1
|
Umuhire Juru A, Ghirlando R, Zhang J. Structural basis of tRNA recognition by the widespread OB fold. Nat Commun 2024; 15:6385. [PMID: 39075051 PMCID: PMC11286949 DOI: 10.1038/s41467-024-50730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The widespread oligonucleotide/oligosaccharide-binding (OB)-fold recognizes diverse substrates from sugars to nucleic acids and proteins, and plays key roles in genome maintenance, transcription, translation, and tRNA metabolism. OB-containing bacterial Trbp and yeast Arc1p proteins are thought to recognize the tRNA elbow or anticodon regions. Here we report a 2.6 Å co-crystal structure of Aquifex aeolicus Trbp111 bound to tRNAIle, which reveals that Trbp recognizes tRNAs solely by capturing their 3' ends. Structural, mutational, and biophysical analyses show that the Trbp/EMAPII-like OB fold precisely recognizes the single-stranded structure, 3' terminal location, and specific sequence of the 3' CA dinucleotide - a universal feature of mature tRNAs. Arc1p supplements its OB - tRNA 3' end interaction with additional contacts that involve an adjacent basic region and the tRNA body. This study uncovers a previously unrecognized mode of tRNA recognition by an ancient protein fold, and provides insights into protein-mediated tRNA aminoacylation, folding, localization, trafficking, and piracy.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
2
|
Čáp M, Palková Z. Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast? Cells 2024; 13:599. [PMID: 38607038 PMCID: PMC11012152 DOI: 10.3390/cells13070599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
Collapse
Affiliation(s)
- Michal Čáp
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 128 00 Prague, Czech Republic
| |
Collapse
|
3
|
Zhang J. Recognition of the tRNA structure: Everything everywhere but not all at once. Cell Chem Biol 2024; 31:36-52. [PMID: 38159570 PMCID: PMC10843564 DOI: 10.1016/j.chembiol.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
tRNAs are among the most abundant and essential biomolecules in cells. These spontaneously folding, extensively structured yet conformationally flexible anionic polymers literally bridge the worlds of RNAs and proteins, and serve as Rosetta stones that decipher and interpret the genetic code. Their ubiquitous presence, functional irreplaceability, and privileged access to cellular compartments and ribosomes render them prime targets for both endogenous regulation and exogenous manipulation. There is essentially no part of the tRNA that is not touched by another interaction partner, either as programmed or imposed by an external adversary. Recent progresses in genetic, biochemical, and structural analyses of the tRNA interactome produced a wealth of new knowledge into their interaction networks, regulatory functions, and molecular interfaces. In this review, I describe and illustrate the general principles of tRNA recognition by proteins and other RNAs, and discuss the underlying molecular mechanisms that deliver affinity, specificity, and functional competency.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Jaramillo Ponce JR, Frugier M. Plasmodium, the Apicomplexa Outlier When It Comes to Protein Synthesis. Biomolecules 2023; 14:46. [PMID: 38254646 PMCID: PMC10813123 DOI: 10.3390/biom14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium is an obligate intracellular parasite that has numerous interactions with different hosts during its elaborate life cycle. This is also the case for the other parasites belonging to the same phylum Apicomplexa. In this study, we bioinformatically identified the components of the multi-synthetase complexes (MSCs) of several Apicomplexa parasites and modelled their assembly using AlphaFold2. It appears that none of these MSCs resemble the two MSCs that we have identified and characterized in Plasmodium. Indeed, tRip, the central protein involved in the association of the two Plasmodium MSCs is different from its homologues, suggesting also that the tRip-dependent import of exogenous tRNAs is not conserved in other apicomplexan parasites. Based on this observation, we searched for obvious differences that could explain the singularity of Plasmodium protein synthesis by comparing tRNA genes and amino acid usage in the different genomes. We noted a contradiction between the large number of asparagine residues used in Plasmodium proteomes and the single gene encoding the tRNA that inserts them into proteins. This observation remains true for all the Plasmodia strains studied, even those that do not contain long asparagine homorepeats.
Collapse
Affiliation(s)
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67084 Strasbourg, France;
| |
Collapse
|
5
|
Castillo KD, Chapa ED, Lamb TM, Gangopadhyay M, Bell-Pedersen D. Circadian clock control of tRNA synthetases in Neurospora crassa. F1000Res 2023; 11:1556. [PMID: 37841830 PMCID: PMC10576190 DOI: 10.12688/f1000research.125351.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/17/2023] Open
Abstract
Background: In Neurospora crassa, the circadian clock controls rhythmic mRNA translation initiation through regulation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2). Active CPC-3 phosphorylates and inactivates eIF2α, leading to higher phosphorylated eIF2α (P-eIF2α) levels and reduced translation initiation during the subjective day. This daytime activation of CPC-3 is driven by its binding to uncharged tRNA, and uncharged tRNA levels peak during the day under control of the circadian clock. The daily rhythm in uncharged tRNA levels could arise from rhythmic amino acid levels or aminoacyl-tRNA synthetase (aaRSs) levels. Methods: To determine if and how the clock potentially controls rhythms in aspartyl-tRNA synthetase (AspRS) and glutaminyl-tRNA synthetase (GlnRS), both observed to be rhythmic in circadian genomic datasets, transcriptional and translational fusions to luciferase were generated. These luciferase reporter fusions were examined in wild type (WT), clock mutant Δ frq, and clock-controlled transcription factor deletion strains. Results: Translational and transcriptional fusions of AspRS and GlnRS to luciferase confirmed that their protein levels are clock-controlled with peak levels at night. Moreover, clock-controlled transcription factors NCU00275 and ADV-1 drive robust rhythmic protein expression of AspRS and GlnRS, respectively. Conclusions: These data support a model whereby coordinate clock control of select aaRSs drives rhythms in uncharged tRNAs, leading to rhythmic CPC-3 activation, and rhythms in translation of specific mRNAs.
Collapse
Affiliation(s)
- Kathrina D. Castillo
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Emily D. Chapa
- Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Teresa M. Lamb
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Madhusree Gangopadhyay
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| | - Deborah Bell-Pedersen
- Biology, Texas A&M University, College Station, TX, 77843, USA
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Jaramillo Ponce JR, Kapps D, Paulus C, Chicher J, Frugier M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J Biol Chem 2022; 298:101987. [PMID: 35487244 PMCID: PMC9136112 DOI: 10.1016/j.jbc.2022.101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)-like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip-ERS-QRS) and the M-complex (tRip-ERS-MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- José R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
7
|
Wu S, Zheng L, Hei Z, Zhou JB, Li G, Li P, Wang J, Ali H, Zhou XL, Wang J, Fang P. Human lysyl-tRNA synthetase evolves a dynamic structure that can be stabilized by forming complex. Cell Mol Life Sci 2022; 79:128. [PMID: 35133502 PMCID: PMC11072160 DOI: 10.1007/s00018-022-04158-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.
