1
|
Talukder A, Rahman MM, Rahi MS, Pountney DL, Wei MQ. Flagellins as Vaccine Adjuvants and Cancer Immunotherapy: Recent Advances and Future Prospects. Immunology 2025. [PMID: 40491306 DOI: 10.1111/imm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/05/2025] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
Flagellin, an essential structural protein of bacterial flagella, has emerged as a potent modulator of both specific and nonspecific immunity, demonstrating significant potential as a vaccine adjuvant and carrier. By inducing the release of pro-inflammatory cytokines like IL-1β, TNF-α, IL-6, IL-8, and IL-12, flagellin activates the innate immune system, enhancing antigen-specific adaptive immune responses mediated by tumour-specific type 1 helper T cells and cytotoxic T cells, thus positioning it as a valuable adjuvant or complementary therapy for various cancers and infectious diseases. This review explores recent strategies, innovations, and clinical applications of flagellin-based immunotherapies, particularly in the context of infectious diseases and cancers. Flagellin from Salmonella typhimurium has been extensively studied as a vaccine adjuvant for diseases like HIV, influenza, dengue, West Nile virus, poultry cholera, and bursal diseases and shows promise in treating lung metastasis, melanoma, colon, and prostate cancers. It has also proven effective against multidrug-resistant bacteria, including Pseudomonas aeruginosa and S. typhimurium. Notably, S. typhimurium flagellin-based vaccines for influenza have progressed to clinical trials. Additionally, flagellins from S. typhi, S. enteritidis, P. aeruginosa, and Escherichia coli are being evaluated as vaccine candidates for plague, malaria, and infections caused by P. aeruginosa and E. coli. In cancer therapy, flagellin-based treatments, especially when combined with tumour antigens, have exhibited the ability to enhance anti-tumour immunity and improve patient outcomes. Other flagellin-based vaccines derived from S. Dublin, S. munchen, and Vibrio vulnificus have been employed in the treatment of prostate, lung, liver, breast, cervical, and colorectal cancers, as well as lymphoma, melanoma, and radiation-induced mucositis. Mobilan, a recombinant non-replicating adenovirus vector expressing Salmonella flagellin, is currently in a phase Ib clinical trial for prostate cancer. Overall, bacterial flagellin treatments are generally safe, well-tolerated, and associated with minimal side effects, making them a promising option for managing infectious diseases and cancers.
Collapse
Affiliation(s)
- Asma Talukder
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Md Mijanur Rahman
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Md Sifat Rahi
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Dean L Pountney
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Ming Q Wei
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Al S, Franzen AJ, Hwang K, Campbell RE, Glass K, Vogel KD, Claus JR. Comparison of peracetic acid and bacteriophage application by vascular rinsing on Salmonella reduction in lymph nodes of goat carcasses. J Food Sci 2025; 90:e70203. [PMID: 40260765 PMCID: PMC12012862 DOI: 10.1111/1750-3841.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
The ability of carcass vascular rinsing supplemented with bacteriophage (BP) and peracetic acid (PAA) to reduce Salmonella in lymph nodes (LNs) from experimentally infected goats was determined. Cull dairy goats (n = 60) were randomly assigned to a control (CN, nonrinsed) and two vascular rinse treatments: BP and PAA. Goats were inoculated intradermally with Salmonella Enteritidis and slaughtered after a 7-day incubation. Vascular rinsing was performed postexsanguination via a catheter in the heart. Carcasses were skinned, eviscerated, sprayed with 5% lactic acid, and chilled (2°C) overnight. The superficial cervical, popliteal, medial iliac, and subiliac LNs were collected aseptically for Salmonella enumeration and phage titer determination. The longissimus dorsi (LD) and semimembranosus muscles were also excised, and stored for 1, 4, and 7 days for meat surface color measurements. PAA-treated carcasses showed lower (p < 0.05) temperatures and pH values within 8 h postmortem compared to CN and BP. The average counts of Salmonella in the LNs associated with PAA (3.4 ± 1.3 log CFU/g) were significantly lower compared to CN (3.8 ± 1.1 log CFU/g), with the lowest load observed in medial iliac LNs (2.7 ± 1.5 log CFU/g). Substantial phage titers were detected in LNs from BP-treated carcasses (7.0 ± 0.91 log PFU/g), and no differences were observed in Salmonella counts in BP compared to CN. The meat samples obtained from PAA-treated carcasses exhibited lower redness (a* values) and deoxymyoglobin in the LD (p < 0.05) but showed no differences in lightness or oxymyoglobin compared to BP and CN. Vascular rinsing has the potential to suppress Salmonella in the LNs with other antimicrobials and chemicals with different combinations and concentrations. PRACTICAL APPLICATION: This study investigates a method to control Salmonella in goat meat by rinsing carcasses with peracetic acid (PAA) or bacteriophages through the bloodstream after slaughter. The findings suggest that PAA can mitigate Salmonella levels in lymph nodes, potentially improving meat safety. While bacteriophage treatment did not significantly affect the bacterial count to observe differences with the control group, vascular rinsing could still be promising with different antimicrobial combinations. This research would help meat processors enhance food safety measures, reducing the risk of Salmonella contamination in meat products.
Collapse
Affiliation(s)
- Serhat Al
- Department of Food Hygiene and TechnologyUniversity of ErciyesKayseriTurkey
- Meat Science & Animal Biologics Discovery, Department of Animal & Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Adam J. Franzen
- Meat Science & Animal Biologics Discovery, Department of Animal & Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Koeun Hwang
- Meat Science & Animal Biologics Discovery, Department of Animal & Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Kathleen Glass
- Food Research InstituteUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kurt D. Vogel
- Department of Animal and Food ScienceUniversity of Wisconsin‐River FallsRiver FallsWisconsinUSA
| | - James R. Claus
- Meat Science & Animal Biologics Discovery, Department of Animal & Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
3
|
Khalifa AZ, Perrie Y, Shahiwala A. Subunit antigen delivery: emulsion and liposomal adjuvants for next-generation vaccines. Expert Opin Drug Deliv 2025; 22:583-597. [PMID: 40021342 DOI: 10.1080/17425247.2025.2474088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/26/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Developing new vaccines to combat emerging infectious diseases has gained more significance after the COVID-19 pandemic. Vaccination is the most cost-effective method for preventing infectious diseases, and subunit antigens are a safer alternative to traditional live, attenuated, and inactivated vaccines. AREAS COVERED Challenges in delivering subunit antigens and the status of different vaccine adjuvants. Recent research developments involving emulsion and liposomal adjuvants and their compositions and properties affecting their adjuvancy. EXPERT OPINION Lipid-based adjuvants, e.g. emulsions and liposomes, represent a paradigm shift in vaccine technology by enabling robust humoral and cellular immune responses with lower antigen doses, a property that is particularly critical during pandemics or in resource-limited settings. These adjuvants can optimize vaccine administration strategies by potentially reducing the frequency of booster doses, thereby improving patient compliance and lowering healthcare costs. While emulsions excel in dose-sparing and broadening immune responses, liposomes offer customization and precision in antigen delivery. However, the broader clinical application of these technologies is not without challenges. Stability issues, e.g. the susceptibility of emulsion-based adjuvants to freezing and their reliance on cold-chain logistics, pose significant barriers to their use in remote/underserved regions. Future developments will likely focus on improving manufacturing scalability and cost-effectiveness.
Collapse
Affiliation(s)
- Al Zahraa Khalifa
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Aliasgar Shahiwala
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Tatsumi N, El-Fenej J, Davila-Pagan A, Kumamoto Y. CD301b + dendritic cell-derived IL-2 dictates CD4 + T helper cell differentiation. Nat Commun 2025; 16:2002. [PMID: 40011469 PMCID: PMC11865452 DOI: 10.1038/s41467-025-55916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/31/2024] [Indexed: 02/28/2025] Open
Abstract
T helper (Th) cell differentiation is fundamental to functional adaptive immunity. Different subsets of dendritic cells (DC) preferentially induce different types of Th cells, but the DC-derived mechanism for Th type 2 (Th2) differentiation is not fully understood. Here, we show that in mice, CD301b+ DCs, a major Th2-inducing DC subset, drive Th2 differentiation through cognate interaction by rapidly inducing IL-2 receptor signalling in CD4+ T cells. Mechanistically, CD40 engagement prompts IL-2 production selectively from CD301b+ DCs to maximize CD25 expression in CD4+ T cells, which instructs the Th2 fate decision, while simultaneously skewing CD4+ T cells away from the T follicular helper fate. Moreover, CD301b+ DCs utilize their own CD25 to facilitate directed action of IL-2 toward cognate CD4+ T cells, as genetic deletion of CD25 in CD301b+ DCs results in reduced IL-2-mediated signalling in antigen-specific CD4+ T cells and hence their Th2 differentiation. These results highlight the critical role of DC-intrinsic CD40-IL-2 axis in Th cell fate decision.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alejandro Davila-Pagan
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
5
|
Baker MG, Ford LS, Campbell DE, Sampson HA. Just scratching the surface: A review of pediatric skin allergies. Pediatr Allergy Immunol 2025; 36:e70038. [PMID: 39953855 DOI: 10.1111/pai.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/16/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025]
Abstract
The skin is a large and sophisticated organ populated by innate and adaptive immune effector cells. These immune cells provide a critical first line of defense against pathogens, but genetic and environmental factors can lead to inappropriate signaling that may manifest as hypersensitivity. The most common cutaneous allergic disorders in children include atopic dermatitis, urticaria/angioedema, and contact dermatitis. In this review, we will briefly review these conditions, with a focus on recent developments in our understanding of the diagnosis and management of these disorders.
