1
|
Chen G, Li W, Ge R, Guo T, Zhang Y, Zhou C, Lin M. NUSAP1 Promotes Immunity and Apoptosis by the SHCBP1/JAK2/STAT3 Phosphorylation Pathway to Induce Dendritic Cell Generation in Hepatocellular Carcinoma. J Immunother 2025; 48:46-57. [PMID: 38980111 PMCID: PMC11753460 DOI: 10.1097/cji.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with high morbidity and mortality rates. The aims of this study were to investigate the immune-promoting action of nucleolar and spindle-associated protein 1 (NUSAP1) and identify an immunotherapy target for HCC. The Cancer Genome Atlas (TCGA) was used to analyze interaction molecules and immune correlation. The interaction between NUSAP1 and SHC binding and spindle associated 1 (SHCBP1) was examined. The role of the SHCBP1/Janus kinase 2/signal transducer and activator of transcription 3 (SHCBP1/JAK2/STAT3) pathway in this process was explored. After co-culture with HCC cell lines, the differentiation of peripheral blood mononuclear cells (PBMCs) into dendritic cells (DC) was evaluated by measuring the expression of surface factors CD1a and CD86. Pathological tissues from 50 patients with HCC were collected to validate the results of cell experiments. The expression levels of CD1a and CD86 in tissues were also determined. The results show that NUSAP1 interacted with SHCBP1 and was positively correlated with DC. In HCC cell lines, an interaction was observed between NUSAP1 and SHCBP1. It was verified that NUSAP1 inhibited the JAK2/STAT3 phosphorylation pathway by blocking SHCBP1. After co-culture, the levels of CD1a and CD86 in PBMC were elevated. In the clinical specimens, CD1a and CD86 expression levels were significantly higher in the high-NUSAP1 group versus the low-NUSAP1 group. In Summary, NUSAP1 enhanced immunity by inhibiting the SHCBP1/JAK2/STAT3 phosphorylation pathway and promoted DC generation and HCC apoptosis. NUSAP1 may be a target of immunotherapy for HCC.
Collapse
Affiliation(s)
- Guojie Chen
- Medical School of Nantong University, Nantong, Jiangsu, China
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - WenYa Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruomu Ge
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yuhan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenglin Zhou
- Laboratory Department, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
2
|
Dai B, Xin Y, Jun W. Sjögren's syndrome and psoriasis: a two-sample Mendelian randomization study. Arch Dermatol Res 2025; 317:322. [PMID: 39891721 DOI: 10.1007/s00403-025-03836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Primary Sjögren's Syndrome (PSS) and psoriasis are frequently observed to co-occur in clinical settings. However, the causal associations and underlying mechanisms between PSS and psoriasis remain poorly defined. In this study, we conducted bidirectional MR analysis to explore the causal relationship between PSS and psoriasis using four MR methods: inversevariance weighted, MR-Egger regression, weighted median, and weighted mode. Sensitivity analyses were carried out, employing different models and testing methods for comparison to assess the influence of heterogeneity and pleiotropy on our findings and to confirm the robustness of these results. We primarily employed the Inverse Variance Weighting (IVW) method for our analysis. A p-value of less than 0.05 indicates a significant causal relationship, while a p-value greater than 0.05 suggests the absence of such a relationship. The IVW analysis confirmed a causal relationship between psoriasis and primary Sjögren's syndrome (PSS) (OR: 3.149E-10, 95% CI 1.114E-18-0.089, P = 0.028), with the weighted median yielding similar results. Conversely, there was no causal association found between PSS and the risk of developing psoriasis (OR: 1.000, 95% CI 0.999-1.000, P = 0.328). This study reveals a causal relationship between primary Sjögren's syndrome (PSS) and psoriasis, demonstrating that psoriasis increases the risk of developing PSS, while the reverse is not true. This potential causal link offers new insights into the etiology of both PSS and psoriasis.
Collapse
Affiliation(s)
- Bingqing Dai
- Department of Dermatology, Yijishan Hospital Affiliated WithWannan Medical College, No. 2 ZheshanWest Road, Wuhu, Anhui, China
| | - Yu Xin
- Department of Dermatology, Yijishan Hospital Affiliated WithWannan Medical College, No. 2 ZheshanWest Road, Wuhu, Anhui, China
| | - Wang Jun
- Department of Dermatology, Yijishan Hospital Affiliated WithWannan Medical College, No. 2 ZheshanWest Road, Wuhu, Anhui, China.
- Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
4
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
5
|
Shaw C, Weimer BC, Gann R, Desai PT, Shah JD. The Yin and Yang of pathogens and probiotics: interplay between Salmonella enterica sv. Typhimurium and Bifidobacterium infantis during co-infection. Front Microbiol 2024; 15:1387498. [PMID: 38812689 PMCID: PMC11133690 DOI: 10.3389/fmicb.2024.1387498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
Probiotic bacteria have been proposed as an alternative to antibiotics for the control of antimicrobial resistant enteric pathogens. The mechanistic details of this approach remain unclear, in part because pathogen reduction appears to be both strain and ecology dependent. Here we tested the ability of five probiotic strains, including some from common probiotic genera Lactobacillus and Bifidobacterium, to reduce binding of Salmonella enterica sv. Typhimurium to epithelial cells in vitro. Bifidobacterium longum subsp. infantis emerged as a promising strain; however, S. Typhimurium infection outcome in epithelial cells was dependent on inoculation order, with B. infantis unable to rescue host cells from preceding or concurrent infection. We further investigated the complex mechanisms underlying this interaction between B. infantis, S. Typhimurium, and epithelial cells using a multi-omics approach that included gene expression and altered metabolism via metabolomics. Incubation with B. infantis repressed apoptotic pathways and induced anti-inflammatory cascades in epithelial cells. In contrast, co-incubation with B. infantis increased in S. Typhimurium the expression of virulence factors, induced anaerobic metabolism, and repressed components of arginine metabolism as well as altering the metabolic profile. Concurrent application of the probiotic and pathogen notably generated metabolic profiles more similar to that of the probiotic alone than to the pathogen, indicating a central role for metabolism in modulating probiotic-pathogen-host interactions. Together these data imply crosstalk via small molecules between the epithelial cells, pathogen and probiotic that consistently demonstrated unique molecular mechanisms specific probiotic/pathogen the individual associations.
Collapse
Affiliation(s)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | | | | | | |
Collapse
|
6
|
Kumar S, Bodhale N, Patra SK, Sarode A, Zhao L, Sarkar A, Saha B. Interleukin-7 potentiates MAPK10-elicited host-protective vaccine against Leishmania donovani. Cytokine 2024; 174:156475. [PMID: 38134556 DOI: 10.1016/j.cyto.2023.156475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Leishmania donovani causes the potentially fatal disease visceral leishmaniasis for which neither a vaccine nor an adjuvant for human use exists. Although interleukin-7 (IL-7) is implicated in CD4+ T-cell response stabilization, its anti-leishmanial function is uncertain. Therefore, we examined whether IL-7 would potentiate the efficacy of Leishmania major-expressed MAPK10 (LmjMAPK10; M10)-elicited anti-leishmanial host-protective response. We observed that aligning with IL-7R expression, IL-7 increased IFN-γ-secreting TH1 cell but reduced IL-4-producing TH2 cells and production of IL-10 and TGF-β effectuating anti-leishmanial functions in susceptible BALB/c mouse-derived macrophages. Co-culturing IL-7-pre-treated L. donovani-infected macrophages with L. donovani-infected BALB/c-derived T cells induced IFN-γ-dominated TH1 type anti-leishmanial function. IL-7 treatment of L. donovani-infected BALB/c mice significantly reduced splenic and hepatic parasite loads. Co-culturing CD4+ T cells from IL to 7-treated mice with L. donovani-infected macrophages reduced amastigote numbers suggesting IL-7-elicited host-protective effector T cells. Priming BALB/c with M10 + IL-7 reduced the splenic parasite burden more effectively than that was observed in M10-primed mice. An enhanced protection against L. donovani infection was accompanied by enhanced IL-12 and IFN-γ, but suppressed IL-10 and IL-4, response and host-protective TH1 and memory T cells. These results indicate IL-7-induced leishmanial antigen-specific memory T cell response that protects a susceptible host against L. donovani infection.