Collapse
Affiliation(s)
- Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Guang Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Peifeng Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiayuan Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hamid Ali
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 44000, Pakistan
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Garin S, Levi O, Forrest ME, Antonellis A, Arava YS. Comprehensive characterization of mRNAs associated with yeast cytosolic aminoacyl-tRNA synthetases. RNA Biol 2021; 18:2605-2616. [PMID: 34039240 PMCID: PMC8632134 DOI: 10.1080/15476286.2021.1935116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are a conserved family of enzymes with an essential role in protein synthesis: ligating amino acids to cognate tRNA molecules for translation. In addition to their role in tRNA charging, aaRSs have acquired non-canonical functions, including post-transcriptional regulation of mRNA expression. Yet, the extent and mechanisms of these post-transcriptional functions are largely unknown. Herein, we performed a comprehensive transcriptome analysis to define the mRNAs that are associated with almost all aaRSs present in S. cerevisiae cytosol. Nineteen (out of twenty) isogenic strains of GFP-tagged cytosolic aaRSs were subjected to immunoprecipitation with anti-GFP beads along with an untagged control. mRNAs associated with each aaRS were then identified by RNA-seq. The extent of mRNA association varied significantly between aaRSs, from MetRS in which none appeared to be statistically significant, to PheRS that binds hundreds of different mRNAs. Interestingly, many target mRNAs are bound by multiple aaRSs, suggesting co-regulation by this family of enzymes. Gene Ontology analyses for aaRSs with a considerable number of target mRNAs discovered an enrichment for pathways of amino acid metabolism and of ribosome biosynthesis. Furthermore, sequence and structure motif analysis revealed for some aaRSs an enrichment for motifs that resemble the anticodon stem loop of cognate tRNAs. These data suggest that aaRSs coordinate mRNA expression in response to amino acid availability and may utilize RNA elements that mimic their canonical tRNA binding partners.
Collapse
Affiliation(s)
- Shahar Garin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Megan E. Forrest
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yoav S. Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Cela M, Théobald-Dietrich A, Rudinger-Thirion J, Wolff P, Geslain R, Frugier M. Identification of host tRNAs preferentially recognized by the Plasmodium surface protein tRip. Nucleic Acids Res 2021; 49:10618-10629. [PMID: 34530443 PMCID: PMC8501954 DOI: 10.1093/nar/gkab769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Malaria is a life-threatening and devastating parasitic disease. Our previous work showed that parasite development requires the import of exogenous transfer RNAs (tRNAs), which represents a novel and unique form of host-pathogen interaction, as well as a potentially druggable target. This import is mediated by tRip (tRNA import protein), a membrane protein located on the parasite surface. tRip displays an extracellular domain homologous to the well-characterized OB-fold tRNA-binding domain, a structural motif known to indiscriminately interact with tRNAs. We used MIST (Microarray Identification of Shifted tRNAs), a previously established in vitro approach, to systematically assess the specificity of complexes between native Homo sapiens tRNAs and recombinant Plasmodium falciparum tRip. We demonstrate that tRip unexpectedly binds to host tRNAs with a wide range of affinities, suggesting that only a small subset of human tRNAs is preferentially imported into the parasite. In particular, we show with in vitro transcribed constructs that tRip does not bind specific tRNAs solely based on their primary sequence, hinting that post-transcriptional modifications modulate the formation of our host/parasite molecular complex. Finally, we discuss the potential utilization of the most efficient tRip ligands for the translation of the parasite's genetic information.
Collapse
Affiliation(s)
- Marta Cela
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Anne Théobald-Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| | - Renaud Geslain
- Laboratory of tRNA Biology, Department of Biology, College of Charleston, Charleston, SC, USA
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000Strasbourg, France
| |
Collapse
|
10
|
Kong J, Kim S. Cell-based analysis of pairwise interactions between the components of the multi-tRNA synthetase complex. FASEB J 2020; 34:10476-10488. [PMID: 32539228 DOI: 10.1096/fj.202000418r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 05/25/2020] [Indexed: 11/11/2022]
Abstract
Cytoplasmic aminoacyl-tRNA synthetases (ARSs) are organized into multi-tRNA synthetase complexes (MSCs), from Archaea to mammals. An evolutionary conserved role of the MSCs is enhancement of aminoacylation by forming stable associations of the ARSs and tRNAs. In mammals, a single macromolecular MSC exists, which is composed of eight cytoplasmic ARSs, for nine amino acids, and three scaffold proteins. Consequently, nearly half of aminoacyl-tRNA efflux becomes concentrated at the MSC. Stable supply of aminoacyl-tRNA to the ribosome is, therefore, considered to be a major role of the mammalian MSC. Furthermore, the mammalian MSC also serves as a reservoir for releasable components with noncanonical functions. In this study, a split-luciferase complementation system was applied to investigate the configuration of the MSC in live mammalian cells. Multiplex interconnections between the components were simplified into binary protein-protein interactions, and pairwise comparison of the interactions reconstituted a framework consistent with previous in vitro studies. Reversibility of the split-luciferase reporter binding demonstrated convertible organization of the mammalian MSC, including interferon gamma (IFNγ)-stimulated glutamyl-prolyl-tRNA synthetase 1 (EPRS1) release, as well as the cooperation with the ribosome bridged by the tRNAs. The cell-based analysis provided an improved understanding of the flexible framework of the mammalian MSC in physiological conditions.
Collapse
Affiliation(s)
- Jiwon Kong
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
11
|
RNA Aptamers for a tRNA-Binding Protein from Aeropyrum pernix with Homologous Counterparts Distributed Throughout Evolution. Life (Basel) 2020; 10:life10020011. [PMID: 32024042 PMCID: PMC7175363 DOI: 10.3390/life10020011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/02/2022] Open
Abstract
In the present in vitro selection study, we isolated and characterized RNA aptamers for a tRNA-binding protein (Trbp) from an extremophile archaeon Aeropyrum pernix. Trbp-like structures are frequently found not only in aminoacyl-tRNA synthetases but also in diverse types of proteins from different organisms. They likely arose early in evolution and have played important roles in evolution through interactions with key RNA structures. RNA aptamers specific for A. pernix Trbp were successfully selected from a pool of RNAs composed of 60 nucleotides, including a random 30-nucleotide region. From the secondary structures, we obtained a shortened sequence composed of 21 nucleotides, of which the 3′-terminal single stranded CA nucleotides are essential for binding. This may be related to the initial evolutionary role of the universal CCA-3′ terminus of tRNA in the interaction with Trbp-like structures.
