1
|
Suntharesan J, Apperley L, Senniappan S. 45,X male - rare case of unbalanced translocation of Y chromosome to chromosome 2 presenting with developmental delay, learning difficulty and obesity. Endocrinol Diabetes Metab Case Rep 2022; 2022:22-0320. [PMID: 36515368 PMCID: PMC9716403 DOI: 10.1530/edm-22-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Summary A male phenotype accompanied by a 45,X karyotype is rare. It may occur due to Y chromosomal translocation or insertion to X/autosome. Clinical presentation may vary depending on the presence of the Y chromosomal locus and the degree of loss of autosome material. 45,X males can present with short stature and Turner syndrome phenotype due to haploinsufficiency of genes which are normally expressed in both X and Y chromosomes. The presence of the sex-determining region Y (SRY) gene leads to the differentiation of bipotential gonads to testis. Most individuals go through puberty normally, but some may need pubertal induction for delayed puberty. Rarely some can have a pubertal arrest. The risk of gonadoblastoma is minimal in these individuals due to functioning testicular tissue. The azoospermia factor (AZF) region is found on the long arm of the Yq chromosome and is needed for spermatogenesis. In a 45,X male with unbalanced translocation of Y chromosome, spermatogenesis can be affected due to the lack of AZF leading to Sertoli cell-only syndrome. This will have an implication on fertility in adult life. We present a 14-year-old boy with developmental delay, learning difficulties and subtle dysmorphic features who was diagnosed with 45,X,der(2)t(Y:2)(?:p25). Fluorescence in situ hybridisation analysis revealed translocation of SRY (Yp11.3) to the terminal part of the short arm of chromosome 2 resulting in the deletion of most of the Y chromosome (Yp11.2-q12) and part of chromosome 2(2p25.3). This is the first case where SRY translocation to chromosome 2 presents with the above clinical presentation. Learning points 45,X karyotype is rare in male. It may occur due to SRY translocation or an insertion to X/autosome. SRY gene translocation to chromosome 2 has been not reported in the literature. Clinical presentation can be varied due to degree of loss of chromosomal material. Due to loss of AZF region found on the long arm of the Yq, spermatogenesis can be affected. Loss of 2p25 leads to learning difficulty and obesity.
Collapse
Affiliation(s)
- Jananie Suntharesan
- Department of Endocrinology, Alder Hey Children’s Hospital, Eaton Road, Liverpool, UK
| | - Louise Apperley
- Department of Endocrinology, Alder Hey Children’s Hospital, Eaton Road, Liverpool, UK
| | - Senthil Senniappan
- Department of Endocrinology, Alder Hey Children’s Hospital, Eaton Road, Liverpool, UK
| |
Collapse
|
2
|
Jensen-Cody S, Coyne ES, Ding X, Sebin A, Vogel J, Goldstein J, Rosahl TW, Zhou HH, Jacobs H, Champy MF, About GB, Talukdar S, Zhou Y. Loss of low-molecular-weight protein tyrosine phosphatase shows limited improvement in glucose tolerance but causes mild cardiac hypertrophy in mice. Am J Physiol Endocrinol Metab 2022; 322:E517-E527. [PMID: 35403438 DOI: 10.1152/ajpendo.00161.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance is a major public health burden that often results in other comorbidities including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and cardiovascular disease. An insulin sensitizer has the potential to become a disease-modifying therapy. It remains an unmet medical need to identify therapeutics that target the insulin signaling pathway to treat insulin resistance. Low-molecular-weight protein tyrosine phosphatase (LMPTP) negatively regulates insulin signaling and has emerged as a potential therapeutic target for insulin sensitization. Genetic studies have demonstrated that LMPTP is positively associated with obesity in humans and promotes insulin resistance in rodents. A recent study showed that pharmacological inhibition or genetic deletion of LMPTP protects mice from high-fat diet-induced insulin resistance and diabetes. Here, we show that loss of LMPTP by genetic deletion has no significant effects on improving glucose tolerance in lean or diet-induced obese mice. Furthermore, our data demonstrate that LMPTP deficiency potentiates cardiac hypertrophy that leads to mild cardiac dysfunction. Our findings suggest that the development of LMPTP inhibitors for the treatment of insulin resistance and type 2 diabetes should be reevaluated, and further studies are needed to characterize the molecular and pathophysiological role of LMPTP.NEW & NOTEWORTHY Inhibition of LMPTP with a small-molecule inhibitor, Cmpd23, improves glucose tolerance in mice as reported earlier. However, genetic deficiency of the LMPTP-encoding gene, Acp1, has limited effects on glucose metabolism but leads to mild cardiac hypertrophy in mice. The findings suggest the potential off-target effects of Cmpd23 and call for reevaluation of LMPTP as a therapeutic target for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
| | - Erin S Coyne
- Merck & Co., Inc., South San Francisco, California
| | - Xunshan Ding
- Merck & Co., Inc., South San Francisco, California
| | - Anu Sebin
- Merck & Co., Inc., South San Francisco, California
| | - Jen Vogel
- Merck & Co., Inc., South San Francisco, California
| | | | | | | | - Hugues Jacobs
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Université de Strasbourg, CNRS, INSERM, Illkirch, France
| | - Marie-France Champy
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Université de Strasbourg, CNRS, INSERM, Illkirch, France
| | - Ghina Bou About
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, Université de Strasbourg, CNRS, INSERM, Illkirch, France
| | | | | |
Collapse
|
3
|
