1
|
Rowsey LE, Kieffer JD, Speers-Roesch B. Temperature-dependent exercise recovery is not associated with behavioral thermoregulation in a salmonid fish. J Therm Biol 2024; 123:103888. [PMID: 38901397 DOI: 10.1016/j.jtherbio.2024.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The relationship between behavioral thermoregulation and physiological recovery following exhaustive exercise is not well understood. Behavioral thermoregulation could be beneficial for exercise recovery; for example, selection of cooler temperatures could reduce maintenance metabolic cost to preserve aerobic scope for recovery cost, or selection of warmer temperatures could accelerate recovery of exercise metabolites. While post-exercise behavioral thermoregulation has been observed in lizards and frogs, little is known about its importance in fish. We examined the influence of post-exercise recovery temperature on metabolic rate, thermal preference, and metabolite concentrations in juvenile brook char (Salvelinus fontinalis). Fish were acclimated to and exercised at 15 °C, then recovered at either 15 °C or 10 °C while their metabolic rate was measured via respirometry. Metabolite concentrations were measured in fish after exercise at 15 °C and recovery under one of three thermal treatments (to simulate various behavioral thermoregulation scenarios): (i) 6 h recovery at 15 °C, (ii) 6 h recovery at 10 °C, or (iii) 3 h recovery at 10 °C followed by 3 h recovery at 15 °C. Thermal preference was quantified using a static temperature preference system (15 °C vs. 10 °C). Metabolic rates returned to resting faster at 10 °C compared with 15 °C, although at 10 °C there was a tradeoff of delayed metabolite recovery. Specifically, post-exercise plasma osmolality, plasma lactate, and muscle lactate remained elevated for the entire period in fish recovering at 10 °C, whereas these parameters returned to resting levels by 6 h in fish from the other two recovery groups. Regardless, fish did not exhibit clear behavioral thermoregulation (i.e., fish overall did not consistently prefer one temperature) to prioritize either physiological recovery process. The advantage of metabolic rate recovery at cooler temperatures may balance against the advantage of metabolite recovery at warmer temperatures, lessening the usefulness of behavioral thermoregulation as a post-exercise recovery strategy in fish.
Collapse
Affiliation(s)
- Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada.
| | - James D Kieffer
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada.
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada.
| |
Collapse
|
2
|
Uhlmann SS, Paoletti S, Ampe B, Theodoridis K, Kochzius M, Koeck B. The role of temperature in vitality and survival assessments of beam-trawled and discarded European plaice (Pleuronectes platessa). CONSERVATION PHYSIOLOGY 2024; 12:coae036. [PMID: 38873635 PMCID: PMC11170488 DOI: 10.1093/conphys/coae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Thermal stress can influence the recovery of fish released after capture. Vitality assessments using reflex and behavioural responses require that responses can be observed reliably, independent of temperature. Here, we tested whether reflex and behavioural impairment and survival of beam-trawled and discarded European plaice (Pleuronectes platessa) are independent from seasonal air and water temperature deviations. In total, 324 beam-trawled plaice (n = 196 in summer and n = 128 in winter) were exposed to two air temperature treatments and two water treatments (i.e. modified and ambient temperatures for both). The modified treatments (i.e. cooled in summer, warmed in winter) represent the thermal shock a fish may experience when being returned to the water. All reflexes and tested behaviours were affected by ambient temperature, with high impairment noted in summer. None of the reflexes were affected by temperature shocks alone, only body flex was. Body flex was highly impaired under every exposure combination. Fish size and duration of air exposure further influenced impairment of reflexes such as head complex and tail grab. More generally, post-release survival was assessed as 21% [95% CI: 16-28%] in summer and 99% [97-100%] in winter. Beam trawling in summer is likely to induce high reflex impairment and mortality in discarded plaice, and therefore spatial-temporal mitigation approaches should be prioritized over control of on-board temperatures.
Collapse
Affiliation(s)
- Sven Sebastian Uhlmann
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Fisheries and Aquatic Production, Jacobsenstraat 1, 8400 Ostend, Belgium
- Marine Biology - Ecology, Evolution & Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Silvia Paoletti
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Fisheries and Aquatic Production, Jacobsenstraat 1, 8400 Ostend, Belgium
- Marine Biology - Ecology, Evolution & Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment (OD Nature), Rue Vautier 29, 1000 Brussels, Belgium
| | - Bart Ampe
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Animal Sciences Unit, Fisheries and Aquatic Production, Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Konstantinos Theodoridis
- Marine Biology - Ecology, Evolution & Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
- Fisheries Research Institute, Hellenic Agricultural Organisation - Demeter, INALE Nea Peramos, Kavala 64007
| | - Marc Kochzius
- Marine Biology - Ecology, Evolution & Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Barbara Koeck
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- WasserCluster Lunz Biologische Station, Inter-university Center for Aquatic Ecosystem Research, Dr. Kupelwieser-Prom. 5, 3293 Lunz am See, Austria
| |
Collapse
|
3
|
Van Leeuwen TE, Keefe D, Young M, Adams B. Water temperature at the time of the catch-and-release event is a better predictor of survival in Atlantic salmon (Salmo salar) than acute water temperature changes before and after. JOURNAL OF FISH BIOLOGY 2024; 104:1623-1627. [PMID: 38308447 DOI: 10.1111/jfb.15667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Despite studies on the effect of catch-and-release on the survival of Atlantic salmon (Salmo salar) being widespread in the literature, studies to date have failed to evaluate the potential role of thermal history. Herein, we show that despite cooler conditions post-release, 4/18 (22%) salmon died when caught-and-released at water temperatures ≥20°C, whereas 1/13 (8%) salmon caught-and-released at water temperatures ≤20°C, but who encountered mean water temperatures ≥20°C post-release, died. We conclude water temperature at time of the catch-and-release event remains the most suitable predictor of post-release survival.
Collapse
Affiliation(s)
| | - Donald Keefe
- Department of Fisheries, Forestry and Agriculture, Corner Brook, Newfoundland, Canada
| | - Mark Young
- Department of Fisheries, Forestry and Agriculture, Corner Brook, Newfoundland, Canada
| | - Blair Adams
- Department of Fisheries, Forestry and Agriculture, Corner Brook, Newfoundland, Canada
| |
Collapse
|
4
|
du Toit HD, Rishworth GM, Strydom NA, Welman S. High levels of metacercarial infestation (family: Diplostomidae) do not affect host energetics and swimming performance in the Epaulette goby (Coryogalops sordidus, Gobiidae). JOURNAL OF FISH BIOLOGY 2024; 104:1165-1179. [PMID: 38235536 DOI: 10.1111/jfb.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Parasites have deleterious effects on their hosts, often resulting in altered host behavior or increased energy expenditure. When organisms are exposed to suboptimal environments, parasite loading may increase. Microbialite pools along the warm temperate South African coastline have been hypothesized as refugia for Epaulette gobies (Coryogalops sordidus, Gobiidae) when they are outside of their previously known subtropical distribution. The aim of this study was to determine if C. sordidus individuals infected with metacercarial cysts display higher metabolic rates or different swimming behavior compared to noninfected individuals. We measured each goby's swimming performance using a critical station-holding speed (Ucrit) test (n = 60) and visually scored their swimming behavior (n = 52) during these measurements. Also, we measured the metabolic rate of gobies using an intermittent flow respirometer system to determine standard metabolic rate (SMR) and maximum metabolic rate (MMR) from gobies at 21°C before and after swimming trials. Metacercarial load carried by infected gobies seemingly had no impact on the host's energetics (SMR or MMR), swimming ability (as repeated Ucrit tests), or swimming behavior compared to noninfected gobies. Thus, the metacercarial intensity observed in gobies in the current study appeared to have no impact on host swimming performance or behavior. Furthermore, the swimming capacity observed for C. sordidus, in general, suggests that this goby is a poor swimmer compared to other gobiid species.
Collapse
Affiliation(s)
- Hendrik D du Toit
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
| | - Gavin M Rishworth
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gqeberha, South Africa
| | - Nadine A Strydom
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, Gqeberha, South Africa
| | - Shaun Welman
- Department of Zoology, Nelson Mandela University, Gqberha, South Africa
| |
Collapse
|
5
|
Andrew S, Swart S, McKenna S, Morissette J, Gillis CA, Linnansaari T, Currie S, Morash AJ. The impacts of diel thermal variability on growth, development and performance of wild Atlantic salmon ( Salmo salar) from two thermally distinct rivers. CONSERVATION PHYSIOLOGY 2024; 12:coae007. [PMID: 38487731 PMCID: PMC10939361 DOI: 10.1093/conphys/coae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 03/17/2024]
Abstract
Temperature in many natural aquatic environments follows a diel cycle, but to date, we know little on how diel thermal cycles affect fish biology. The current study investigates the growth, development and physiological performance of wild Atlantic salmon collected from the Miramichi and Restigouche rivers (NB, Canada). Fish were collected as parr and acclimated to either 16-21 or 19-24°C diel thermal cycles throughout the parr and smolt life stages. Both Miramichi and Restigouche Atlantic salmon parr grew at similar rates during 16-21 or 19-24°C acclimations. However, as smolts, the growth rates of the Miramichi (-8% body mass day-1) and Restigouche (-38% body mass day-1) fish were significantly slower at 19-24°C, and were in fact negative, indicating loss of mass in this group. Acclimation to 19-24°C also increased Atlantic salmon CTmax. Our findings suggest that both life stage and river origin impact Atlantic salmon growth and performance in the thermal range used herein. These findings provide evidence for local adaptation of Atlantic salmon, increased vulnerability to warming temperatures, and highlight the differential impacts of these ecologically relevant diel thermal cycles on the juvenile life stages in this species.
Collapse
Affiliation(s)
- Sean Andrew
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Sula Swart
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Stephanie McKenna
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Jenna Morissette
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| | - Carole-Anne Gillis
- Gespe’gewa’gi Institute of Natural Understanding, 1 Marshall Way, Listuguj, QC, G0C 2R0, Canada
| | - Tommi Linnansaari
- Department of Biology, Faculty of Forestry and Environmental Sciences, and Canadian Rivers Institute, University of New Brunswick, 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Andrea J Morash
- Department of Biology, Mount Allison University, 62 York St., Sackville, NB E4L 1G7, Canada
| |
Collapse
|
6
|
Ojelade O, Storm Z, Fu C, Cortese D, Munson A, Boulamail S, Pineda M, Kochhann D, Killen S. Capture and discard practises associated with an ornamental fishery affect the metabolic rate and aerobic capacity of three-striped dwarf cichlids Apistogramma trifasciata. CONSERVATION PHYSIOLOGY 2024; 12:coad105. [PMID: 38293637 PMCID: PMC10823353 DOI: 10.1093/conphys/coad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Fishing causes direct removal of individuals from wild populations but can also cause a physiological disturbance in fish that are released or discarded after capture. While sublethal physiological effects of fish capture have been well studied in commercial and recreational fisheries, this issue has been overlooked for the ornamental fish trade, where it is common to capture fish from the wild and discard non-target species. We examined metabolic responses to capture and discard procedures in the three-striped dwarf cichlid Apistogramma trifasciata, a popular Amazonian aquarium species that nonetheless may be discarded when not a target species. Individuals (n = 34) were tagged and exposed to each of four treatments designed to simulate procedures during the capture and discard process: 1) a non-handling control; 2) netting; 3) netting +30 seconds of air exposure; and 4) netting +60 seconds of air exposure. Metabolic rates were estimated using intermittent-flow respirometry, immediately following each treatment then throughout recovery overnight. Increasing amounts of netting and air exposure caused an acute increase in oxygen uptake and decrease in available aerobic scope. In general, recovery occurred quickly, with rapid decreases in oxygen uptake within the first 30 minutes post-handling. Notably, however, male fish exposed to netting +60 seconds of air exposure showed a delayed response whereby available aerobic scope was constrained <75% of maximum until ~4-6 hours post-stress. Larger fish showed a greater initial increase in oxygen uptake post-stress and slower rates of recovery. The results suggest that in the period following discard, this species may experience a reduced aerobic capacity for additional behavioural/physiological responses including feeding, territory defence and predator avoidance. These results are among the first to examine impacts of discard practises in the ornamental fishery and suggest ecophysiological research can provide valuable insight towards increasing sustainable practises in this global trade.