Collapse
Affiliation(s)
- Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | | | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | - Ling Zhao
- Ling Zhao, Huazhong Agricultural University, Wuhan 430070, China
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024. India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India; Trident Academy of Creative Technology, Bhubaneswar 751024. India.
| |
Collapse
|
7
|
Wei J, Pan Y, Shen Z, Shen L, Xu L, Yu W, Huang W. A hybrid energy-based and AI-based screening approach for the discovery of novel inhibitors of JAK3. Front Med (Lausanne) 2023; 10:1182227. [PMID: 37886358 PMCID: PMC10598672 DOI: 10.3389/fmed.2023.1182227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The JAKs protein family is composed of four isoforms, and JAK3 has been regarded as a druggable target for the development of drugs to treat various diseases, including hematologic tumors, cancer, and neuronal death. Therefore, the discovery of JAK3 inhibitors with novel scaffolds possesses the potential to provide additional options for drug development. This article presents a structure-based hybrid high-throughput virtual screening (HTVS) protocol as well as the DeepDock algorithm, which is based on geometric deep learning. These techniques were used to identify inhibitors of JAK3 with a novel sketch from a specific "In-house" database. Using molecular docking with varying precision, MM/GBSA, geometric deep learning scoring, and manual selection, 10 compounds were obtained for subsequent biological evaluation. One of these 10 compounds, compound 8, was found to have inhibitory potency against JAK3 and the MOLM-16 cell line, providing a valuable lead compound for further development of JAK3 inhibitors. To gain a better understanding of the interaction between compound 8 and JAK3, molecular dynamics (MD) simulations were conducted to provide more details on the binding conformation of compound 8 with JAK3 to guide the subsequent structure optimization. In this article, we achieved compound 8 with a novel sketch possessing inhibitory bioactivity against JAK3, and it would provide an acceptable "hit" for further structure optimization and modification to develop JAK3 inhibitors.
Collapse
Affiliation(s)
- Juying Wei
- MDS Center, Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Youlu Pan
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zheyuan Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Wenjuan Yu
- MDS Center, Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
König S, Fliegauf M, Rhiel M, Grimbacher B, Cornu TI, Cathomen T, Mussolino C. Allele-Specific Disruption of a Common STAT3 Autosomal Dominant Allele Is Not Sufficient to Restore Downstream Signaling in Patient-Derived T Cells. Genes (Basel) 2022; 13:1912. [PMID: 36292796 PMCID: PMC9601366 DOI: 10.3390/genes13101912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 09/22/2023] Open
Abstract
Dominant negative mutations in the STAT3 gene account for autosomal dominant hyper-IgE syndrome (AD-HIES). Patients typically present high IgE serum levels, recurrent infections, and soft tissue abnormalities. While current therapies focus on alleviating the symptoms, hematopoietic stem cell transplantation (HSCT) has recently been proposed as a strategy to treat the immunological defect and stabilize the disease, especially in cases with severe lung infections. However, because of the potentially severe side effects associated with allogeneic HSCT, this has been considered only for a few patients. Autologous HSCT represents a safer alternative but it requires the removal of the dominant negative mutation in the patients' cells prior to transplantation. Here, we developed allele-specific CRISPR-Cas9 nucleases to selectively disrupt five of the most common STAT3 dominant negative alleles. When tested ex vivo in patient-derived hematopoietic cells, allele-specific disruption frequencies varied in an allele-dependent fashion and reached up to 62% of alleles harboring the V637M mutation without detectable alterations in the healthy STAT3 allele. However, assessment of the gene expression profiles of the STAT3 downstream target genes revealed that, upon activation of those edited patient cells, mono-allelic STAT3 expression (functional haploinsufficiency) is not able to sufficiently restore STAT3-dependent signaling in edited T cells cultured in vitro. Moreover, the stochastic mutagenesis induced by the repair of the nuclease-induced DNA break could further contribute to dominant negative effects. In summary, our results advocate for precise genome editing strategies rather than allele-specific gene disruption to correct the underlying mutations in AD-HIES.
Collapse
Affiliation(s)
- Saskia König
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
| | - Tatjana I. Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Breisacherstr. 115, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
10
|
Ruamsap N, Riyapa D, Janesomboon S, Stevens JM, Pichyangkul S, Pattanapanyasat K, Demons ST, Stevens MP, Korbsrisate S. Lymphostatin, a virulence factor of attaching and effacing Escherichia coli, inhibits proliferation and cytokine responses of human T cells in a manner associated with cell cycle arrest but not apoptosis or necrosis. Front Cell Infect Microbiol 2022; 12:941939. [PMID: 35967844 PMCID: PMC9373022 DOI: 10.3389/fcimb.2022.941939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Donporn Riyapa
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sathit Pichyangkul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Department for Research and Development, Siriraj Center of Research Excellence for Microparticle and Exosome in Diseases, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Samandra T. Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Sunee Korbsrisate, ; Mark P. Stevens,
| |
Collapse
|
11
|
Li S, Si H, Song X, Lei C, He X, Wang J, Liu Y, Zhou Y, Song JG, Peng L, Tang X, Chan S, Ren X, Tu Z, Li Z, Wang Z, Zhang Z, Ding K. Discovery of Hexahydrofuro[3,2- b]furans as New Kinase-Selective and Orally Bioavailable JAK3 Inhibitors for the Treatment of Leukemia Harboring a JAK3 Activating Mutant. J Med Chem 2022; 65:10674-10690. [PMID: 35860875 DOI: 10.1021/acs.jmedchem.2c00922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Janus kinase 3 (JAK3) is a potential target for the treatment of hematological malignancies. Herein, we report the discovery of a series of new orally bioavailable irreversible JAK3 kinase inhibitors. The representative compound 12n potently inhibited JAK3 kinase activity with an IC50 value of 1.2 nM and was more than 900-fold selective over JAK1, JAK2, and Tyk2. Cell-based assays revealed that 12n significantly suppressed phosphorylation of JAK3 and the downstream effectors STAT3/5 and also robustly restrained proliferation of BaF3 cells transfected with JAK3M511I activating mutation and human leukemia U937 cells harboring JAK3M511I with IC50 values of 22.9 and 20.2 nM, respectively. More importantly, 12n showed reasonable pharmacokinetic (PK) properties, and oral administration of 12n at a dose of 50 mg/kg twice daily led to tumor regression in a U937 cell inoculated xenograft mouse model. Thus, 12n represents a promising lead compound for further optimization to discover new therapeutic agents for hematological malignancies.