Stanford SM, Collins M, Diaz MA, Holmes ZJ, Gries P, Bliss MR, Lodi A, Zhang V, Tiziani S, Bottini N. The low molecular weight protein tyrosine phosphatase promotes adipogenesis and subcutaneous adipocyte hypertrophy. J Cell Physiol 2021; 236:6630-6642. [PMID: 33615467 DOI: 10.1002/jcp.30307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
Obesity is a major contributing factor to the pathogenesis of Type 2 diabetes. Multiple human genetics studies suggest that high activity of the low molecular weight protein tyrosine phosphatase (LMPTP) promotes metabolic syndrome in obesity. We reported that LMPTP is a critical promoter of insulin resistance in obesity by regulating liver insulin receptor signaling and that inhibition of LMPTP reverses obesity-associated diabetes in mice. Since LMPTP is expressed in adipose tissue but little is known about its function, here we examined the role of LMPTP in adipocyte biology. Using conditional knockout mice, we found that selective deletion of LMPTP in adipocytes impaired obesity-induced subcutaneous adipocyte hypertrophy. We assessed the role of LMPTP in adipogenesis in vitro, and found that LMPTP deletion or knockdown substantially impaired differentiation of primary preadipocytes and 3T3-L1 cells into adipocytes, respectively. Inhibition of LMPTP in 3T3-L1 preadipocytes also reduced adipogenesis and expression of proadipogenic transcription factors peroxisome proliferator activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha. Inhibition of LMPTP increased basal phosphorylation of platelet-derived growth factor receptor alpha (PDGFRα) on activation motif residue Y849 in 3T3-L1, resulting in increased activation of the mitogen-associated protein kinases p38 and c-Jun N-terminal kinase and increased PPARγ phosphorylation on inhibitory residue S82. Analysis of the metabolome of differentiating 3T3-L1 cells suggested that LMPTP inhibition decreased cell glucose utilization while enhancing mitochondrial respiration and nucleotide synthesis. In summary, we report a novel role for LMPTP as a key driver of adipocyte differentiation via control of PDGFRα signaling.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Meghan Collins
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Michael A Diaz
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Zachary J Holmes
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Paul Gries
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Matthew R Bliss
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Vida Zhang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
4
|
Kong XJ, Wan G, Tian R, Liu S, Liu K, Clairmont C, Lin X, Zhang X, Sherman H, Zhu J, Wang Y, Fong M, Li A, Wang BK, Wang J, Liu J, Yu Z, Shen C, Cui X, Cao H, Du T, Cao X. The Effects of Probiotic Supplementation on Anthropometric Growth and Gut Microbiota Composition in Patients With Prader-Willi Syndrome: A Randomized Double-Blinded Placebo-Controlled Trial. Front Nutr 2021; 8:587974. [PMID: 33681271 PMCID: PMC7933553 DOI: 10.3389/fnut.2021.587974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Prader-Willi Syndrome (PWS) is a rare genetic disorder associated with developmental delay, obesity, and neuropsychiatric comorbidities. Bifidobacterium animalis subsp. lactis has demonstrated anti-obesity and anti-inflammatory effects in previous studies. Aim: To evaluate the effects of Bifidobacterium animalis subsp. lactis probiotics supplementation on anthropometric growth, behavioral symptoms, and gut microbiome composition in patients with PWS. Methods: Ethical Approval was issued by the Internal Review Board (IRB) of the Second Affiliated Hospital of Kunming Medical University (Review-YJ-2016-06). We conducted a 12-week, randomized, double-blind, placebo-controlled trial in 68 patients with Prader-Willi syndrome aged 11 months-16 years (mean = 4.2 years old) who were randomly assigned to receive daily B. lactis-11 probiotics (6 × 1010 CFUs) or a placebo sachet. Weight, height, ASQ-3, ABC, SRS-2, and CGI-I were compared between the two groups at baseline and at 6 and 12 weeks into treatment. Gut microbiome data were analyzed with the QIIME 2 software package, and functional gene analysis was conducted with PICRUSt-2. Results: We found a significant increase in height (mean difference = 2.68 cm, P < 0.05) and improvement in CGI-I (P < 0.05) in the probiotics group compared to the placebo group. No significant change in weight or psychological measures were observed. Probiotic treatment altered the microbiome composition to favor weight loss and gut health and increased the abundance of antioxidant production-related genes. Conclusions: The findings suggest a novel therapeutic potential for Bifidobacterium animalis subsp. lactis probiotics in Prader-Willi syndrome patients, although further investigation is warranted.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine and Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Guobin Wan
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Ruiyi Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Siyu Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Cullen Clairmont
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | | | - Hannah Sherman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Junli Zhu
- Yale University, New Haven, CT, United States
| | - Yelan Wang
- Bentley University, Waltham, MA, United States
| | - Michelle Fong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Alice Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | - Jinghan Wang
- New York University, New York, NY, United States
| | - Jun Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Zhehao Yu
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Shen
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianghua Cui
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hanyu Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Du