Collapse
Affiliation(s)
- Oluwaseun Ojelade
- Department of Aquaculture and Fisheries Management, Federal University of Agriculture, Abeokuta, Ogun, Nigeria
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Zoe Storm
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Cheng Fu
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing 400047, China
| | - Daphne Cortese
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Amelia Munson
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Sarah Boulamail
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Mar Pineda
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| | - Daiani Kochhann
- Laboratory of Behavioural Ecophysiology, Center of Agrarian and Biological Sciences, Acaraú Valley State University, 850 Avenue da Universidade, Sobral, Ceará, Brazil, 62040370
| | - Shaun Killen
- School of Biodiversity, One Health and Veterinary Medicine, College of Biomedical and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK, G12 8QQ
| |
Collapse
|
7
|
Li X, Huang T, Deng C, Fu S, Shi X. Continuous flow stimulation had no significant effect on the growth rate but was conducive to the swimming performance, spontaneous behavior, and nonspecific immune parameter of juvenile Percocypris pingi. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:925-938. [PMID: 37528753 DOI: 10.1002/jez.2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Flow stimulation before release into the wild may contribute to improved survivability of farmed fish. However, the effects of flow stimulation on the survival rate of fish depend on the fish species and exercise regime, such as exercise type, duration, and intensity. In this study, juvenile Percocypris pingi swam for 18 h per day for 8 weeks under different water speeds, 3 cm s-1 (control) and 1, 2, and 4 body lengths (bl) s-1 , at 20°C. Then, parameters related to the growth rate, swimming capacity, spontaneous activity, and immune function were measured. We found that (1) continuous flow stimulation had no significant influence on the growth but was conducive to the increase in the relative carcass mass; (2) continuous flow stimulation at 2 or 4 bl s-1 enhanced the aerobic swimming capacity (Ucrit ), which may be due to an increase in anaerobic exercise capacity (endurance time) rather than to changes in maximum metabolic rate and aerobic scope; (3) continuous flow stimulation at 4 bl s-1 led to a significant increase in spontaneous activity, which was mainly due to the higher percent time spent moving as compared with the controls; and (4) continuous flow stimulation at 2 bl s-1 may contribute to improving the nonspecific immune parameter (lysozyme activity) in juvenile P. pingi. Our findings suggest that continuous flow stimulation at 2 or 4 bl s-1 for 18 h per day for 56 days at 20°C before release in wild may be a suitable training regime for improving the survival rate of cultured juvenile P. pingi.
Collapse
Affiliation(s)
- Xiuming Li
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tiji Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chunlin Deng
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaotao Shi
- Hubei International Science and Technology Coopearation Base of Fish Passage, College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
| |
Collapse
|
8
|
Eom J, Wood CM. The first direct measurements of ventilatory flow and oxygen utilization after exhaustive exercise and voluntary feeding in a teleost fish, Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1129-1149. [PMID: 37874498 DOI: 10.1007/s10695-023-01247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023]
Abstract
A new "less invasive" device incorporating an ultrasonic flow probe and a divided chamber, but no stitching of membranes to the fish, was employed to make the first direct measurements of ventilatory flow rate (V̇w) and % O2 utilization (%U) in juvenile rainbow trout (37 g, 8ºC) after exhaustive exercise (10-min chasing) and voluntary feeding (2.72% body mass ration). Under resting conditions, the allometrically scaled V̇w (300 ml kg-1 min-1 for a 37-g trout = 147 ml kg-1 min-1 for a 236-g trout exhibiting the same mass-specific O2 consumption rate, ṀO2) and the convection requirement for O2 (CR = 4.13 L mmol-1) were considerably lower, and the %U (67%) was considerably higher than in previous studies using surgically attached masks or the Fick principle. After exhaustive exercise, V̇w and ṀO2 approximately doubled whereas frequency (fr) and %U barely changed, so increased ventilatory stroke volume (Vsv) was the most important contributor to increased ṀO2. CR declined slightly. Values gradually returned to control conditions after 2-3 h. After voluntary feeding, short-term increases in V̇w, Vsv and ṀO2 were comparable to those after exercise, and fr again did not change. However, %U increased so CR declined even more. The initial peaks in V̇w, Vsv and ṀO2, similar to those after exercise, were likely influenced by the excitement and exercise component of voluntary feeding. However, in contrast to post-exercise fish, post-prandial fish exhibited second peaks in these same parameters at 1-3 h after feeding, and %U increased further, surpassing 85%, reflecting the true "specific dynamic action" response. We conclude that respiration in trout is much more efficient than previously believed.
Collapse
Affiliation(s)
- Junho Eom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
9
|
Kamunde C, Wijayakulathilake Y, Okoye C, Chinnappareddy N, Kalvani Z, van den Heuvel M, Sappal R, Stevens D. Exhaustive exercise alters native and site-specific H 2O 2 emission in red and white skeletal muscle mitochondria. Free Radic Biol Med 2023; 208:602-613. [PMID: 37729974 DOI: 10.1016/j.freeradbiomed.2023.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) homeostasis is intricately linked to energy conversion reactions and entails regulation of the mechanisms of ROS production and removal. However, there is limited understanding of how energy demand modulates ROS balance. Skeletal muscle experiences a wide range of energy requirements depending on the intensity and duration of exercise and therefore is an excellent model to probe the effect of altered energy demand on mitochondrial ROS production. Because in most fish skeletal muscle exists essentially as pure spatially distinct slow-twitch red oxidative and fast-twitch white glycolytic fibers, it provides a natural system for investigating how functional specialization affects ROS homeostasis. We tested the hypothesis that acute increase in energy demand imposed by exhaustive exercise will increase mitochondrial H2O2 emission to a greater extent in red muscle mitochondria (RMM) compared with white muscle mitochondria (WMM). We found that native H2O2 emission rates varied by up to 6-fold depending on the substrate being oxidized and muscle fiber type, with RMM emitting at higher rates with glutamate-malate and palmitoylcarnitine while WMM emitted at higher rates with succinate and glyceral-3-phosphate. Exhaustive exercise increased the native and site-specific H2O2 emission rates; however, the maximal emission rates depended on the substrate, fiber type and redox site. The H2O2 consumption capacity and activities of individual antioxidant enzymes including the glutathione- and thioredoxin-dependent peroxidases as well as catalase were higher in RMM compared with WMM indicating that the activity of antioxidant defense system does not explain the differences in H2O2 emission rates in RMM and WMM. Overall, our study suggests that substrate selection and oxidation may be the key factors determining the rates of ROS production in RMM and WMM following exhaustive exercise.
Collapse
Affiliation(s)
- Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada.
| | - Yashodya Wijayakulathilake
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Chidozie Okoye
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Nirmala Chinnappareddy
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Zahra Kalvani
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | | | - Ravinder Sappal
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| |
Collapse
|
10
|
Little AG, Dressler T, Kraskura K, Hardison E, Hendriks B, Prystay T, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Maxed Out: Optimizing Accuracy, Precision, and Power for Field Measures of Maximum Metabolic Rate in Fishes. Physiol Biochem Zool 2023; 93:243-254. [PMID: 32293978 DOI: 10.1086/708673] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Both laboratory and field respirometry are rapidly growing techniques to determine animal performance thresholds. However, replicating protocols to estimate maximum metabolic rate (MMR) between species, populations, and individuals can be difficult, especially in the field. We therefore evaluated seven different exercise treatments-four laboratory methods involving a swim tunnel (critical swim speed [Ucrit], Ucrit postswim fatigue, maximum swim speed [Umax], and Umax postswim fatigue) and three field-based chasing methods (3-min chase with 1-min air exposure, 3-min chase with no air exposure, and chase to exhaustion)-in adult coho salmon (Oncorhynchus kisutch) as a case study to determine best general practices for measuring and quantifying MMR in fish. We found that all seven methods were highly comparable and that chase treatments represent a valuable field alternative to swim tunnels. Moreover, we caution that the type of test and duration of measurement windows used to calculate MMR can have significant effects on estimates of MMR and statistical power for each approach.
Collapse
|
11
|
Jeanson AL, Madden JC, Ekström A, Danylchuk AJ, Young N, Howarth A, Twardek WM, Twibell RG, Root RP, Hanson KC, Cooke SJ. Bioenergetic consequences of repeated catch-and-release fisheries interactions on adult steelhead across a range of ecologically relevant water temperatures. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111469. [PMID: 37468090 DOI: 10.1016/j.cbpa.2023.111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
The biological consequences of catch-and-release angling have been studied for decades, yet little is known about the compounding effects of repeated recreational fisheries recaptures on the physiology and behaviour of angled fish. Using heart rate biologgers and behavioural assays, this study investigated the physiological and behavioural consequences of multiple simulated angling events (i.e., repeated stressors) on female steelhead (Oncorhynchus mykiss), under current (6 °C) and future (11 °C) water temperature scenarios. While steelhead in the warmer water temperature scenario demonstrated alterations in cardiac function (e.g., increases in maximum heart rate and scope of heart rate) and evidence of behavioural impairments (e.g., decreases in chase activity and landing time) over the course of two simulated angling events, cold water treated fish had negligible change. Fish subjected to two simulated angling events under warm water temperature conditions tended to demonstrate an increase in recovery time and scope for heart rate, and a decrease in resting heart rate. A second experiment was conducted to test for sex-specific differences in the heart rate response of steelhead subjected to an increase in water temperature. Females demonstrated a higher scope for heart rate when compared to males during the event and during recovery. More work is needed to better understand the interaction between multiple angling events and recovery from these events at various water temperatures, and the biological basis for sex-specific differences in cardiac function and response to challenges. This study contributes to a growing body of evidence on the effects of repeated stressors on wild fish.
