MOR binding but may not be important for KOR (accommodated, but not preferred) and that the resulting selectivity for KOR observed with its removal can be increased by replacing the phenol OH with a chlorine substituent, further enhancing KOR affinity.
Collapse
Affiliation(s)
- Landon R Whitby
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
7
|
Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL. Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions. J Am Chem Soc 2010; 131:5564-72. [PMID: 19334711 DOI: 10.1021/ja810025g] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and solution-phase synthesis of an alpha-helix mimetic library as an integral component of a small-molecule library targeting protein-protein interactions are described. The iterative design, synthesis, and evaluation of the candidate alpha-helix mimetic was initiated from a precedented triaryl template and refined by screening the designs for inhibition of MDM2/p53 binding. Upon identifying a chemically and biologically satisfactory design and consistent with the screening capabilities of academic collaborators, the corresponding complete library was assembled as 400 mixtures of 20 compounds (20 x 20 x 20-mix), where the added subunits are designed to mimic all possible permutations of the naturally occurring i, i + 4, i + 7 amino acid side chains of an alpha-helix. The library (8000 compounds) was prepared using a solution-phase synthetic protocol enlisting acid/base liquid-liquid extractions for purification on a scale that insures its long-term availability for screening campaigns. Screening of the library for inhibition of MDM2/p53 binding not only identified the lead alpha-helix mimetic upon which the library was based, but also suggests that a digestion of the initial screening results that accompany the use of such a comprehensive library can provide insights into the nature of the interaction (e.g., an alpha-helix mediated protein-protein interaction) and define the key residues and their characteristics responsible for recognition.
Collapse
Affiliation(s)
- Alex Shaginian
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stover JS, Shi J, Jin W, Vogt PK, Boger DL. Discovery of inhibitors of aberrant gene transcription from Libraries of DNA binding molecules: inhibition of LEF-1-mediated gene transcription and oncogenic transformation. J Am Chem Soc 2010; 131:3342-8. [PMID: 19216569 DOI: 10.1021/ja809083d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The screening of a >9000 compound library of synthetic DNA binding molecules for selective binding to the consensus sequence of the transcription factor LEF-1 followed by assessment of the candidate compounds in a series of assays that characterized functional activity (disruption of DNA-LEF-1 binding) at the intended target and site (inhibition of intracellular LEF-1-mediated gene transcription) resulting in a desired phenotypic cellular change (inhibit LEF-1-driven cell transformation) provided two lead compounds: lefmycin-1 and lefmycin-2. The sequence of screens defining the approach assures that activity in the final functional assay may be directly related to the inhibition of gene transcription and DNA binding properties of the identified molecules. Central to the implementation of this generalized approach to the discovery of DNA binding small molecule inhibitors of gene transcription was (1) the use of a technically nondemanding fluorescent intercalator displacement (FID) assay for initial assessment of the DNA binding affinity and selectivity of a library of compounds for any sequence of interest, and (2) the technology used to prepare a sufficiently large library of DNA binding compounds.
Collapse
Affiliation(s)
- James S Stover
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, usa
| | | | | | | | | |
Collapse
|
9
|
Kummer C, Petrich BG, Rose DM, Ginsberg MH. A small molecule that inhibits the interaction of paxillin and alpha 4 integrin inhibits accumulation of mononuclear leukocytes at a site of inflammation. J Biol Chem 2010; 285:9462-9469. [PMID: 20097761 DOI: 10.1074/jbc.m109.066993] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Extracellular antagonists of alpha 4 integrin are an effective therapy for several autoimmune and inflammatory diseases; however, these agents that directly block ligand binding may exhibit mechanism-based toxicities. Inhibition of alpha 4 integrin signaling by mutations of alpha 4 that block paxillin binding inhibits inflammation while limiting mechanism-based toxicities. Here, we test a pharmacological approach by identifying small molecules that inhibit the alpha 4 integrin-paxillin interaction. By screening a large (approximately 40,000-compound) chemical library, we identified a noncytotoxic inhibitor of this interaction that impaired integrin alpha 4-mediated but not alpha L beta 2-mediated Jurkat T cell migration. The identified compound had no effect on alpha 4-mediated migration in cells bearing the alpha 4(Y991A) mutation that disrupts the alpha 4-paxillin interaction, establishing the specificity of its action. Administration of this compound to mice led to impaired recruitment of mononuclear leukocytes to a site of inflammation in vivo, whereas an isomer that does not inhibit the alpha 4-paxillin interaction had no effect on alpha 4-mediated cell migration, cell spreading, or recruitment of leukocytes to an inflammatory site. Thus, a small molecule inhibitor that interferes with alpha 4 integrin signaling reduces alpha 4-mediated T cell migration in vivo, thus providing proof of principle for inhibition of alpha 4 integrin signaling as a target for the pharmacological reduction of inflammation.