Collapse
|
12
|
Fission Yeast Asc1 Stabilizes the Interaction between Eukaryotic Initiation Factor 3a and Rps0A/uS2 for Protein Synthesis. Mol Cell Biol 2019; 39:MCB.00161-19. [PMID: 31285271 DOI: 10.1128/mcb.00161-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
Aminoacyl-tRNA synthetase cofactors play important roles in coordinating aminoacylation and translation. In this study, we describe an additional function of the fission yeast aminoacyl-tRNA synthetase cofactor 1 (Asc1) in translation. We found that Asc1 directly binds and stabilizes the interaction between small ribosomal protein Rps0A/uS2 and eukaryotic initiation factor 3a (eIF3a). In the absence of Asc1, the interaction between eIF3a and Rps0A/uS2 was compromised. The interaction between Rps0A/uS2 and eIF3a mediated the 40S ribosomal subunit binding of eIF3 in 43S preinitiation complex formation to stimulate translation initiation. Keeping with this idea, in an asc1 mutant, the association of mRNA with the 40S ribosomal subunit was defective and protein synthesis was compromised. To show that Asc1 is directly involved in translation, we demonstrate that the addition of recombinant Asc1 is able to rescue the translation defect of the asc1 mutant in a cell-free system. Furthermore, this function of Asc1 is likely to be evolutionarily conserved, as a similar interaction with eIF3a and Rps0A/uS2 could be identified in the budding yeast Saccharomyces cerevisiae and human aminoacyl-tRNA synthetase cofactors. Together, these results identify a function of aminoacyl-tRNA synthetase cofactors in translation preinitiation complex formation, which adds significantly to the expanded functions associated with aminoacyl-tRNA synthetases and their cofactors.
Collapse
|
13
|
Cho HY, Lee HJ, Choi YS, Kim DK, Jin KS, Kim S, Kang BS. Symmetric Assembly of a Decameric Subcomplex in Human Multi-tRNA Synthetase Complex Via Interactions between Glutathione Transferase-Homology Domains and Aspartyl-tRNA Synthetase. J Mol Biol 2019; 431:4475-4496. [PMID: 31473157 DOI: 10.1016/j.jmb.2019.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) ligate amino acids to their cognate tRNAs during protein synthesis. In humans, eight AARSs and three non-enzymatic AARS-interacting multifunctional proteins (AIMP1-3), which are involved in various biological processes, form a multi-tRNA synthetase complex (MSC). Elucidation of the structures and multiple functions of individual AARSs and AIMPs has aided current understanding of the structural arrangement of MSC components and their assembly processes. Here, we report the crystal structure of a complex comprising a motif from aspartyl-tRNA synthetase (DRS) and the glutathione transferase (GST)-homology domains of methionyl-tRNA synthetase (MRS), glutamyl-prolyl-tRNA synthetase (EPRS), AIMP2, and AIMP3. In the crystal structure, the four GST domains are assembled in the order of MRS-AIMP3-EPRS-AIMP2, and the GST domain of AIMP2 binds DRS through the β-sheet in the GST domain. The C-terminus of AIMP3 enhances the binding of DRS to the tetrameric GST complex. A DRS dimer and two GST tetramers binding to the dimer with 2-fold symmetry complete a decameric complex. The formation of this complex enhances the stability of DRS and enables it to retain its reaction intermediate, aspartyl adenylate. Since the catalytic domains of MRS and EPRS are connected to the decameric complex through their flexible linker peptides, and lysyl-tRNA synthetase and AIMP1 are also linked to the complex via the N-terminal region of AIMP2, the DRS-GST tetramer complex functions as a frame in the MSC.
Collapse
Affiliation(s)
- Ha Yeon Cho
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun Joo Lee
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon Seo Choi
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Kyu Kim
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-Gu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
14
|
Levi O, Arava Y. mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol 2019; 17:e3000274. [PMID: 31100060 PMCID: PMC6542539 DOI: 10.1371/journal.pbio.3000274] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/30/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are well studied for their role in binding and charging tRNAs with cognate amino acids. Recent RNA interactome studies had suggested that these enzymes can also bind polyadenylated RNAs. Here, we explored the mRNA repertoire bound by several yeast aaRSs. RNA immunoprecipitation (RIP) followed by deep sequencing revealed unique sets of mRNAs bound by each aaRS. Interestingly, for every tested aaRSs, a preferential association with its own mRNA was observed, suggesting an autoregulatory process. Self-association of histidyl-tRNA synthetase (HisRS) was found to be mediated primarily through binding to a region predicted to fold into a tRNAHis anticodon-like structure. Introducing point mutations that are expected to disassemble this putative anticodon mimic alleviated self-association, concomitant with increased synthesis of the protein. Finally, we found that increased cellular levels of uncharged tRNAHis lead to reduced self-association and increased HisRS translation, in a manner that depends on the anticodon-like element. Together, these results reveal a novel post-transcriptional autoregulatory mechanism that exploits binding mimicry to control mRNA translation according to tRNA demands. Better known for their enzymatic role in charging tRNAs with their cognate amino acids, this study shows that tRNA synthetases also bind mRNAs, regulating translation in order to balance the production of a tRNA synthetase with the level of its cognate tRNA.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
15
|
Mleczko AM, Celichowski P, Bąkowska-Żywicka K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(17)30380-2. [PMID: 29883755 DOI: 10.1016/j.bbagrm.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023]
Abstract
Ribosome-associated noncoding (ranc) RNAs are a novel class of short regulatory RNAs with functions and origins that have not been well studied. In this present study, we functionally characterized the molecular activity of Saccharomyces cerevisiae transfer RNA (tRNA)-derived fragments (tRFs) during protein biosynthesis. Our results indicate ribosome-associated tRFs derived from both 5' (ranc-5'-tRFs) and 3'-part of tRNAs (ranc-3'-tRFs) have regulatory roles during translation. We demonstrated five 3'-tRFs and one 5'-tRF associate with a small ribosomal subunit and aminoacyl-tRNA synthetases (aa-RSs) in yeast. Furthermore, we discovered that four yeast aa-RSs interact directly with yeast ribosomes. tRFs interactions with ribosome-associated aa-RSs correlate with impaired efficiency of tRNA aminoacylation.
Collapse
Affiliation(s)
- Anna M Mleczko
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland
| | - Piotr Celichowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland
| | - Kamilla Bąkowska-Żywicka
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
16
|
Suzuki H, Kaneko A, Yamamoto T, Nambo M, Hirasawa I, Umehara T, Yoshida H, Park SY, Tamura K. Binding Properties of Split tRNA to the C-terminal Domain of Methionyl-tRNA Synthetase of Nanoarchaeum equitans. J Mol Evol 2017; 84:267-278. [PMID: 28589220 DOI: 10.1007/s00239-017-9796-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/30/2017] [Indexed: 11/28/2022]
Abstract
The C-terminal domain of methionyl-tRNA synthetase (MetRS-C) from Nanoarchaeum equitans is homologous to a tRNA-binding protein consisting of 111 amino acids (Trbp111) from Aquifex aeolicus. The crystal structure of MetRS-C showed that it existed as a homodimer, and that each monomer possessed an oligonucleotide/oligosaccharide-binding fold (OB-fold). Analysis using a quartz crystal microbalance indicated that MetRS-C freshly isolated from N. equitans was bound to tRNA. However, binding of the split 3'-half tRNA species was stronger than that of the 5'-half species. The T-loop and the 3'-end regions of the split 3'-half tRNA were found to be responsible for the binding. The minimum structure for binding to MetRS-C might be a minihelix-like stem-loop with single-stranded 3'-terminus. After successive duplications of such a small hairpin structure with the assistance of a Trbp-like structure, the interaction of the T-loop region of the 3'-half with a Trbp-like structure could have been evolutionarily replaced by RNA-RNA interactions, along with many combinational tertiary interactions, to form the modern tRNA structure.