Collapse
Affiliation(s)
- Amanda L Jeanson
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada. https://twitter.com/AmandaJeanson
| | - Jamie C Madden
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada.
| | - Andreas Ekström
- Department of biological and environmental sciences, University of Gothenburg, Medicinaregatan 18, 41390 Gothenburg, Sweden
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003, USA
| | - Nathan Young
- School of Sociological and Anthropological Studies, University of Ottawa, 75 Laurier Ave. E, Ottawa, Ontario K1N 6N5, Canada
| | - Andrew Howarth
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - Ronald G Twibell
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, 1440 Abernathy Creek Road, Longview, WA 98632, USA
| | - Roger P Root
- U.S. Fish and Wildlife Service, Abernathy Fish Technology Center, 1440 Abernathy Creek Road, Longview, WA 98632, USA
| | - Kyle C Hanson
- U.S. Fish and Wildlife Service, Pacific Region, Fish and Aquatic Conservation, 11th Ave., Portland, OR 97232, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada. https://twitter.com/SJC_fishy
| |
Collapse
|
12
|
Xu J, Qin C, Xie J, Wang J, He Y, Tan J, Shi X. Transcriptome analysis of Chinese sucker (Myxocyprinus asiaticus) head kidney and discovery of key immune-related genes to cold stress after swimming fatigue. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101104. [PMID: 37390763 DOI: 10.1016/j.cbd.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
For Chinese sucker (Myxocyprinus asiaticus), passing through a dam with fast flow and cold water are always unavoidable, and this process can cause stress, disease or even death. In this study, comparative transcriptome analysis was conducted to investigate the potential immune mechanism in head kidney of M. asiaticus with swimming fatigue stress and cold stress after fatigue. In general, a total of 181,781 unigenes were generated, and 38,545 differentially expressed genes (DEGs) were identified. In these DEGs, 22,593, 7286 and 8666 DEGs were identified among groups of fatigue vs. cold, control vs. cold, and control vs. fatigue, respectively. Enrichment analysis revealed these DEGs were involved in coagulation cascades and complement, natural killer cell mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathways, and chemokine signaling pathway. Notably, immune genes including heat shock protein 4a (HSP4a), HSP70 and HSP90α genes were significantly up-regulated in fishes with cold stress after fatigue. Differently, more immune genes in control vs. cold compared with that in control vs. fatigue were significantly down-regulated expression, such as claudin-15-like, Toll-like receptor 13, antimicrobial peptide (hepcidin), immunoglobulin, CXCR4 chemokine receptor, T-cell receptor, complement factor B/C2-A3, and interleukin 8. In this study, the number of DEGs in the head kidney was less than that our previous study in the spleen, which we speculated was more sensitive to changes in water temperature than the head kidney. In summary, lots of immune-related genes in the head kidney were down-regulated under cold stress after fatigue, suggesting that M. asiaticus might have experienced severe immunosuppression in the process of passing through the dam.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Jiang Xie
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Junjun Tan
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
13
|
Shuang L, Chen SL, Ren C, Su XL, Xu XN, Zheng GD, Zou SM. Effects of hypoxia and reoxygenation on oxidative stress, histological structure, and apoptosis in a new hypoxia-tolerant variety of blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111358. [PMID: 36572142 DOI: 10.1016/j.cbpa.2022.111358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
A new hypoxia-tolerant variety of blunt snout bream was obtained by successive breeding of the wild population, which markedly improved hypoxia tolerance. In this study, the hypoxia-tolerant variety was exposed to hypoxia (2.0 mg O2·L-1) for 4, 7 days. The contents of blood biochemical indicators including the number of red blood cells (RBC), total cholesterol (T-CHO), total protein (TP), triglyceride (TG), glucose (GLU), and lactic acid (LD) increased significantly (P < 0.05) under hypoxia. The glycogen content in the liver and muscle decreased significantly (P < 0.05) and the LD content in the brain, muscle and liver increased significantly (P < 0.05) under hypoxia. The levels of oxidative stress-related indicators i.e., superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and total antioxidant capacity (T-AOC) also changed significantly (P < 0.05) in the heart, liver, and intestine of the new variety under hypoxia. Additionally, hypoxia has caused injuries to the heart, liver, and intestine, but it shows amazing repair ability during reoxygenation. The apoptotic cells and apoptosis rate in the heart, liver, and intestine increased under hypoxia. Under hypoxia, the expression of the B-cell lymphomas 2 (Bcl-2) gene in the heart, liver, and intestine was significantly (P < 0.05) down-regulated, while the expression of the BCL2-associated agonist of cell death (Bad) gene was significantly (P < 0.05) up-regulated. These results are of great significance for enriching the basic data of blunt snout bream new variety in response to hypoxia and promoting the healthy development of its culture industry.
Collapse
Affiliation(s)
- Liang Shuang
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Song-Lin Chen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Chao Ren
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Xiao-Lei Su
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Xiao-Na Xu
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Hucheng Ring Road 999, Shanghai 201306, China.
| |
Collapse
|
14
|
García-Vega A, Ruiz-Legazpi J, Fuentes-Pérez JF, Bravo-Córdoba FJ, Sanz-Ronda FJ. Effect of thermo-velocity barriers on fish: influence of water temperature, flow velocity and body size on the volitional swimming capacity of northern straight-mouth nase (Pseudochondrostoma duriense). JOURNAL OF FISH BIOLOGY 2023; 102:689-706. [PMID: 36625147 DOI: 10.1111/jfb.15310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Water temperature and flow velocity directly affect the fish swimming capacity, and thus, both variables influence the fish passage through river barriers. Nonetheless, their effects are usually disregarded in fishway engineering and management. This study aims to evaluate the volitional swimming capacity of the northern straight-mouth nase (Pseudochondrostoma duriense), considering the possible effects of water temperature, flow velocity and body size. For this, the maximum distance, swim speed and fatigue time (FT) were studied in an outdoor open-channel flume in the Duero River (Burgos, Spain) against three nominal velocities (1.5, 2.5 and 3 m s-1 ) and temperatures (5.5, 13.5 and 18.5°C), also including the changes between swimming modes (prolonged and sprint). Results showed that a nase of 20.8 cm mean fork length can develop a median swim speed that exceeds 20.7 BL s-1 (4.31 m s-1 ) during a median time of 3.4 s in sprint mode, or 12.2 BL s-1 (2.55 m s-1 ) for 23.7 s in prolonged mode under the warmest scenario. During prolonged swimming mode, fish were able to reach further distances in warmer water conditions for all situations, due to a greater swimming speed and FT, whereas during sprint mode, warmer conditions increased the swim speed maintaining the FT. In conclusion, the studied temperature range and flow velocity range influence fish swimming performance, endurance and distance travelled, although with some differences depending on the swimming mode. The provided information goes a step forward in the definition of real fish swimming capacities, and in turn, will contribute to establish clear passage criteria for thermo-velocity barriers, allowing the calculation of the proportion of fish able to pass a barrier under different working scenarios, as well designing of the optimized solutions to improve the fish passage through river barriers.
Collapse
Affiliation(s)
- Ana García-Vega
- GEA-Ecohidráulica, Centro Tecnológico Agrario y Agroalimentario, Palencia, Spain
| | - Jorge Ruiz-Legazpi
- GEA-Ecohidráulica, Department of Agroforestry Engineering, University of Valladolid, Palencia, Spain
| | | | | | | |
Collapse
|
15
|
Martin L, Negrete B, Esbaugh AJ. The effects of size on exhaustive exercise and recovery in a marine sportfish, the red drum (Sciaenops ocellatus). Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110844. [PMID: 36828190 DOI: 10.1016/j.cbpb.2023.110844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Recreational angling is an economically important activity in many communities around the world. One conservation strategy adopted to offset the population-level consequences of recreational angling is "catch-and-release" (CAR), which is the act of returning fish to the environment following an angling event. While an expansive literature has helped to generalize CAR best practices, species-specific validation of recovery profiles remains a crucial component of species-specific angling guidance. This study sought to define the injury and recovery profiles in the plasma and white muscle following exhaustive exercise in two size classes of a common Gulf of Mexico sportfish, the red drum (Sciaenops ocellatus). The two sizes included a "small" (20-30 cm) and "slot" size (51-74 cm), the latter of which is a common angling target. Both size classes showed a characteristic injury profile that consisted of significantly elevated muscle and plasma lactate, plasma osmolality and haematocrit, as well as decreased muscle ATP and phosphocreatine, and lowered plasma and muscle pH. In small fish, muscle metabolites returned to control values by 1 h post-exercise and plasma metabolites returned to control between 3 and 6 h post-exercise. In contrast, slot sized fish had recovery periods of ≥3 h for all metabolites. The maximum injury effect size was also greater in the slot size class. These data suggest that while red drum conform to typical patterns of post-exercise recovery, larger trophy-sized fish may be more at risk to the ancillary effects of exhaustive exercise owing to greater exercise injury and slower recovery rates.
Collapse
Affiliation(s)
- Leighann Martin
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA.
| |
Collapse
|
16
|
Wallbom N, Zena LA, McArley TJ, Ekström A, Axelsson M, Gräns A, Sandblom E, Morgenroth D, Kallstenius N. Increased reliance on coronary perfusion for cardiorespiratory performance in seawater-acclimated rainbow trout. J Exp Biol 2023; 226:286759. [PMID: 36700410 PMCID: PMC10088527 DOI: 10.1242/jeb.244733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water.
Collapse
Affiliation(s)
- Nicklas Wallbom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tristan J McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicklas Kallstenius
- University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| |
Collapse
|
17
|
Van Wert JC, Hendriks B, Ekström A, Patterson DA, Cooke SJ, Hinch SG, Eliason EJ. Population variability in thermal performance of pre-spawning adult Chinook salmon. CONSERVATION PHYSIOLOGY 2023; 11:coad022. [PMID: 37152448 PMCID: PMC10157787 DOI: 10.1093/conphys/coad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Climate change is causing large declines in many Pacific salmon populations. In particular, warm rivers are associated with high levels of premature mortality in migrating adults. The Fraser River watershed in British Columbia, Canada, supports some of the largest Chinook salmon (Oncorhynchus tshawytscha) runs in the world. However, the Fraser River is warming at a rate that threatens these populations at critical freshwater life stages. A growing body of literature suggests salmonids are locally adapted to their thermal migratory experience, and thus, population-specific thermal performance information can aid in management decisions. We compared the thermal performance of pre-spawning adult Chinook salmon from two populations, a coastal fall-run from the Chilliwack River (125 km cooler migration) and an interior summer-run from the Shuswap River (565 km warmer migration). We acutely exposed fish to temperatures reflecting current (12°C, 18°C) and future projected temperatures (21°C, 24°C) in the Fraser River and assessed survival, aerobic capacity (resting and maximum metabolic rates, absolute aerobic scope (AAS), muscle and ventricle citrate synthase), anaerobic capacity (muscle and ventricle lactate dehydrogenase) and recovery capacity (post-exercise metabolism, blood physiology, tissue lactate). Chilliwack Chinook salmon performed worse at high temperatures, indicated by elevated mortality, reduced breadth in AAS, enhanced plasma lactate and potassium levels and elevated tissue lactate concentrations compared with Shuswap Chinook salmon. At water temperatures exceeding the upper pejus temperatures (Tpejus, defined here as 80% of maximum AAS) of Chilliwack (18.7°C) and Shuswap (20.2°C) Chinook salmon populations, physiological performance will decline and affect migration and survival to spawn. Our results reveal population differences in pre-spawning Chinook salmon performance across scales of biological organization at ecologically relevant temperatures. Given the rapid warming of rivers, we show that it is critical to consider the intra-specific variation in thermal physiology to assist in the conservation and management of Pacific salmon.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Corresponding author: Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andreas Ekström
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
18
|
Chai R, Lou Y, Huo R, Yin H, Huang L, Wang H, Wang P. Effects of constant flow velocity on endurance swimming and fatigue metabolism in red drum and blackhead seabream. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111331. [PMID: 36209958 DOI: 10.1016/j.cbpa.2022.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022]
Abstract
Aquaculture has greater potential for seafood production than wild capture fisheries. To meet the growing demand for seafood, China's marine aquaculture industry has begun building deep-water cages in the open sea. However, under these conditions, fish encounter strong currents and waves, and ensuring their healthy growth is key to the farming process. To address these issues, it is necessary to study the sustained swimming abilities of cultured fish species. Blackhead seabream (Acanthopagrus schlegelii) and red drum (Sciaenops ocellatus) are traditional economic fish species in China; however, their sustained swimming ability under a constant current has been underexplored. Therefore, we examined the endurance swimming ability of three size classes of blackhead seabream and red drum at 20 °C. The fish were then subjected to swimming tests of 0, 30, 60, 90, 120, and 150 min at a constant swimming speed of 0.55 m/s (0.80 m/s), 0.65 m/s (0.90 m/s), and 0.70 m/s (0.98 m/s). The fish were then dissected to obtain muscle, blood, and liver samples; sample metabolite concentrations were measured at six time points, each of which guaranteed five sets of valid data. The results indicated that red drum has a significantly stronger swimming ability, and can be cultured in waters with a short-term flow rate not exceeding 0.75 m/s or 3.5 BL/s. Further, blackhead seabream can be cultured in waters with a flow velocity lower than 0.55 m/s or 2.5 BL/s. The species-related metabolic differences were mainly reflected in the hepatic glycogen and blood glucose concentrations, and those in swimming ability caused by body length were mainly reflected by the hepatic glycogen concentration. The hepatic glycogen concentration had the most significant effect on fish with body lengths >28 cm (P < 0.05). Overall, the experimental results indicated that the liver plays a major role in the physiological level of fish swimming fatigue, providing a direction for further research.