Collapse
Affiliation(s)
- Christiane Kummer
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Brian G Petrich
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - David M Rose
- Department of Medicine, University of California at San Diego, La Jolla, California 92093
| | - Mark H Ginsberg
- Department of Medicine, University of California at San Diego, La Jolla, California 92093.
| |
Collapse
|
10
|
Wunderlich K, Mayer D, Ranadheera C, Holler AS, Mänz B, Martin A, Chase G, Tegge W, Frank R, Kessler U, Schwemmle M. Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication. PLoS One 2009; 4:e7517. [PMID: 19841738 PMCID: PMC2759517 DOI: 10.1371/journal.pone.0007517] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.
Collapse
Affiliation(s)
| | - Daniel Mayer
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Charlene Ranadheera
- PiKe Pharma GmbH, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Benjamin Mänz
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Arnold Martin
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Geoffrey Chase
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Martin Schwemmle
- Department of Virology, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Fogelstrand P, Féral CC, Zargham R, Ginsberg MH. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). ACTA ACUST UNITED AC 2009; 206:2397-406. [PMID: 19841087 PMCID: PMC2768859 DOI: 10.1084/jem.20082845] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of vascular smooth muscle cells (VSMCs) to migrate and proliferate is essential for the formation of intimal hyperplasia. Hence, selectively targeting activated VSMCs is a potential strategy against vaso-occlusive disorders such as in-stent restenosis, vein-graft stenosis, and transplant vasculopathy. We show that CD98 heavy chain (CD98hc) is markedly up-regulated in neointimal and cultured VSMCs, and that activated but not quiescent VSMCs require CD98hc for survival. CD98hc mediates integrin signaling and localizes amino acid transporters to the plasma membrane. SMC-specific deletion of CD98hc did not affect normal vessel morphology, indicating that CD98hc was not required for the maintenance of resident quiescent VSMCs; however, CD98hc deletion reduced intimal hyperplasia after arterial injury. Ex vivo and in vitro, loss of CD98hc suppressed proliferation and induced apoptosis in VSMCs. Furthermore, reconstitution with CD98hc mutants showed that CD98hc interaction with integrins was necessary for the survival of VSMCs. These studies establish the importance of CD98hc in VSMC proliferation and survival. Furthermore, loss of CD98hc was selectively deleterious to activated VSMCs while sparing resident quiescent VSMCs, suggesting that activated VSMCs are physiologically dependent on CD98hc, and hence, CD98hc is a potential therapeutic target in vaso-occlusive disorders.
Collapse
Affiliation(s)
- Per Fogelstrand
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
12
|
Shi J, Stover JS, Whitby LR, Vogt PK, Boger DL. Small molecule inhibitors of Myc/Max dimerization and Myc-induced cell transformation. Bioorg Med Chem Lett 2009; 19:6038-41. [PMID: 19800226 DOI: 10.1016/j.bmcl.2009.09.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
The preparation and evaluation of a series of inhibitors of Myc/Max dimerization and Myc-induced cell transformation are described providing mycmycin-1 (3) and mycmycin-2 (4).