Collapse
Affiliation(s)
- Hidemichi Suzuki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Akihiro Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Taro Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mahoko Nambo
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ito Hirasawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Takuya Umehara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Hisashi Yoshida
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Sam-Yong Park
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Koji Tamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan. .,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
17
|
Kapps D, Cela M, Théobald-Dietrich A, Hendrickson T, Frugier M. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes. FEBS Lett 2016; 590:4180-4191. [PMID: 27714804 DOI: 10.1002/1873-3468.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
In this review, we examine the so-called OB-fold, a tRNA-binding domain homologous to the bacterial tRNA-binding protein Trbp111. We highlight the ability of OB-fold homologs to bind tRNA species and summarize their distribution in evolution. Nature has capitalized on the advantageous effects acquired when an OB-fold domain binds to tRNA by evolutionarily selecting this domain for fusion to different enzymes. Here, we review our current understanding of how the complexity of OB-fold-containing proteins and enzymes developed to expand their functions, especially in unicellular, pathogenic eukaryotes.
Collapse
Affiliation(s)
- Delphine Kapps
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | - Marta Cela
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | | | | | - Magali Frugier
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| |
Collapse
|
18
|
Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites. Proc Natl Acad Sci U S A 2016; 113:4717-22. [PMID: 27071116 DOI: 10.1073/pnas.1600476113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.
Collapse
|
19
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
20
|
Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA. A Synthetic Adenylation-Domain-Based tRNA-Aminoacylation Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA. A synthetic adenylation-domain-based tRNA-aminoacylation catalyst. Angew Chem Int Ed Engl 2015; 54:2492-6. [PMID: 25583137 DOI: 10.1002/anie.201410047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/01/2014] [Indexed: 01/04/2023]
Abstract
The incorporation of non-proteinogenic amino acids represents a major challenge for the creation of functionalized proteins. The ribosomal pathway is limited to the 20-22 proteinogenic amino acids while nonribosomal peptide synthetases (NRPSs) are able to select from hundreds of different monomers. Introduced herein is a fusion-protein-based design for synthetic tRNA-aminoacylation catalysts based on combining NRPS adenylation domains and a small eukaryotic tRNA-binding domain (Arc1p-C). Using rational design, guided by structural insights and molecular modeling, the adenylation domain PheA was fused with Arc1p-C using flexible linkers and achieved tRNA-aminoacylation with both proteinogenic and non-proteinogenic amino acids. The resulting aminoacyl-tRNAs were functionally validated and the catalysts showed broad substrate specificity towards the acceptor tRNA. Our strategy shows how functional tRNA-aminoacylation catalysts can be created for bridging the ribosomal and nonribosomal worlds. This opens up new avenues for the aminoacylation of tRNAs with functional non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg (Germany); LOEWE Center for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany).
| | | | | | | | | | | |
Collapse
|
22
|
Laporte D, Huot JL, Bader G, Enkler L, Senger B, Becker HD. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms. FEBS Lett 2014; 588:4268-78. [PMID: 25315413 DOI: 10.1016/j.febslet.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently 'simple' organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.
Collapse
Affiliation(s)
- Daphné Laporte
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Jonathan L Huot
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Gaétan Bader
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ludovic Enkler
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Bruno Senger
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
23
|
A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol Cell Biol 2013; 33:4872-88. [PMID: 24126051 DOI: 10.1128/mcb.00711-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development.
Collapse
|
24
|
Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp Gerontol 2013; 48:1455-68. [PMID: 24126084 DOI: 10.1016/j.exger.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.
Collapse
|
25
|
Citric acid cycle and the origin of MARS. Trends Biochem Sci 2013; 38:222-8. [PMID: 23415030 DOI: 10.1016/j.tibs.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/01/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The vertebrate multiaminoacyl tRNA synthetase complex (MARS) is an assemblage of nine aminoacyl tRNA synthetases (ARSs) and three non-synthetase scaffold proteins, aminoacyl tRNA synthetase complex-interacting multifunctional protein (AIMP)1, AIMP2, and AIMP3. The evolutionary origin of the MARS is unclear, as is the significance of the inclusion of only nine of 20 tRNA synthetases. Eight of the nine amino acids corresponding to ARSs of the MARS are derived from two citric acid cycle intermediates, α-ketoglutatrate and oxaloacetate. We propose that the metabolic link with the citric acid cycle, the appearance of scaffolding proteins AIMP2 and AIMP3, and the subsequent disappearance of the glyoxylate cycle, together facilitated the origin of the MARS in a common ancestor of metazoans and choanoflagellates.
Collapse
|
26
|
Koehler C, Round A, Simader H, Suck D, Svergun D. Quaternary structure of the yeast Arc1p-aminoacyl-tRNA synthetase complex in solution and its compaction upon binding of tRNAs. Nucleic Acids Res 2013; 41:667-76. [PMID: 23161686 PMCID: PMC3592460 DOI: 10.1093/nar/gks1072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 11/16/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.
Collapse
MESH Headings
- Electrophoretic Mobility Shift Assay
- Glutamate-tRNA Ligase/chemistry
- Glutamate-tRNA Ligase/metabolism
- Methionine-tRNA Ligase/chemistry
- Methionine-tRNA Ligase/metabolism
- Models, Molecular
- Protein Structure, Tertiary
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Scattering, Small Angle
- X-Ray Diffraction
Collapse
Affiliation(s)
- Christine Koehler
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Adam Round
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Hannes Simader
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dietrich Suck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| | - Dmitri Svergun
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany, EMBL UVHCI, Grenoble, Cedex 9, 38042, France, Proteros Biostructure, Martinsried-München, 82152 and EMBL Outstation Hamburg, c/o/DESY, European Molecular Biology Laboratory, Hamburg, 22603, Germany
| |
Collapse
|
27
|
Wiltrout E, Goodenbour JM, Fréchin M, Pan T. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:10494-506. [PMID: 22941646 PMCID: PMC3488245 DOI: 10.1093/nar/gks805] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accurate transfer RNA (tRNA) aminoacylation by aminoacyl-tRNA synthetases controls translational fidelity. Although tRNA synthetases are generally highly accurate, recent results show that the methionyl-tRNA synthetase (MetRS) is an exception. MetRS readily misacylates non-methionyl tRNAs at frequencies of up to 10% in mammalian cells; such mismethionylation may serve a beneficial role for cells to protect their own proteins against oxidative damage. The Escherichia coli MetRS mismethionylates two E. coli tRNA species in vitro, and these two tRNAs contain identity elements for mismethionylation. Here we investigate tRNA mismethionylation in Saccharomyces cerevisiae. tRNA mismethionylation occurs at a similar extent in vivo as in mammalian cells. Both cognate and mismethionylated tRNAs have similar turnover kinetics upon cycloheximide treatment. We identify specific arginine/lysine to methionine-substituted peptides in proteomic mass spectrometry, indicating that mismethionylated tRNAs are used in translation. The yeast MetRS is part of a complex containing the anchoring protein Arc1p and the glutamyl-tRNA synthetase (GluRS). The recombinant Arc1p–MetRS–GluRS complex binds and mismethionylates many tRNA species in vitro. Our results indicate that the yeast MetRS is responsible for extensive misacylation of non-methionyl tRNAs, and mismethionylation also occurs in this evolutionary branch.