Collapse
Affiliation(s)
- Shan Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Hongfei Si
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaojuan Song
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Chong Lei
- State Key Laboratory of Bioorganic Chemistry and Natural Products, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Xiaoqiang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jie Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yiling Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jian-Guo Song
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xia Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Shingpan Chan
- Guangzhou Lixin Pharmaceuticals, Guangzhou 510530, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhen Wang
- State Key Laboratory of Bioorganic Chemistry and Natural Products, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China.,State Key Laboratory of Bioorganic Chemistry and Natural Products, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, #601 Huangpu Avenue West, Guangzhou 510632, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
12
|
O'Brien A, Hanlon MM, Marzaioli V, Wade SC, Flynn K, Fearon U, Veale DJ. Targeting JAK-STAT Signalling Alters PsA Synovial Fibroblast Pro-Inflammatory and Metabolic Function. Front Immunol 2021; 12:672461. [PMID: 34248953 PMCID: PMC8264423 DOI: 10.3389/fimmu.2021.672461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives Psoriatic arthritis (PsA) is a chronic inflammatory disease associated with psoriasis. Janus Kinase inhibitors (JAKi) have emerged as an encouraging class of drugs for the treatment of PsA. Here, we compare the effect of four JAKi on primary PsA synovial fibroblasts (PsAFLS) activation, metabolic function, and invasive and migratory capacity. Methods Primary PsAFLS were isolated and cultured with JAKi (Peficitinib, Filgotinib, Baricitinib and Upadacitinib) in the presence of Oncostatin M (OSM). pSTAT3 expression in response to OSM was quantified by Western Blot analysis. Pro-inflammatory cytokines/chemokines were quantified by ELISA and cell migration by wound-repair scratch assays. Invasive capacity was examined using Matrigel™ invasion chambers and MMP multiplex MSD assays. PsAFLS bioenergetics was assessed using the Seahorse XFe Extracellular Flux Analyzer, which simultaneously quantifies two energetic pathways- glycolysis (ECAR) and oxidative phosphorylation (OCR). In parallel, inflammatory, invasive, and migratory genes were quantified by RT-PCR. Results OSM induces pSTAT3 expression in PsAFLS. OSM-induced secretion of MCP-1 and IL-6 was inhibited by all JAKi with Peficitinib, Baricitinib and Upadacitinib showing the greatest effect. In contrast, JAKi had no significant impact on IL-8 expression in response to OSM. PsAFLS cell invasion, migratory capacity and MMP1, 3, and 9 were suppressed following JAKi treatment, with Peficitinib showing the greatest effect. These functional effects were accompanied by a change in the cellular bioenergetic profile of PsAFLS, where JAKi significantly decreased glycolysis and the ECAR/OCR, resulting in a shift to a more quiescent phenotype, with Peficitinib demonstrating the most pronounced effect. Conclusion This study demonstrates that JAK/STAT signalling mediates the complex interplay between inflammation and cellular metabolism in PsA pathogenesis. This inhibition shows effective suppression of inflammatory mechanisms that drive pathogenic functions of PsAFLS, further supporting the role of JAKi as a therapeutic target for the treatment of PsA.
Collapse
Affiliation(s)
- Aisling O'Brien
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology European League against Rheumatism (EULAR) Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Megan Mary Hanlon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology European League against Rheumatism (EULAR) Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Viviana Marzaioli
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology European League against Rheumatism (EULAR) Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Siobhan C Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology European League against Rheumatism (EULAR) Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Keelin Flynn
- Rheumatology European League against Rheumatism (EULAR) Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology European League against Rheumatism (EULAR) Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Douglas J Veale
- Rheumatology European League against Rheumatism (EULAR) Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Chen C, Meng Z, Ren H, Zhao N, Shang R, He W, Hao J. The molecular mechanisms supporting the homeostasis and activation of dendritic epidermal T cell and its role in promoting wound healing. BURNS & TRAUMA 2021; 9:tkab009. [PMID: 34212060 PMCID: PMC8240510 DOI: 10.1093/burnst/tkab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/08/2021] [Indexed: 11/13/2022]
Abstract
The epidermis is the outermost layer of skin and the first barrier against invasion. Dendritic epidermal T cells (DETCs) are a subset of γδ T cells and an important component of the epidermal immune microenvironment. DETCs are involved in skin wound healing, malignancy and autoimmune diseases. DETCs secrete insulin-like growth factor-1 and keratinocyte growth factor for skin homeostasis and re-epithelization and release inflammatory factors to adjust the inflammatory microenvironment of wound healing. Therefore, an understanding of their development, activation and correlative signalling pathways is indispensable for the regulation of DETCs to accelerate wound healing. Our review focuses on the above-mentioned molecular mechanisms to provide a general research framework to regulate and control the function of DETCs.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - He Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| |
Collapse
|
14
|
Faletti L, Ehl S, Heeg M. Germline STAT3 gain-of-function mutations in primary immunodeficiency: Impact on the cellular and clinical phenotype. Biomed J 2021; 44:412-421. [PMID: 34366294 PMCID: PMC8514798 DOI: 10.1016/j.bj.2021.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key transcription factor involved in regulation of immune cell activation and differentiation. Recent discoveries highlight the role of germline activating STAT3 mutations in inborn errors of immunity characterized by early-onset multi-organ autoimmunity and lymphoproliferation. Much progress has been made in defining the clinical spectrum of STAT3 GOF disease and unraveling the molecular and cellular mechanisms underlying this disease. In this review, we summarize our current understanding of the disease and discuss the clinical phenotype, diagnostic approach, cellular and molecular effects of STAT3 GOF mutations and therapeutic concepts for these patients.
Collapse
Affiliation(s)
- Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Vaher H, Kivihall A, Runnel T, Raam L, Prans E, Maslovskaja J, Abram K, Kaldvee B, Mrowietz U, Weidinger S, Kingo K, Rebane A. SERPINB2 and miR-146a/b are coordinately regulated and act in the suppression of psoriasis-associated inflammatory responses in keratinocytes. Exp Dermatol 2019; 29:51-60. [PMID: 31630447 DOI: 10.1111/exd.14049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/13/2019] [Accepted: 10/16/2019] [Indexed: 01/04/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease with numerous involved factors. miR-146a and miR-146b (miR-146a/b) are anti-inflammatory miRNAs that are increased in psoriatic skin. SERPINB2 has been shown to be upregulated in the inflammation and infections. Here we aimed to study the relationship between miR-146a/b and SERPINB2 and to delineate the role of SERPINB2 in association of plaque psoriasis. We report increased SERPINB2 expression in the skin of psoriasis patients, which was in a positive relationship with psoriasis severity and in a negative relationship with miR-146a/b in psoriatic lesions. In cultured keratinocytes, both cellular and secreted SERPINB2 levels were strongly induced in response to IFN-γ and TNF-α. Interestingly, SERPINB2 mRNA was downregulated by IL-17A and the combination of TNF-α and IL-17A at time points when miR-146a was increased. The predicted binding site for miR-146a/b in 3' untranslated region of SERPINB2 revealed no activity in luciferase assay, while siRNA silencing of miR-146a/b direct targets IRAK1 and CARD10 resulted in reduced expression of SERPINB2, suggesting that miR-146a/b indirectly control SERPINB2 expression in the skin. The siRNA silencing of SERPINB2 increased the expression of IL-8, CXCL5 and CCL5 and migration of neutrophils revealing its anti-inflammatory role in keratinocytes. Our data together suggest that SERPINB2 and miR-146a/b are part of disease-related network of molecules that are coordinately regulated and act in controlling the inflammatory responses in psoriatic skin.