Collapse
Affiliation(s)
- Ruoyu Chai
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yudong Lou
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Runming Huo
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Heng Yin
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ling Huang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hanying Wang
- National Engineering Research Center for Facilitated Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ping Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
19
|
Anders N, Hannaas S, Saltskår J, Schuster E, Tenningen M, Totland B, Vold A, Øvredal JT, Breen M. Vitality as a measure of animal welfare during purse seine pumping related crowding of Atlantic mackerel (Scomber scrombrus). Sci Rep 2022; 12:21949. [PMID: 36536033 PMCID: PMC9763418 DOI: 10.1038/s41598-022-26373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The impacts of wild capture fishing on animal welfare are poorly understood. During purse seine fishing for Atlantic mackerel (Scomber scrombrus), catches are crowded to high densities to facilitate pumping onboard. This study aimed to monitor fish welfare during crowding events in the Norwegian purse seine fishery, and to identify relevant drivers. We first correlated a suite of neuro-endocrine, physiological and physical stress responses (integrated into a single measure of welfare using multivariate analysis) to the behavioural vitality of individual mackerel in controlled crowding trials in aquaculture cages. Vitality was found to be a useful measure of welfare. We then assessed individual fish vitality onboard a commercial purse seiner. Catch welfare, measured using vitality, was observed to be negatively impacted during pumping related crowding. Larger catches and longer crowding exposure times resulted in greater negative impacts. Vitality was not significantly impacted by crowding density or dissolved oxygen concentrations inside the net, although methodological limitations limited accurate measurement of these parameters. Blood lactate levels correlated negatively with vitality, suggesting that high-intensity anaerobic locomotory activity was associated with the reduction in welfare. Based on these findings, catch welfare could be improved by targeting smaller schools to minimise crowding exposure times.
Collapse
Affiliation(s)
- Neil Anders
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Sigurd Hannaas
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Jostein Saltskår
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Erik Schuster
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Maria Tenningen
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Bjørn Totland
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Aud Vold
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Jan Tore Øvredal
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Mike Breen
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| |
Collapse
|
20
|
Harding L, Gallagher A, Jackson A, Bortoluzzi J, Dolton HR, Shea B, Harman L, Edwards D, Payne N. Capture heats up sharks. CONSERVATION PHYSIOLOGY 2022; 10:coac065. [PMID: 36186915 PMCID: PMC9517936 DOI: 10.1093/conphys/coac065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Catch-and-release fishing is an important component of ecotourism industries and scientific research worldwide, but its total impact on animal physiology, health and survival is understudied for many species of fishes, particularly sharks. We combined biologging and blood chemistry to explore how this fisheries interaction influenced the physiology of two widely distributed, highly migratory shark species: the blue shark (Prionace glauca) and the tiger shark (Galeocerdo cuvier). Nineteen sharks were caught by drum line or rod-and-reel angling; subcutaneous body temperature measurements were taken immediately upon capture, with six individuals also providing subsequent subcutaneous body temperature measurements via biologging as they swam freely for several hours post-release. We found that short-term capture caused shark body temperature to increase significantly and rapidly, with increases of 0.6°C-2.7°C for blue sharks (mean, 1.2 ± 0.6°C) and 0.5°C-0.9°C for tiger sharks (mean, 0.7 ± 0.2°C) and with capture-induced heating rates of blue sharks averaging 0.3°C min-1 but as high as 0.8°C min-1. Blue shark body temperature was even higher deeper into the white muscle. These heating rates were three to eight times faster than maximum rates encountered by our biologging sharks swimming through thermally stratified waters and faster than most acute heating experiments conducted with ectotherms in laboratory experiments. Biologging data showed that body temperatures underwent gradual decline after release, returning to match water temperatures 10-40 mins post-release. Blood biochemistry showed variable lactate/glucose levels following capture; however, these concentrations were not correlated with the magnitude of body temperature increase, nor with body size or hooking time. These perturbations of the natural state could have immediate and longer-term effects on the welfare and ecology of sharks caught in catch-and-release fisheries and we encourage further study of the broader implications of this reported phenomenon.
Collapse
Affiliation(s)
- Lucy Harding
- Corresponding author: Lucy Harding, Department of Zoology, Trinity College Dublin, Ireland. E-mail:
| | | | - Andrew Jackson
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| | - Jenny Bortoluzzi
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| | - Haley R Dolton
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| | - Brendan Shea
- Beneath the Waves, PO BOX 126, Herndon, VA 20172, USA
| | - Luke Harman
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 N73K, Ireland
| | - David Edwards
- West Cork Charters, Shannonvale, Clonakilty, Co. Cork, , P85 FV00, Ireland
| | - Nicholas Payne
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| |
Collapse
|
21
|
Struble MK, Gibb AC. Do we all walk the walk? A comparison of walking behaviors across tetrapods. Integr Comp Biol 2022; 62:icac125. [PMID: 35945645 DOI: 10.1093/icb/icac125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A walking gait has been identified in a range of vertebrate species with different body plans, habitats, and life histories. With increased application of this broad umbrella term, it has become necessary to assess the physical characteristics, analytical approaches, definitions, and diction used to describe walks. To do this, we reviewed studies of slow speed locomotion across a range of vertebrates to refine the parameters used to define walking, evaluate analytical techniques, and propose approaches to maximize consistency across subdisciplines. We summarize nine key parameters used to characterize walking behaviors in mammals, birds, reptiles, amphibians, and fishes. After identifying consistent patterns across groups, we propose a comprehensive definition for a walking gait. A walk is a form of locomotion where the majority of the forward propulsion of the animal comes from forces generated by the appendages interacting with the ground. During a walk, an appendage must be out of phase with the opposing limb in the same girdle and there is always at least one limb acting as ground-support (no suspension phase). Additionally, walking occurs at dimensionless speeds <1 v* and the duty factor of the limbs is always >0.5. Relative to other gaits used by the same species, the stance duration of a walk is long, the cycle frequency is low, and the cycle distance is small. Unfortunately, some of these biomechanical parameters, while effectively describing walks, may also characterize other, non-walking gaits. Inconsistent methodology likely contributes to difficulties in comparing data across many groups of animals; consistent application of data collection and analytical techniques in research methodology can improve these comparisons. Finally, we note that the kinetics of quadrupedal movements are still poorly understood and much work remains to be done to understand the movements of small, exothermic tetrapods.
Collapse
Affiliation(s)
- M K Struble
- Northern Arizona University S San Francisco St, Flagstaff, AZ 86011
- Department of Biological Sciences 617 S Beaver St, Flagstaff, AZ 86011
| | - A C Gibb
- Northern Arizona University S San Francisco St, Flagstaff, AZ 86011
- Department of Biological Sciences 617 S Beaver St, Flagstaff, AZ 86011
| |
Collapse
|
22
|
Di Santo V. EcoPhysioMechanics: Integrating energetics and biomechanics to understand fish locomotion under climate change. Integr Comp Biol 2022; 62:icac095. [PMID: 35759407 PMCID: PMC9494520 DOI: 10.1093/icb/icac095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Ecological physiologists and biomechanists have been broadly investigating swimming performance in a diversity of fishes, however the connection between form, function and energetics of locomotion has been rarely evaluated in the same system and under climate change scenarios. In this perspective I argue that working within the framework of 'EcoPhysioMechanics', i.e., integrating energetics and biomechanics tools, to measure locomotor performance and behavior under different abiotic factors, improves our understanding of the mechanisms, limits and costs of movement. To demonstrate how ecophysiomechanics can be applied to locomotor studies, I outline how linking biomechanics and physiology allows us to understand how fishes may modulate their movement to achieve high speeds or reduce the costs of locomotion. I also discuss how the framework is necessary to quantify swimming capacity under climate change scenarios. Finally, I discuss current dearth of integrative studies and gaps in empirical datasets that are necessary to understand fish swimming under changing environments.
Collapse
Affiliation(s)
- Valentina Di Santo
- Division of Functional Morphology, Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 11419 Stockholm, Sweden
| |
Collapse
|
23
|
Hvas M. Swimming energetics of Atlantic salmon in relation to extended fasting at different temperatures. CONSERVATION PHYSIOLOGY 2022; 10:coac037. [PMID: 35733620 PMCID: PMC9208137 DOI: 10.1093/conphys/coac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Predicted future warming of aquatic environments could make fish vulnerable to naturally occurring fasting periods during migration between feeding and spawning sites, as these endeavours become energetically more expensive. In this study, Atlantic salmon (Salmo salar) acclimated to midrange (9°C) or elevated suboptimal (18°C) temperatures were subjected to critical (Ucrit) and sustained (4 hours at 80% Ucrit) swimming trials before and after 4 weeks of fasting. Fasting caused weight losses of 7.3% and 8.3% at 9°C and 18°C, respectively. The Ucrit was unaffected by fasting, but higher at 18°C. Fatigue was associated with higher plasma cortisol, osmolality, Na+ and Cl- at 18°C, and ionic disturbances were higher in fasted fish. All fish completed the sustained swim trials while maintaining constant oxygen uptake rates (ṀO2), indicating strictly aerobic swimming efforts. At low swimming speeds ṀO2 was downregulated in fasted fish by 23.8% and 15.6% at 9°C and 18°C, respectively, likely as an adaptation to preserve resources. However, at higher speeds ṀO2 became similar to fed fish showing that maximum metabolic rates were maintained. The changes in ṀO2 lowered costs of transport and optimal swimming speeds in fasted fish at both temperatures, but these energetic alterations were smaller at 18°C while routine ṀO2 was 57% higher than at 9°C. As such, this study shows that Atlantic salmon maintain both glycolytic and aerobic swimming capacities after extended fasting, even at elevated suboptimal temperatures, and adaptive metabolic downregulation provides increased swimming efficiency in fasted fish. Although, improved swimming energetics were smaller when fasting at the higher temperature while metabolism becomes elevated. This could affect migration success in warming climates, especially when considering interactions with other costly activities such as coping with parasites obtained when passing aquaculture sites during seaward travel or gonad development while being voluntarily anorexic during upriver travel to spawning grounds.
Collapse
Affiliation(s)
- Malthe Hvas
- Corresponding author: Institute of Marine Research, 5984 Matre, Norway.
| |
Collapse
|
24
|
Elvidge CK, Bihun CJ, Davis C, Ulhaq S, Fung DT, Vermaire JC, Cooke SJ. No evidence for collateral effects of electromagnetic fields used to increase dissolved oxygen levels on the behavior and physiology of freshwater fishes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10747. [PMID: 35686312 DOI: 10.1002/wer.10747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Hypoxia in surface waters driven by warming climate and other anthropogenic stressors is a major conservation concern, and technological solutions for water quality remediation are sorely needed. One potential solution involves the use of low-intensity electromagnetic fields (EMFs) to increase dissolved oxygen levels, but potential collateral effects of the EMFs on aquatic animals have not been formally evaluated. We examined the effects of EMF exposure on wild-caught, captive sunfish (Lepomis spp.) over 8-day and 3-day exposures, with and without aeration in mesocosms and stock tanks (respectively). We also quantified ambient fish abundance in close proximity to EMF devices deployed in Opinicon Lake (ON). We found no significant differences in a suite of blood-based stress physiology biomarkers, behaviors, and putative aerobic capacities between EMF and control conditions over 8 days. Aerated mesocosms equipped with activated EMFs consistently had higher oxygen levels in the water than aerated controls. There were no differences in mortality during 3-day oxygen depletion trials under EMF or control conditions, and we detected no differences in fish abundance when the devices were activated in the lake. Our findings suggest that deploying EMF devices in field settings is not likely to exert negative effects on exposed fish populations. PRACTITIONER POINTS: Low-cost, low-energy technological solutions to remediate aquatic hypoxia are sorely needed Electromagnetic fields (EMFs) can increase oxygen flux across air/water interfaces and increase dissolved oxygen levels We found no evidence of negative effects of EMFs on fish physiology or behavior and our results support their use in alleviating hypoxic conditions.