Collapse
Affiliation(s)
- Elizabeth Wiltrout
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
28
|
Raina M, Elgamal S, Santangelo TJ, Ibba M. Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis. FEBS Lett 2012; 586:2232-8. [PMID: 22683511 DOI: 10.1016/j.febslet.2012.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/12/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
Abstract
In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyl-tRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential to increase translation efficiency by limiting substrate diffusion away from the ribosome, thus facilitating rapid recycling of tRNAs.
Collapse
Affiliation(s)
- Medha Raina
- Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
29
|
Kottom TJ, Limper AH. Substrate analysis of the Pneumocystis carinii protein kinases PcCbk1 and PcSte20 using yeast proteome microarrays provides a novel method for Pneumocystis signalling biology. Yeast 2011; 28:707-19. [PMID: 21905091 DOI: 10.1002/yea.1900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 07/14/2011] [Accepted: 08/04/2011] [Indexed: 11/08/2022] Open
Abstract
Pneumocystis carinii (Pc) undergoes morphological transitions between cysts and trophic forms. We have previously described two Pc serine/threonine kinases, termed PcCbk1 and PcSte20, with PcSte20 belonging to a family of kinases involved in yeast mating, while PcCbk1 is a member of a group of protein kinases involved in regulation of cell cycle, shape, and proliferation. As Pc remains genetically intractable, knowledge on specific substrates phosphorylated by these kinases remains limited. Utilizing the phylogenetic relatedness of Pc to Saccharomyces cerevisiae, we interrogated a yeast proteome microarray containing >4000 purified protein based peptides, leading to the identification of 18 potential PcCbk1 and 15 PcSte20 substrates (Z-score > 3.0). A number of these potential protein substrates are involved in bud site selection, polarized growth, and response to mating α factor and pseudohyphal and invasive growth. Full-length open reading frames suggested by the PcCbk1 and PcSte20 protoarrays were amplified and expressed. These five proteins were used as substrates for PcCbk1 or PcSte20, with each being highly phosphorylated by the respective kinase. Finally, to demonstrate the utility of this method to identify novel PcCbk1 and PcSte20 substrates, we analysed DNA sequence data from the partially complete Pc genome database and detected partial sequence information of potential PcCbk1 kinase substrates PcPxl1 and PcInt1. We additionally identified the potential PcSte20 kinase substrate PcBdf2. Full-length Pc substrates were cloned and expressed in yeast, and shown to be phosphorylated by the respective Pc kinases. In conclusion, the yeast protein microarray represents a novel crossover technique for identifying unique potential Pc kinase substrates.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Department of Medicine and Biochemistry, 8-24 Stabile, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
30
|
Karanasios E, Simos G. Building arks for tRNA: Structure and function of the Arc1p family of non-catalytic tRNA-binding proteins. FEBS Lett 2010; 584:3842-9. [DOI: 10.1016/j.febslet.2010.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/14/2010] [Accepted: 08/16/2010] [Indexed: 11/16/2022]
|
31
|
Chiu WC, Chang CP, Wen WL, Wang SW, Wang CC. Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol 2010; 27:1415-24. [PMID: 20106903 DOI: 10.1093/molbev/msq025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies showed that VAS1 of Saccharomyces cerevisiae encodes both cytosolic and mitochondrial forms of valyl-tRNA synthetase (ValRS) through alternative initiation of translation. We show herein that except for Schizosaccharomyces pombe, all yeast species studied contained a single ValRS gene encoding both forms, and all of the mature protein forms deduced from those genes possessed an N-terminal appended domain (Ad) that was absent from their bacterial relatives. In contrast, S. pombe contained two distinct nuclear ValRS genes, one encoding the mitochondrial form and the other its cytosolic counterpart. Although the cytosolic form closely resembles other yeast ValRS sequences (approximately 60% identity), the mitochondrial form exhibits significant divergence from others (approximately 35% identity). Both genes are active and essential for the survival of the yeast. Most conspicuously, the mitochondrial form lacks the characteristic Ad. A phylogenetic analysis further suggested that both forms of S. pombe ValRS are of mitochondrial origin, and the mitochondrial form is ancestral to the cytoplasmic form.
Collapse
Affiliation(s)
- Wen-Chih Chiu
- Department of Life Science, National Central University, Jung-li, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Guo M, Schimmel P, Yang XL. Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 2009; 584:434-42. [PMID: 19932696 DOI: 10.1016/j.febslet.2009.11.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 02/06/2023]
Abstract
Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.
Collapse
Affiliation(s)
- Min Guo
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
33
|
Frechin M, Kern D, Martin RP, Becker HD, Senger B. Arc1p: Anchoring, routing, coordinating. FEBS Lett 2009; 584:427-33. [DOI: 10.1016/j.febslet.2009.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
34
|
Chiu WC, Chang CP, Wang CC. Evolutionary basis of converting a bacterial tRNA synthetase into a yeast cytoplasmic or mitochondrial enzyme. J Biol Chem 2009; 284:23954-60. [PMID: 19574213 DOI: 10.1074/jbc.m109.031047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies showed that cytoplasmic and mitochondrial forms of yeast valyl-tRNA synthetase (ValRS) are specified by the VAS1 gene through alternative initiation of translation. Sequence comparison suggests that the yeast cytoplasmic (or mature mitochondrial) ValRS contains an N-terminal appendage that acts in cis as a nonspecific tRNA-binding domain (TRBD) and is absent from its bacterial relatives. We show here that Escherichia coli ValRS can substitute for the mitochondrial and cytoplasmic functions of VAS1 by fusion of a mitochondrial targeting signal and a TRBD, respectively. In addition, the bacterial ValRS gene can be converted into a dual functional yeast gene encoding both cytoplasmic and mitochondrial activities by fusion of a DNA sequence specifying both the mitochondrial targeting signal and TRBD. In vitro assays suggested that fusion of a nonspecific TRBD to the bacterial enzyme significantly enhanced its yeast tRNA-binding and aminoacylation activities. These results not only underscore the necessity of retaining a TRBD for functioning of a tRNA synthetase in yeast cytoplasm, but also provide insights into the evolution of tRNA synthetase genes.