Collapse
Affiliation(s)
- Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anet Kivihall
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Runnel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liisi Raam
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ele Prans
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Julia Maslovskaja
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Bret Kaldvee
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ulrich Mrowietz
- Department of Dermatology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venerology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Hanlon MM, Rakovich T, Cunningham CC, Ansboro S, Veale DJ, Fearon U, McGarry T. STAT3 Mediates the Differential Effects of Oncostatin M and TNFα on RA Synovial Fibroblast and Endothelial Cell Function. Front Immunol 2019; 10:2056. [PMID: 31555281 PMCID: PMC6724663 DOI: 10.3389/fimmu.2019.02056] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Objectives: Oncostatin M (OSM), a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family, has been implicated in the pathogenesis of autoimmune diseases. Here we investigate the mechanisms by which its synergistic interactions with TNFα regulate the cellular bioenergetics and invasive function of synovial cells from patients with Rheumatoid Arthritis. Methods: Primary RA synovial fibroblasts (RAFLS) and human umbilical vein endothelial cells (HUVEC) were cultured with OSM alone or in combination with TNFα. Pro-inflammatory cytokines, angiogenic growth factors and adhesion molecules were quantified by real-time PCR and ELISA. Invasion, angiogenesis and cellular adhesion were quantified by Transwell invasion chambers, Matrigel tube formation assays, and adhesion binding assays. Cellular bioenergetics was assessed using the Seahorse XFe96 Analyser. Key metabolic genes (GLUT-1, HK2, PFKFB3, HIF1α, LDHA, PKM2) and transcription factor STAT3 were measured using real-time PCR and western blot. Results: OSM differentially regulates pro-inflammatory mediators in RAFLS and HUVEC, with IL-6, MCP-1, ICAM-1, and VEGF all significantly induced, in contrast to the observed inhibition of IL-8 and GROα, with opposing effects observed for VCAM-1 depending on cell type. Functionally, OSM significantly induced angiogenic network formation, adhesion, and invasive mechanisms. This was accompanied by a change in the cellular bioenergetic profile of the cells, where OSM significantly increased the ECAR/OCR ratio in favor of glycolysis, paralleled by induction of the glucose transporter GLUT-1 and key glycolytic enzymes (HK2, PFKFB3, HIF1α). OSM synergizes with TNFα to differentially regulate pro-inflammatory mechanisms in RAFLS and HUVEC. Interestingly, OSM differentially synergizes with TNFα to regulate metabolic reprogramming, where induction of glycolytic activity with concomitant attenuation of mitochondrial respiration and ATP activity was demonstrated in RAFLS but not in HUVEC. Finally, we identified a mechanism, whereby the combination of OSM with TNFα induces transcriptional activity of STAT3 only in RAFLS, with no effect observed in HUVEC. Conclusion: STAT3 mediates the differential effects of OSM and TNFα on RAFLS and EC function. Targeting OSM or downstream signaling pathways may lead to new potential therapeutic or adjuvant strategies, particularly for those patients who have sub-optimal responses to TNFi.
Collapse
Affiliation(s)
- Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland
| | - Tatsiana Rakovich
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland
| | - Clare C Cunningham
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland
| | - Sharon Ansboro
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, UCD, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, UCD, Dublin, Ireland
| | - Trudy McGarry
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, UCD, Dublin, Ireland
| |
Collapse
|
17
|
Mohamed MEF, Trueman S, Feng T, Friedman A, Othman AA. The JAK1 Inhibitor Upadacitinib Has No Effect on the Pharmacokinetics of Levonorgestrel and Ethinylestradiol: A Study in Healthy Female Subjects. J Clin Pharmacol 2018; 59:510-516. [PMID: 30500075 PMCID: PMC6587524 DOI: 10.1002/jcph.1350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 11/18/2022]
Abstract
Upadacitinib is a novel selective oral Janus kinase 1 (JAK) inhibitor being developed for treatment of several inflammatory diseases. Oral contraceptives are anticipated to be a common concomitant medication in the target patient populations. This study was designed to evaluate the effect of multiple doses of upadacitinib on the pharmacokinetics of ethinylestradiol and levonorgestrel in healthy female subjects. This phase I, single‐center, open‐label, 2‐period crossover study evaluated the effect of multiple doses of 30 mg once daily extended‐release upadacitinib on the pharmacokinetics of a single oral dose of ethinylestradiol/levonorgestrel (0.03/0.15 mg; administered alone in period 1 and on day 12 of a 14‐day regimen of upadacitinib in period 2) in 22 healthy female subjects. The ratios (90% confidence intervals) for maximum plasma concentration and area under the plasma drug concentration–time curve from time zero to infinity following administration of ethinylestradiol/levonorgestrel with upadacitinib compared with administration of ethinylestradiol/ levonorgestrel alone were 0.96 (0.89–1.02) and 1.1 (1.04–1.19), respectively, for ethinylestradiol, and 0.96 (0.87–1.06) and 0.96 (0.85–1.07), respectively, for levonorgestrel. The harmonic mean terminal half‐life for ethinylestradiol (7.7 vs 7.0 hours) and levonorgestrel (37.1 vs 33.1 hours) was similar in the presence and absence of upadacitinib. Ethinylestradiol and levonorgestrel were bioequivalent in the presence and absence of upadacitinib. Therefore, upadacitinib can be administered concomitantly with oral contraceptives containing ethinylestradiol or levonorgestrel.
Collapse
Affiliation(s)
| | - Sheryl Trueman
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, IL, USA
| | - Tian Feng
- Data and Statistical Sciences, AbbVie, North Chicago, IL, USA
| | - Alan Friedman
- Immunology Development, AbbVie, North Chicago, IL, USA
| | - Ahmed A Othman
- Clinical Pharmacology and Pharmacometrics, AbbVie, North Chicago, IL, USA
| |
Collapse
|
18
|
Nan Y, Wu C, Zhang YJ. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation. Viruses 2018; 10:v10040196. [PMID: 29662014 PMCID: PMC5923490 DOI: 10.3390/v10040196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 2018; 32:1713-1726. [PMID: 29728695 PMCID: PMC6087715 DOI: 10.1038/s41375-018-0117-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
STAT3 and STAT5 proteins are oncogenic downstream mediators of the JAK–STAT pathway. Deregulated STAT3 and STAT5 signaling promotes cancer cell proliferation and survival in conjunction with other core cancer pathways. Nuclear phosphorylated STAT3 and STAT5 regulate cell-type-specific transcription profiles via binding to promoter elements and exert more complex functions involving interaction with various transcriptional coactivators or corepressors and chromatin remodeling proteins. The JAK–STAT pathway can rapidly reshape the chromatin landscape upon cytokine, hormone, or growth factor stimulation and unphosphorylated STAT proteins also appear to be functional with respect to regulating chromatin accessibility. Notably, cancer genome landscape studies have implicated mutations in various epigenetic modifiers as well as the JAK–STAT pathway as underlying causes of many cancers, particularly acute leukemia and lymphomas. However, it is incompletely understood how mutations within these pathways can interact and synergize to promote cancer. We summarize the current knowledge of oncogenic STAT3 and STAT5 functions downstream of cytokine signaling and provide details on prerequisites for DNA binding and gene transcription. We also discuss key interactions of STAT3 and STAT5 with chromatin remodeling factors such as DNA methyltransferases, histone modifiers, cofactors, corepressors, and other transcription factors.