Collapse
Affiliation(s)
- Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Christian J Bihun
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | | | | | | | - Jesse C Vermaire
- Institute of Environmental and Interdisciplinary Sciences and Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Environmental and Interdisciplinary Sciences and Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Lin F, Ni L, Kennedy CJ. Diluted bitumen-induced alterations in aerobic capacity, swimming performance, and post-exercise recovery in juvenile sockeye salmon (Oncorhynchus nerka). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106150. [PMID: 35397383 DOI: 10.1016/j.aquatox.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The transportation of heavy crudes such as diluted bitumen (dilbit) sourced from Canadian oil sands through freshwater habitat requires the generation of information that will contribute to risk assessments, spill modelling, management, and remediation for the protection of aquatic organisms. Juvenile sockeye salmon (Oncorhynchus nerka) were exposed acutely (96 h) or subchronically (28 d) to the water-soluble fraction (WSFd) of Cold Lake Blend dilbit at initial total polycyclic aromatic compound (TPAC) concentrations of 0, 13.7, 34.7, and 124.5 µg/L. A significant induction (>3-fold) of hepatic liver ethoxyresorufin-O-deethylase (EROD) activity was induced by 96 h in fish exposed to [TPAC] ≥ 34.7 µg/L and at ≥13.7 µg/L for a 28 d exposure. Exposure resulted in a typical physiological stress response and disturbance of ion homeostasis; this included elevations in plasma [cortisol], [lactate], [Na+], and [Cl-], and significant reductions in muscle [glycogen]. Critical swimming speed (Ucrit) was significantly reduced (28.4%) in the acute exposure at [TPAC] 124.5 µg/L; reductions of 14.2% and 35.4% were seen in fish subchronically exposed at the two highest concentrations. Reductions in Ucrit were related to significant reductions in aerobic scope (24.3-46.6%) at [TPAC]s of 34.7 and 124.5 µg/L, respectively. Exposure did not impair the ability to mount a secondary stress response following burst exercise, however, the time required for biochemical parameters to return to baseline values was prolonged. Alterations in critical systems supporting swimming, exercise recovery and the physiological stress response could result in decreased salmonid fitness and contribute to population declines if a dilbit spill occurs.
Collapse
Affiliation(s)
- Feng Lin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Li Ni
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
26
|
Almeida J, Lopes AR, Ribeiro L, Castanho S, Candeias-Mendes A, Pousão-Ferreira P, Faria AM. Effects of exposure to elevated temperature and different food levels on the escape response and metabolism of early life stages of white seabream, Diplodus sargus. CONSERVATION PHYSIOLOGY 2022; 10:coac023. [PMID: 35586725 PMCID: PMC9109722 DOI: 10.1093/conphys/coac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Recent literature suggests that anthropogenic stressors can disrupt ecologically relevant behaviours in fish, such as the ability to escape from predators. Disruption of these behaviours at critical life history transitions, such as the transition from the pelagic environment to the juvenile/adult habitat, may have even greater repercussions. The literature suggests that an increase in temperature can affect fish escape response, as well as metabolism; however, few studies have focused on the acute sensitivity responses and the potential for acclimation through developmental plasticity. Here, we aimed at evaluating the acute and long-term effects of exposure to warming conditions on the escape response and routine metabolic rate (RMR) of early life stages of the white seabream, Diplodus sargus. Additionally, as food availability may modulate the response to warming, we further tested the effects of long-term exposure to high temperature and food shortage, as individual and interacting drivers, on escape response and RMR. Temperature treatments were adjusted to ambient temperature (19°C) and a high temperature (22°C). Feeding treatments were established as high ration and low ration (50% of high ration). Escape response and RMR were measured after the high temperature was reached (acute exposure) and after 4 weeks (prolonged exposure). Acute warming had a significant effect on escape response and generated an upward trend in RMR. In the long term, however, there seems to be an acclimation of the escape response and RMR. Food shortage, interacting with high temperature, led to an increase in latency response and a significant reduction in RMR. The current study provides relevant experimental data on fishes' behavioural and physiological responses to the combined effects of multiple stressors. This knowledge can be incorporated in recruitment models, thereby contributing to fine-tuning of models required for fisheries management and species conservation.
Collapse
Affiliation(s)
- João Almeida
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
| | - Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, 8700-194, Lisbon, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana Candeias-Mendes
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana M Faria
- Corresponding author: MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal. Tel: + 351 218 811 700. E-mail:
| |
Collapse
|
27
|
Ionescu RA, Mitrovic D, Wilkie MP. Reversible disruptions to energy supply and acid-base balance in larval sea lamprey exposed to the pesticide: Niclosamide (2',5-dichloro-4'-nitrosalicylanilide). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106006. [PMID: 34801746 DOI: 10.1016/j.aquatox.2021.106006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/25/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Since the 1960s, chemical control of larval sea lamprey has been achieved using the pesticides 3-trifluoromethyl-4-nitrophenol (TFM) and niclosamide (Bayluscide®). Much more potent, niclosamide is often used as an adjuvant for TFM, and on its own to treat lentic habitats, rivers with high discharge and currents, and for population surveys. Yet, little is known about its mode of action or physiological effects on sea lamprey. Like TFM, niclosamide is thought to impair mitochondrial ATP production by uncoupling oxidative phosphorylation. We therefore tested the hypothesis that niclosamide would result in metabolic perturbations and disturbances to acid-base balance in larval lamprey due to their need to balance ATP supply with ATP demands. When larval sea lamprey were exposed to the nominal 9-h niclosamide LC50 (0.11 mg L-1) over 9 h, it resulted in significant decreases in brain, phosphocreatine (35 %) and glycogen (50 %), accompanied by a 5-fold increase in lactate. In carcass, there were 25-30 % decreases in glycogen, corresponding increases in pyruvate and lactate, and a pronounced 0.5 unit decrease in intracellular pH. Calculation of the NAD+/NADH ratio in the carcass indicated that neither oxygen delivery nor the flux of reducing equivalents through the mitochondrial electron transport chain were impaired by niclosamide, supporting the hypothesis that niclosamide interferes with mitochondrial ATP production by uncoupling oxidative phosphorylation. Thus, greater reliance on glycogen, characterized by higher rates of glycolysis, temporarily mitigates the corresponding shortfall in ATP supply caused by niclosamide. Notably, all lamprey that survived niclosamide exposure readily restored ATP, phosphocreatine, glycogen and acid-base balance after recovery in niclosamide-free water. This resilience suggests that sea lamprey that survive or escape niclosamide treatment could compromise sea lamprey control efforts by subsequently completing their larval stage and developing into parasitic juvenile sea lamprey that could ultimately threaten Great Lake's fisheries populations.
Collapse
Affiliation(s)
- R Adrian Ionescu
- Department of Biology & Laurier Institute for Water Science, 75 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Dejana Mitrovic
- Department of Biology & Laurier Institute for Water Science, 75 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Michael P Wilkie
- Department of Biology & Laurier Institute for Water Science, 75 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
28
|
Ionescu RA, Mitrovic D, Wilkie MP. Disturbances to energy metabolism in juvenile lake sturgeon (Acipenser fulvescens) following exposure to niclosamide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:112969. [PMID: 34922166 DOI: 10.1016/j.ecoenv.2021.112969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Since the 1960s, invasive sea lamprey (Petromyzon marinus) populations in the Laurentian Great Lakes have been controlled by applying two chemicals, 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide, aka. Bayluscide®), to streams infested with larval sea lamprey. These "lampricide" applications primarily rely on TFM, and are often combined with 1-2% niclosamide, which increases treatment effectiveness. Niclosamide is also used alone to treat lentic habitats and in rivers with high discharge. However, little is known about niclosamide's possible adverse physiological effects on non-target organisms. Of particular concern is the lake sturgeon (Acipenser fulvescens), which is threatened throughout the Great Lakes basin where its habitat often overlaps with larval lamprey. Because niclosamide is believed to impair ATP production by uncoupling oxidative phosphorylation, we determined how it altered metabolic processes and acid-base balance in young-of-the-year (YOY) lake sturgeon exposed to their 9-h LC50 of niclosamide (0.11 mg L-1) for 9 h. Exposure to niclosamide led to decreased brain ATP and glucose reserves, and increased lactate, with no effect on brain glycogen. In contrast, substantial (60%) reductions in glycogen were observed in liver, suggesting that hepatic glycogen reserves were mobilized to meet the brain's glucose requirements when ATP supply was impaired during niclosamide exposure. Disturbances in carcass included reduced phosphocreatine (65-70%), 2- and 4-fold increases in pyruvate and lactate, and a slight metabolic acidosis, characterized by a 0.1 unit decrease in intracellular pH (pHi). Each of these disturbances were corrected within 24 h following depuration in clean (niclosamide-free) water. We conclude that if lake sturgeon survive exposure to niclosamide, they are able to rapidly replenish their energy stores (glycogen, ATP, phosphocreatine) and correct any corresponding metabolic disturbances within 24 h.
Collapse
Affiliation(s)
- R Adrian Ionescu
- Department of Biology, Wilfrid Laurier University and the Laurier Institute for Water Science, 75 Universtiy Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Dejana Mitrovic
- Department of Biology, Wilfrid Laurier University and the Laurier Institute for Water Science, 75 Universtiy Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University and the Laurier Institute for Water Science, 75 Universtiy Avenue West, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
29
|
Borges IL, Dangerfield JC, Angeloni LM, Funk WC, Fitzpatrick SW. Reproductive benefits associated with dispersal in headwater populations of Trinidadian guppies (Poecilia reticulata). Ecol Lett 2021; 25:344-354. [PMID: 34825455 DOI: 10.1111/ele.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Theory suggests that the evolution of dispersal is balanced by its fitness costs and benefits, yet empirical evidence is sparse due to the difficulties of measuring dispersal and fitness in natural populations. Here, we use spatially explicit data from a multi-generational capture-mark-recapture study of two populations of Trinidadian guppies (Poecilia reticulata) along with pedigrees to test whether there are fitness benefits correlated with dispersal. Combining these ecological and molecular data sets allows us to directly measure the relationship between movement and reproduction. Individual dispersal was measured as the total distance moved by a fish during its lifetime. We analysed the effects of dispersal propensity and distance on a variety of reproductive metrics. We found that number of mates and number of offspring were positively correlated to dispersal, especially for males. Our results also reveal individual and environmental variation in dispersal, with sex, size, season, and stream acting as determining factors.