Collapse
Affiliation(s)
- Mary Grace Baker
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| | - Lara S Ford
- Department of Allergy & Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Dianne E Campbell
- Department of Allergy & Immunology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- DBV Technologies, Montrouge, France
| | - Hugh A Sampson
- Division of Pediatric Allergy & Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, New York, USA
| |
Collapse
|
6
|
Gordy JT, Bates RE, Glass E, Meza J, Li Y, Schill C, Taylor AD, Wang T, Chen F, Plunkett K, Karanika S, Karakousis PC, Markham RB. MIP-3α-antigen fusion DNA vaccine enhances sex differences in tuberculosis model and alters dendritic cell activity early post vaccination. RESEARCH SQUARE 2025:rs.3.rs-5663995. [PMID: 39877094 PMCID: PMC11774437 DOI: 10.21203/rs.3.rs-5663995/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Background Tuberculosis (TB) remains a major cause of global morbidity and mortality. Efforts to control TB are hampered by the lengthy and cumbersome treatment required to eradicate the infection. Bacterial persistence during exposure to bactericidal antibiotics is at least partially mediated by the bacterial stringent response enzyme, RelMtb. A therapeutic DNA vaccine targeting RelMtb has been shown to increase the efficacy of antitubercular drugs, and fusing macrophage-inflammatory protein 3α (MIP-3α), which interacts with CCR6 on immature dendritic cells (iDCs), to RelMtb further increases the vaccine's therapeutic efficacy. A secondary analysis of these prior studies elucidated prominent sex-based differences in vaccine therapeutic efficacy, with female mice showing improved microbial outcomes compared to males as a result of the Rel and MIP-3α-Rel vaccine constructs, with a greater sex-associated difference in the MIP-3α-Rel group. In the current study, we addressed the hypothesis that these sex-related differences are due to differential DC activation/function soon after vaccination. Methods A EαGFP reporter vaccine model was used to track vaccine antigen presentation by an antibody Y-Ae which binds the Eα peptide tag in complex with I-Ab MHC-II molecules. Results MIP-3α-EαGFP groups had more DCs presenting vaccine antigen infiltrating from the periphery, with more abundant Langerhans cells in males and greater CD8 + CD103 + cross-presenting dermal DCs in females. This model also shows there is greater DC activation, as measured by CD80 and MHC II MFI, by MIP-3α compared to EαGFP alone, especially in female mice. Conclusions Our findings are consistent with the sex- and MIP-3α-related differences seen in the therapeutic model and supports the hypothesis that in both sexes MIP-3α enhances vaccine uptake and cell activation by peripheral iDCs. Additionally, Female mice showed greater levels of antigen presentation, especially in DCs able to cross-present antigen, explaining why they had the best outcomes. Further studies are required to understand underlying mechanisms and to link APC results directly to T-cell responses.
Collapse
|
7
|
Cheng S, Long X, Zhang Y, Lan X, Jiang D. Advancing Cancer Vaccines with Radionuclide Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406950. [PMID: 39530610 DOI: 10.1002/smll.202406950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Cancer vaccines are emerged as a beacon of hope in the fight against cancer. However, the lack of effective methods to directly observe their in vivo behavior and monitor therapeutic responses hinders their translation into clinical settings. Radionuclide imaging allows for non-invasive and real-time visualization of vaccine biodistribution and immunological response, offering valuable insights into the effectiveness of cancer vaccines and aiding in patient stratification. In this review, the latest advances and potential applications of radionuclide imaging in cancer vaccines are discussed, with a specific focus on strategies for visualizing the spatiotemporal distribution of vaccines in vivo and monitoring treatment efficacy. The challenges and considerations for implementing these techniques in clinical practice are also highlighted, aiming to inform and guide future research in this field.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongxue Zhang
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Dawei Jiang
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| |
Collapse
|
8
|
Chekaoui A, Garofalo M, Gad B, Staniszewska M, Chiaro J, Pancer K, Gryciuk A, Cerullo V, Salmaso S, Caliceti P, Masny A, Wieczorek M, Pesonen S, Kuryk L. Cancer vaccines: an update on recent achievements and prospects for cancer therapy. Clin Exp Med 2024; 25:24. [PMID: 39720956 DOI: 10.1007/s10238-024-01541-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines. Using the latest research technologies has also enabled scientists to interpret complex and multiomics data of the tumour mutanome, thus identifying new tumour-specific antigens to design new generations of cancer vaccines with high specificity and long-term efficacy. Furthermore, combinatorial regimens of cancer vaccines with immune checkpoint inhibitors have offered new therapeutic approaches and demonstrated impressive efficacy in cancer patients over the last few years. In the present review, we summarize the current state of cancer vaccines, including their potential therapeutic effects and the limitations that hinder their effectiveness. We highlight the current efforts to mitigate these limitations and highlight ongoing clinical trials. Finally, a special focus will be given to the latest milestones expected to transform the landscape of cancer therapy and nurture hope among cancer patients.
Collapse
Affiliation(s)
- Arezki Chekaoui
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Katarzyna Pancer
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Aleksander Gryciuk
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, University Federico II of Naples, Naples, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aleksander Masny
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | | | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland.
- Valo Therapeutics Oy, Helsinki, Finland.
| |
Collapse
|
9
|
Finn CM, Dhume K, Baffoe E, Kimball LA, Strutt TM, McKinstry KK. Airway-resident memory CD4 T cell activation accelerates antigen presentation and T cell priming in draining lymph nodes. JCI Insight 2024; 10:e182615. [PMID: 39688906 PMCID: PMC11948587 DOI: 10.1172/jci.insight.182615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
Specialized memory CD4 T cells that reside long-term within tissues are critical components of immunity at portals of pathogen entry. In the lung, such tissue-resident memory (Trm) cells are activated rapidly after infection and promote local inflammation to control pathogen levels before circulating T cells can respond. However, optimal clearance of Influenza A virus can require Trm and responses by other virus-specific T cells that reach the lung only several days after their activation in secondary lymphoid organs. Whether local CD4 Trm sentinel activity can affect the efficiency of T cell activation in secondary lymphoid organs is not clear. Here, we found that recognition of antigen by influenza-primed Trm in the airways promoted more rapid migration of highly activated antigen-bearing DC to the draining lymph nodes. This in turn accelerated the priming of naive T cells recognizing the same antigen, resulting in newly activated effector T cells reaching the lungs earlier than in mice not harboring Trm. Our findings, thus, reveal a circuit linking local and regional immunity whereby antigen recognition by Trm improves effector T cell recruitment to the site of infection though enhancing the efficiency of antigen presentation in the draining lymph node.
Collapse
|
10
|
Gogoi H, Mani R, Bhatnagar R. Re-inventing traditional aluminum-based adjuvants: Insight into a century of advancements. Int Rev Immunol 2024; 44:58-81. [PMID: 39310923 DOI: 10.1080/08830185.2024.2404095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/01/2023] [Accepted: 08/31/2024] [Indexed: 02/22/2025]
Abstract
Aluminum salt-based adjuvants like alum, alhydrogel and Adju-Phos are by far the most favored clinically approved vaccine adjuvants. They have demonstrated excellent safety profile and currently used in vaccines against diphtheria, tetanus, pertussis, hepatitis B, anthrax etc. These vaccinations cause minimal side effects like local inflammation at the injection site. Aluminum salt-based adjuvants primarily stimulate CD4+ T cells and B cell mediated Th2 immune response leading to generate a robust antibody response. In this review article, we have compiled the role of physio-chemical role of the two commonly used aluminum salt-based adjuvants alhydrogel and Adju-Phos, and the effect of surface properties, buffer composition, and adjuvant dosage on the immune response. After being studied for almost a century, researchers have come up with various mechanism by which these aluminum adjuvants activate the immune system. Firstly, we have covered the initial works of Glenny and his "repository effect" which paved the work for his successors to explore the involvement of cytokines, chemokines, recruitment of innate immune cells, enhanced antigen uptake by antigen presenting cells, and formation of NLRP3 inflammasome complex in mediating the immune response. It has been reported that aluminum adjuvants activate multiple immunological pathways which synergistically activates the immune system. We later discuss the recent developments in nanotechnology-based preparations of next generation aluminum based adjuvants which has enabled precise size control and morphology of the traditional aluminum adjuvants thereby manipulating the immune response as per our desire.