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xia Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Faria AVS, Fonseca EMB, Cordeiro HG, Clerici SP, Ferreira-Halder CV. Low molecular weight protein tyrosine phosphatase as signaling hub of cancer hallmarks. Cell Mol Life Sci 2021; 78:1263-1273. [PMID: 33052434 PMCID: PMC11073135 DOI: 10.1007/s00018-020-03657-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
In the past decade, significant progress has been made in understanding the role of protein tyrosine phosphatase as a positive regulator of tumor progression. In this scenario, our group was one of the first to report the involvement of the low molecular weight protein tyrosine phosphatase (LMWPTP or ACP1) in the process of resistance and migration of tumor cells. Later, we and others demonstrated a positive correlation between the amount of this enzyme in human tumors and the poor prognosis. With this information in mind, we asked if LMWPTP contribution to metastasis, would it have an action beyond the primary tumor site. We know that the amount of this enzyme in the tumor cell correlates positively with the ability of cancer cells to interact with platelets, an indication that this enzyme is also important for the survival of these cells in the bloodstream. Here, we discuss several molecular aspects that support the idea of LMWPTP as a signaling hub of cancer hallmarks. Chemical and genetic modulation of LMWPTP proved to shut down signaling pathways associated with cancer aggressiveness. Therefore, advances in the development of LMWPTP inhibitors have great applicability in human diseases such as cancer.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Federal Institute of São Paulo, São Roque, São Paulo, Brazil
| | - Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Stefano Piatto Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
6
|
Liu M, Tan H, Chen G. Mechanistic insights of adenine promoted activity of low-molecule tyrosine phosphatase: An ONIOM study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Inhibition of Protein-tyrosine Phosphatase PTP1B and LMPTP Promotes Palmitate/Oleate-challenged HepG2 Cell Survival by Reducing Lipoapoptosis, Improving Mitochondrial Dynamics and Mitigating Oxidative and Endoplasmic Reticulum Stress. J Clin Med 2020; 9:jcm9051294. [PMID: 32369900 PMCID: PMC7288314 DOI: 10.3390/jcm9051294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is considered a well-known pathology that is determined without using alcohol and has emerged as a growing public health problem. Lipotoxicity is known to promote hepatocyte death, which, in the context of NAFLD, is termed lipoapoptosis. The severity of NAFLD correlates with the degree of hepatocyte lipoapoptosis. Protein–tyrosine phosphatases (PTP) including PTP1B and Low molecular weight PTP (LMPTP), are negative regulators of the insulin signaling pathway and are considered a promising therapeutic target in the treatment of diabetes. In this study, we hypothesized that the inhibition of PTP1B and LMPTP may potentially prevent hepatocyte apoptosis, mitochondrial dysfunction and endoplasmic reticulum (ER) stress onset, following lipotoxicity induced using a free fatty acid (FFA) mixture. Methods: HepG2 cells were cultured in the presence or absence of two PTP inhibitors, namely MSI-1436 and Compound 23, prior to palmitate/oleate overloading. Apoptosis, ER stress, oxidative stress, and mitochondrial dynamics were then evaluated by either MUSE or RT-qPCR analysis. Results: The obtained data demonstrate that the inhibition of PTP1B and LMPTP prevents apoptosis induced by palmitate and oleate in the HepG2 cell line. Moreover, mitochondrial dynamics were positively improved following inhibition of the enzyme, with concomitant oxidative stress reduction and ER stress abrogation. Conclusion: In conclusion, PTP’s inhibitory properties may be a promising therapeutic strategy for the treatment of FFA-induced lipotoxicity in the liver and ultimately in the management of the NAFLD condition.
Collapse
|
8
|
Inhibition of the Low Molecular Weight Protein Tyrosine Phosphatase (LMPTP) as a Potential Therapeutic Strategy for Hepatic Progenitor Cells Lipotoxicity-Short Communication. Int J Mol Sci 2019; 20:ijms20235873. [PMID: 31771123 PMCID: PMC6928870 DOI: 10.3390/ijms20235873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Equine metabolic syndrome (EMS) is a cluster of metabolic disorders, such as obesity, hyperinsulinemia, and hyperleptinemia, as well as insulin resistance (IR). In accordance with the theory linking obesity and IR, excessive accumulation of lipids in insulin-sensitive tissues (lipotoxicity), like liver, alters several cellular functions, including insulin signaling. Therefore, the purpose of the study was to isolate equine hepatic progenitor-like cells (HPCs) and assess whether inhibition of low molecular weight protein tyrosine phosphatase (LMPTP) affects the expression of genes involved in macroautophagy, chaperone-mediated autophagy (CMA), endoplasmic reticulum stress, and mitochondrial dynamics in a palmitate-induced IR model. We demonstrated that LMPTP inhibition significantly enhanced expression of heat shock cognate 70 kDa protein (HSC70), lysosome-associated membrane protein 2 (LAMP2), and parkin (PRKN), all master regulators of selective autophagy. We also observed downregulation of C/EBP homologous protein (CHOP), activating transcription factor 6 (ATF6) and binding immunoglobulin protein encoded by the HSPA gene. Moreover, LMPTP inhibition increased alternative splicing of X-box binding protein 1 (XBP1), suggesting high endonuclease activity of inositol-requiring enzyme 1 alpha (IRE1α). Taken together, our data provide convincing evidence that LMPTP inhibition reverses palmitate-induced insulin resistance and lipotoxicity. In conclusion, this study highlights the role of LMPTP in the regulation of CMA, mitophagy, and ER stress, and provides a new in vitro model for studying HPC lipotoxicity in pre-clinical research.