Collapse
|
20
|
Nan Y, Wu C, Zhang YJ. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front Immunol 2017; 8:1758. [PMID: 29312301 PMCID: PMC5732261 DOI: 10.3389/fimmu.2017.01758] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs), which were discovered a half century ago, are a group of secreted proteins that play key roles in innate immunity against viral infection. The major signaling pathway activated by IFNs is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies with which to antagonize the JAK/STAT pathway to influence viral virulence and pathogenesis. In recent years, notable progress has been made to better understand the JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT antagonist from viral genome for attenuation, and the potential pathogenesis roles of tyrosine phosphorylation-independent non-canonical STATs activation during virus infection are discussed in detail. We expect that this review will provide new insight into the understanding the complexity of the interplay between JAK/STAT signaling and viral antagonism.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
21
|
Chanrot M, Blomqvist G, Guo Y, Ullman K, Juremalm M, Bage R, Donofrio G, Valarcher JF, Humblot P. Bovine herpes virus type 4 alters TNF-α and IL-8 profiles and impairs the survival of bovine endometrial epithelial cells. Reprod Biol 2017; 17:225-232. [DOI: 10.1016/j.repbio.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
|
22
|
Maharaj AB, Chandran V. Treatment of psoriatic arthritis with traditional DMARD’s and novel therapies: approaches and recommendations. Expert Rev Clin Immunol 2016; 13:319-331. [DOI: 10.1080/1744666x.2017.1257939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ajesh B. Maharaj
- Department of Internal Medicine, Prince Mshiyeni Memorial Hospital, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vinod Chandran
- Psoriatic Arthritis Program, Centre for Prognosis Studies in the Rheumatic Diseases, Krembil Research Institute, University Health Network, Toronto, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto Western Hospital, Toronto, Canada
| |
Collapse
|
23
|
Gan H, Hao Q, Idell S, Tang H. Interferon-γ promotes double-stranded RNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1101-L1112. [PMID: 27793801 DOI: 10.1152/ajplung.00278.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Viral respiratory tract infections are the most common illness in humans. Infection of the respiratory viruses results in accumulation of viral replicative double-stranded RNA (dsRNA), which is one of the important components of infecting viruses for the induction of lung epithelial cell apoptosis and innate immune response, including the production of interferon (IFN). In the present study, we have investigated the regulation of dsRNA-induced airway epithelial cell apoptosis by IFN. We found that transcription factor Runx3 was strongly induced by type-II IFNγ, slightly by type-III IFNλ, but essentially not by type-I IFNα in airway epithelial cells. IFNγ-induced expression of Runx3 was predominantly mediated by JAK-STAT1 pathway and partially by NF-κB pathway. Interestingly, Runx3 can be synergistically induced by IFNγ with a synthetic analog of viral dsRNA polyinosinic-polycytidylic acid [poly(I:C)] or tumor necrosis factor-α (TNFα) through both JAK-STAT1 and NF-κB pathways. We further found that dsRNA poly(I:C)-induced apoptosis of airway epithelial cells was mediated by dsRNA receptor toll-like receptor 3 (TLR3) and was markedly augmented by IFNγ through the enhanced expression of TLR3 and subsequent activation of both extrinsic and intrinsic apoptosis pathways. Last, we demonstrated that upregulation of Runx3 by IFNγ promoted TLR3 expression, thus amplifying the dsRNA-induced apoptosis in airway epithelial cells. These novel findings indicate that IFNγ promotes dsRNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Findings from our study may provide new insights into the regulation of airway epithelial cell apoptosis by IFNγ during viral respiratory tract infection.
Collapse
Affiliation(s)
- Huachen Gan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Qin Hao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and.,Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| |
Collapse
|
24
|
Fereshteh MP, Li X, Li S, Fan Y, Zhang R, Farr GA, Kolodin G, Lippy J, Naglich JG, Schieven G, Schweizer L, Zhang L. Development of a Human Whole Blood Screening Platform to Monitor JAK/STAT Signaling Using High-Throughput Flow Cytometry. ACTA ACUST UNITED AC 2016; 21:866-74. [DOI: 10.1177/1087057116645095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/24/2016] [Indexed: 12/18/2022]
Abstract
Oral agents targeting Janus-associated kinases (JAKs) are promising new agents in clinical development. To better understand the relationship between JAK inhibition and biological outcome, compounds targeting JAKs were evaluated in peripheral human whole blood. To date, these analyses are low throughput and costly. Here, we developed a robust 384-well, high-throughput flow-based assay approach to screen small molecules for JAK/STAT signaling inhibition in human whole blood. This assay platform provides a highly sensitive analysis of signaling events in blood and facilitates measurement of target engagement. Further, the automation technologies and process optimizations developed here overcame sample integrity, handling, and multiparametric data analysis bottlenecks without affecting assay performance. Together these efforts dramatically increased sample throughput compared to conventional manual flow cytometric approaches and enabled development of novel JAK/STAT inhibitors.
Collapse
Affiliation(s)
| | - Xin Li
- Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Sha Li
- Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Yi Fan
- Bristol-Myers Squibb Company, Princeton, NJ, USA
| | | | - Glen A. Farr
- Bristol-Myers Squibb Company, Princeton, NJ, USA
| | | | | | | | | | | | - Litao Zhang
- Bristol-Myers Squibb Company, Princeton, NJ, USA
| |
Collapse
|
25
|
Hsu YA, Huang CC, Kung YJ, Lin HJ, Chang CY, Lee KR, Wan L. The anti-proliferative effects of type I IFN involve STAT6-mediated regulation of SP1 and BCL6. Cancer Lett 2016; 375:303-312. [PMID: 26945968 DOI: 10.1016/j.canlet.2016.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/28/2022]
Abstract
Type I IFN-induced STAT6 has been shown to have anti-proliferative effects in Daudi and B cells. IFN-sensitive (DS) and IFN-resistant (DR) subclones of Daudi cells were used to study the role of STAT6 in the anti-proliferative activities. Type I IFN significantly increased STAT6 mRNA and protein expression in DS but not DR cells. STAT6 knockdown significantly reduced the sensitivity to IFN in both cell lines. The molecular targets and functional importance of IFN-activated STAT6 were performed by chromatin immunoprecipitation-on-chip (ChIP-on-chip) experiments in type I IFN-treated Daudi cells. Two target genes (Sp1 and BCL6) were selected from the ChIP-on-chip data. IFN-induced STAT6 activation led to Sp1 upregulation and BCL6 downregulation in DS cells, with only minimal effects in DR cells. siRNA inhibition of STAT6 expression resulted in decreased Sp1 and BCL6 mRNA and protein levels in both DS and DR cells. IFN treatment did not increase Sp1 and BCL6 expression in a STAT2-deficient RST2 cell line, and this effect was mitigated by plasmid overexpression of STAT2, indicating that STAT2 is important for STAT6 activation. These results suggest that STAT6 plays an important role in regulating Sp1 and BCL6 through STAT2 to exert the anti-proliferative effects of type I IFN.
Collapse
Affiliation(s)
- Yu-An Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Chun Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Jen Kung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Yao Chang
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Kuan-Rong Lee
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Department of Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
26
|
Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 2016; 12:385-97. [PMID: 27225300 DOI: 10.1038/nrrheum.2016.69] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Simov V, Deshmukh SV, Dinsmore CJ, Elwood F, Fernandez RB, Garcia Y, Gibeau C, Gunaydin H, Jung J, Katz JD, Kraybill B, Lapointe B, Patel SB, Siu T, Su H, Young JR. Structure-based design and development of (benz)imidazole pyridones as JAK1-selective kinase inhibitors. Bioorg Med Chem Lett 2016; 26:1803-8. [DOI: 10.1016/j.bmcl.2016.02.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 01/18/2023]
|
28
|
Investigation of genetic susceptibility to nonspecific digestive disorder between TYK2, JAK1, and STAT3 genes in rabbits. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cell Immunol 2015; 298:126-33. [PMID: 26520669 DOI: 10.1016/j.cellimm.2015.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms involved in cellular immune responses against control of human immunodeficiency virus (HIV) infection is key to development of effective immunotherapeutic strategies against viral proliferation. Clear insights into the regulation of cytotoxic CD8+ T cells is crucial to development of effective immunotherapeutic strategies due to their unique ability to eliminate virus-infected cells during the course of infection. Here, we reviewed the roles of transcription factors, co-inhibitory molecules and regulatory cytokines following HIV infection and their potential significance in regulating the cytotoxic potentials of CD8+ T cells.