Collapse
Affiliation(s)
- Himanshu Gogoi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana, India
| | - Rajesh Mani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Immunology and Molecular Genetics, University Kentucky College of Medicine, Lexington, KY, USA
| | - Rakesh Bhatnagar
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur, India
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Kim KM, D'Elia AM, Rodell CB. Hydrogel-based approaches to target hypersensitivity mechanisms underlying autoimmune disease. Adv Drug Deliv Rev 2024; 212:115395. [PMID: 39004347 DOI: 10.1016/j.addr.2024.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
A robust adaptive immune response is essential for combatting pathogens. In the wrong context such as due to genetic and environmental factors, however, the same mechanisms crucial for self-preservation can lead to a loss of self-tolerance. Resulting autoimmunity manifests in the development of a host of organ-specific or systemic autoimmune diseases, hallmarked by aberrant immune responses and tissue damage. The prevalence of autoimmune diseases is on the rise, medical management of which focuses primarily on pharmacological immunosuppression that places patients at a risk of side effects, including opportunistic infections and tumorigenesis. Biomaterial-based drug delivery systems confer many opportunities to address challenges associated with conventional disease management. Hydrogels, in particular, can protect encapsulated cargo (drug or cell therapeutics) from the host environment, afford their presentation in a controlled manner, and can be tailored to respond to disease conditions or support treatment via multiplexed functionality. Moreover, localized delivery to affected sites by these approaches has the potential to concentrate drug action at the site, reduce off-target exposure, and enhance patient compliance by reducing the need for frequent administration. Despite their many benefits for the management of autoimmune disease, such biomaterial-based approaches focus largely on the downstream effects of hypersensitivity mechanisms and have a limited capacity to eradicate the disease. In contrast, direct targeting of mechanisms of hypersensitivity reactions uniquely enables prophylaxis or the arrest of disease progression by mitigating the basis of autoimmunity. One promising approach is to induce self-antigen-specific tolerance, which specifically subdues damaging autoreactivity while otherwise retaining the normal immune responses. In this review, we will discuss hydrogel-based systems for the treatment of autoimmune disease, with a focus on those that target hypersensitivity mechanisms head-on. As the field continues to advance, it will expand the range of therapeutic choices for people coping with autoimmune diseases, providing fresh prospects for better clinical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Kenneth M Kim
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
13
|
Deobagkar-Lele M, Crawford G, Crockford TL, Back J, Hodgson R, Bhandari A, Bull KR, Cornall RJ. B cells require DOCK8 to elicit and integrate T cell help when antigen is limiting. Sci Immunol 2024; 9:eadd4874. [PMID: 39121196 PMCID: PMC7616390 DOI: 10.1126/sciimmunol.add4874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2023] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is characterized by a failure of the germinal center response, a process involving the proliferation and positive selection of antigen-specific B cells. Here, we describe how DOCK8-deficient B cells are blocked at a light-zone checkpoint in the germinal centers of immunized mice, where they are unable to respond to T cell-dependent survival and selection signals and consequently differentiate into plasma cells or memory B cells. Although DOCK8-deficient B cells can acquire and present antigen to initiate activation of cognate T cells, integrin up-regulation, B cell-T cell conjugate formation, and costimulation are insufficient for sustained B cell and T cell activation when antigen availability is limited. Our findings provide an explanation for the failure of the humoral response in DOCK8 immunodeficiency syndrome and insight into how the level of available antigen modulates B cell-T cell cross-talk to fine-tune humoral immune responses and immunological memory.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Greg Crawford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Tanya L. Crockford
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Jennifer Back
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Rose Hodgson
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Aneesha Bhandari
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
| | - Katherine R Bull
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
- Oxford Kidney Unit, Oxford University Hospitals Trust, Oxford
| | - Richard J. Cornall
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford
- CAMS-Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford
| |
Collapse
|
14
|
Gribonika I, Strömberg A, Chandode RK, Schön K, Lahl K, Bemark M, Lycke N. Migratory CD103 +CD11b + cDC2s in Peyer's patches are critical for gut IgA responses following oral immunization. Mucosal Immunol 2024; 17:509-523. [PMID: 38492746 DOI: 10.1016/j.mucimm.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Induction and regulation of specific intestinal immunoglobulin (Ig)A responses critically depend on dendritic cell (DC) subsets and the T cells they activate in the Peyer's patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of cluster of differentiation (CD)103- conventional DC (cDC)2s and lysozyme-expressing DC (LysoDCs) in the subepithelial dome and of CD103+ cDC2s that expressed CD101 in the T cell zones, while oral ovalbumin (OVA) tolerization was instead associated with greater accumulation of cDC1s and peripherally induced regulatory T cells (pTregs) in this area. Decreased IgA responses were observed after CT-adjuvanted immunization in huCD207DTA mice lacking CD103+ cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient Batf3-/- mice. Using OVA transgenic T cell receptor CD4 T cell adoptive transfer models, we found that co-transferred endogenous wildtype CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of interleukin-10. CT could overcome this blocking effect, apparently through a modulating effect on pTregs while promoting an expansion of follicular helper T cells. The data support a model where cDC1-induced pTreg normally suppresses PP responses for any given antigen and where CT's oral adjuvanticity effect is dependent on promoting follicular helper T cell responses through induction of CD103+ cDC2s.
Collapse
Affiliation(s)
- Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh K Chandode
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden.
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Dotta E, Maciola AK, Baccega T, Pasqual G. Dendritic cells steering antigen and leukocyte traffic in lymph nodes. FEBS Lett 2024. [PMID: 38997244 DOI: 10.1002/1873-3468.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Dendritic cells (DCs) play a central role in initiating and shaping the adaptive immune response, thanks to their ability to uptake antigens and present them to T cells. Once in the lymph node (LN), DCs can spread the antigen to other DCs, expanding the pool of cells capable of activating specific T-cell clones. Additionally, DCs can modulate the dynamics of other immune cells, by increasing naïve T-cell dwell time, thereby facilitating the scanning for cognate antigens, and by selectively recruiting other leukocytes. Here we discuss the role of DCs in orchestrating antigen and leukocyte trafficking within the LN, together with the implications of this trafficking on T-cell activation and commitment to effector function.
Collapse
Affiliation(s)
- Enrico Dotta
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Agnieszka Katarzyna Maciola
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Tania Baccega
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
16
|
Lv K, Ma S, Liu L, Chen H, Huang Z, Zhu Z, Qi Y, Song W. Peptide nanovaccine conjugated via a retro-Diels-Alder reaction linker for overcoming the obstacle in lymph node penetration and eliciting robust cellular immunity. J Mater Chem B 2024; 12:5848-5860. [PMID: 38775048 DOI: 10.1039/d4tb00674g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Nanoparticles have been regarded as a promising vaccine adjuvant due to their innate immune potentiation and enhanced antigen transport. However, the inefficient infiltration into the lymph node (LN) paracortex of nanoparticles caused by subcapsular sinus (SCS) obstruction is the main challenge in further improvement of nanovaccine immune efficacy. Herein, we propose to overcome paracortex penetration by using nanovaccine to spontaneously and continuously release antigens after retention in the SCS. In detail, we utilized a spontaneous retro-Diels-Alder (r-D-A) reaction linker to connect poly{(2-methyl-2-oxazoline)80-co-[(2-butyl-2-oxazoline)15-r-(2-thioethyl-2-oxazoline)8]} (PMBOxSH) and peptides for the peptide nanovaccine construction. The r-D-A reaction linker can spontaneously break over time, allowing the nanovaccine to release free antigens and adjuvants upon reaching the LN, thereby facilitating the entry of released antigens and adjuvants into the interior of the LNs. We showed that the efficacy of the peptide nanovaccine constructed using this dynamic linker could be significantly improved, thus greatly enhancing the tumor inhibition efficacy in the B16-OVA model. This dynamic-covalent-chemistry-based vaccine strategy may inspire designing more efficient therapeutic vaccines, especially those that require eliciting high-amount T cell responses.
Collapse
Affiliation(s)
- Kuncheng Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Liping Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zichao Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhenyi Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yibo Qi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| |
Collapse
|
17
|
Hesnard L, Thériault C, Cahuzac M, Durette C, Vincent K, Hardy MP, Lanoix J, Lavallée GO, Humeau J, Thibault P, Perreault C. Immunogenicity of Non-Mutated Ovarian Cancer-Specific Antigens. Curr Oncol 2024; 31:3099-3121. [PMID: 38920720 PMCID: PMC11203340 DOI: 10.3390/curroncol31060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Epithelial ovarian cancer (EOC) has not significantly benefited from advances in immunotherapy, mainly because of the lack of well-defined actionable antigen targets. Using proteogenomic analyses of primary EOC tumors, we previously identified 91 aberrantly expressed tumor-specific antigens (TSAs) originating from unmutated genomic sequences. Most of these TSAs derive from non-exonic regions, and their expression results from cancer-specific epigenetic changes. The present study aimed to evaluate the immunogenicity of 48 TSAs selected according to two criteria: presentation by highly prevalent HLA allotypes and expression in a significant fraction of EOC tumors. Using targeted mass spectrometry analyses, we found that pulsing with synthetic TSA peptides leads to a high-level presentation on dendritic cells. TSA abundance correlated with the predicted binding affinity to the HLA allotype. We stimulated naïve CD8 T cells from healthy blood donors with TSA-pulsed dendritic cells and assessed their expansion with two assays: MHC-peptide tetramer staining and TCR Vβ CDR3 sequencing. We report that these TSAs can expand sizeable populations of CD8 T cells and, therefore, represent attractive targets for EOC immunotherapy.
Collapse
Affiliation(s)
- Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Maxime Cahuzac
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Gabriel Ouellet Lavallée
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Juliette Humeau
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Chemistry, University of Montreal, Montreal, QC H2V 0B3, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; (L.H.); (C.T.); (M.C.); (C.D.); (K.V.); (M.-P.H.); (J.L.); (G.O.L.); (J.H.); (P.T.)