Collapse
Affiliation(s)
- Jin Shi
- Department of Molecular and Experimental Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
13
|
Lee J, Hong J, Nam TG, Peters EC, Orth AP, Geierstanger BH, Goldfinger LE, Ginsberg MH, Cho CY, Schultz PG. A small molecule inhibitor of alpha4 integrin-dependent cell migration. Bioorg Med Chem 2008; 17:977-80. [PMID: 18329275 DOI: 10.1016/j.bmc.2008.02.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 11/17/2022]
Abstract
A small molecule inhibitor of alpha4 integrin-dependent cell migration was identified through a cell-based screen of small molecule libraries. Biochemical and cellular experiments suggest that this molecule functions by interacting with gamma-parvin. This molecule should serve as a useful tool to study alpha4 integrin signaling and may lead to new therapeutics for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jongkook Lee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Petrich BG, Fogelstrand P, Partridge AW, Yousefi N, Ablooglu AJ, Shattil SJ, Ginsberg MH. The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation. J Clin Invest 2007; 117:2250-9. [PMID: 17627302 PMCID: PMC1906732 DOI: 10.1172/jci31024] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 04/24/2007] [Indexed: 11/17/2022] Open
Abstract
In vitro studies indicate that binding of talin to the beta(3) integrin cytoplasmic domain (tail) results in integrin alpha(IIb)beta(3) (GPIIb-IIIa) activation. Here we tested the importance of talin binding for integrin activation in vivo and its biological significance by generating mice harboring point mutations in the beta(3) tail. We introduced a beta(3)(Y747A) substitution that disrupts the binding of talin, filamin, and other cytoplasmic proteins and a beta(3)(L746A) substitution that selectively disrupts interactions only with talin. Platelets from animals homozygous for each mutation showed impaired agonist-induced fibrinogen binding and platelet aggregation, providing proof that inside-out signals that activate alpha(IIb)beta(3) require binding of talin to the beta(3) tail. beta(3)(L746A) mice were resistant to both pulmonary thromboembolism and to ferric chloride-induced thrombosis of the carotid artery. Pathological bleeding, measured by the presence of fecal blood and development of anemia, occurred in 53% of beta(3)(Y747A) and virtually all beta(3)-null animals examined. Remarkably, less than 5% of beta(3)(L746A) animals exhibited this form of bleeding. These results establish that alpha(IIb)beta(3) activation in vivo is dependent on the interaction of talin with the beta(3) integrin cytoplasmic domain. Furthermore, they suggest that modulation of beta(3) integrin-talin interactions may provide an attractive target for antithrombotics and result in a reduced risk of pathological bleeding.
Collapse
Affiliation(s)
- Brian G Petrich
- Department of Medicine, UCSD School of Medicine, La Jolla, California 92093-0726, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ullah A, Ansari FL, Nazir S, Mirza B. Combinatorial Synthesis, Lead Identification, and Antitumor Study of a Chalcone-Based Positional-Scanning Library. Chem Biodivers 2007; 4:203-14. [PMID: 17311221 DOI: 10.1002/cbdv.200790025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A 175-member chalcone library was designed and synthesized from seven differently substituted acetophenones (A(1)-A(7)) and 25 differently substituted aryl or heteroaryl aldehydes (B(1)-B(25)). Potential lead compounds were identified by deconvolution of a two-dimensional library matrix via positional scanning, and the members of the most-active sub-libraries were synthesized and screened against crown-gall tumors with the aid of the potato-disc assay. The resulting hits gave rise to significant antitumor activities, with no antibacterial effect on the tumor-producing bacterium Agrobacterium tumefaciens. Two identified lead structures, (2E)-3-(2-chlorophenyl)-1-phenylprop-2-en-1-one (A(1)B(9)) and the hydroxy analogue (2E)-3-(2-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (A(2)B(9)), are promising candidates to be developed into highly effective anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Ahsan Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | |
Collapse
|
16
|
Kummer C, Ginsberg MH. New approaches to blockade of alpha4-integrins, proven therapeutic targets in chronic inflammation. Biochem Pharmacol 2006; 72:1460-8. [PMID: 16870156 DOI: 10.1016/j.bcp.2006.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The recruitment of leukocytes into tissue is a pivotal step in inflammation. alpha4-Integrins are adhesion receptors on circulating leukocytes that mediate attachment to the endothelium and facilitate their migration into the inflamed tissue. This multistep process is mediated by the interaction of alpha4-integrins with their counter receptors VCAM-1 and MadCAM-1 that are expressed on endothelial cells. alpha4-Integrins act as both adhesive and signaling receptors. Paxillin, a signaling adaptor molecule, binds directly to the alpha4 cytoplasmic tail and its binding is important for cell migration. Blocking the adhesive functions of alpha4-integrins has been shown to be an effective therapeutic approach in the treatment of autoimmune diseases, but also carries the risk of defects in development, hematopoiesis and immune surveillance. Interfering with alpha4 signaling by inhibiting the alpha4-paxillin interaction decreases alpha4-mediated cell migration and adhesion to VCAM-1 and MadCAM under shear flow. These in vitro effects are accompanied by a selective impairment of leukocyte migration into inflammatory sites when the alpha4-paxillin interaction is blocked in vivo. Thus, blockade of alpha4-integrin signaling may offer a novel strategy for interfering with the functions of these receptors in pathological events while sparing important physiological functions.