Collapse
|
9
|
Gagné V, Aubry-Morin A, Plesa M, Abaji R, Petrykey K, St-Onge P, Beaulieu P, Laverdière C, Alos N, Leclerc JM, Sallan SE, Neuberg D, Kutok JL, Silverman LB, Sinnett D, Krajinovic M. Genes identified through genome-wide association studies of osteonecrosis in childhood acute lymphoblastic leukemia patients. Pharmacogenomics 2019; 20:1189-1197. [PMID: 31686588 DOI: 10.2217/pgs-2019-0087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate top-ranking genes identified through genome-wide association studies for an association with corticosteroid-related osteonecrosis in children with acute lymphoblastic leukemia (ALL) who received Dana-Farber Cancer Institute treatment protocols. Patients & methods: Lead SNPs from these studies, as well as other variants in the same genes, pooled from whole exome sequencing data, were analyzed for an association with osteonecrosis in childhood ALL patients from Quebec cohort. Top-ranking variants were verified in the replication patient group. Results: The analyses of variants in the ACP1-SH3YL1 locus derived from whole exome sequencing data showed an association of several correlated SNPs (rs11553746, rs2290911, rs7595075, rs2306060 and rs79716074). The rs79716074 defines *B haplotype of the APC1 gene, which is well known for its functional role. Conclusion: This study confirms implication of the ACP1 gene in the treatment-related osteonecrosis in childhood ALL and identifies novel, potentially causal variant of this complication.
Collapse
Affiliation(s)
- Vincent Gagné
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Anne Aubry-Morin
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Maria Plesa
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Rachid Abaji
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Kateryna Petrykey
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pascal St-Onge
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Patrick Beaulieu
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Caroline Laverdière
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Nathalie Alos
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jean-Marie Leclerc
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Stephen E Sallan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA
| | - Donna Neuberg
- Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jeffery L Kutok
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02215, USA
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Division of Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA
| | - Daniel Sinnett
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Department of Pharmacology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
10
|
Pavlovic S, Kotur N, Stankovic B, Zukic B, Gasic V, Dokmanovic L. Pharmacogenomic and Pharmacotranscriptomic Profiling of Childhood Acute Lymphoblastic Leukemia: Paving the Way to Personalized Treatment. Genes (Basel) 2019; 10:E191. [PMID: 30832275 PMCID: PMC6471971 DOI: 10.3390/genes10030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Personalized medicine is focused on research disciplines which contribute to the individualization of therapy, like pharmacogenomics and pharmacotranscriptomics. Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood. It is one of the pediatric malignancies with the highest cure rate, but still a lethal outcome due to therapy accounts for 1%⁻3% of deaths. Further improvement of treatment protocols is needed through the implementation of pharmacogenomics and pharmacotranscriptomics. Emerging high-throughput technologies, including microarrays and next-generation sequencing, have provided an enormous amount of molecular data with the potential to be implemented in childhood ALL treatment protocols. In the current review, we summarized the contribution of these novel technologies to the pharmacogenomics and pharmacotranscriptomics of childhood ALL. We have presented data on molecular markers responsible for the efficacy, side effects, and toxicity of the drugs commonly used for childhood ALL treatment, i.e., glucocorticoids, vincristine, asparaginase, anthracyclines, thiopurines, and methotrexate. Big data was generated using high-throughput technologies, but their implementation in clinical practice is poor. Research efforts should be focused on data analysis and designing prediction models using machine learning algorithms. Bioinformatics tools and the implementation of artificial i Lack of association of the CEP72 rs924607 TT genotype with intelligence are expected to open the door wide for personalized medicine in the clinical practice of childhood ALL.
Collapse
Affiliation(s)
- Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia.
| | - Lidija Dokmanovic
- University Children's Hospital, 11000 Belgrade, Serbia.
- University of Belgrade, Faculty of Medicine, 11000 Belgrade, Serbia.
| |
Collapse
|
11
|
Abstract
More than any other organ, the heart is particularly sensitive to gene expression deregulation, often leading in the long run to impaired contractile performances and excessive fibrosis deposition progressing to heart failure. Recent investigations provide evidences that the protein phosphatases (PPs), as their counterpart protein kinases, are important regulators of cardiac physiology and development. Two main groups, the protein serine/threonine phosphatases and the protein tyrosine phosphatases (PTPs), constitute the PPs family. Here, we provide an overview of the role of PTP subfamily in the development of the heart and in cardiac pathophysiology. Based on recent in silico studies, we highlight the importance of PTPs as therapeutic targets for the development of new drugs to restore PTPs signaling in the early and late events of heart failure.
Collapse
Affiliation(s)
- Fallou Wade
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Karim Belhaj
- College of Medicine and Health Sciences, Al-Faisal University, Riyadh, 11211, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia. .,Biology Department, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
12
|
Li J, Yoshikawa A, Meltzer HY. Replication of rs300774, a genetic biomarker near ACP1, associated with suicide attempts in patients with schizophrenia: Relation to brain cholesterol biosynthesis. J Psychiatr Res 2017; 94:54-61. [PMID: 28668716 DOI: 10.1016/j.jpsychires.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 01/12/2023]
Abstract
The aim of this study was to determine if three biomarkers for suicide attempts previously identified and replicated in a genome-wide association (GWAS) study of bipolar disorder (BD) suicide attempters also predicted suicide attempts in patients prospectively diagnosed with schizophrenia (SCZ) or schizoaffective disorder (SAD). 162 genetically-verified Caucasian patients with SCZ or SAD were phenotyped for presence (45.7%) or absence of a lifetime suicide attempt. Three single nucleotide polymorphisms (SNPs) were genotyped or partially imputed from a GWAS dataset. After controlling for genetic architecture and gender, we replicated rs300774 (p = 0.012), near ACP1 (acid phosphatase 1), the top predictor of suicide attempts in the BD study. The result of Willour et al. (2012) was replicated in males (p = 0.046) but not in females (p = 0.205). The other two SNPs, rs7296262, and rs10437629, were not associated with suicide attempts in this study. rs300774 could be a cis-eQTL for ACP1, with minor allele carriers having lower expression levels (p = 0.002). This SNP also functioned as a trans-eQTL for genes related to cholesterol biosynthesis and the wnt-β-catenin pathway (p ≤ 0.0001). Further, co-expression analysis of candidate genes in brain suggested ACP1 is important to the regulation of a number of brain mechanisms linked to suicide, including cholesterol synthesis, β-catenin-mediated signaling pathway, serotonin, GABA, and the stress response via ARHGAP35 (p190rhogap), a repressor of glucocorticoid receptor (NR3C1) transcription. This study provides an additional validation of rs300774 as a potential transdiagnostic biomarker for suicide attempts and evidence that ACP1 may have an important role in regulation of the multiple systems associated with suicide.