- Department of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
18
|
Cruz de Casas P, Knöpper K, Dey Sarkar R, Kastenmüller W. Same yet different - how lymph node heterogeneity affects immune responses. Nat Rev Immunol 2024; 24:358-374. [PMID: 38097778 DOI: 10.1038/s41577-023-00965-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 05/04/2024]
Abstract
Lymph nodes are secondary lymphoid organs in which immune responses of the adaptive immune system are initiated and regulated. Distributed throughout the body and embedded in the lymphatic system, local lymph nodes are continuously informed about the state of the organs owing to a constant drainage of lymph. The tissue-derived lymph carries products of cell metabolism, proteins, carbohydrates, lipids, pathogens and circulating immune cells. Notably, there is a growing body of evidence that individual lymph nodes differ from each other in their capacity to generate immune responses. Here, we review the structure and function of the lymphatic system and then focus on the factors that lead to functional heterogeneity among different lymph nodes. We will discuss how lymph node heterogeneity impacts on cellular and humoral immune responses and the implications for vaccination, tumour development and tumour control by immunotherapy.
Collapse
Affiliation(s)
- Paulina Cruz de Casas
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rupak Dey Sarkar
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
19
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Site-specific regulation of Th2 differentiation within lymph node microenvironments. J Exp Med 2024; 221:e20231282. [PMID: 38442268 PMCID: PMC10912907 DOI: 10.1084/jem.20231282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
- Miranda R. Lyons-Cohen
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elya A. Shamskhou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Goyal F, Chattopadhyay A, Navik U, Jain A, Reddy PH, Bhatti GK, Bhatti JS. Advancing Cancer Immunotherapy: The Potential of mRNA Vaccines As a Promising Therapeutic Approach. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300255] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 01/11/2025]
Abstract
AbstractmRNA vaccines have long been recognized for their ability to induce robust immune responses. The discovery that mRNA vaccines may also contribute to antitumor immunity has made them a promising therapeutic approach against cancer. Recent advances in understanding of immune system are precious in developing therapeutic strategies that target pathways involved in tumor survival and progression, leading to the most reliable therapeutic strategies in cancer treatment history. Among all traditional cancer treatments, cancer immunotherapies are less toxic and more effective, even in advanced or recurrent stages of cancer. Recent advancements in genomics and machine learning algorithms give new insight into vaccine development. mRNA vaccines are designed to interfere with stimulator of interferon genes (STING) and tumor‐infiltrating lymphocytes pathways, activating more CD8+ T‐cells involved in destroying tumor cells and inhibiting tumor growth. A stronger immune response can be achieved by incorporating immunological adjuvants alongside mRNA. Nonformulated or vehicle‐based mRNA vaccines, when combined with adjuvants, efficiently express tumor antigens through antigen‐presenting cells and stimulate both innate and adaptive immune responses. Codelivery with additional immunotherapeutic agents, such as checkpoint inhibitors, further enhances the efficacy of mRNA vaccines. This article focuses on the current clinical approaches and challenges to consider when developing mRNA‐based vaccine technology for cancer treatment.
Collapse
Affiliation(s)
- Falak Goyal
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Anandini Chattopadhyay
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Umashanker Navik
- Department of Pharmacology School of Health Sciences Central University of Punjab Bathinda 151401 India
| | - Aklank Jain
- Department of Zoology Central University of Punjab Bathinda Punjab 151401 India
| | - P. Hemachandra Reddy
- Department of Internal Medicine Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Public Health Graduate School of Biomedical Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Neurology Texas Tech University Health Sciences Center Lubbock TX 79430 USA
- Department of Speech Language, and Hearing Sciences Texas Tech University Health Sciences Center Lubbock TX 79430 USA
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology University Institute of Applied Health Sciences Chandigarh University Mohali 140413 India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics Department of Human Genetics and Molecular Medicine School of Health Sciences Central University of Punjab Bathinda 151401 India
| |
Collapse
|
21
|
Aung A, Irvine DJ. Modulating Antigen Availability in Lymphoid Organs to Shape the Humoral Immune Response to Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:171-178. [PMID: 38166252 PMCID: PMC10768795 DOI: 10.4049/jimmunol.2300500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 01/04/2024]
Abstract
Primary immune responses following vaccination are initiated in draining lymph nodes, where naive T and B cells encounter Ag and undergo coordinated steps of activation. For humoral immunity, the amount of Ag present over time, its localization to follicles and follicular dendritic cells, and the Ag's structural state all play important roles in determining the subsequent immune response. Recent studies have shown that multiple elements of vaccine design can impact Ag availability in lymphoid tissues, including the choice of adjuvant, physical form of the immunogen, and dosing kinetics. These vaccine design elements affect the transport of Ag to lymph nodes, Ag's localization in the tissue, the duration of Ag availability, and the structural integrity of the Ag. In this review, we discuss these findings and their implications for engineering more effective vaccines, particularly for difficult to neutralize pathogens.
Collapse
Affiliation(s)
- Aereas Aung
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Wallings RL, Mark JR, Staley HA, Gillett DA, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. ASO-mediated knockdown or kinase inhibition of G2019S-Lrrk2 modulates lysosomal tubule-associated antigen presentation in macrophages. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102064. [PMID: 38028198 PMCID: PMC10661462 DOI: 10.1016/j.omtn.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Genetic variation around the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD therapeutics with LRRK2 antisense oligonucleotides (ASOs) now moving toward clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Here it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR-dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knockdown of mutant Lrrk2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targeting therapies with systemic activity may have therapeutic value with regard to mutant LRRK2, but deleterious effects on the peripheral immune system, such as altered pathogen control in these cells, should be considered when reducing levels of non-mutant LRRK2.
Collapse
Affiliation(s)
- Rebecca L. Wallings
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Julian R. Mark
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Hannah A. Staley
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Drew A. Gillett
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
| | - Holly Kordasiewicz
- Neurology, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Warren D. Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA 02142, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, McKnight Brain Institute, Gainesville, FL 32610, USA
- Department of Neurology and Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| |
Collapse
|
23
|
Jarvi NL, Balu-Iyer SV. A mechanistic marker-based screening tool to predict clinical immunogenicity of biologics. COMMUNICATIONS MEDICINE 2023; 3:174. [PMID: 38066254 PMCID: PMC10709359 DOI: 10.1038/s43856-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The efficacy and safety of therapeutic proteins are undermined by immunogenicity driven by anti-drug antibodies. Immunogenicity risk assessment is critically necessary during drug development, but current methods lack predictive power and mechanistic insight into antigen uptake and processing leading to immune response. A key mechanistic step in T-cell-dependent immune responses is the migration of mature dendritic cells to T-cell areas of lymphoid compartments, and this phenomenon is most pronounced in the immune response toward subcutaneously delivered proteins. METHODS The migratory potential of monocyte-derived dendritic cells is proposed to be a mechanistic marker for immunogenicity screening. Following exposure to therapeutic protein in vitro, dendritic cells are analyzed for changes in activation markers (CD40 and IL-12) in combination with levels of the chemokine receptor CXCR4 to represent migratory potential. Then a transwell assay captures the intensity of dendritic cell migration in the presence of a gradient of therapeutic protein and chemokine ligands. RESULTS Here, we show that an increased ability of the therapeutic protein to induce dendritic cell migration along a gradient of chemokine CCL21 and CXCL12 predicts higher immunogenic potential. Expression of the chemokine receptor CXCR4 on human monocyte-derived dendritic cells, in combination with activation markers CD40 and IL-12, strongly correlates with clinical anti-drug antibody incidence. CONCLUSIONS Mechanistic understanding of processes driving immunogenicity led to the development of a predictive tool for immunogenicity risk assessment of therapeutic proteins. These predictive markers could be adapted for immunogenicity screening of other biological modalities.