Collapse
|
30
|
Fukuyama T, Tschernig T, Qi Y, Volmer DA, Bäumer W. Aggression behaviour induced by oral administration of the Janus-kinase inhibitor tofacitinib, but not oclacitinib, under stressful conditions. Eur J Pharmacol 2015; 764:278-282. [DOI: 10.1016/j.ejphar.2015.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
|
31
|
Gao W, McGarry T, Orr C, McCormick J, Veale DJ, Fearon U. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann Rheum Dis 2015; 75:311-5. [PMID: 26353790 PMCID: PMC4717390 DOI: 10.1136/annrheumdis-2014-207201] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/13/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Psoriatic arthritis (PsA) is a chronic inflammatory disease, characterised by synovitis and destruction of articular cartilage/bone. Janus-kinase and signal transducer and activator of transcription (JAK-STAT) signalling pathway is implicated in the pathogenesis of PsA. OBJECTIVES To examine the effect of tofacitinib (JAK inhibitor) on proinflammatory mechanisms in PsA. METHODS Primary PsA synovial fibroblasts (PsAFLS) and ex vivo PsA synovial explants were cultured with tofacitinib (1 µM). PhosphoSTAT3 (pSTAT3), phosphoSTAT1 (pSTAT1), suppressor of cytokine signaling-3 (SOCS3), protein inhibitor of activated Stat3 (PIAS3) and nuclear factor kappa B cells (NFκBp65) were quantified by western blot. The effect of tofacitinib on PsAFLS migration, invasion, Matrigel network formation and matrix metallopeptidase (MMP)2/9 was quantified by invasion/migration assays and zymography. Interleukin (IL)-6, IL-8, IFN-gamma-inducible protein 10 (IP-10) monocyte chemoattractant protein (MCP)-1, IL-17, IL-10, MMP3 and tissue inhibitor of metalloproteinases 3 (TIMP3) were assessed by ELISA. RESULTS Tofacitinib significantly decreased pSTAT3, pSTAT1, NFκBp65 and induced SOCS3 and PIAS3 expression in PsAFLS and synovial explant cultures (p<0.05). Functionally, PsAFLS invasion, network formation and migration were inhibited by tofacitinib (all p<0.05). In PsA explant, tofacitinib significantly decreased spontaneous secretion of IL-6, IL-8, MCP-1, MMP9/MMP2, MMP3 (all p<0.05) and decreased the MMP3/TIMP3 ratio (p<0.05), with no effect observed for IP-10 or IL-10. CONCLUSIONS This study further supports JAK-STAT inhibition as a therapeutic target for the treatment of PsA.
Collapse
Affiliation(s)
- W Gao
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - T McGarry
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - C Orr
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - J McCormick
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - D J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - U Fearon
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
32
|
Rottenberg ME, Carow B. SOCS3 and STAT3, major controllers of the outcome of infection with Mycobacterium tuberculosis. Semin Immunol 2014; 26:518-32. [DOI: 10.1016/j.smim.2014.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
|
33
|
Kim MK, Kim KD, Chong Y. De Novo Design of 2-Amino-4-Alkylaminoquinazoline-7-Carboxamides as Potential Scaffold for JAK1-Selective Inhibitors. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
de Vicente J, Lemoine R, Bartlett M, Hermann JC, Hekmat-Nejad M, Henningsen R, Jin S, Kuglstatter A, Li H, Lovey AJ, Menke J, Niu L, Patel V, Petersen A, Setti L, Shao A, Tivitmahaisoon P, Vu MD, Soth M. Scaffold hopping towards potent and selective JAK3 inhibitors: Discovery of novel C-5 substituted pyrrolopyrazines. Bioorg Med Chem Lett 2014; 24:4969-75. [DOI: 10.1016/j.bmcl.2014.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
35
|
Karakawa M, Komine M, Hanakawa Y, Tsuda H, Sayama K, Tamaki K, Ohtsuki M. CCL27 Is Downregulated by Interferon Gamma via Epidermal Growth Factor Receptor in Normal Human Epidermal Keratinocytes. J Cell Physiol 2014; 229:1935-45. [DOI: 10.1002/jcp.24643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/02/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Masaru Karakawa
- Department of Dermatology; University of Tokyo; Bunkyo-ku Tokyo Japan
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Mayumi Komine
- Department of Dermatology; University of Tokyo; Bunkyo-ku Tokyo Japan
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Yasushi Hanakawa
- Department of Dermatology; University of Ehime; Tou-on-shi Ehime Japan
| | - Hidetoshi Tsuda
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Koji Sayama
- Department of Dermatology; University of Ehime; Tou-on-shi Ehime Japan
| | - Kunihiko Tamaki
- Department of Dermatology; University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| |
Collapse
|
36
|
Kim MK, Bae O, Chong Y. Design, Synthesis, and Molecular Docking Study of Flavonol Derivatives as Selective JAK1 Inhibitors. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.8.2581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Kang JW, Park YS, Kim MS, Lee DH, Bak Y, Ham SY, Song YS, Hong JT, Yoon DY. IL-32α down-regulates β2 integrin (CD18) expression by suppressing PU.1 expression in myeloid cells. Cell Signal 2014; 26:1514-22. [DOI: 10.1016/j.cellsig.2014.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/06/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
|
38
|
IL-12 is required for mTOR regulation of memory CTLs during viral infection. Genes Immun 2014; 15:413-23. [PMID: 24898389 PMCID: PMC4156562 DOI: 10.1038/gene.2014.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/27/2014] [Accepted: 04/10/2014] [Indexed: 01/14/2023]
Abstract
The induction of functional memory CTLs is a major goal of vaccination against
intracellular pathogens. IL-12 is critical for the generation of memory CTLs, and
inhibition of mTOR by rapamycin can effectively enhance the memory CTL response. Yet, the
role of IL-12 in mTOR’s regulation of memory CTL is unknown. Here, we hypothesized
that the immunostimulatory effects of mTOR on memory CTLs requires IL-12 signaling. Our
results revealed that rapamycin increased the generation of memory CTLs in vaccinia virus
infection, and this enhancement was dependent upon the IL-12 signal. Furthermore, IL-12
receptor deficiency diminished the secondary expansion of rapamycin-regulated memory, and
resultant secondary memory CTLs were abolished. Rapamycin enhanced IL-12 signaling by up
regulating IL-12 receptor β2 expression and STAT4 phosphorylation in CTLs during
early infection. In addition, rapamycin continually suppressed T-bet expression in both WT
and IL-12 receptor knockout CTLs. These results indicate an essential role for IL-12 in
the regulation of memory CTLs by mTOR, and highlight the importance of considering the
interplay between cytokines and adjuvants during vaccine design.
Collapse
|
39
|
Dowty ME, Lin J, Ryder TF, Wang W, Walker GS, Vaz A, Chan GL, Krishnaswami S, Prakash C. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab Dispos 2014; 42:759-73. [PMID: 24464803 DOI: 10.1124/dmd.113.054940] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tofacitinib is a novel, oral Janus kinase inhibitor. The objectives of this study were to summarize the pharmacokinetics and metabolism of tofacitinib in humans, including clearance mechanisms. Following administration of a single 50-mg (14)C-labeled tofacitinib dose to healthy male subjects, the mean (standard deviation) total percentage of administered radioactive dose recovered was 93.9% (±3.6), with 80.1% (±3.6) in the urine (28.8% parent), and 13.8% (±1.9) in feces (0.9% parent). Tofacitinib was rapidly absorbed, with plasma concentrations and total radioactivity peaking at around 1 hour after oral administration. The mean terminal phase half-life was approximately 3.2 hours for both parent drug and total radioactivity. Most (69.4%) circulating radioactivity in plasma was parent drug, with all metabolites representing less than 10% each of total circulating radioactivity. Hepatic clearance made up around 70% of total clearance, while renal clearance made up the remaining 30%. The predominant metabolic pathways of tofacitinib included oxidation of the pyrrolopyrimidine and piperidine rings, oxidation of the piperidine ring side-chain, N-demethylation and glucuronidation. Cytochrome P450 (P450) profiling indicated that tofacitinib was mainly metabolized by CYP3A4, with a smaller contribution from CYP2C19. This pharmacokinetic characterization of tofacitinib has been consistent with its clinical experience in drug-drug interaction studies.