Collapse
Affiliation(s)
- Jiang Li
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, United States
| | - Akane Yoshikawa
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, United States
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
13
|
Stanford SM, Aleshin AE, Zhang V, Ardecky RJ, Hedrick MP, Zou J, Ganji SR, Bliss MR, Yamamoto F, Bobkov AA, Kiselar J, Liu Y, Cadwell GW, Khare S, Yu J, Barquilla A, Chung TDY, Mustelin T, Schenk S, Bankston LA, Liddington RC, Pinkerton AB, Bottini N. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nat Chem Biol 2017; 13:624-632. [PMID: 28346406 PMCID: PMC5435566 DOI: 10.1038/nchembio.2344] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 01/06/2017] [Indexed: 11/09/2022]
Abstract
Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alexander E Aleshin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Vida Zhang
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Robert J Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jiwen Zou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Santhi R Ganji
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew R Bliss
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Fusayo Yamamoto
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Andrey A Bobkov
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yingge Liu
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California, USA
| | - Gregory W Cadwell
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Shilpi Khare
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jinghua Yu
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Antonio Barquilla
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tomas Mustelin
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Simon Schenk
- Department of Orthopaedic Surgery and Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Laurie A Bankston
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert C Liddington
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
He R, Wang J, Yu ZH, Zhang RY, Liu S, Wu L, Zhang ZY. Inhibition of Low Molecular Weight Protein Tyrosine Phosphatase by an Induced-Fit Mechanism. J Med Chem 2016; 59:9094-9106. [PMID: 27676368 DOI: 10.1021/acs.jmedchem.6b00993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The low molecular weight protein tyrosine phosphatase (LMW-PTP) is a regulator of a number of signaling pathways and has been implicated as a potential target for oncology and diabetes/obesity. There is significant therapeutic interest in developing potent and selective inhibitors to control LMW-PTP activity. We report the discovery of a novel class of LMW-PTP inhibitors derived from sulfophenyl acetic amide (SPAA), some of which exhibit greater than 50-fold preference for LMW-PTP over a large panel of PTPs. X-ray crystallography reveals that binding of SPAA-based inhibitors induces a striking conformational change in the LMW-PTP active site, leading to the formation of a previously undisclosed hydrophobic pocket to accommodate the α-phenyl ring in the ligand. This induced-fit mechanism is likely a major contributor responsible for the exquisite inhibitor selectivity.
Collapse
Affiliation(s)
- Rongjun He
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Jifeng Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Ruo-Yu Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Sijiu Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University , 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Caselli A, Paoli P, Santi A, Mugnaioni C, Toti A, Camici G, Cirri P. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1339-55. [PMID: 27421795 DOI: 10.1016/j.bbapap.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors.
Collapse
Affiliation(s)
- Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alice Santi
- Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK.
| | - Camilla Mugnaioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alessandra Toti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Guido Camici
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
16
|
He RJ, Yu ZH, Zhang RY, Zhang ZY. Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 2014; 35:1227-46. [PMID: 25220640 DOI: 10.1038/aps.2014.80] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022] Open
Abstract
Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs.
Collapse
|
17
|
Wang KS, Wang L, Liu X, Zeng M. Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene x gender interaction. J Genet 2014; 92:395-402. [PMID: 24371161 DOI: 10.1007/s12041-013-0279-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes.We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such as triglycerides). We examined genetic associations of 117 single-nucleotide polymorphisms (SNPs) within the HS6ST3 gene with obesity and triglycerides using two Caucasian samples: the Marshfield sample (1442 obesity cases and 2122 controls), and the Health aging and body composition (Health ABC) sample (305 cases and 1336 controls). Logistic regression analysis of obesity as a binary trait and linear regression analysis of triglycerides as a continuous trait, adjusted for age and sex, were performed using PLINK. Single marker analysis showed that six SNPs in the Marshfield sample and one SNP in the Health ABC sample were associated with obesity (P < 0.05). SNP rs535812 revealed a stronger association with obesity in meta-analysis of these two samples (P = 0.0105). The T-A haplotype from rs878950 and rs9525149 revealed significant association with obesity in the Marshfield sample (P = 0.012). Moreover, nine SNPs showed associations with triglycerides in the Marshfield sample (P < 0.05) and the best signal was rs1927796 (P = 0.00858). In addition, rs7331762 showed a strong gene x gender interaction (P = 0.00956) for obesity while rs1927796 showed a strong gene x gender interaction (P = 0.000625) for triglycerides in the Marshfield sample. These findings contribute new insights into the pathogenesis of obesity and triglycerides and demonstrate the importance of gender differences in the aetiology.