Collapse
Affiliation(s)
- Nicole L Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
24
|
Tatsumi N, El-Fenej J, Davila-Pagan A, Kumamoto Y. Rapid activation of IL-2 receptor signaling by CD301b + DC-derived IL-2 dictates the outcome of helper T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564276. [PMID: 37961107 PMCID: PMC10634899 DOI: 10.1101/2023.10.26.564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Effector T helper (Th) cell differentiation is fundamental to functional adaptive immunity. Different subsets of dendritic cells (DCs) preferentially induce different types of Th cells, but the fate instruction mechanism for Th type 2 (Th2) differentiation remains enigmatic, as the critical DC-derived cue has not been clearly identified. Here, we show that CD301b+ DCs, a major Th2-inducing DC subset, drive Th2 differentiation through cognate interaction by 'kick-starting' IL-2 receptor signaling in CD4T cells. Mechanistically, CD40 engagement induces IL-2 production selectively from CD301b+ DCs to maximize CD25 expression in CD4 T cells, which is required specifically for the Th2 fate decision. On the other hand, CD25 in CD301b+ DCs facilitates directed action of IL-2 toward cognate CD4T cells. Furthermore, CD301b+ DC-derived IL-2 skews CD4T cells away from the T follicular helper fate. These results highlight the critical role of DC-intrinsic CD40-IL-2 axis in bifurcation of Th cell fate.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alejandro Davila-Pagan
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
25
|
Penny HL, Hainline K, Theoharis N, Wu B, Brandl C, Webhofer C, McComb M, Wittemer-Rump S, Koca G, Stienen S, Bargou RC, Hummel HD, Loidl W, Grüllich C, Eggert T, Tran B, Mytych DT. Characterization and root cause analysis of immunogenicity to pasotuxizumab (AMG 212), a prostate-specific membrane antigen-targeting bispecific T-cell engager therapy. Front Immunol 2023; 14:1261070. [PMID: 37942314 PMCID: PMC10628759 DOI: 10.3389/fimmu.2023.1261070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction In oncology, anti-drug antibody (ADA) development that significantly curtails response durability has not historically risen to a level of concern. The relevance and attention ascribed to ADAs in oncology clinical studies have therefore been limited, and the extant literature on this subject scarce. In recent years, T cell engagers have gained preeminence within the prolific field of cancer immunotherapy. These drugs whose mode of action is expected to potently stimulate anti-tumor immunity, may potentially induce ADAs as an unintended corollary due to an overall augmentation of the immune response. ADA formation is therefore emerging as an important determinant in the successful clinical development of such biologics. Methods Here we describe the immunogenicity and its impact observed to pasotuxizumab (AMG 212), a prostate-specific membrane antigen (PSMA)-targeting bispecific T cell engager (BiTE®) molecule in NCT01723475, a first-in-human (FIH), multicenter, dose-escalation study in patients with metastatic castration-resistant prostate cancer (mCRPC). To explain the disparity in ADA incidence observed between the SC and CIV arms of the study, we interrogated other patient and product-specific factors that may have explained the difference beyond the route of administration. Results Treatment-emergent ADAs (TE-ADA) developed in all subjects treated with at least 1 cycle of AMG 212 in the subcutaneous (SC) arm. These ADAs were neutralizing and resulted in profound exposure loss that was associated with contemporaneous reversal of initial Prostate Surface Antigen (PSA) responses, curtailing durability of PSA response in patients. Pivoting from SC to a continuous intravenous (CIV) administration route remarkably yielded no subjects developing ADA to AMG 212. Through a series of stepwise functional assays, our investigation revealed that alongside a more historically immunogenic route of administration, non-tolerant T cell epitopes within the AMG 212 amino acid sequence were likely driving the high-titer, sustained ADA response observed in the SC arm. Discussion These mechanistic insights into the AMG 212 ADA response underscore the importance of performing preclinical immunogenicity risk evaluation as well as advocate for continuous iteration to better our biologics.
Collapse
Affiliation(s)
| | - Kelly Hainline
- Department of Clinical Immunology, Amgen, Thousand Oaks, CA, United States
| | | | - Bin Wu
- Department of Biologics, Amgen, Thousand Oaks, CA, United States
| | - Christian Brandl
- Department of Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Christian Webhofer
- Department of Process Development, Amgen Research (Munich) GmbH, Munich, Germany
| | - Mason McComb
- Department of Clinical Pharmacology, Modeling & Simulation, Amgen, Thousand Oaks, CA, United States
| | - Sabine Wittemer-Rump
- Bayer AG, Research and Development Oncology (RED Onc), Pharmaceuticals, Berlin, Germany
| | - Gökben Koca
- Bayer AG, Research and Development Oncology (RED Onc), Pharmaceuticals, Berlin, Germany
| | - Sabine Stienen
- Department of Early Development (Oncology), Amgen Research (Munich) GmbH, Munich, Germany
| | - Ralf C. Bargou
- Translational Oncology/Early Clinical Trial Unit (ECTU), Comprehensive Cancer Center Mainfranken, University Hospital Wurzburg, Wurzburg, Germany
| | - Horst-Dieter Hummel
- Translational Oncology/Early Clinical Trial Unit (ECTU), Comprehensive Cancer Center Mainfranken, University Hospital Wurzburg, Wurzburg, Germany
| | - Wolfgang Loidl
- Department of Urology, Ordensklinikum Linz GmbH, Linz, Austria
| | - Carsten Grüllich
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Medical Center, Heidelberg, Germany
| | - Tobias Eggert
- Department of Early Development (Oncology), Amgen, Thousand Oaks, CA, United States
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Daniel T. Mytych
- Department of Clinical Immunology, Amgen, Thousand Oaks, CA, United States
| |
Collapse
|
26
|
Pittet MJ, Di Pilato M, Garris C, Mempel TR. Dendritic cells as shepherds of T cell immunity in cancer. Immunity 2023; 56:2218-2230. [PMID: 37708889 PMCID: PMC10591862 DOI: 10.1016/j.immuni.2023.08.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.
Collapse
Affiliation(s)
- Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland; AGORA Cancer Center, Swiss Cancer Center Leman, Lausanne, Switzerland; Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.
| | - Mauro Di Pilato
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten R Mempel
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA.
| |
Collapse
|
27
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
28
|
Tatsumi N, Kumamoto Y. Role of mouse dendritic cell subsets in priming naive CD4 T cells. Curr Opin Immunol 2023; 83:102352. [PMID: 37276821 PMCID: PMC10524374 DOI: 10.1016/j.coi.2023.102352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Conventional dendritic cells (cDCs) are potent antigen-presenting cells that consist of developmentally, phenotypically, and functionally distinct subsets. Following immunization, each subset of cDCs acquires the antigen and presents it to CD4T (CD4+ T (cells)) cells with distinct spatiotemporal kinetics in the secondary lymphoid organs, often causing multiple waves of antigen presentation to CD4T cells. Here, we review the current understanding of the kinetics of antigen presentation by each cDC subset and its functional consequences in priming naive CD4T cells, and discuss its implications in the differentiation of CD4T cells.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
29
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Prolonged T cell - DC macro-clustering within lymph node microenvironments initiates Th2 cell differentiation in a site-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547554. [PMID: 37461439 PMCID: PMC10350056 DOI: 10.1101/2023.07.07.547554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formation of T helper 2 (Th2) responses has been attributed to low-grade T cell stimulation, yet how large-scale polyclonal Th2 responses are generated in vivo remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, Th2 differentiation was associated with enhanced T cell activation and extensive integrin-dependent 'macro-clustering' at the T-B border, which also contrasted clustering behavior seen during Th1 differentiation. Unexpectedly, formation of Th2 macro-clusters within LNs was highly dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting T cell macro-clustering and cytokine sensing. Thus, generation of dedicated priming micro-environments through enhanced costimulatory molecule signaling initiates the generation of Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
| | - Elya A. Shamskhou
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
30
|
Turkiewicz M, Shah A, Yang YW, Mangold A, Shen J. Allergic contact dermatitis of the eyelids: An interdisciplinary review. Ocul Surf 2023; 28:124-130. [PMID: 36898500 DOI: 10.1016/j.jtos.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE A review of the published literature on the pathogenesis and treatment of eyelid allergic contact dermatitis and ocular surface involvement. METHODS Literature search of MEDLINE (Ovid) was conducted using for allergic contact dermatitis and disease of the eyelid or periorbital skin. Dates included in search criteria were from January 1, 2010 to January 12, 2023. 120 articles were reviewed by at least two authors. RESULTS Allergic eyelid contact dermatitis(ACD) is a Type IV hypersensitivity reaction to chemical exposure of sensitized eyelid skin. Most patients improve with avoidance strategies. Understanding chemicals that may trigger eyelid ACD, identifying allergens with patch testing, and use of topical steroids can help patients with this challenging disease. CONCLUSIONS Recalcitrant allergic eyelid dermatitis can be addressed by an interdisciplinary team and avoidance strategies based on patch testing.
Collapse
Affiliation(s)
- Michal Turkiewicz
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Ami Shah
- Department of Ophthalmology, Mayo Clinic, Scottsdale, AZ, USA
| | - Yul W Yang
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Aaron Mangold
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Joanne Shen
- Department of Ophthalmology, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
31
|
Chen ST, Oliveira TY, Gazumyan A, Cipolla M, Nussenzweig MC. B cell receptor signaling in germinal centers prolongs survival and primes B cells for selection. Immunity 2023; 56:547-561.e7. [PMID: 36882061 PMCID: PMC10424567 DOI: 10.1016/j.immuni.2023.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Germinal centers (GCs) are sites of B cell clonal expansion, diversification, and antibody affinity selection. This process is limited and directed by T follicular helper cells that provide helper signals to B cells that endocytose, process, and present cognate antigens in proportion to their B cell receptor (BCR) affinity. Under this model, the BCR functions as an endocytic receptor for antigen capture. How signaling through the BCR contributes to selection is not well understood. To investigate the role of BCR signaling in GC selection, we developed a tracker for antigen binding and presentation and a Bruton's tyrosine kinase drug-resistant-mutant mouse model. We showed that BCR signaling per se is necessary for the survival and priming of light zone B cells to receive T cell help. Our findings provide insight into how high-affinity antibodies are selected within GCs and are fundamental to our understanding of adaptive immunity and vaccine development.