Collapse
Affiliation(s)
- Martin E Dowty
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, Massachusetts (M.E.D.); Pfizer Inc., Groton, Connecticut (J.L., T.F.R., W.W., G.S.W., A.V., C.P.); and Departments of Specialty Care Clinical Affairs (G.L.C.) and Clinical Pharmacology (S.K.), Pfizer Inc., Groton, Connecticut
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim MK, Shin H, Cho SY, Chong Y. Linear propargylic alcohol functionality attached to the indazole-7-carboxamide as a JAK1-specific linear probe group. Bioorg Med Chem 2013; 22:1156-62. [PMID: 24398382 DOI: 10.1016/j.bmc.2013.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 11/17/2022]
Abstract
Selective inhibition of JAK1 has recently been proposed as an appropriate therapeutic rationale for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). In this study, through pairwise comparison and 3D alignment of the JAK isozyme structures bound to the same inhibitor molecule, we reasoned that an alkynol functionality would serve as an isozyme-specific probe group, which would enable the resulting inhibitor to differentiate the ATP-binding site of JAK1 from those of other isozymes. The 3-alkynolyl-5-(4'-indazolyl)indazole-7-carboxamide derivatives were thus prepared, and in vitro evaluation of their inhibitory activity against the JAK isozymes revealed that the propargyl alcohol functionality endowed the 5-(4'-indazolyl)indazole-7-carboxamide scaffold with JAK1 selectivity over other JAK isozymes, particularly JAK2.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Heerim Shin
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seo Young Cho
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
41
|
Dowty ME, Jesson MI, Ghosh S, Lee J, Meyer DM, Krishnaswami S, Kishore N. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. J Pharmacol Exp Ther 2013; 348:165-73. [PMID: 24218541 DOI: 10.1124/jpet.113.209304] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A critical piece in the translation of preclinical studies to clinical trials is the determination of dosing regimens that allow maximum therapeutic benefit with minimum toxicity. The preclinical pharmacokinetic (PK)/pharmacodynamic (PD) profile of tofacitinib, an oral Janus kinase (JAK) inhibitor, in a mouse collagen-induced arthritis (mCIA) model was compared with clinical PK/PD data from patients with rheumatoid arthritis (RA). Preclinical evaluations included target modulation and PK/PD modeling based on continuous subcutaneous infusion or oral once- or twice-daily (BID) dosing paradigms in mice. The human PK/PD profile was obtained from pooled data from four phase 2 studies in patients with RA, and maximal effect models were used to evaluate efficacy after 12 weeks of tofacitinib treatment (1-15 mg BID). In mCIA, the main driver of efficacy was inhibition of cytokine receptor signaling mediated by JAK1 heterodimers, but not JAK2 homodimers, and continuous daily inhibition was not required to maintain efficacy. Projected efficacy could be predicted from total daily exposure irrespective of the oral dosing paradigm, with a total steady-state plasma concentration achieving 50% of the maximal response (Cave50) of ~100 nM. Tofacitinib potency (ED50) in clinical studies was ~3.5 mg BID (90% confidence interval: 2.3, 5.5) or total Cave50 of ~40 nM, derived using Disease Activity Scores from patients with RA. The collective clinical and preclinical data indicated the importance of Cave as a driver of efficacy, rather than maximum or minimum plasma concentration (Cmax or Cmin), where Cave50 values were within ~2-fold of each other.
Collapse
Affiliation(s)
- Martin E Dowty
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Andover, Massachusetts (M.E.D.); Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts (M.I.J.); Pfizer Worldwide Research and Development, Chesterfield, Missouri (S.G., N.K.); Biotherapeutics, Pharmaceutical Sciences, Analytical Research and Development, Pfizer Worldwide Research and Development, Pfizer Inc, Chesterfield, Missouri (J.L., D.M.M.); and Department of Clinical Pharmacology, Pfizer Inc, Pfizer Worldwide Research and Development, Groton, Connecticut (S.K.)
| | | | | | | | | | | | | |
Collapse
|
42
|
Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proc Natl Acad Sci U S A 2013; 110:13416-21. [PMID: 23901114 DOI: 10.1073/pnas.1309810110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Certain lower vertebrates like zebrafish activate proliferation of spared cardiomyocytes after cardiac injury to regenerate lost heart muscle. Here, we used translating ribosome affinity purification to profile translating RNAs in zebrafish cardiomyocytes during heart regeneration. We identified dynamic induction of several Jak1/Stat3 pathway members following trauma, events accompanied by cytokine production. Transgenic Stat3 inhibition in cardiomyocytes restricted injury-induced proliferation and regeneration, but did not reduce cardiogenesis during animal growth. The secreted protein Rln3a was induced in a Stat3-dependent manner by injury, and exogenous Rln3 delivery during Stat3 inhibition stimulated cardiomyocyte proliferation. Our results identify an injury-specific cardiomyocyte program essential for heart regeneration.
Collapse
|
43
|
Zak M, Hurley CA, Ward SI, Bergeron P, Barrett K, Balazs M, Blair WS, Bull R, Chakravarty P, Chang C, Crackett P, Deshmukh G, DeVoss J, Dragovich PS, Eigenbrot C, Ellwood C, Gaines S, Ghilardi N, Gibbons P, Gradl S, Gribling P, Hamman C, Harstad E, Hewitt P, Johnson A, Johnson T, Kenny JR, Koehler MFT, Bir Kohli P, Labadie S, Lee WP, Liao J, Liimatta M, Mendonca R, Narukulla R, Pulk R, Reeve A, Savage S, Shia S, Steffek M, Ubhayakar S, van Abbema A, Aliagas I, Avitabile-Woo B, Xiao Y, Yang J, Kulagowski JJ. Identification of C-2 Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical Properties and High Selectivity over JAK2. J Med Chem 2013; 56:4764-85. [DOI: 10.1021/jm4004895] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Christopher A. Hurley
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Stuart I. Ward
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | - Richard Bull
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | - Peter Crackett
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | - Charles Ellwood
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Simon Gaines
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | | | | | - Peter Hewitt
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Tony Johnson
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | | | - Jiangpeng Liao
- WuXi AppTec Co., Ltd., 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | | | | | - Raman Narukulla
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | - Austin Reeve
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | | | | | | | | | | | | | - Barbara Avitabile-Woo
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Yisong Xiao
- WuXi AppTec Co., Ltd., 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Jing Yang
- WuXi AppTec Co., Ltd., 288 Fute Zhong
Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Janusz J. Kulagowski
- Argenta, 8/9 Spire Green Centre,
Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| |
Collapse
|
44
|
Jaime-Figueroa S, De Vicente J, Hermann J, Jahangir A, Jin S, Kuglstatter A, Lynch SM, Menke J, Niu L, Patel V, Shao A, Soth M, Vu MD, Yee C. Discovery of a series of novel 5H-pyrrolo[2,3-b]pyrazine-2-phenyl ethers, as potent JAK3 kinase inhibitors. Bioorg Med Chem Lett 2013; 23:2522-6. [DOI: 10.1016/j.bmcl.2013.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
45
|
Zheng H, Sun H, Dominguez-Punaro MDLC, Bai X, Ji S, Segura M, Xu J. Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells. J Med Microbiol 2013; 62:360-368. [DOI: 10.1099/jmm.0.046698-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Han Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | | | - Xuemei Bai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Shaobo Ji
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| | - Mariela Segura
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, PR China
| |
Collapse
|
46
|
Mishra PK, Patel N, Wu W, Bleich D, Gause WC. Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol 2013; 6:297-308. [PMID: 22806101 DOI: 10.1038/mi.2012.71] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Helminth infection can prevent type 1 diabetes (T1D); however, the regulatory mechanisms inhibiting disease remain largely undefined. In these studies, nonobese diabetic (NOD) IL-4(-/-) mice were infected with the strictly enteric nematode parasite, Heligmosomoides polygyrus. Short-term infection, 5-7 weeks of age, inhibited T1D onset, as late as 40 weeks of age. CD4(+) T-cell STAT6 phosphorylation was inhibited, while suppressed signal transducer and activator of transcription 1 phosphorylation was sustained, as were increases in FOXP3(-), CD4(+) T-cell interleukin (IL)-10 production. Blockade of IL-10 signaling in NOD-IL-4(-/-), but not in NOD, mice during this short interval abrogated protective effects resulting in pancreatic β-cell destruction and ultimately T1D. Transfer of CD4(+) T cells from H. polygyrus (Hp)-inoculated NOD IL-4(-/-) mice to NOD mice blocked the onset of T1D. These studies indicate that Hp infection induces non-T-regulatory cells to produce IL-10 independently of STAT6 signaling and that in this Th2-deficient environment IL-10 is essential for T1D inhibition.