Collapse
Affiliation(s)
- Christiane Kummer
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive 0726, La Jolla, CA 92093, USA.
| | | |
Collapse
|
17
|
Alon R, Feigelson SW, Manevich E, Rose DM, Schmitz J, Overby DR, Winter E, Grabovsky V, Shinder V, Matthews BD, Sokolovsky-Eisenberg M, Ingber DE, Benoit M, Ginsberg MH. Alpha4beta1-dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the alpha4-cytoplasmic domain. ACTA ACUST UNITED AC 2006; 171:1073-84. [PMID: 16365170 PMCID: PMC2171310 DOI: 10.1083/jcb.200503155] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which α4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the α4 tail that disrupts paxillin binding, α4(Y991A), reduced talin association to the α4β1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed α4β1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal α4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Féral CC, Rose DM, Han J, Fox N, Silverman GJ, Kaushansky K, Ginsberg MH. Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest 2006; 116:715-23. [PMID: 16470243 PMCID: PMC1361348 DOI: 10.1172/jci26091] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 12/13/2005] [Indexed: 11/17/2022] Open
Abstract
Antagonists to alpha4 integrin show promise for several autoimmune and inflammatory diseases but may exhibit mechanism-based toxicities. We tested the capacity of blockade of alpha4 integrin signaling to perturb functions involved in inflammation, while limiting potential adverse effects. We generated and characterized mice bearing a Y991A mutation in alpha4 integrin [alpha4(Y991A) mice], which blocks paxillin binding and inhibits alpha4 integrin signals that support leukocyte migration. In contrast to the embryonic-lethal phenotype of alpha4 integrin-null mice, mice bearing the alpha4(Y991A) mutation were viable and fertile; however, they exhibited defective recruitment of mononuclear leukocytes into thioglycollate-induced peritonitis. Alpha4 integrins are essential for definitive hematopoiesis; however, the alpha4(Y991A) mice had intact lymphohematopoiesis and, with the exception of reduced Peyer's patches, normal architecture and cellularity of secondary lymphoid tissues. We conclude that interference with alpha4 integrin signaling can selectively impair mononuclear leukocyte recruitment to sites of inflammation while sparing vital functions of alpha4 integrins in development and hematopoiesis.
Collapse
Affiliation(s)
- Chloé C Féral
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0726, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Lee YS, Bergson P, He WS, Mrksich M, Tang WJ. Discovery of a small molecule that inhibits the interaction of anthrax edema factor with its cellular activator, calmodulin. ACTA ACUST UNITED AC 2005; 11:1139-46. [PMID: 15324815 DOI: 10.1016/j.chembiol.2004.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 05/21/2004] [Accepted: 05/24/2004] [Indexed: 11/25/2022]
Abstract
The catalytic efficiency of adenylyl cyclase activity of edema factor (EF) from Bacillus anthracis is enhanced by approximately 1000-fold upon its binding to mammalian protein calmodulin (CaM). A tandem cell-based and protein binding-based screen of a 10,000 member library identified a molecule that inhibits the EF-CaM interaction and therefore the adenylyl cyclase activity. A combination of fluorescence spectroscopy and photolabeling studies showed that the molecule targets the CaM binding region of EF. A series of related compounds were synthesized and evaluated to identify one compound, 4-[4-(4-nitrophenyl)-thiazolylamino]-benzenesulfonamide, that maintained activity against EF but showed minimal toxicity to two cultured cell lines. This compound represents an important reagent to study the role of EF in anthrax pathology and may represent a drug lead against anthrax infection.
Collapse
Affiliation(s)
- Young-Sam Lee
- Department of Chemistry and Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
21
|
Boger DL. Solution-phase synthesis of combinatorial libraries designed to modulate protein-protein or protein-DNA interactions. Bioorg Med Chem 2003; 11:1607-13. [PMID: 12659745 DOI: 10.1016/s0968-0896(03)00031-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A short personal perspective on the development of an approach to the solution-phase synthesis of combinatorial libraries for modulating cellular signaling by inhibiting, promoting, or mimicking protein-protein or protein-DNA interactions is provided.
Collapse
Affiliation(s)
- Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Travis MA, Humphries JD, Humphries MJ. An unraveling tale of how integrins are activated from within. Trends Pharmacol Sci 2003; 24:192-7. [PMID: 12707006 DOI: 10.1016/s0165-6147(03)00069-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin cytoplasmic tail domains are short, but are essential for normal receptor function because of their key role in relaying bidirectional signals across the plasma membrane. Although it is well established that the cytoplasmic tails both initiate signalling pathways inside the cell and control the transition of integrins from a resting to a ligand-binding competent state, until recently the structural basis of these changes has been unclear. In the past year, however, a series of structural studies has revealed certain features of cytoplasmic domain function, and in this review we focus on how these advances have enlightened our understanding of integrin tail structure and function.
Collapse
Affiliation(s)
- Mark A Travis
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|