Collapse
Affiliation(s)
- Wen-Chih Chiu
- Department of Life Science, National Central University, Jung-li 32001, Taiwan
| | | | | |
Collapse
|
35
|
Chang CP, Lin G, Chen SJ, Chiu WC, Chen WH, Wang CC. Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 2008; 283:30699-706. [PMID: 18755686 DOI: 10.1074/jbc.m805339200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies showed that valyl-tRNA synthetase of Saccharomyces cerevisiae contains an N-terminal polypeptide extension of 97 residues, which is absent from its bacterial relatives, but is conserved in its mammalian homologues. We showed herein that this appended domain and its human counterpart are both nonspecific tRNA-binding domains (K(d) approximately 0.5 microm). Deletion of the appended domain from the yeast enzyme severely impaired its tRNA binding, aminoacylation, and complementation activities. This N-domain-deleted yeast valyl-tRNA synthetase mutant could be rescued by fusion of the equivalent domain from its human homologue. Moreover, fusion of the N-domain of the yeast enzyme or its human counterpart to Escherichia coli glutaminyl-tRNA synthetase enabled the otherwise "inactive" prokaryotic enzyme to function as a yeast enzyme in vivo. Different from the native yeast enzyme, which showed different affinities toward mixed tRNA populations, the fusion enzyme exhibited similar binding affinities for all yeast tRNAs. These results not only underscore the significance of nonspecific tRNA binding in aminoacylation, but also provide insights into the mechanism of the formation of aminoacyl-tRNAs.
Collapse
Affiliation(s)
- Chia-Pei Chang
- Department of Life Science, National Central University, Jung-li, 32001 Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Incorporation of the Arc1p tRNA-binding domain to the catalytic core of MetRS can functionally replace the yeast Arc1p-MetRS complex. J Mol Biol 2008; 381:763-71. [PMID: 18598703 DOI: 10.1016/j.jmb.2008.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/23/2022]
Abstract
The catalytic core of methionyl-tRNA synthetase (MetRS) is conserved among all life kingdoms but, depending on species origin, is often linked to non-catalytic domains appended to its N- or C-terminus. These domains usually contribute to protein-protein or protein-tRNA interactions but their exact biological role and evolutionary purpose is poorly understood. Yeast MetRS contains an N-terminal appendix that mediates its interaction with the N-terminal part of Arc1p. Association with Arc1p controls the subcellular distribution of MetRS. Furthermore, the C-terminal part of Arc1p harbors a conserved tRNA-binding domain (TRBD) required for the Arc1p-dependent stimulation of the catalytic activity of MetRS. The same TRBD is found directly fused to catalytic domains of plant and nematode MetRS as well as human tyrosyl-tRNA synthetase. To investigate the purpose of Arc1p-MetRS complex formation in yeast, we tested the ability of TRBD to assist the function of MetRS independently of Arc1p. We attached the TRBD directly to the C-terminus of the MetRS catalytic core (MC) by constructing the chimeric protein MC-TRBD. The effect of MC-TRBD expression on yeast cell growth as well as its localization and in vitro aminoacylation activity were analyzed and compared to that of MC alone or wild-type MetRS, both in the absence or presence of Arc1p. We show that MC-TRBD exhibits improved enzymatic activity and can effectively substitute the MetRS-Arc1p binary complex in vivo. Moreover, MC-TRBD, being exclusively cytoplasmic, also mimics the MetRS-Arc1p complex in terms of subcellular localization. Our results suggest that the sole role of the N-terminal appended domain of yeast MetRS is to mediate the indirect association with the TRBD, which, nevertheless, can also function effectively in vivo when directly fused to the catalytic MetRS core.
Collapse
|
37
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
38
|
Guimarães RC, Moreira CHC, de Farias ST. A self-referential model for the formation of the genetic code. Theory Biosci 2008; 127:249-70. [PMID: 18493811 DOI: 10.1007/s12064-008-0043-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
A model for the formation of the genetic code is presented where protein synthesis is directed initially by tRNA dimers. Proteins that are resistant to degradation and efficient RNA-binders protect the RNAs. Replication becomes elongational producing poly-tRNAs from which the mRNAs and ribosomes are derived. Attributions are successively fixed to tRNAs paired through the perfect palindromic anticodons, with the same bases at the extremities (5'ANA: UNU 3'; GNG: CNC; principal dinucleotides, pDiN). The 5' degeneracy is then developed. The first pairs to be encoded correspond to the hydropathy correlation outliers (Gly-CC: Pro-GG and Ser-GA: Ser-CU) and to the sector of homogeneous pDiN, composed by two pyrimidines or two purines. These amino acids are preferred in the N-ends of proteins, stabilizers of proteins against catabolism and strong RNA-binders. The next pairs complete the sector of homogeneous pDiN (Asp, Glu-UC: Leu-AG and Asn, Lys-UU: Phe-AA). This set of nine amino acids forms the protein cores with the predominant aperiodic conformation. Next enter the pairs with mixed pDiN (one purine and one pyrimidine), the RY attributions composing the protein N-ends and the YR attributions the C-ends. The last pair contains the main punctuation signs (Ile, Met, iMet-AU: Tyr, Stop-UA). The model indicates that genetic information emerged during the process of formation of the coding/decoding system and that genes were defined by the proteins. Stable proteins constructed the nucleoprotein system by binding to the RNAs that produced them. In this circular rationale, genes are memories in a metabolic system for production of proteins that stabilize it. The simplicity and the highly deterministic character of the process suggest that the Last Universal Common Ancestor populations could be composed, in early stages, of lineages bearing similar genetic codes.
Collapse
Affiliation(s)
- Romeu Cardoso Guimarães
- Dept. Biologia Geral, Inst. Ciências Biológicas, Univ. Federal de Minas Gerais, Belo Horizonte, MG , 31270.901, Brazil.
| | | | | |
Collapse
|
39
|
Karanasios E, Simader H, Panayotou G, Suck D, Simos G. Molecular Determinants of the Yeast Arc1p–Aminoacyl-tRNA Synthetase Complex Assembly. J Mol Biol 2007; 374:1077-90. [DOI: 10.1016/j.jmb.2007.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/29/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
|
40
|
Abstract
The transport of RNA molecules from the nucleus to the cytoplasm is fundamental for gene expression. The different RNA species that are produced in the nucleus are exported through the nuclear pore complexes via mobile export receptors. Small RNAs (such as tRNAs and microRNAs) follow relatively simple export routes by binding directly to export receptors. Large RNAs (such as ribosomal RNAs and mRNAs) assemble into complicated ribonucleoprotein (RNP) particles and recruit their exporters via class-specific adaptor proteins. Export of mRNAs is unique as it is extensively coupled to transcription (in yeast) and splicing (in metazoa). Understanding the mechanisms that connect RNP formation with export is a major challenge in the field.