Collapse
Affiliation(s)
- Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
32
|
Vondra S, Höbler AL, Lackner AI, Raffetseder J, Mihalic ZN, Vogel A, Saleh L, Kunihs V, Haslinger P, Wahrmann M, Husslein H, Oberle R, Kargl J, Haider S, Latos P, Schabbauer G, Knöfler M, Ernerudh J, Pollheimer J. The human placenta shapes the phenotype of decidual macrophages. Cell Rep 2023; 42:111977. [PMID: 36640334 DOI: 10.1016/j.celrep.2022.111977] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/07/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
During human pregnancy, placenta-derived extravillous trophoblasts (EVTs) invade the decidua and communicate with maternal immune cells. The decidua distinguishes into basalis (decB) and parietalis (decP). The latter remains unaffected by EVT invasion. By defining a specific gating strategy, we report the accumulation of macrophages in decB. We describe a decidua basalis-associated macrophage (decBAM) population with a differential transcriptome and secretome compared with decidua parietalis-associated macrophages (decPAMs). decBAMs are CD11chi and efficient inducers of Tregs, proliferate in situ, and secrete high levels of CXCL1, CXCL5, M-CSF, and IL-10. In contrast, decPAMs exert a dendritic cell-like, motile phenotype characterized by induced expression of HLA class II molecules, enhanced phagocytosis, and the ability to activate T cells. Strikingly, EVT-conditioned media convert decPAMs into a decBAM phenotype. These findings assign distinct macrophage phenotypes to decidual areas depending on placentation and further highlight a critical role for EVTs in the induction of decB-associated macrophage polarization.
Collapse
Affiliation(s)
- Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Anna-Lena Höbler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Andreas Ian Lackner
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Johanna Raffetseder
- Division of Inflammation and Infection (II), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Zala Nikita Mihalic
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Placental Development Group, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Raimund Oberle
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Sandra Haider
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Paulina Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Martin Knöfler
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Maternal-fetal Immunology Group, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Schwarzenberg FL, Schütz P, Hammel JU, Riedel M, Bartl J, Bordbari S, Frank SC, Walkenfort B, Busse M, Herzen J, Lohr C, Wülfing C, Henne S. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array. Front Immunol 2022; 13:947961. [PMID: 36524111 PMCID: PMC9745095 DOI: 10.3389/fimmu.2022.947961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.
Collapse
Affiliation(s)
- Florian L. Schwarzenberg
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Paul Schütz
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Mirko Riedel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Jasmin Bartl
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Sharareh Bordbari
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Svea-Celina Frank
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Madleen Busse
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Clemens Wülfing
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Stephan Henne
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
34
|
Niebuhr M, Bahreini F, Fähnrich A, Bomholt C, Bieber K, Schmidt E, Ibrahim S, Hammers CM, Kalies K. Analysis of T cell repertoires of CD45RO CD4 T cells in cohorts of patients with bullous pemphigoid: A pilot study. Front Immunol 2022; 13:1006941. [DOI: 10.3389/fimmu.2022.1006941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autoimmune diseases develop over years - starting from a subclinical phenotype to clinically manifest autoimmune disease. The factors that drive this transition are ill-defined. To predict the turning point towards clinical disease and to intervene in the progress of autoimmune-mediated dysfunction, the establishment of new biomarkers is needed. Especially CD4 T cells are crucially involved in autoimmunity: first, during the initiation phase, because they lose their tolerance towards self-peptides, and second, by the subsequent ongoing presentation of self-peptides during the active autoimmune disease. Accordingly, changes in the degree of diversity of T cell receptor (TCR) repertoires in autoimmunity have been reported. These findings led to the hypothesis that transition from pre-disease to autoimmune disease is associated with an increase of abnormally expanded T cell clones that occupy large portions of the TCR repertoire. In this pilot study, we asked whether the ratio and the diversity of the TCR repertoires of circulating memory (CD45RO) and naïve (CD45RA) CD4 T cells could serve as a predictive factor for the development of autoimmunity. To find out, we analyzed the TCRβ repertoires of memory and naïve CD4 T cells in a small cohort of four gender- and age-matched elderly patients having the autoimmune blistering disease bullous pemphigoid or non-melanoma skin cancers. We found that the extent of clonal expansions in the TCRβ repertoires from the circulating memory and naïve CD4 populations did not differ between the patient groups. This result shows that the diversity of TCR repertoires from peripheral CD4 T cells does not reflect the manifestation of the skin-associated autoimmune disease BP and does not qualify as a prognostic factor. We propose that longitudinal TCR repertoire analysis of younger patients might be more informative.
Collapse
|
35
|
Daniel L, Bhattacharyya ND, Counoupas C, Cai Y, Chen X, Triccas JA, Britton WJ, Feng CG. Stromal structure remodeling by B lymphocytes limits T cell activation in lymph nodes of Mycobacterium tuberculosis-infected mice. J Clin Invest 2022; 132:157873. [PMID: 36317628 PMCID: PMC9621141 DOI: 10.1172/jci157873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
An effective adaptive immune response depends on the organized architecture of secondary lymphoid organs, including the lymph nodes (LNs). While the cellular composition and microanatomy of LNs under steady state are well defined, the impact of chronic tissue inflammation on the structure and function of draining LNs is incompletely understood. Here we showed that Mycobacterium tuberculosis infection remodeled LN architecture by increasing the number and paracortical translocation of B cells. The formation of paracortical B lymphocyte and CD35+ follicular dendritic cell clusters dispersed CCL21-producing fibroblastic reticular cells and segregated pathogen-containing myeloid cells from antigen-specific CD4+ T cells. Depletion of B cells restored the chemokine and lymphoid structure and reduced bacterial burdens in LNs of the chronically infected mice. Importantly, this remodeling process impaired activation of naive CD4+ T cells in response to mycobacterial and unrelated antigens during chronic tuberculosis infection. Our studies reveal a mechanism in the regulation of LN microanatomy during inflammation and identify B cells as a critical element limiting the T cell response to persistent intracellular infection in LNs.
Collapse
Affiliation(s)
- Lina Daniel
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health.,Centenary Institute.,Charles Perkins Centre, and
| | - Nayan D Bhattacharyya
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health.,Centenary Institute.,Charles Perkins Centre, and
| | - Claudio Counoupas
- Centenary Institute.,Charles Perkins Centre, and.,Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - James A Triccas
- Centenary Institute.,Charles Perkins Centre, and.,Microbial Pathogenesis and Immunity Group, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Warwick J Britton
- Centenary Institute.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Carl G Feng
- Immunology and Host Defence Group, School of Medical Sciences, Faculty of Medicine and Health.,Centenary Institute.,Charles Perkins Centre, and.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. iScience 2022; 25:105324. [PMID: 36304121 PMCID: PMC9593262 DOI: 10.1016/j.isci.2022.105324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Efficient delivery of subunit vaccines to dendritic cells (DCs) is necessary to improve vaccine efficacy, because the vaccine antigen alone cannot induce sufficient protective immunity. Here, we identified DC-targeting peptides using a phage display system and demonstrated the potential of these peptides as antigen-delivery carriers to improve subunit vaccine effectiveness in mice. The fusion of antigen proteins and peptides with DC-targeting peptides induced strong antigen-specific IgG responses, even in the absence of adjuvants. In addition, the DC-targeting peptide improved the distribution of antigens to DCs and antigen presentation by DCs. The combined use of an adjuvant with a DC-targeting peptide improved the effectiveness of the vaccine. Furthermore, nucleolin, located on the DC surface, was identified as the receptor for DC-targeting peptide, and nucleolin was indispensable for the vaccine effect of the DC-targeting peptide. Overall, the findings of this study could be useful for developing subunit vaccines against infectious diseases. We successfully identified an efficient DC-targeting peptide using a phage display system Fusion of the peptide improves the efficacy of vaccine even in the absence of adjuvants The peptide improves the distribution of antigens to DCs and antigen presentation by DCs Nucleolin is indispensable for the vaccine effect of the DC-targeting peptide
Collapse
|
37
|
Krmeská V, Aggio JB, Nylén S, Wowk PF, Rothfuchs AG. Cyclooxygenase-Derived Prostaglandin E 2 Drives IL-1-Independent Mycobacterium bovis Bacille Calmette-Guérin-Triggered Skin Dendritic Cell Migration to Draining Lymph Node. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2549-2557. [PMID: 35523455 PMCID: PMC9161203 DOI: 10.4049/jimmunol.2100981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Inoculation of Mycobacterium bovis Bacille Calmette-Guérin (BCG) in the skin mobilizes local dendritic cells (DC) to the draining lymph node (dLN) in a process that remains incompletely understood. In this study, a mouse model of BCG skin infection was used to investigate mechanisms of skin DC migration to dLNs. We found enhanced transcription of cyclooxygenase (COX)-2 and production of COX-derived PGE2 early after BCG infection in skin. Animals treated with antagonists for COX or the PGE2 receptors EP2 and EP4 displayed a marked reduction in the entry of skin DCs and BCG to dLNs, uncovering an important contribution of COX-derived PGE2 in this migration process. In addition, live BCG bacilli were needed to invoke DC migration through this COX-PGE2 pathway. Having previously shown that IL-1R partially regulates BCG-induced relocation of skin DCs to dLNs, we investigated whether PGE2 release was under control of IL-1. Interestingly, IL-1R ligands IL-1α/β were not required for early transcription of COX-2 or production of PGE2 in BCG-infected skin, suggesting that the DC migration-promoting role of PGE2 is independent of IL-1α/β in our model. In DC adoptive transfer experiments, EP2/EP4, but not IL-1R, was needed on the moving DCs for full-fledged migration, supporting different modes of action for PGE2 and IL-1α/β. In summary, our data highlight an important role for PGE2 in guiding DCs to dLNs in an IL-1–independent manner. BCG-triggered PGE2 release mobilizes skin DCs to the draining lymph node. Migrating DCs use EP2 and EP4 to relocate to the draining lymph node. Live BCG bacilli are needed for PGE2-mediated DC migration.