Collapse
Affiliation(s)
- Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, P.O. Box 70259, Lamb Hall, Johnson City, TN 37614-1700, USA.
| | | | | | | |
Collapse
|
18
|
Bhatia S. Role of genetic susceptibility in development of treatment-related adverse outcomes in cancer survivors. Cancer Epidemiol Biomarkers Prev 2012; 20:2048-67. [PMID: 21980013 DOI: 10.1158/1055-9965.epi-11-0659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clear and unambiguous associations have been established between therapeutic exposures and specific complications. However, considerable interindividual variability is observed in the risk of developing an outcome for a given therapeutic exposure. Genetic predisposition and especially its interaction with therapeutic exposures can potentially exacerbate the toxic effect of treatment on normal tissues and organ systems, and can possibly explain the interindividual variability. This article provides a brief overview of the current knowledge about the role of genomic variation in the development of therapy-related complications. Relatively common outcomes with strong associations with therapeutic exposures, including cardiomyopathy, obesity, osteonecrosis, ototoxicity, and subsequent malignancies are discussed here. To develop a deeper understanding of the molecular underpinnings of therapy-related complications, comprehensive and near-complete collection of clinically annotated samples is critical. Methodologic issues such as study design, definition of the endpoints or phenotypes, identification of appropriate and adequately sized study population together with a reliable plan for collecting and maintaining high-quality DNA, and selection of an appropriate approach or platform for genotyping are also discussed. Understanding the etiopathogenetic pathways that lead to the morbidity is critical to developing targeted prevention and intervention strategies, optimizing risk-based health care of cancer survivors, thus minimizing chronic morbidities and improving quality of life.
Collapse
Affiliation(s)
- Smita Bhatia
- Department of Population Sciences, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
19
|
Maccari R, Ottanà R. Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J Med Chem 2011; 55:2-22. [PMID: 21988196 DOI: 10.1021/jm200607g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Faculty of Pharmacy, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | | |
Collapse
|
20
|
Teruel M, Martin JE, González-Juanatey C, López-Mejias R, Miranda-Filloy JA, Blanco R, Balsa A, Pascual-Salcedo D, Rodriguez-Rodriguez L, Fernández-Gutierrez B, Ortiz AM, González-Alvaro I, Gómez-Vaquero C, Bottini N, Llorca J, González-Gay MA, Martin J. Association of acid phosphatase locus 1*C allele with the risk of cardiovascular events in rheumatoid arthritis patients. Arthritis Res Ther 2011; 13:R116. [PMID: 21767392 PMCID: PMC3239354 DOI: 10.1186/ar3401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/09/2011] [Accepted: 07/18/2011] [Indexed: 01/14/2023] Open
Abstract
Introduction Acid phosphatase locus 1 (ACP1) encodes a low molecular weight phosphotyrosine phosphatase implicated in a number of different biological functions in the cell. The aim of this study was to determine the contribution of ACP1 polymorphisms to susceptibility to rheumatoid arthritis (RA), as well as the potential contribution of these polymorphisms to the increased risk of cardiovascular disease (CV) observed in RA patients. Methods A set of 1,603 Spanish RA patients and 1,877 healthy controls were included in the study. Information related to the presence/absence of CV events was obtained from 1,284 of these participants. All individuals were genotyped for four ACP1 single-nucleotide polymorphisms (SNPs), rs10167992, rs11553742, rs7576247, and rs3828329, using a predesigned TaqMan SNP genotyping assay. Classical ACP1 alleles (*A, *B and *C) were imputed with SNP data. Results No association between ACP1 gene polymorphisms and susceptibility to RA was observed. However, when RA patients were stratified according to the presence or absence of CV events, an association between rs11553742*T and CV events was found (P = 0.012, odds ratio (OR) = 2.62 (1.24 to 5.53)). Likewise, the ACP1*C allele showed evidence of association with CV events in patients with RA (P = 0.024, OR = 2.43). Conclusions Our data show that the ACP1*C allele influences the risk of CV events in patients with RA.
Collapse
Affiliation(s)
- María Teruel
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Avd, del Conocimiento s/n, 18010, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 2010; 117:2340-7; quiz 2556. [PMID: 21148812 DOI: 10.1182/blood-2010-10-311969] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osteonecrosis is a severe glucocorticoid-induced complication of acute lymphoblastic leukemia treatment. We prospectively screened children (n = 364) with magnetic resonance imaging of hips and knees, regardless of symptoms; the cumulative incidence of any (grade 1-4) versus symptomatic (grade 2-4) osteonecrosis was 71.8% versus 17.6%, respectively. We investigated whether age, race, sex, acute lymphoblastic leukemia treatment arm, body mass, serum lipids, albumin and cortisol levels, dexamethasone pharmacokinetics, and genome-wide germline genetic polymorphisms were associated with symptomatic osteonecrosis. Age more than 10 years (odds ratio, = 4.85; 95% confidence interval, 2.5-9.2; P = .00001) and more intensive treatment (odds ratio = 2.5; 95% confidence interval, 1.2-4.9; P = .011) were risk factors and included as covariates in all analyses. Lower albumin (P = .05) and elevated cholesterol (P = .02) associated with symptomatic osteonecrosis, and severe (grade 3 or 4) osteonecrosis was linked to poor dexamethasone clearance (P = .0005). Adjusting for clinical features, polymorphisms of ACP1 (eg, rs12714403, P = 1.9 × 10(-6), odds ratio = 5.6; 95% confidence interval, 2.7-11.3), which regulates lipid levels and osteoblast differentiation, were associated with risk of osteonecrosis as well as with lower albumin and higher cholesterol. Overall, older age, lower albumin, higher lipid levels, and dexamethasone exposure were associated with osteonecrosis and may be linked by inherited genomic variation.