Collapse
Affiliation(s)
- Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
41
|
Godinic V, Mocibob M, Rocak S, Ibba M, Weygand-Durasevic I. Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser). FEBS J 2007; 274:2788-99. [PMID: 17451428 DOI: 10.1111/j.1742-4658.2007.05812.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The seryl-tRNA synthetase from Saccharomyces cerevisiae interacts with the peroxisome biogenesis-related factor Pex21p. Several deletion mutants of seryl-tRNA synthetase were constructed and inspected for their ability to interact with Pex21p in a yeast two-hybrid assay, allowing mapping of the synthetase domain required for complex assembly. Deletion of the 13 C-terminal amino acids abolished Pex21p binding to seryl-tRNA synthetase. The catalytic parameters of purified truncated seryl-tRNA synthetase, determined in the serylation reaction, were found to be almost identical to those of the native enzyme. In vivo loss of interaction with Pex21p was confirmed in vitro by coaffinity purification. These data indicate that the C-terminally appended domain of yeast seryl-tRNA synthetase does not participate in substrate binding, but instead is required for association with Pex21p. We further determined that Pex21p does not directly bind tRNA, and nor does it possess a tRNA-binding motif, but it instead participates in the formation of a specific ternary complex with seryl-tRNA synthetase and tRNA(Ser), strengthening the interaction of seryl-tRNA synthetase with its cognate tRNA(Ser).
Collapse
Affiliation(s)
- Vlatka Godinic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
42
|
Praetorius-Ibba M, Hausmann CD, Paras M, Rogers TE, Ibba M. Functional association between three archaeal aminoacyl-tRNA synthetases. J Biol Chem 2006; 282:3680-7. [PMID: 17158871 DOI: 10.1074/jbc.m609988200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are responsible for attaching amino acids to their cognate tRNAs during protein synthesis. In eukaryotes aaRSs are commonly found in multi-enzyme complexes, although the role of these complexes is still not completely clear. Associations between aaRSs have also been reported in archaea, including a complex between prolyl-(ProRS) and leucyl-tRNA synthetases (LeuRS) in Methanothermobacter thermautotrophicus that enhances tRNA(Pro) aminoacylation. Yeast two-hybrid screens suggested that lysyl-tRNA synthetase (LysRS) also associates with LeuRS in M. thermautotrophicus. Co-purification experiments confirmed that LeuRS, LysRS, and ProRS associate in cell-free extracts. LeuRS bound LysRS and ProRS with a comparable K(D) of about 0.3-0.9 microm, further supporting the formation of a stable multi-synthetase complex. The steady-state kinetics of aminoacylation by LysRS indicated that LeuRS specifically reduced the Km for tRNA(Lys) over 3-fold, with no additional change seen upon the addition of ProRS. No significant changes in aminoacylation by LeuRS or ProRS were observed upon the addition of LysRS. These findings, together with earlier data, indicate the existence of a functional complex of three aminoacyl-tRNA synthetases in archaea in which LeuRS improves the catalytic efficiency of tRNA aminoacylation by both LysRS and ProRS.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA.
| | | | | | | | | |
Collapse
|
43
|
Golinelli-Cohen MP, Mirande M. Arc1p is required for cytoplasmic confinement of synthetases and tRNA. Mol Cell Biochem 2006; 300:47-59. [PMID: 17131041 DOI: 10.1007/s11010-006-9367-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/25/2006] [Indexed: 02/07/2023]
Abstract
In yeast, Arc1p interacts with ScMetRS and ScGluRS and operates as a tRNA-Interacting Factor (tIF) in trans of these two synthetases. Its N-terminal domain (N-Arc1p) binds the two synthetases and its C-terminal domain is an EMAPII-like domain organized around an OB-fold-based tIF. ARC1 is not an essential gene but its deletion (arc1- cells) is accompanied by a growth retardation phenotype. Here, we show that expression of N-Arc1p or of C-Arc1p alone palliates the growth defect of arc1- cells, and that bacterial Trbp111 or human p43, two proteins containing EMAPII-like domains, also improve the growth of an arc1- strain. The synthetic lethality of an arc1-los1- strain can be complemented with either ARC1 or LOS1. Expression of N-Arc1p or C-Arc1p alone does not complement an arc1-los1- phenotype, but coexpression of the two domains does. Our data demonstrate that Trbp111 or p43 may replace C-Arc1p to complement an arc1-los1- strain. The two functional domains of Arc1p (N-Arc1p and C-Arc1p) are required to get rid of the synthetic lethal phenotype but do not need to be physically linked. To get some clues to the discrete functions of N-Arc1p and C-Arc1p, we targeted ScMetRS or tIF domains to the nuclear compartment and analyzed their cellular localization by using GFP fusions, and their ability to sustain growth. Our results are consistent with a model according to which Arc1p is a bifunctional protein involved in the subcellular localization of ScMetRS and ScGluRS via its N-terminal domain and of tRNA via its C-terminal domain.
Collapse
Affiliation(s)
- Marie-Pierre Golinelli-Cohen
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, Gif-sur-Yvette 91190, France
| | | |
Collapse
|
44
|
van Horssen R, Eggermont AMM, ten Hagen TLM. Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev 2006; 17:339-48. [PMID: 16945568 DOI: 10.1016/j.cytogfr.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endothelial monocyte-activating polypeptide-II (EMAP-II) is a pro-inflammatory cytokine with anti-angiogenic properties. Its precursor, proEMAP, is identical to the p43 auxiliary component of the tRNA multisynthetase complex and therefore involved in protein translation. Although most of the activities have been ascribed to the active form EMAP-II, also p43 has reported cytokine properties. ProEMAP/p43 and EMAP-II act on many levels and on many cell types including endothelial cells, immune cells and fibroblasts. In this review we summarize all available data on isolation, expression and functions of EMAP-II both in physiological processes as well as in pathological settings, like cancer. We also discuss the different reported mechanisms for processing of proEMAP/p43 into EMAP-II. Finally, we speculate on the possible applications of this cytokine for (cancer) therapy.
Collapse
Affiliation(s)
- Remco van Horssen
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus University MC - Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
45
|
Simader H, Hothorn M, Köhler C, Basquin J, Simos G, Suck D. Structural basis of yeast aminoacyl-tRNA synthetase complex formation revealed by crystal structures of two binary sub-complexes. Nucleic Acids Res 2006; 34:3968-79. [PMID: 16914447 PMCID: PMC1557820 DOI: 10.1093/nar/gkl560] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The yeast aminoacyl-tRNA synthetase (aaRS) complex is formed by the methionyl- and glutamyl-tRNA synthetases (MetRS and GluRS, respectively) and the tRNA aminoacylation cofactor Arc1p. It is considered an evolutionary intermediate between prokaryotic aaRS and the multi- aaRS complex found in higher eukaryotes. While a wealth of structural information is available on the enzymatic domains of single aaRS, insight into complex formation between eukaryotic aaRS and associated protein cofactors is missing. Here we report crystal structures of the binary complexes between the interacting domains of Arc1p and MetRS as well as those of Arc1p and GluRS at resolutions of 2.2 and 2.05 Å, respectively. The data provide a complete structural model for ternary complex formation between the interacting domains of MetRS, GluRS and Arc1p. The structures reveal that all three domains adopt a glutathione S-transferase (GST)-like fold and that simultaneous interaction of Arc1p with GluRS and MetRS is mediated by the use of a novel interface in addition to a classical GST dimerization interaction. The results demonstrate a novel role for this fold as a heteromerization domain specific to eukaryotic aaRS, associated proteins and protein translation elongation factors.