Collapse
Affiliation(s)
- Veronika Krmeská
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Juliana Bernardi Aggio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and.,Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Pryscilla Fanini Wowk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and.,Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | | |
Collapse
|
38
|
Banham GD, Lee CYC, Ferdinand JR, Matthews RJ, Jing C, Smithers N, Prinjha RK, Clatworthy MR. Bromodomain Inhibitors Modulate FcγR-Mediated Mononuclear Phagocyte Activation and Chemotaxis. Front Immunol 2022; 13:885101. [PMID: 35619690 PMCID: PMC9127238 DOI: 10.3389/fimmu.2022.885101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
IgG antibodies form immune complexes (IC) that propagate inflammation and tissue damage in autoimmune diseases such as systemic lupus erythematosus. IgG IC engage Fcγ receptors (FcγR) on mononuclear phagocytes (MNP), leading to widespread changes in gene expression that mediate antibody effector function. Bromodomain and extra-terminal domain (BET) proteins are involved in governing gene transcription. We investigated the capacity of BET protein inhibitors (iBET) to alter IgG FcγR-mediated MNP activation. We found that iBET dampened IgG IC-induced pro-inflammatory gene expression and decreased activating FcγR expression on MNPs, reducing their ability to respond to IgG IC. Despite FcγR downregulation, iBET-treated macrophages demonstrated increased phagocytosis of protein antigen, IgG IC, and apoptotic cells. iBET also altered cell morphology, generating more amoeboid MNPs with reduced adhesion. iBET treatment impaired chemotaxis towards a CCL19 gradient in IC-stimulated dendritic cells (DC) in vitro, and inhibited IC-induced DC migration to draining lymph nodes in vivo, in a DC-intrinsic manner. Altogether, our data show that iBET modulates FcγR-mediated MNP activation and migration, revealing the therapeutic potential of BET protein inhibition in antibody-mediated diseases.
Collapse
Affiliation(s)
- Gemma D. Banham
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Colin Y. C. Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Rebeccah J. Matthews
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Chenzhi Jing
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Smithers
- Epinova DPU, Immuno-Inflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Epinova DPU, Immuno-Inflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
39
|
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 2022; 15:28. [PMID: 35303904 PMCID: PMC8931585 DOI: 10.1186/s13045-022-01247-x] [Citation(s) in RCA: 390] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
Research on tumor immunotherapy has made tremendous progress in the past decades, with numerous studies entering the clinical evaluation. The cancer vaccine is considered a promising therapeutic strategy in the immunotherapy of solid tumors. Cancer vaccine stimulates anti-tumor immunity with tumor antigens, which could be delivered in the form of whole cells, peptides, nucleic acids, etc. Ideal cancer vaccines could overcome the immune suppression in tumors and induce both humoral immunity and cellular immunity. In this review, we introduced the working mechanism of cancer vaccines and summarized four platforms for cancer vaccine development. We also highlighted the clinical research progress of the cancer vaccines, especially focusing on their clinical application and therapeutic efficacy, which might hopefully facilitate the future design of the cancer vaccine.
Collapse
Affiliation(s)
- Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
40
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
41
|
Th1 cells are dispensable for primary clearance of Chlamydia from the female reproductive tract of mice. PLoS Pathog 2022; 18:e1010333. [PMID: 35196366 PMCID: PMC8901068 DOI: 10.1371/journal.ppat.1010333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/07/2022] [Accepted: 02/02/2022] [Indexed: 01/20/2023] Open
Abstract
Protective immune responses to Chlamydia infection within the female reproductive tract (FRT) are incompletely understood. MHC class II-restricted CD4 Th1 responses are believed to be vital for bacterial clearance due to their capacity to secrete IFN-γ, but an essential requirement for T-bet-expressing Th1 cells has yet to be demonstrated in the mouse model of Chlamydia infection. Here, we investigated the role of T-bet and IFN-γ in primary clearance of Chlamydia after FRT infection. Surprisingly, IFN-γ producing CD4 T cells from the FRT expressed low levels of T-bet throughout infection, suggesting that classical T-bet-expressing Th1 cells are inefficiently generated and therefore unlikely to participate in bacteria clearance. Furthermore, mice deficient in T-bet expression or with a CD4-specific T-bet deficiency cleared FRT infection similarly to wild-type controls. T-bet-deficient mice displayed significant skewing of FRT CD4 T cells towards Th17 responses, demonstrating that compensatory effector pathways are generated in the absence of Th1 cells. In marked contrast, IFN-γ-, and IFN-γR-deficient mice were able to reduce FRT bacterial burdens, but suffered systemic bacterial dissemination and 100% mortality. Together, these data demonstrate that IFN-γ signaling is essential to protect mice from fatal systemic disease, but that classical T-bet-expressing Th1 cells are non-essential for primary clearance within the FRT. Exploring the protective contribution of Th1 cells versus other CD4 effector lineages could provide important information for the generation of new Chlamydia vaccines. The production of IFN-γ by CD4 Th1 cells is thought to be critical for the clearance of Chlamydia from the female reproductive tract (FRT), but this has not been formally tested. Here we demonstrate that T-bet+ Th1 cells are not essential for effective Chlamydia clearance. Furthermore, the impact of IFN-γ deficiency or depletion is largely observed as a failure to control bacterial dissemination, rather than clearance from the FRT. Together, these data suggest that different immunological mechanisms are responsible for restraining systemic spread of bacteria versus FRT control. Defining alternative non-Th1 CD4 effector mechanisms that are responsible for controlling Chlamydia replication within the FRT could be foundational for future vaccine development.
Collapse
|
42
|
Luciani C, Hager FT, Cerovic V, Lelouard H. Dendritic cell functions in the inductive and effector sites of intestinal immunity. Mucosal Immunol 2022; 15:40-50. [PMID: 34465895 DOI: 10.1038/s41385-021-00448-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 02/04/2023]
Abstract
The intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment.
Collapse
Affiliation(s)
| | | | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | | |
Collapse
|
43
|
Germain RN, Radtke AJ, Thakur N, Schrom EC, Hor JL, Ichise H, Arroyo-Mejias AJ, Chu CJ, Grant S. Understanding immunity in a tissue-centric context: Combining novel imaging methods and mathematics to extract new insights into function and dysfunction. Immunol Rev 2021; 306:8-24. [PMID: 34918351 DOI: 10.1111/imr.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
A central question in immunology is what features allow the immune system to respond in a timely manner to a variety of pathogens encountered at unanticipated times and diverse body sites. Two decades of advanced and static dynamic imaging methods have now revealed several major principles facilitating host defense. Suborgan spatial prepositioning of distinct cells promotes time-efficient interactions upon pathogen sensing. Such pre-organization also provides an effective barrier to movement of pathogens from parenchymal tissues into the blood circulation. Various molecular mechanisms maintain effective intercellular communication among otherwise rapidly moving cells. These and related discoveries have benefited from recent increases in the number of parameters that can be measured simultaneously in a single tissue section and the extension of such multiplex analyses to 3D tissue volumes. The application of new computational methods to such imaging data has provided a quantitative, in vivo context for cell trafficking and signaling pathways traditionally explored in vitro or with dissociated cell preparations. Here, we summarize our efforts to devise and employ diverse imaging tools to probe immune system organization and function, concluding with a commentary on future developments, which we believe will reveal even more about how the immune system operates in health and disease.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Nishant Thakur
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Edward C Schrom
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Jyh Liang Hor
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Hiroshi Ichise
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Armando J Arroyo-Mejias
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Colin J Chu
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Spencer Grant
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA.,Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
44
|
Steiner TM, Heath WR, Caminschi I. The unexpected contribution of conventional type 1 dendritic cells in driving antibody responses. Eur J Immunol 2021; 52:189-196. [PMID: 34897660 DOI: 10.1002/eji.202149658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Antibodies are hallmarks of most effective vaccines. For successful T-dependent antibody responses, conventional dendritic cells (cDC) have been largely attributed the role of priming T cells. By contrast, follicular dendritic cells and macrophages have been seen as responsible for B cell activation, due to their strategic location within secondary lymphoid tissues and capacity to present native antigen to B cells. This review summarizes the mounting evidence that cDC can also present native antigen to B cells. cDC2 have been the main subset linked to humoral responses, based largely on their favorable location, capacity to prime CD4+ T cells, and ability to present native antigen to B cells. However, studies using strategies to deliver antigen to receptors on cDC1, reveal this subset can also contribute to naïve B cell activation, as well as T cell priming. cDC1 location within lymphoid tissues reveals their juxtaposition to B cell follicles, with ready access to B cells for presentation of native antigen. These findings support the view that both cDC1 and cDC2 are capable of initiating humoral responses provided antigen is captured by relevant surface receptors attuned to this process. Such understanding is fundamental for the development of innovative humoral vaccination approaches.