Collapse
Affiliation(s)
- Isabela L Borges
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Jillian C Dangerfield
- Cell and Molecular Biology Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa M Angeloni
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah W Fitzpatrick
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
30
|
Lai F, Royan MR, Gomes AS, Espe M, Aksnes A, Norberg B, Gelebart V, Rønnestad I. The stress response in Atlantic salmon (Salmo salar L.): identification and functional characterization of the corticotropin-releasing factor (crf) paralogs. Gen Comp Endocrinol 2021; 313:113894. [PMID: 34478716 DOI: 10.1016/j.ygcen.2021.113894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
Corticotropin-Releasing Factor (CRF) is one of the main mediators of the Hypothalamic-Pituitary-Interrenal (HPI) axis to stress response. In Atlantic salmon, a comparative understanding of the crf1 paralogs role in the stress response is still incomplete. Our database searches have identified four crf1 genes in Atlantic salmon, named crf1a1, crf1a2, crf1b1 and crf1b2. Brain distribution analysis revealed that the four crf1 paralogs were widely distributed, and particularly abundant in the telencephalon, midbrain, and hypothalamus of Atlantic salmon post-smolts. To increase the knowledge on crf1-mediated response to stress, Atlantic salmon post-smolts were exposed to either repeated chasing, hypoxia or a combination of chasing and hypoxia for eight days, followed by a novel-acute stressor, confinement. Cortisol, glucose, lactate, and creatinine levels were used as markers for the stress response. The crf1 paralogs mRNA abundance showed to be dependent on the stress exposure regime. Both crf1 mRNA levels in the telencephalon and crf1a1 mRNA levels in the hypothalamus showed similar response profiles to the serum cortisol levels, i.e., increasing levels during the first 24 h after stress exposure followed by a decline during the eight-day exposure. The similar trend between crf1 and cortisol disappeared once exposed to the novel-acute stressor. There was a minor response to stress for both crf1b1 and crf1b2 in the hypothalamus, while no changes at mRNA level were observed in the hypothalamic crf1a2 under the different stress conditions. No or weak relationship was found between the crf1 paralogs mRNA expression and the other serum stress-indicators analysed. In summary, our data provide novel insights on the dynamic of the HPI axis activation in Atlantic salmon, and thus underline the involvement of the crf1 paralogs as additional factors in the regulation of the stress response in this species. Likewise, the data highlight the importance of analysing all crf1 paralogues response to a stress-condition, in particular in this premature knowledge stage of their functionality. Further analysis and a more detailed time-point series will help to elucidate the response of the HPI axis and the link of crf1 paralogs in the stress response mechanism.
Collapse
Affiliation(s)
- Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Muhammad R Royan
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Marit Espe
- Institute of Marine Research, Bergen, Norway.
| | | | | | - Virginie Gelebart
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
31
|
Araújo MJ, Soares AMVM, Monteiro MS. Effects of exposure to the UV-filter 4-MBC during Solea senegalensis metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51440-51452. [PMID: 33987723 DOI: 10.1007/s11356-021-14235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Many personal care products integrate UV-filters, such as 4-methylbenzylidene camphor (4-MBC), a compound frequently detected in aquatic habitats, including coastal areas. However, the potential effects of 4-MBC to saltwater species have been poorly studied. Therefore, the main objective of this work is to study the effects of 4-MBC exposure on Solea senegalensis during metamorphosis, a sensitive life stage of this flatfish. To achieve this, fish were exposed to 4-MBC (0.2-2.0 mg L-1) for 48 h at the beginning of metamorphosis (13 days after hatching, dah). After this period, the fish were transferred to a clean medium. They were fed and maintained until more than 80% of individuals in the control group completed the metamorphosis (24 dah). Mortality, malformations, and metamorphic progression were studied daily. Growth, behavior, and biochemical markers of neurotransmission (acetylcholinesterase, AChE), oxidative stress (catalase, CAT; lipid peroxidation, LPO), detoxification (glutathione S-transferase, GST), and anaerobic metabolism (lactate dehydrogenase, LDH) were also determined at the end of the experiment. An acceleration of metamorphosis progression was observed during and 2 days after the 4-MBC exposure in all concentrations tested. In addition, reduced length, inhibition of CAT activity, and induction of oxidative damage were observed (lowest observed effect concentration, LOEC = 0.928 mg L-1 4-MBC for length, CAT, and LPO). Short-term exposure to 4-MBC at the onset of metamorphosis affected S. senegalensis at several levels of organization, even after 9 days in a clean medium, including growth and metamorphic progression, suggesting possible long-term adverse effects in this species.
Collapse
Affiliation(s)
- Mário J Araújo
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta S Monteiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
32
|
Ionescu RA, Hepditch SLJ, Wilkie MP. The lampricide 3-trifluoromethyl-4-nitrophenol causes temporary metabolic disturbances in juvenile lake sturgeon ( Acipenser fulvescens): implications for sea lamprey control and fish conservation. CONSERVATION PHYSIOLOGY 2021; 9:coab069. [PMID: 34512991 PMCID: PMC8427354 DOI: 10.1093/conphys/coab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The pesticide 3-trifluoromethyl-4-nitrophenol (TFM) is applied to rivers and streams draining into the Laurentian Great Lakes to control populations of invasive sea lamprey (Petromyzon marinus), which are ongoing threats to fisheries during the lamprey's hematophagous, parasitic juvenile life stage. While TFM targets larval sea lamprey during treatments, threatened populations of juvenile lake sturgeon (Acipenser fulvescens), particularly young-of-the-year (<100 mm in length), may be adversely affected by TFM when their habitats overlap with larval sea lamprey. Exposure to TFM causes marked reductions in tissue glycogen and high energy phosphagens in lamprey and rainbow trout (Oncorhynchus mykiss) by interfering with oxidative ATP production in the mitochondria. To test that environmentally relevant concentrations of TFM would similarly affect juvenile lake sturgeon, we exposed them to the larval sea lamprey minimum lethal concentration (9-h LC99.9), which mimicked concentrations of a typical lampricide application and quantified energy stores and metabolites in the carcass, liver and brain. Exposure to TFM reduced brain ATP, PCr and glycogen by 50-60%, while lactate increased by 45-50% at 6 and 9 h. A rapid and sustained depletion of liver glucose and glycogen of more than 50% was also observed, whereas the respective concentrations of ATP and glycogen were reduced by 60% and 80% after 9 h, along with higher lactate and a slight metabolic acidosis (~0.1 pH unit). We conclude that exposure to environmentally relevant concentrations of TFM causes metabolic disturbances in lake sturgeon that can lead to impaired physiological performance and, in some cases, mortality. Our observations support practices such as delaying TFM treatments to late summer/fall or using alternative TFM application strategies to mitigate non-target effects in waters where lake sturgeon are present. These actions would help to conserve this historically and culturally significant species in the Great Lakes.
Collapse
Affiliation(s)
- R Adrian Ionescu
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| | - Scott L J Hepditch
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
- Current Address: Centre Eau Terre Environment, Institut National de la Recherche Scientifique, Québec, Québec City G1K 9A9, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada
| |
Collapse
|
33
|
McArley TJ, Morgenroth D, Zena LA, Ekström AT, Sandblom E. Normoxic limitation of maximal oxygen consumption rate, aerobic scope and cardiac performance in exhaustively exercised rainbow trout (Oncorhynchus mykiss). J Exp Biol 2021; 224:271087. [PMID: 34323276 DOI: 10.1242/jeb.242614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/25/2021] [Indexed: 01/22/2023]
Abstract
In fish, maximum O2 consumption rate (ṀO2,max) and aerobic scope can be expanded following exhaustive exercise in hyperoxia; however, the mechanisms explaining this are yet to be identified. Here, in exhaustively exercised rainbow trout (Oncorhynchus mykiss), we assessed the influence of hyperoxia on ṀO2,max, aerobic scope, cardiac function and blood parameters to address this knowledge gap. Relative to normoxia, ṀO2,max was 33% higher under hyperoxia, and this drove a similar increase in aerobic scope. Cardiac output was significantly elevated under hyperoxia at ṀO2,max because of increased stroke volume, indicating that hyperoxia released a constraint on cardiac contractility apparent with normoxia. Thus, hyperoxia improved maximal cardiac performance, thereby enhancing tissue O2 delivery and allowing a higher ṀO2,max. Venous blood O2 partial pressure (PvO2) was elevated in hyperoxia at ṀO2,max, suggesting a contribution of improved luminal O2 supply in enhanced cardiac contractility. Additionally, despite reduced haemoglobin and higher PvO2, hyperoxia treated fish retained a higher arterio-venous O2 content difference at ṀO2,max. This may have been possible because of hyperoxia offsetting declines in arterial oxygenation that are known to occur following exhaustive exercise in normoxia. If this occurs, increased contractility at ṀO2,max with hyperoxia may also relate to an improved O2 supply to the compact myocardium via the coronary artery. Our findings show ṀO2,max and aerobic scope may be limited in normoxia following exhaustive exercise as a result of constrained maximal cardiac performance and highlight the need to further examine whether or not exhaustive exercise protocols are suitable for eliciting ṀO2,max and estimating aerobic scope in rainbow trout.
Collapse
Affiliation(s)
- Tristan J McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas T Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
34
|
Mignucci A, Bourjea J, Forget F, Allal H, Dutto G, Gasset E, McKenzie DJ. Cardiac and behavioural responses to hypoxia and warming in free-swimming gilthead seabream, Sparus aurata. J Exp Biol 2021; 224:271040. [PMID: 34308993 DOI: 10.1242/jeb.242397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Gilthead seabream were equipped with intraperitoneal biologging tags to investigate cardiac responses to hypoxia and warming, comparing when fish were either swimming freely in a tank with conspecifics or confined to individual respirometers. After tag implantation under anaesthesia, heart rate (fH) required 60 h to recover to a stable value in a holding tank. Subsequently, when undisturbed under control conditions (normoxia, 21°C), mean fH was always significantly lower in the tank than in the respirometers. In progressive hypoxia (100% to 15% oxygen saturation), mean fH in the tank was significantly lower than in the respirometers at oxygen levels down to 40%, with significant bradycardia in both holding conditions below this level. Simultaneous logging of tri-axial body acceleration revealed that spontaneous activity, inferred as the variance of external acceleration (VARm), was low and invariant in hypoxia. Warming (21 to 31°C) caused progressive tachycardia with no differences in fH between holding conditions. Mean VARm was, however, significantly higher in the tank during warming, with a positive relationship between VARm and fH across all temperatures. Therefore, spontaneous activity contributed to raising fH of fish in the tank during warming. Mean fH in respirometers had a highly significant linear relationship with mean rates of oxygen uptake, considering data from hypoxia and warming together. The high fH of confined seabream indicates that respirometry techniques may bias estimates of metabolic traits in some fishes, and that biologging on free-swimming fish will provide more reliable insight into cardiac and behavioural responses to environmental stressors by fish in their natural environment.