Collapse
Affiliation(s)
| | | | | | | | - George Simos
- Department of Medicine, University of Thessaly22 Papakiriazi Street, Larissa, 41222, Greece
| | - Dietrich Suck
- To whom correspondence should be addressed. Tel: 0049 6221 387307; Fax: 0049 6221 387306;
| |
Collapse
|
46
|
Simader H, Suck D. Expression, purification, crystallization and preliminary phasing of the heteromerization domain of the tRNA-export and aminoacylation cofactor Arc1p from yeast. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:346-9. [PMID: 16582481 PMCID: PMC2222566 DOI: 10.1107/s1744309106005823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 02/16/2006] [Indexed: 11/11/2022]
Abstract
Eukaryotic aminoacyl-tRNA synthetases (aaRSs) must be integrated into an efficient tRNA-export and shuttling machinery. This is reflected by the presence of additional protein-protein interaction domains and a correspondingly higher degree of complex formation in eukaryotic aaRSs. However, the structural basis of interaction between eukaryotic aaRSs and associated protein cofactors has remained elusive. The N-terminal heteromerization domain of the tRNA aminoacylation and export cofactor Arc1p has been cloned from yeast, expressed and purified. Crystals have been obtained belonging to space group C2, with unit-cell parameters a = 222.32, b = 89.46, c = 126.79 angstroms, beta = 99.39 degrees. Calculated Matthews coefficients are compatible with the presence of 10-25 monomers in the asymmetric unit. A complete multiple-wavelength anomalous dispersion data set has been collected from a selenomethionine-substituted crystal at 2.8 angstroms resolution. Preliminary phasing reveals the presence of 20 monomers organized in five tetramers per asymmetric unit.
Collapse
Affiliation(s)
- Hannes Simader
- Structural and Computational Research Program, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Dietrich Suck
- Structural and Computational Research Program, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
47
|
Park SG, Ewalt KL, Kim S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem Sci 2005; 30:569-74. [PMID: 16125937 DOI: 10.1016/j.tibs.2005.08.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/13/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that join amino acids to tRNAs, thereby linking the genetic code to specific amino acids. Once considered a class of 'housekeeping' enzymes, ARSs are now known to participate in a wide variety of functions, including transcription, translation, splicing, inflammation, angiogenesis and apoptosis. Three nonenzymatic proteins--ARS-interacting multi-functional proteins (AIMPs)--associate with ARSs in a multi-synthetase complex of higher eukaryotes. Similarly to ARSs, AIMPs have novel functions unrelated to their support role in protein synthesis, acting as a cytokine to control angiogenesis, immune response and wound repair, and as a crucial regulator for cell proliferation and DNA repair. Evaluation of the functional roles of individual ARSs and AIMPs might help to elucidate why these proteins as a whole contribute such varied functions and interactions in complex systems.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
48
|
Wolfe CL, Warrington JA, Treadwell L, Norcum MT. A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins. J Biol Chem 2005; 280:38870-8. [PMID: 16169847 DOI: 10.1074/jbc.m502759200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has become evident that the process of protein synthesis is performed by many cellular polypeptides acting in concert within the structural confines of protein complexes. In multicellular eukaryotes, one of these assemblies is a multienzyme complex composed of eight proteins that have aminoacyl-tRNA synthetase activities as well as three non-synthetase proteins (p43, p38, and p18) with diverse functions. This study uses electron microscopy and three-dimensional reconstruction to explore the arrangement of proteins and tRNA substrates within this "core" multisynthetase complex. Binding of unfractionated tRNA establishes that these molecules are widely distributed on the exterior of the structure. Binding of gold-labeled tRNA(Leu) places leucyl-tRNA synthetase and the bifunctional glutamyl-/prolyl-tRNA synthetase at the base of this asymmetric "V"-shaped particle. A stable cell line has been produced that incorporates hexahistidine-labeled p43 into the multisynthetase complex. Using a gold-labeled nickel-nitrilotriacetic acid probe, the polypeptides of the p43 dimer have been located along one face of the particle. The results of this and previous studies are combined into an initial three-dimensional working model of the multisynthetase complex. This is the first conceptualization of how the protein constituents and tRNA substrates are arrayed within the structural confines of this multiprotein assembly.
Collapse
Affiliation(s)
- Cindy L Wolfe
- Department of Biology, Tougaloo College, Tougaloo, Mississippi 39174, USA
| | | | | | | |
Collapse
|
49
|
Praetorius-Ibba M, Rogers TE, Samson R, Kelman Z, Ibba M. Association between Archaeal prolyl- and leucyl-tRNA synthetases enhances tRNA(Pro) aminoacylation. J Biol Chem 2005; 280:26099-104. [PMID: 15917221 PMCID: PMC1242193 DOI: 10.1074/jbc.m503539200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been suggested in some Archaea. To investigate interactions involving aminoacyl-tRNA synthetases in Archaea, we undertook a yeast two-hybrid screen for interactions between Methanothermobacter thermautotrophicus proteins using prolyl-tRNA synthetase (ProRS) as the bait. Interacting proteins identified included components of methanogenesis, protein-modifying factors, and leucyl-tRNA synthetase (LeuRS). The association of ProRS with LeuRS was confirmed in vitro by native gel electrophoresis and size exclusion chromatography. Determination of the steady-state kinetics of tRNA(Pro) charging showed that the catalytic efficiency (k(cat)/K(m)) of ProRS increased 5-fold in the complex with LeuRS compared with the free enzyme, whereas the K(m) for proline was unchanged. No significant changes in the steady-state kinetics of LeuRS aminoacylation were observed upon the addition of ProRS. These findings indicate that ProRS and LeuRS associate in M. thermautotrophicus and suggest that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA.
| | | | | | | | | |
Collapse
|
50
|
Lee SW, Cho BH, Park SG, Kim S. Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 2005; 117:3725-34. [PMID: 15286174 DOI: 10.1242/jcs.01342] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although aminoacyl-tRNA synthetases (ARSs) are housekeeping enzymes essential for protein synthesis, they can play non-catalytic roles in diverse biological processes. Some ARSs are capable of forming complexes with each other and additional proteins. This characteristic is most pronounced in mammals, which produce a macromolecular complex comprising nine different ARSs and three additional factors: p43, p38 and p18. We have been aware of the existence of this complex for a long time, but its structure and function have not been well understood. The only apparent distinction between the complex-forming ARSs and those that do not form complexes is their ability to interact with the three non-enzymatic factors. These factors are required not only for the catalytic activity and stability of the associated ARSs, such as isoleucyl-, methionyl-, and arginyl-tRNA synthetase, but also for diverse signal transduction pathways. They may thus have joined the ARS community to coordinate protein synthesis with other biological processes.
Collapse
Affiliation(s)
- Sang Won Lee
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|