Collapse
Affiliation(s)
- Thiago M Steiner
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, Victoria, Australia
| | - Irina Caminschi
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
45
|
Tatsumi N, Codrington AL, El-Fenej J, Phondge V, Kumamoto Y. Effective CD4 T cell priming requires repertoire scanning by CD301b + migratory cDC2 cells upon lymph node entry. Sci Immunol 2021; 6:eabg0336. [PMID: 34890253 DOI: 10.1126/sciimmunol.abg0336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alicia L Codrington
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Varoon Phondge
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
46
|
Bala N, McGurk AI, Zilch T, Rup AN, Carter EM, Leddon SA, Fowell DJ. T cell activation niches-Optimizing T cell effector function in inflamed and infected tissues. Immunol Rev 2021; 306:164-180. [PMID: 34859453 PMCID: PMC9218983 DOI: 10.1111/imr.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022]
Abstract
Successful immunity to infection, malignancy, and tissue damage requires the coordinated recruitment of numerous immune cell subsets to target tissues. Once within the target tissue, effector T cells rely on local chemotactic cues and structural cues from the tissue matrix to navigate the tissue, interact with antigen-presenting cells, and release effector cytokines. This highly dynamic process has been "caught on camera" in situ by intravital multiphoton imaging. Initial studies revealed a surprising randomness to the pattern of T cell migration through inflamed tissues, behavior thought to facilitate chance encounters with rare antigen-bearing cells. Subsequent tissue-wide visualization has uncovered a high degree of spatial preference when it comes to T cell activation. Here, we discuss the basic tenants of a successful effector T cell activation niche, taking cues from the dynamics of Tfh positioning in the lymph node germinal center. In peripheral tissues, steady-state microanatomical organization may direct the location of "pop-up" de novo activation niches, often observed as perivascular clusters, that support early effector T cell activation. These perivascular activation niches appear to be regulated by site-specific chemokines that coordinate the recruitment of dendritic cells and other innate cells for local T cell activation, survival, and optimized effector function.
Collapse
Affiliation(s)
- Noor Bala
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander I McGurk
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Tiago Zilch
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anastasia N Rup
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Evan M Carter
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Scott A Leddon
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
47
|
Wang J, Lareau CA, Bautista J, Gupta A, Sandor K, Germino J, Yin Y, Arvedson M, Reeder GC, Cramer NT, Xie F, Ntranos V, Satpathy AT, Anderson MS, Gardner JM. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci Immunol 2021; 6:eabl5053. [PMID: 34767455 PMCID: PMC8855935 DOI: 10.1126/sciimmunol.abl5053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The autoimmune regulator (Aire), a well-defined transcriptional regulator in the thymus, is also found in extrathymic Aire-expressing cells (eTACs) in the secondary lymphoid organs. eTACs are hematopoietic antigen-presenting cells and inducers of immune tolerance, but their precise identity has remained unclear. Here, we use single-cell multiomics, transgenic murine models, and functional approaches to define eTACs at the transcriptional, genomic, and proteomic level. We find that eTACs consist of two similar cell types: CCR7+ Aire-expressing migratory dendritic cells (AmDCs) and an Airehi population coexpressing Aire and retinoic acid receptor–related orphan receptor γt (RORγt) that we term Janus cells (JCs). Both JCs and AmDCs have the highest transcriptional and genomic homology to CCR7+ migratory dendritic cells. eTACs, particularly JCs, have highly accessible chromatin and broad gene expression, including a range of tissue-specific antigens, as well as remarkable homology to medullary thymic epithelium and RANK-dependent Aire expression. Transgenic self-antigen expression by eTACs is sufficient to induce negative selection and prevent autoimmune diabetes. This transcriptional, genomic, and functional symmetry between eTACs (both JCs and AmDCs) and medullary thymic epithelium—the other principal Aire-expressing population and a key regulator of central tolerance—identifies a core program that may influence self-representation and tolerance across the spectrum of immune development.
Collapse
Affiliation(s)
- Jiaxi Wang
- Diabetes Center, University of California San Francisco
| | - Caleb A. Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Alexander Gupta
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Joe Germino
- Diabetes Center, University of California San Francisco
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Matt Arvedson
- Diabetes Center, University of California San Francisco
| | | | | | - Fang Xie
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| | - Vasilis Ntranos
- Diabetes Center, University of California San Francisco
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Mark S. Anderson
- Diabetes Center, University of California San Francisco
- Department of Medicine, University of California San Francisco
| | - James M. Gardner
- Diabetes Center, University of California San Francisco
- Department of Surgery, University of California San Francisco
| |
Collapse
|
48
|
Collado-Diaz V, Medina-Sanchez JD, Gkountidi AO, Halin C. Imaging leukocyte migration through afferent lymphatics. Immunol Rev 2021; 306:43-57. [PMID: 34708414 PMCID: PMC9298274 DOI: 10.1111/imr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Afferent lymphatics mediate the transport of antigen and leukocytes, especially of dendritic cells (DCs) and T cells, from peripheral tissues to draining lymph nodes (dLNs). As such they play important roles in the induction and regulation of adaptive immunity. Over the past 15 years, great advances in our understanding of leukocyte trafficking through afferent lymphatics have been made through time‐lapse imaging studies performed in tissue explants and in vivo, allowing to visualize this process with cellular resolution. Intravital imaging has revealed that intralymphatic leukocytes continue to actively migrate once they have entered into lymphatic capillaries, as a consequence of the low flow conditions present in this compartment. In fact, leukocytes spend considerable time migrating, patrolling and interacting with the lymphatic endothelium or with other intralymphatic leukocytes within lymphatic capillaries. Cells typically only start to detach once they arrive in downstream‐located collecting vessels, where vessel contractions contribute to enhanced lymph flow. In this review, we will introduce the biology of afferent lymphatic vessels and report on the presumed significance of DC and T cell migration via this route. We will specifically highlight how time‐lapse imaging has contributed to the current model of lymphatic trafficking and the emerging notion that ‐ besides transport – lymphatic capillaries exert additional roles in immune modulation.
Collapse
Affiliation(s)
| | | | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Castellanos CA, Ren X, Gonzalez SL, Li HK, Schroeder AW, Liang HE, Laidlaw BJ, Hu D, Mak AC, Eng C, Rodríguez-Santana JR, LeNoir M, Yan Q, Celedón JC, Burchard EG, Zamvil SS, Ishido S, Locksley RM, Cyster JG, Huang X, Shin JS. Lymph node-resident dendritic cells drive T H2 cell development involving MARCH1. Sci Immunol 2021; 6:eabh0707. [PMID: 34652961 PMCID: PMC8736284 DOI: 10.1126/sciimmunol.abh0707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Type 2 T helper (TH2) cells are protective against parasitic worm infections but also aggravate allergic inflammation. Although the role of dendritic cells (DCs) in TH2 cell differentiation is well established, the underlying mechanisms are largely unknown. Here, we show that DC induction of TH2 cells depends on membrane-associated RING-CH-1 (MARCH1) ubiquitin ligase. The pro-TH2 effect of MARCH1 relied on lymph node (LN)–resident DCs, which triggered T cell receptor (TCR) signaling and induced GATA-3 expression from naïve CD4+ T cells independent of tissue-driven migratory DCs. Mice with mutations in the ubiquitin acceptor sites of MHCII and CD86, the two substrates of MARCH1, failed to develop TH2 cells. These findings suggest that TH2 cell development depends on ubiquitin-mediated clearance of antigen-presenting and costimulatory molecules by LN-resident DCs and consequent control of TCR signaling.
Collapse
Affiliation(s)
- Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xin Ren
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven Lomeli Gonzalez
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hong Kun Li
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew W. Schroeder
- Department of Pulmonology, Genomics CoLabs, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J. Laidlaw
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Angel C.Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Richard M. Locksley
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G. Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaozhu Huang
- Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
50
|
Bailey A, Nicholas B, Darley R, Parkinson E, Teo Y, Aleksic M, Maxwell G, Elliott T, Ardern-Jones M, Skipp P. Characterization of the Class I MHC Peptidome Resulting From DNCB Exposure of HaCaT Cells. Toxicol Sci 2021; 180:136-147. [PMID: 33372950 PMCID: PMC7916740 DOI: 10.1093/toxsci/kfaa184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Skin sensitization following the covalent modification of proteins by low molecular weight chemicals (haptenation) is mediated by cytotoxic T lymphocyte (CTL) recognition of human leukocyte antigen (HLA) molecules presented on the surface of almost all nucleated cells. There exist 3 nonmutually exclusive hypotheses for how haptens mediate CTL recognition: direct stimulation by haptenated peptides, hapten modification of HLA leading to an altered HLA-peptide repertoire, or a hapten altered proteome leading to an altered HLA-peptide repertoire. To shed light on the mechanism underpinning skin sensitization, we set out to utilize proteomic analysis of keratinocyte presented antigens following exposure to 2,4-dinitrochlorobenzene (DNCB). We show that the following DNCB exposure, cultured keratinocytes present cysteine haptenated (dinitrophenylated) peptides in multiple HLA molecules. In addition, we find that one of the DNCB modified peptides derives from the active site of cytosolic glutathione-S transferase-ω. These results support the current view that a key mechanism of skin sensitization is stimulation of CTLs by haptenated peptides. Data are available via ProteomeXchange with identifier PXD021373.
Collapse
Affiliation(s)
- Alistair Bailey
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ben Nicholas
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rachel Darley
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Erika Parkinson
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ying Teo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Maja Aleksic
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Gavin Maxwell
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Tim Elliott
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|