Collapse
Affiliation(s)
- Alexandre Mignucci
- MARBEC, Université de Montpelier, CNRS, IRD, Ifremer, 34200 Sète, France
| | - Jérôme Bourjea
- MARBEC, Université de Montpelier, CNRS, IRD, Ifremer, 34200 Sète, France
| | - Fabien Forget
- MARBEC, Université de Montpelier, CNRS, IRD, Ifremer, 34200 Sète, France
| | - Hossein Allal
- CHU de Montpellier, Service Chirurgie Pédiatrique, 34000 Montpellier, France
| | - Gilbert Dutto
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 34250, Palavas-les-Flots, France
| | - Eric Gasset
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 34250, Palavas-les-Flots, France
| | - David J McKenzie
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 34095 Montpellier, France
| |
Collapse
|
35
|
Yoon GR, Bjornson F, Deslauriers D, Anderson WG. Comparison of methods to quantify metabolic rate and its relationship with activity in larval lake sturgeon Acipenser fulvescens. JOURNAL OF FISH BIOLOGY 2021; 99:73-86. [PMID: 33583016 DOI: 10.1111/jfb.14700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Until recently most studies have focussed on method development for metabolic rate assessment in adult and/or juvenile fish with less focus on measurement of oxygen consumption (ṀO2 ) during early life history stages, including fast-growing larval fish and even less focus on nonteleostean species. In the present study we evaluated measurement techniques for standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope in an Acipenseriform, the lake sturgeon Acipenser fulvescens, throughout the first year of life. Standardized forced exercise protocols to assess MMR were conducted for 5 or 15 min before or after measurement of SMR. We used different levels of oxygen decline during the measurement period of MMR post forced exercise to understand the influence these may have on the calculation of MMR. Opercular rate and tail beat frequencies were recorded by video as measures of behaviours and compared to metabolic rate recorded over a 24 h period. Results indicate that calculated values for aerobic scope were lower in younger fish. Neither exercise sequence nor exercise duration influenced metabolic rate measurements in the younger fish, but exercise duration did affect measurement of MMR in older fish. Finally, there was no strong correlation between metabolic rate and the measured behaviours in the lake sturgeon at either age. Based on the results, we recommend that a minimum of 6 h of acclimation to the respirometry chamber should be given prior to measuring SMR, a chasing protocol to elicit MMR should ideally be performed at the end of experiment, a short chasing time should be avoided to minimize variation and assessment of MMR should balance measurement limitations of the probes along with when and for how long oxygen consumption is measured.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Forrest Bjornson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Deslauriers
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Lin F, Baillon L, Langlois VS, Kennedy CJ. Environmental modulators of diluted bitumen effects in juvenile pink salmon (Oncorhynchus gorbuscha). MARINE ENVIRONMENTAL RESEARCH 2021; 169:105392. [PMID: 34174542 DOI: 10.1016/j.marenvres.2021.105392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Recent and potential expansions in the transportation of diluted bitumen (dilbit) through marine terminals in coastal regions of British Columbia require the examination of potential risks to estuarine species such as Pacific salmon. The estuarine habitat of out-migrated pink salmon (Oncorhynchus gorbuscha) exhibits dynamic temperature and salinity regimes, possibly modifying dilbit exposure, bioavailability and/or its effects. To examine dilbit toxicity and its modification by environmental stressors, juvenile pinks were subchronically exposed for 3 months to the water-accommodated fraction (WAF) of Cold Lake Blend dilbit (winter) in seawater at three salinities (7, 14, and 28‰ [temperature 12.5 °C]) and three temperatures (8.5, 12.5, and 16.5 °C [salinity of 28‰]). Temperature and salinity alone did not affect any measured endpoints in control fish. Dilbit exposure induced higher mortality at high (16.5 °C) and low temperatures (8.5 °C) as well as at higher salinity (28‰) in fish exposed to the highest dilution of WAF [total polycyclic aromatic compounds (TPAC) = 128.9 μg/L]. A concentration-dependent reduction of growth was evident in fish exposed to the medium (TPAC = 97.3 μg/L) and high dilution of WAF at higher temperatures (12.5 and 16.5 °C) and high salinity (28‰). At 28‰, swimming performance (Uburst) was decreased in fish exposed to the highest concentration of dilbit at all 3 temperatures. Gill Na+-K+-ATPase activity, white muscle lactate, glycogen, and triglyceride concentrations were altered by dilbit exposure and modified by temperature and salinity. In addition, gene expression associated with phase I biotransformation, energy metabolism, mitochondrial activity, and inflammation showed significant upregulation with exposure and temperature stress. Dilbit exposure at PAC concentrations in the ppb range, affected pink salmon at the molecular, biochemical, and whole organism level; effects that were exacerbated by environmental temperature and salinity.
Collapse
Affiliation(s)
- Feng Lin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lucie Baillon
- Royal Military College of Canada, Chemistry and Chemical Engineering Department, Kingston, Ontario, Canada
| | - Valerie S Langlois
- Royal Military College of Canada, Chemistry and Chemical Engineering Department, Kingston, Ontario, Canada; Institut National de la recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec City, Québec, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
37
|
Gomez Isaza DF, Cramp RL, Franklin CE. Exposure to Nitrate Increases Susceptibility to Hypoxia in Fish. Physiol Biochem Zool 2021; 94:124-142. [DOI: 10.1086/713252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
38
|
The effect of fasting period on swimming performance, blood parameters and stress recovery in Atlantic salmon post smolts. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110913. [PMID: 33524618 DOI: 10.1016/j.cbpa.2021.110913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022]
Abstract
In this study, Atlantic salmon post smolts (~250 g, ~29 cm) were fasted for four weeks at 12 °C in full strength seawater. During this period, the critical swimming speed (Ucrit) was measured after 1, 2 and 4 weeks of fasting, as well as in a fed control group. Furthermore, blood samples were taken in each treatment group prior to the swim test, at fatigue, and following 3 h and 24 h of subsequent recovery. Four weeks of fasting gradually reduced the condition factor from 1.03 to 0.89. However, the Ucrit remained statistically unaffected at 3.5 body lengths s-1. Exhaustive exercise stress caused large increases in plasma osmolality, [Cl-], [Na+], [Ca2+], [lactate] and [cortisol], while haematocrit and [haemoglobin] also increased. Plasma ions and lactate had increased further after 3 h recovery, and osmolality, [Cl-] and [Na+] were still elevated above control levels after 24 h while other blood parameters were fully recovered. Osmotic disturbances may therefore be considered the most challenging stressor during strenuous exercise in seawater. Only minor effects of fasting period on blood parameters in response to exhaustive exercise were detected, which included slightly higher osmotic disturbances and a repressed response in red blood cell recruitment at fatigue in fasted fish. Furthermore, the 4-week fasting group had a reduced cortisol response following fatigue compared to the other treatment groups. In conclusion, these results show that Atlantic salmon maintain their full swimming capacity as well as their ability to respond and recover from acute stress during an extended period of food deprivation.
Collapse
|
39
|
Šmejkal M, Bartoň D, Brabec M, Sajdlová Z, Souza AT, Moraes KR, Soukalová K, Blabolil P, Vejřík L, Kubečka J. Climbing up the ladder: male reproductive behaviour changes with age in a long-lived fish. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02961-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
High reproductive performance is the key attribute of male fitness, especially due to the high reproductive skew among the males of most animal species. Males of long-lived iteroparous species have opportunities to improve upon their previous reproductive attempts with increasing age. We collected individual-specific reproductive behaviour and age data on a cyprinid fish, the asp (Leuciscus aspius), from 2015 to 2019. We tested whether males changed their performance over time using a unique dataset where individual performance was recorded yearly with passive telemetry. Individual fish behaviour was tracked from one to five reproductive seasons at least a year after the tagging. Fish were scored by measures of quality (first arrival time, number of visits and time spent in the reproductive grounds, and encountered proportion of males to all adult fish). In general, fish improved in the first three metrics with age, suggesting a shift towards behaviours likely to enhance reproductive success as individuals aged. A larger size at tagging was predictive of earlier fish arrival on the spawning ground in subsequent years. Our study therefore demonstrates the importance of age as a factor when considering the potential reproductive success of long-lived fish species.
Significance statement
High reproductive performance is the key attribute of male fitness. Males of long-lived species reproducing multiple times in their life have opportunities to improve upon their previous reproductive performance with increasing age. In this 5-year study, we tracked a large cyprinid fish with telemetry systems during their reproduction. We investigated the age-related behavioural changes in males and demonstrated the improvement of male reproductive timing and length of stay with potential repercussions for male’s reproductive output. We emphasize the importance of old and experienced individuals among the fish population, which are often targeted and selectively removed from the human-managed waters.
Collapse
|
40
|
The effects of elevated potassium, acidosis, reduced oxygen levels, and temperature on the functional properties of isolated myocardium from three elasmobranch fishes: clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus). J Comp Physiol B 2021; 191:127-141. [PMID: 33394123 DOI: 10.1007/s00360-020-01328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Elevated plasma potassium levels (hyperkalemia), reduced plasma pH (acidosis), reduced blood oxygen content, and elevated temperatures are associated with species-specific rates of at-vessel and post-release mortality in elasmobranch fishes. The mechanism linking these physiological disturbances to mortality remains undetermined however, and we hypothesize that the proximate cause is reduced myocardial function. We measured changes in the functional properties of isolated ventricular myocardial strips from clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus) when subjected to the following stressors (both in isolation and in combination): hyperkalemia (7.4 mM K+), acidosis (from 7.9 to 7.1), and reduced oxygen (to 31% O2 saturation) applied at temperatures 5 °C above and below holding temperatures. We selected these species based on phylogenetic distance, diverse routine activity levels, and their tolerance to capture and transport. Stressors had a few significant species-specific detrimental impacts on myocardial function (e.g., a 33-45% decrease in net force under acidosis + low O2). Net force production of myocardial strips from clearnose skate and smooth dogfish approximately doubled following exposure to isoproterenol, demonstrating that these species possess beta-adrenergic receptors and that their stimulation could provide a mechanism for preservation of cardiac function during stress. Our results suggest that disruption of physiological homeostasis associated with capture may fatally impair cardiac function in some elasmobranch species, although research with more severe stressors is needed.
Collapse
|
41
|
Atlas WI, Seitz KM, Jorgenson JW, Millard-Martin B, Housty WG, Ramos-Espinoza D, Burnett NJ, Reid M, Moore JW. Thermal sensitivity and flow-mediated migratory delays drive climate risk for coastal sockeye salmon. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Climate change is subjecting aquatic species to increasing temperatures and shifting hydrologic conditions. Understanding how these changes affect individual survival can help guide conservation and management actions. Anadromous Pacific salmon ( Oncorhynchus spp.) in some large river systems are acutely impacted by the river temperatures and flows encountered during their spawning migrations. However, comparatively little is known about drivers of en route mortality for salmon in smaller coastal watersheds, and climate impacts may differ across watersheds and locally adapted salmon populations. To understand the effects of climate on the survival of coastal sockeye salmon ( Oncorhynchus nerka; hísn in Haíɫzaqv), we tagged 1785 individual fish with passive integrated transponders across four migration seasons in the Koeye River—a low-elevation watershed in coastal British Columbia—and tracked them during their relatively short migration (∼13 km) from river entry to spawning grounds. Overall, 64.7% of sockeye survived to enter the spawning grounds, and survival decreased rapidly when water temperatures exceeded 15 °C. The best-fitting model included an interaction between river flow and temperature, such that temperature effects were worse when flows were low, and river entry ceased at the lowest flows. Results revealed temperature-mediated mortality and migration delays from low water that may synergistically reduce survival among sockeye salmon returning to coastal watersheds.
Collapse
Affiliation(s)
- William I. Atlas
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Hakai Institute, PO Box 309, Heriot Bay, BC V0P 1H0, Canada
- QQs Projects Society, PO Box 786, Bella Bella, BC V0P 1H0, Canada
- Wild Salmon Center, 721 NW Ninth Ave, Suite 300, Portland, OR 97209, USA (current address)
| | - Karl M. Seitz
- Hakai Institute, PO Box 309, Heriot Bay, BC V0P 1H0, Canada
- QQs Projects Society, PO Box 786, Bella Bella, BC V0P 1H0, Canada
| | | | - Ben Millard-Martin
- Hakai Institute, PO Box 309, Heriot Bay, BC V0P 1H0, Canada
- Department of Biology, McGill University, Montreal, QC H3A 0G4, Canada
| | - William G. Housty
- Heiltsuk Integrated Resource Management Department, PO Box 731, Bella Bella, BC V0T 1Z0, Canada
| | - Daniel Ramos-Espinoza
- InStream Fisheries Research, Unit 215—2323 Boundary Road, Vancouver, BC V5M 4V8, Canada
| | - Nicholas J. Burnett
- InStream Fisheries Research, Unit 215—2323 Boundary Road, Vancouver, BC V5M 4V8, Canada
| | - Mike Reid
- Heiltsuk Integrated Resource Management Department, PO Box 731, Bella Bella, BC V0T 1Z0, Canada
| | - Jonathan W. Moore
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
42
|
Hvas M, Folkedal O, Oppedal F. Heart rates of Atlantic salmon Salmo salar during a critical swim speed test and subsequent recovery. JOURNAL OF FISH BIOLOGY 2021; 98:102-111. [PMID: 32984959 DOI: 10.1111/jfb.14561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, heart rate (HR) bio-loggers were implanted in the abdominal cavity of 12 post-smolt Atlantic salmon Salmo salar weighing 1024 ± 31 g and acclimated to 12°C sea water. One week after the surgical procedure, a critical swim speed (Ucrit ) test was performed on tagged and untagged conspecifics, whereafter tagged fish were maintained in their holding tanks for another week. The Ucrit was statistically similar between tagged and untagged fish (2.67 ± 0.04 and 2.74 ± 0.05 body lengths s-1 , respectively) showing that the bio-logger did not compromise the swimming performance. In the pre-swim week, a diurnal cycle was apparent with HR peaking at 65 beats min-1 during the day and approaching 40 beats min-1 at night. In the Ucrit test, HR increased approximately exponentially with swimming speed until a plateau was reached at the final speed before fatigue with a maximum of 85.2 ± 0.7 beats min-1 . During subsequent recovery tagged fish could be divided into a surviving group (N = 8) and a moribund group (N = 4). In surviving fish HR had fully recovered to pre-swim levels after 24 h, including reestablishment of a diurnal HR cycle. In moribund fish HR never recovered and remained elevated at c. 80 beats min-1 for 4 days, whereafter they started dying. We did not identify a proximal cause of death in moribund fish, but possible explanations are discussed. Tail beat frequency (TBF) was also measured and showed a more consistent response to increased swimming speeds. As such, when exploring correlations between HR, TBF and metabolic rates at different swimming speeds, TBF provides better predictions. On the contrary, HR measurements in free swimming fish over extended periods of time are useful for other purposes such as assessing the accumulative burden of various stressors and recovery trajectories from exhaustive exercise.