Collapse
|
22
|
Apelt N, da Silva AP, Ferreira J, Alho I, Monteiro C, Marinho C, Teixeira P, Sardinha L, Laires MJ, Mascarenhas MR, Bicho MP. ACP1 genotype, glutathione reductase activity, and riboflavin uptake affect cardiovascular risk in the obese. Metabolism 2009; 58:1415-23. [PMID: 19570551 DOI: 10.1016/j.metabol.2009.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Erythrocyte acid phosphatase (ACP locus 1), also known as low-molecular-weight protein tyrosine phosphatase, has previously been associated to glycemia, dyslipidemia, and obesity. In this study, ACP1 genotype and activity were tested in 318 women aged 19 to 83 (mean, 51.74 +/- 13.44) years. ACP1 genotype was found to directly correlate to glutathione reductase activity (P < .001) and levels of low-density lipoprotein cholesterol (P = .038). Glutathione reductase activity was in turn found to correlate to a series of cardiovascular risk factors such as systolic arterial pressure (P < .001), total cholesterol levels (P = .018), and low-density lipoprotein cholesterol levels (P = .039). A possible protective effect of ACP1 genotype AA against these cardiovascular risk factors was observed in this study. Furthermore, this work hypothesizes that nutritional riboflavin uptake becomes more crucial as body mass index increases, to counteract oxidative stress and minimize cardiovascular risk. This might be especially true in ACP1 genotypes AC, BC, and CC, which might possibly show the least endogenous protection against oxidative stress.
Collapse
Affiliation(s)
- Nadja Apelt
- Laboratório de Genética e Centro de Metabolismo e Endocrinologia, FML, Genetic Laboratory and Centre for Metabolism and Endocrinology, Medical Faculty, Lisbon University, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shu YH, Hartiala J, Xiang AH, Trigo E, Lawrence JM, Allayee H, Buchanan TA, Bottini N, Watanabe RM. Evidence for sex-specific associations between variation in acid phosphatase locus 1 (ACP1) and insulin sensitivity in Mexican-Americans. J Clin Endocrinol Metab 2009; 94:4094-102. [PMID: 19622628 PMCID: PMC2758733 DOI: 10.1210/jc.2008-2751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Acid phosphatase locus 1 (ACP1) is a low molecular weight tyrosine phosphatase that has been shown to be an important regulator of insulin receptor signaling. OBJECTIVE We tested whether variation in ACP1 is associated with type 2 diabetes-related traits in 1035 individuals in 339 Mexican-American families of probands with or without a previous diagnosis of gestational diabetes mellitus (GDM). DESIGN Study participants were phenotyped by oral glucose tolerance test (for glucose and insulin level) and iv glucose tolerance test (for insulin sensitivity and acute insulin response) and had dual-energy x-ray absorptiometry scans to assess body composition. Six tag single nucleotide polymorphisms (SNPs) were identified from among 15 SNPs genotyped across the ACP1 region. SNPs were tested for association with phenotypes using a likelihood ratio test under a variance components framework. RESULTS After Bonferroni correction, none of the SNPs were associated with type 2 diabetes mellitus-related phenotypes. However, we observed a significant sex-specific effect of rs3828329. Among males, rs3828329 was significantly associated with fasting insulin (Bonferroni P = 0.007) and insulin sensitivity (Bonferroni P = 0.019) and marginally associated with 2-h insulin (Bonferroni P = 0.058) and percentage body fat (Bonferroni P = 0.09). CONCLUSIONS There were no significant associations in females. We conclude that variation in ACP1 is associated with fasting insulin and insulin sensitivity in a sex-specific manner.
Collapse
Affiliation(s)
- Yu-Hsiang Shu
- Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Lorenzo A, Di Renzo L, Puja A, Saccucci P, Gloria-Bottini F, Bottini E. A study of acid phosphatase locus 1 in women with high fat content and normal body mass index. Metabolism 2009; 58:351-4. [PMID: 19217450 DOI: 10.1016/j.metabol.2008.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 10/13/2008] [Indexed: 01/12/2023]
Abstract
De Lorenzo and coworkers have recently described a class of women with normal body mass index (BMI) and high fat content (normal weight obese syndrome [NWO]). This observation prompted us to study the possible role of acid phosphatase locus 1 (ACP(1)) in the differentiation of this special class of obese subjects. Acid phosphatase locus 1 is a polymorphic gene associated with severe obesity and with total cholesterol and triglycerides levels. The enzyme is composed by 2 isoforms--F and S--that have different biochemical properties and probably different functions. The sample study was composed of 130 white women from the population of Rome. Total fat mass and percentage of fat mass were measured by dual-energy x-ray absorptiometry. Thirty-six women had a BMI less than 25 and percentage of fat mass greater than 30 (high fat, normal BMI [HFHB]), and 94 women showed a BMI greater than 25 and a percentage of fat mass greater than 30 (high fat, high BMI [HFHB]). In the whole sample, the proportion of low-activity ACP(1) genotypes (*A/*A and *B/*A) was higher than in controls. However, whereas HFNB showed a very high frequency of ACP(1) *A/*A genotype, high-fat, high-BMI women showed an increase of *B/*A genotype. These 2 genotypes differ in the concentration of F isoform and the F/S ratio, which are lower in ACP(1)*A/*A genotype than in ACP(1)*B/*A genotype. The genetic differentiation of the class of women with normal BMI and high fat content from the class showing a concordant level of the 2 parameters supports the hypothesis that HFNB class represents a special cluster of obese subjects not revealed by BMI evaluation. Because ACP(1) is present in adipocytes, the present observation suggests that F isoform may have a specific role in the regulation of quantity of adipose tissue.