Collapse
Affiliation(s)
- P K Mishra
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
47
|
Androgen receptor-target genes in african american prostate cancer disparities. Prostate Cancer 2013; 2013:763569. [PMID: 23365759 PMCID: PMC3556896 DOI: 10.1155/2013/763569] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 01/05/2023] Open
Abstract
The incidence and mortality rates of prostate cancer (PCa) are higher in African American (AA) compared to Caucasian American (CA) men. To elucidate the molecular mechanisms underlying PCa disparities, we employed an integrative approach combining gene expression profiling and pathway and promoter analyses to investigate differential transcriptomes and deregulated signaling pathways in AA versus CA cancers. A comparison of AA and CA PCa specimens identified 1,188 differentially expressed genes. Interestingly, these transcriptional differences were overrepresented in signaling pathways that converged on the androgen receptor (AR), suggesting that the AR may be a unifying oncogenic theme in AA PCa. Gene promoter analysis revealed that 382 out of 1,188 genes contained cis-acting AR-binding sequences. Chromatin immunoprecipitation confirmed STAT1, RHOA, ITGB5, MAPKAPK2, CSNK2A,1 and PIK3CB genes as novel AR targets in PCa disparities. Moreover, functional screens revealed that androgen-stimulated AR binding and upregulation of RHOA, ITGB5, and PIK3CB genes were associated with increased invasive activity of AA PCa cells, as siRNA-mediated knockdown of each gene caused a loss of androgen-stimulated invasion. In summation, our findings demonstrate that transcriptional changes have preferentially occurred in multiple signaling pathways converging (“transcriptional convergence”) on AR signaling, thereby contributing to AR-target gene activation and PCa aggressiveness in AAs.
Collapse
|
48
|
Davoodi-Semiromi A, Wasserfall CH, Hassanzadeh A, Cooper-DeHoff RM, Wabitsch M, Atkinson M. Influence of Tyrphostin AG490 on the expression of diabetes-associated markers in human adipocytes. Immunogenetics 2012; 65:83-90. [PMID: 23081744 DOI: 10.1007/s00251-012-0659-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/08/2012] [Indexed: 11/25/2022]
Abstract
Tyrosine kinase inhibitors (TKi) hold promise as a treatment for a variety of disorders ranging from those in oncology to diseases thought as immune mediated. Tyrphostin AG490 is a potent Jak-Stat TKi shown effective in the prevention of allograft transplant rejection, experimental autoimmune disease, as well as the treatment of cancer. However, given its ability to modulate this important but pleiotropic intracellular pathway, we thought that it is important to examine its effects on glucose metabolism and expression of major transcription factors and adipokines associated with insulin insensitivity and diabetes. We investigated the metabolic effects of AG490 on glucose levels in vivo using an animal model of diabetes, nonobese diabetic (NOD) mice, and transcription factor expression through assessment of human adipocytes. AG490 treatment of young nondiabetic NOD mice significantly reduced blood glucose levels (p = 0.002). In vitro, treatment of adipocytes with rosiglitazone, an insulin sensitizer that binds to peroxisome proliferator-activated receptor (PPAR) receptors and increases the adipocyte response to insulin, significantly increased the expression of the antidiabetic adipokine adiponectin. Importantly, the combination of rosiglitazone plus Tyrphostin AG490 further increased this effect and was specifically associated with significant upregulation of C-enhanced binding protein (C/EBP) (p < 0.0001). In terms of the mechanism underlying this action, regulatory regions of the PPARγ, ADIPOQ, and C/EBP contain the Stat5 DNA-binding sequences and were demonstrated, by gel shift experiments in vitro. These data suggest that blocking Jak-Stat signaling with AG490 reduces blood glucose levels and modulates the expression of transcription factors previously associated with diabetes, thereby supporting its potential as a therapy for this disease.
Collapse
Affiliation(s)
- Abdoreza Davoodi-Semiromi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Fujii H. Mechanisms of Signal Transduction from Receptors of Type I and Type II Cytokines. J Immunotoxicol 2012; 4:69-76. [PMID: 18958714 DOI: 10.1080/15476910601154779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytokines play pivotal roles in regulation of immune responses. Signaling proteins involved in cytokine signal transduction pathways can be potential targets of toxins causing aberrant immune responses. Binding of cytokines to their specific receptors induces activation of signal transduction pathways. In this review, an overview of the cytokine/cytokine receptor system, signaling pathways activated by cytokine receptors, their regulation mechanisms, pathological conditions caused by aberrant cytokine signaling, and issues to be elucidated in the near future is provided.
Collapse
Affiliation(s)
- Hodaka Fujii
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
50
|
GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch Clin Exp Ophthalmol 2012; 250:699-712. [PMID: 22297538 DOI: 10.1007/s00417-012-1932-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND The term retinitis pigmentosa (RP) comprises a heterogeneous group of hereditary and sporadic human retinal degenerative diseases. The molecular and cellular events still remain obscure, thus hiding effective therapies. Granulocyte–macrophage colony-stimulating factor (GM-CSF) is a hematopoietic factor which plays a crucial role in protecting neuronal cells. Binding of GM-CSF to its receptor induces several intracellular signaling pathways and kinases. Here we examined whether GM-CSF has a neuroprotective effect on photoreceptor degeneration in Royal College of Surgeons (RCS) rats. METHODS GM-CSF was injected into the vitreous body of RCS rats either once at the onset of photoreceptor degeneration at day 21, or twice at day 21 and day 42. At day 84, when photoreceptor degeneration is completed, the rats were sacrificed, their eyes enucleated and processed for histological staining and counting the surviving photoreceptor nuclei. The expression of apoptosis-related factors, such as BAD, APAF1 and BCL-2 was examined by Western blot analysis. The expression of neurotrophins such as ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF), and glia-derived neurotrophic actor (GDNF), as well as glial fibrillary acidic protein (GFAP) was analysed by Western blots and immunohistochemistry. The expression of JAK/STAT, ERK1/2 and SRC pathway proteins was assessed by Western blot analysis. RESULTS GM-CSF protects significantly against photoreceptor degeneration in comparison to control group. After a single injection of GM-CSF at P21, a 4-fold increase of photoreceptors was observed, whereas eyes which received a repeated injection of GM-CSF at P42 showed a 10-fold increase of photoreceptors. Western blot analysis revealed a decreased BAD and an increased pBAD and BCL-2 expression, indicating changed expression profiles of apoptosis-related proteins. Neurotrophic factors examined are up-regulated, whereas GFAP was also modulated. At cell signalling levels, GM-CSF activates SRC-dependent STAT3 which is independent of JAK2, while proteins of the ERK1/2 pathway are not affected. CONCLUSIONS The data suggest that GM-CSF is a potent therapeutic agent in photoreceptor degeneration caused by mutation of the receptor tyrosine kinase gene (Mertk), and may be also effective in other photoreceptor degeneration.
Collapse
|