Collapse
Affiliation(s)
- Malthe Hvas
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| | - Ole Folkedal
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| | - Frode Oppedal
- Animal Welfare Research Group, Institute of Marine Research, Matre, Norway
| |
Collapse
|
43
|
Cano-Barbacil C, Radinger J, Argudo M, Rubio-Gracia F, Vila-Gispert A, García-Berthou E. Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species. Sci Rep 2020; 10:18947. [PMID: 33144649 PMCID: PMC7609642 DOI: 10.1038/s41598-020-75974-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Swimming performance is a key feature that mediates fitness and survival in aquatic animals. Dispersal, habitat selection, predator-prey interactions and reproduction are processes that depend on swimming capabilities. Testing the critical swimming speed (Ucrit) of fish is the most straightforward method to assess their prolonged swimming performance. We analysed the contribution of several predictor variables (total body length, experimental water temperature, time step interval between velocity increments, species identity, taxonomic affiliation, native status, body shape and form factor) in explaining the variation of Ucrit, using linear models and random forests. We compiled in total 204 studies testing Ucrit of 35 inland fishes of the Iberian Peninsula, including 17 alien species that are non-native to that region. We found that body length is largely the most important predictor of Ucrit out of the eight tested variables, followed by family, time step interval and species identity. By contrast, form factor, temperature, body shape and native status were less important. Results showed a generally positive relationship between Ucrit and total body length, but regression slopes varied markedly among families and species. By contrast, linear models did not show significant differences between native and alien species. In conclusion, the present study provides a first comprehensive database of Ucrit in Iberian freshwater fish, which can be thus of considerable interest for habitat management and restoration plans. The resulting data represents a sound foundation to assess fish responses to hydrological alteration (e.g. water flow tolerance and dispersal capacities), or to categorize their habitat preferences.
Collapse
Affiliation(s)
- Carlos Cano-Barbacil
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain.
| | - Johannes Radinger
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - María Argudo
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Francesc Rubio-Gracia
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Anna Vila-Gispert
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, 17003, Girona, Spain
| |
Collapse
|
44
|
Wood CM, Pane EF, Heigenhauser GJF. Dichloroacetate reveals the presence of metabolic inertia at the start of exercise in rainbow trout (Oncorhynchus mykiss, Walbaum 1792). JOURNAL OF FISH BIOLOGY 2020; 97:1242-1246. [PMID: 32657450 DOI: 10.1111/jfb.14461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
A lag in the increase in oxygen consumption (MO2 ) occurs at the start of sustainable exercise in trout. Waterborne dichloroacetate (0.58 and 3.49 mmol l-1 ), a compound which activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase in muscle, accelerates the increase in MO2 during the first 10 min of sustainable exercise when velocity is elevated to 75% critical swimming speed in a swim tunnel. There are no effects on MO2 thereafter or at rest. This indicates that a delay in PDH activation ("metabolic inertia") contributes to the lag phenomenon.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric F Pane
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
45
|
Li X, Zhang Y, Fu S. Effects of short-term fasting on spontaneous activity and excess post-exercise oxygen consumption in four juvenile fish species with different foraging strategies. Biol Open 2020; 9:9/9/bio051755. [PMID: 32994283 PMCID: PMC7541337 DOI: 10.1242/bio.051755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effects of short-term fasting on spontaneous activity and excess post-exercise oxygen consumption (EPOC) in sit-and-wait carnivorous southern catfish (Silurus meridionalis), active carnivorous black carp (Mylopharyngodon piceus), active herbivorous grass carp (Ctenopharyngodon idellus) and active filter-feeding silver carp (Hypophthalmichthys molitrix), each species was divided into a control group and a fasting group (deprived of food for 14 days). Both groups were maintained at 25°C and, at the end of the experimental period, the total movement distance (TMD), percent time spent moving (PTM), ventilation frequency (Vf), pre-exercise oxygen consumption (M(•)O2) and EPOC response of the experimental fish were measured. The TMD and PTM obtained for the control group of southern catfish were lower than those found for the control groups of the three active species. Short-term fasting resulted in decreases in the TMD and PTM of the southern catfish and black carp and increases in the TMD of grass carp and silver carp. The Vf of southern catfish was significantly higher than those of grass carp and silver carp, whereas the latter was also significantly higher than that of black carp. Short-term fasting resulted in significant increases in the Vf and decreases in the pre-exercise M(•)O2 of southern catfish and silver carp. Southern catfish and black carp exhibited lower peak post-exercise M(•)O2 and recovery rates, and relatively higher EPOC magnitudes than grass carp and silver carp. Short-term fasting exerted no significant effects on the peak post-exercise M(•)O2, but resulted in relatively higher EPOC magnitudes in the four fish species. These results suggest that (1) different fish species exhibit significantly different levels of spontaneous activity and post-exercise M(•)O2 profiles with different characteristics and that (2) short-term fasting exerts different effects on the level of spontaneous activity in four fish species with different foraging strategies. Summary: This study compares the spontaneous behavior and exhaustive exercise of four warm-water fish.
Collapse
Affiliation(s)
- Xiuming Li
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 400047, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Education Ministry), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shijian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
46
|
Temperature and food availability alters the physiology and aerobic capacity of tambaqui (Colossoma macropomum). Comp Biochem Physiol A Mol Integr Physiol 2020; 245:110704. [DOI: 10.1016/j.cbpa.2020.110704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
|
47
|
Kieffer JD, May LE. Repeat UCrit and endurance swimming in juvenile shortnose sturgeon (Acipenser brevirostrum). JOURNAL OF FISH BIOLOGY 2020; 96:1379-1387. [PMID: 32128813 DOI: 10.1111/jfb.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Previous results show that juvenile shortnose sturgeon are steady swimmers and, compared with salmonids, generally have low critical swimming (UCrit) and endurance swimming capacities. Most studies on swimming capacities of sturgeon, and other fishes, include those where fish have only been swum once and the metrics of swimming performance are assessed (e.g., time swum, speed achieved). Under natural conditions, there are ample instances where fish undergo multiple swimming cycles when traversing fish ways, culverts and other sources of fast water flow. While some evidence exists for salmonids, the effects of repeat swimming are not well known for sturgeon. The current study consisted of two experiments. The first examined the UCrit of juvenile shortnose sturgeon following three consecutive swimming trials with a 30 min recovery period between subsequent tests. The second examined the endurance swimming capacities of juvenile shortnose sturgeon following three consecutive swimming trials with a 60 min recovery period between subsequent tests. Our findings indicate that (i) UCrit was consistent (~2 body lengths/s) among swimming trials; (ii) significant individual variation exists between individuals in the endurance swimming trials; and (iii) consistent results exist for individuals across swimming trials in both the UCrit and the endurance swimming tests. These results suggest that juvenile shortnose sturgeon have a high recovery capacity, and their behaviour and morphology likely reflect aspects of their swimming capacities.
Collapse
Affiliation(s)
- James D Kieffer
- Department of Biological Sciences and MADSAM Sturgeon Eco-Physiology Lab, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Lindsay E May
- Department of Biological Sciences and MADSAM Sturgeon Eco-Physiology Lab, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
48
|
Tresguerres M, Clifford AM, Harter TS, Roa JN, Thies AB, Yee DP, Brauner CJ. Evolutionary links between intra- and extracellular acid-base regulation in fish and other aquatic animals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:449-465. [PMID: 32458594 DOI: 10.1002/jez.2367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
The acid-base relevant molecules carbon dioxide (CO2 ), protons (H+ ), and bicarbonate (HCO3 - ) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2 , H+ , and HCO3 - have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2 /HCO3 - accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2 , pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Angus B Thies
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Daniel P Yee
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
49
|
Anders N, Eide I, Lerfall J, Roth B, Breen M. Physiological and flesh quality consequences of pre-mortem crowding stress in Atlantic mackerel (Scomber scombrus). PLoS One 2020; 15:e0228454. [PMID: 32053624 PMCID: PMC7018012 DOI: 10.1371/journal.pone.0228454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2020] [Indexed: 11/25/2022] Open
Abstract
In commercial wild capture pelagic fisheries it is common practice to crowd catches to high densities to allow efficient pumping onboard. Crowding during the final stages of purse seine capture for small pelagic species often results in intense and sustained behavioural escape responses. Such a response may trigger a shift in energy production from aerobic to anaerobic pathways and result in metabolic acid accumulation and exhaustion of intracellular reserves of ATP. Where there is insufficient time or opportunity to recover to physiological equilibrium before death, pre-mortem stress may be an important determinant of fillet quality, as has been shown for a variety of farmed fish species. However, there is currently a lack of knowledge related to the flesh quality implications of capture stress for wild captured species in European waters. Here we show that crowding results in a physiological stress response that has consequences for flesh quality in the wild captured species Atlantic mackerel (Scomber scombrus). Using small schools in tanks and aquaculture net pens in three separate experiments, we found crowding results in physiological changes in mackerel consistent with an acute stress response and anaerobic metabolism. Consequently, we found crowded fish had more acidic pre- and post-mortem muscle pH as well as indications of faster onset and strength of rigor mortis and increased cathepsin B & L activity. We examined fillet flesh quality after two and seven days of ice storage and found reduced green colouration, increased gaping (separation of muscle myotomes) and reduced textural firmness associated with fish which had been crowded. However, the effects on quality were dependant on experiment and/or storage time. These results indicate the potential of crowding capture stress to influence the flesh quality of an economically important species and may have important implications for the wild capture pelagic fishing industry.
Collapse
Affiliation(s)
- Neil Anders
- Fish Capture Division, Institute of Marine Research (IMR), Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ida Eide
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bjørn Roth
- Department of Processing Technology, Nofima, Stavanger, Norway
| | - Michael Breen
- Fish Capture Division, Institute of Marine Research (IMR), Bergen, Norway
| |
Collapse
|
50
|
Camarillo H, Arias Rodriguez L, Tobler M. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish. J Evol Biol 2020; 33:512-523. [DOI: 10.1111/jeb.13586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Henry Camarillo
- Division of Biology Kansas State University Manhattan KS USA
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas Universidad Juárez Autónoma de Tabasco Villahermosa México
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|