Collapse
Affiliation(s)
- Antonino De Lorenzo
- Department of Neurosciences, Human Nutrition Unit, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Pandey SK, Yu XX, Watts LM, Michael MD, Sloop KW, Rivard AR, Leedom TA, Manchem VP, Samadzadeh L, McKay RA, Monia BP, Bhanot S. Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice. J Biol Chem 2007; 282:14291-9. [PMID: 17353188 DOI: 10.1074/jbc.m609626200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in glucose metabolism and insulin action, a specific antisense oligonucleotide (ASO) was used to reduce its expression both in vitro and in vivo. Reduction of LMW-PTP expression with the ASO in cultured mouse hepatocytes and in liver and fat tissues of diet-induced obese (DIO) mice and ob/ob mice led to increased phosphorylation and activity of key insulin signaling intermediates, including insulin receptor-beta subunit, phosphatidylinositol 3-kinase, and Akt in response to insulin stimulation. The ASO-treated DIO and ob/ob animals showed improved insulin sensitivity, which was reflected by a lowering of both plasma insulin and glucose levels and improved glucose and insulin tolerance in DIO mice. The treatment did not decrease body weight or increase metabolic rate. These data demonstrate that LMW-PTP is a key negative regulator of insulin action and a potential novel target for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Sanjay K Pandey
- Metabolic Disease Program, Antisense Drug Discovery, Isis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Faggioni G, Grassi S, Fillo S, Stefanini L, Bottini E, Lista F. Rapid single tube genotyping of ACP1 by FRET based amplification and dual color melting curve analysis. Mol Cell Probes 2006; 20:27-30. [PMID: 16226867 DOI: 10.1016/j.mcp.2005.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Erythrocyte acid phosphatase (ACP1), also named low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme involved in signal transduction pathways of tyrosine kinase receptor. The precise physiological role of ACP1 remains to be elucidated, however recent advancements suggest that it may play an important role in the control of cell proliferation. ACP1 is a highly polymorphic enzyme that has been investigated by case-control studies for decades. Initially based on protein electrophoresis, the phenotype of ACP1 is now detected by DNA-based techniques. Here, we report a new rapid single tube genotyping method for ACP1 by FRET based amplification and dual color melting curve analysis. This method does not require a post-procedure amplification process and allows unambiguous genotyping of 30 samples in less than 1 h.
Collapse
Affiliation(s)
- G Faggioni
- Laboratory of Genetics, Army Medical and Veterinary Research Center, Via S. Stefano Rotondo, 4 00184 Rome, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Jedrzejuk D, Milewicz A. Consequences of menopause in women with diabetes mellitus - a clinical problem. Gynecol Endocrinol 2005; 21:280-6. [PMID: 16373247 DOI: 10.1080/09513590500378964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human life was prolonged by 30 years in the past century, with the result that about 40% of a woman's life falls within the postmenopausal period. The consequences, both early and remote, in the form of cardiovascular disease, osteoporosis and neoplastic disease are most pronounced in women suffering from one of the most common diseases, i.e., diabetes mellitus and the metabolic syndrome preceding it. These patients are problematic for physicians, and for this reason a study of diagnostic and therapeutic management was undertaken on the basis of our own experience as well as examination based on evidence-based medicine. Prior to making therapeutic decisions it is necessary to determine cardiovascular, thromboembolic and breast cancer risk factors. Hormonal therapy may be helpful in young postmenopausal women who are free of risk factors, and its composition and route of administration are significant considerations. Women with risk factors and who are more than 10 years after menopause should be administered alternative therapy depending on the diagnosed pathology.
Collapse
Affiliation(s)
- Diana Jedrzejuk
- Department of Endocrinology, Diabetology and Isotope Therapy, Wroclaw Medical University, Poland
| | | |
Collapse
|
28
|
Dong C, Li WD, Li D, Price RA. Interaction between obesity-susceptibility loci in chromosome regions 2p25-p24 and 13q13-q21. Eur J Hum Genet 2005; 13:102-8. [PMID: 15470360 DOI: 10.1038/sj.ejhg.5201292] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
One of the chief complexities of genetic influences on human obesity appears to be gene-gene interactions. Here, we employed model-free approaches to look for gene-gene interaction effects in human obesity using genome scan data from 260 European American families. We found consistent evidence for statistical interaction between 2p25-p24 (18-38 cM) and 13q13-q21 (26-47 cM). For discrete traits, the positive correlations were significant at P<0.0001 (P</=0.0023 after correction for multiple tests) in both IBD-based and NPL-based analyses for BMI>/=40 kg/m(2). Other analytic approaches gave consistent, supportive results. For quantitative traits, interaction effects were significant for BMI (P=0.0012), percent fat (P=0.0265) and waist circumference (P=0.0023) in a Haseman-Elston regression model, and for BMI (P=0.0043) in variance component analysis. Our findings suggest that obesity-susceptibility loci in chromosome regions 2p25-p24 and 13q13-21 may interact to influence extreme human obesity. The identification of gene-gene interactions may prove crucial to understanding the contributions of genes, which, by themselves, have relatively small effects on obesity susceptibility and resistance.
Collapse
Affiliation(s)
- Chuanhui Dong
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|