1
|
Hong L, Ni M, Xue F, Jiang T, Wu X, Li C, Liang S, Chen T, Luo C, Wu Q. The Role of HDAC3 in Pulmonary Diseases. Lung 2025; 203:47. [PMID: 40097842 DOI: 10.1007/s00408-025-00798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
Histone deacetylases (HDACs), a class of enzymes involved in epigenetic modifications, play a pivotal role in modulating chromatin structure and gene expression. Among these, histone deacetylase 3 (HDAC3) has emerged as a key regulator in diverse cellular pathophysiological processes. The remarkable therapeutic potential of HDAC inhibitors in lung cancer has intensified research into the role of HDAC3 in pulmonary diseases. Through deacetylating histones and non-histone proteins, HDAC3 has been increasingly recognized for its critical involvement in regulating inflammatory responses, fibrotic processes, and oncogenic signaling pathways, positioning it as a compelling therapeutic target. This review systematically examines the structural and functional features of HDAC3 and discusses its multifaceted contributions to pulmonary pathologies, including lung injury, pulmonary fibrosis, and lung cancer. Additionally, we critically evaluate advances in HDAC inhibitor-based therapies for lung cancer, with emphasis on the development of HDAC3-targeted therapies. As a promising therapeutic target for pulmonary diseases, HDAC3 needs to be further investigated to elucidate its regulatory mechanisms and facilitate the development of selective inhibitors for clinical translation.
Collapse
Affiliation(s)
- Leyu Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Ming Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Fei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Xuanpeng Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Chenxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Shuhao Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Tianhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Chao Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Yan Ta West Road No.277, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
2
|
Yang J, Yao Y, Fan S, Li X. USP9X PROMOTES LPS-INDUCED FIBROBLAST CELL APOPTOSIS, INFLAMMATION, AND OXIDATIVE STRESS BY REGULATION OF TBL1XR1 DEUBIQUITINATION. Shock 2025; 63:210-216. [PMID: 39841820 DOI: 10.1097/shk.0000000000002442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
ABSTRACT Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation. 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and 5-ethynyl-2'-deoxyuridine (EdU) assay were performed to examine the proliferation of LPS-treated WI-38 cells. Flow cytometry analysis was conducted to detect LPS-treated WI-38 cell apoptosis. ELISA kits were utilized to determine the concentrations of inflammatory factors (IL-1β and TNF-α). Superoxide dismutase activity and reactive oxygen species level were examined with related kits. Ubibrowser (http://ubibrowser.bio-it.cn/ubibrowser/), ubiquitination assay, and co-immunoprecipitation assay demonstrated the interaction between USP9X and transducin β-like 1X related protein 1 (TBL1XR1). qRT-PCR assay and western blot assay were manipulated to determine the expression of USP9X and TBL1XR1. TBL1XR1 and USP9X knockdown experiments were conducted to explore their functions on LPS-induced WI-38 cell injury and inflammation. Results: TBL1XR1 expression was upregulated in LPS-treated WI-38 cells. TBL1XR1 knockdown promoted cell proliferation and repressed apoptosis, inflammation, and oxidative stress in LPS-treated WI-38 cells. Moreover, USP9X deubiquitinated TBL1XR1 to regulate TBL1XR1 expression. USP9X knockdown restored the effects of LPS on WI-38 cell proliferation, apoptosis, inflammation, and oxidative stress, but these effects of USP9X knockdown were further abolished by TBL1XR1 overexpression. In addition, USP9X promoted the NF-κB signaling pathway by the deubiquitination of TBL1XR1. Conclusion: USP9X promoted the apoptosis, inflammation, and oxidative stress of LPS-stimulated WI-38 cells through the deubiquitination of TBL1XR1.
Collapse
Affiliation(s)
- Juan Yang
- Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yingying Yao
- Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Shuo Fan
- Department of Emergency and Intensive Care, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaoyan Li
- Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
3
|
Capaci V, Zanchetta ME, Fontana G, Ammeti D, Bottega R, Faleschini M, Savoia A. Inherited Thrombocytopenia Related Genes: GPS2 Mediates the Interplay Between ANKRD26 and ETV6. Cells 2024; 14:23. [PMID: 39791724 PMCID: PMC11720448 DOI: 10.3390/cells14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Mutations in the genes ANKRD26, RUNX1, and ETV6 cause three clinically overlapping thrombocytopenias characterized by a predisposition to hematological neoplasms. The ANKRD26 gene, which encodes a protein involved in protein-protein interactions, is downregulated by RUNX1 during megakaryopoiesis. Mutations in 5'UTR of ANKRD26, leading to ANKRD26-RT, disrupt this regulation, resulting in the persistent expression of ANKRD26, which leads to impaired platelet biogenesis and an increased risk of leukemia. Although ANKRD26 and ETV6 exhibit inverse expression during megakaryopoiesis, ETV6 does not regulate the ANKRD26 expression. Hypothesizing an interplay between ETV6 and ANKRD26 through in vitro studies, we explored the interactions between the two proteins. In this study, we found that ANKRD26 interacts with ETV6 and retains it in the cytoplasm, phenocopying ETV6-RT-related mutants. We found that GPS2, a component of the NCoR complex, binds both ANKRD26 and ETV6, mediating this interaction. Furthermore, ANKRD26 overexpression deregulates ETV6 transcriptional repression, supporting a common pathogenic mechanism underlying ANKRD26-RT, FPD/AML, and ETV6-RT. Our results unveil a novel ANKRD26-ETV6-GPS2 axis, providing new insights to investigate the molecular mechanism underlying thrombocytopenias with a predisposition to myeloid neoplasms that need to be further characterized.
Collapse
Affiliation(s)
- Valeria Capaci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Melania Eva Zanchetta
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Giorgia Fontana
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Daniele Ammeti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Roberta Bottega
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Michela Faleschini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (M.E.Z.); (G.F.); (D.A.); (R.B.); (M.F.)
| | - Anna Savoia
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
4
|
Yang R, Pray B, Alinari L, Li PK, Cheng X. Design, Synthesis, and Biological Evaluation of Selective TBL1X Degraders. ACS Med Chem Lett 2024; 15:1699-1707. [PMID: 39411529 PMCID: PMC11472461 DOI: 10.1021/acsmedchemlett.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Transducin β-like protein 1 X-linked (TBL1X) is an essential scaffold protein involved in multiple signaling pathways, such as the Wnt/β-catenin pathway, where it protects β-catenin from ubiquitination and proteasomal degradation. Recent studies, however, suggest that TBL1X might modulate Wnt-regulated genes independently of β-catenin in diffuse large B-cell lymphoma (DLBCL). Here, we developed selective TBL1X degraders against DLBCL using the Proteolysis Targeting Chimeras (PROTACs) strategy as a proof-of-concept. Eight PROTACs showed strong cytotoxic activity. Interestingly, N-linked PROTACs exhibited minimal TBL1X degradation, while most O-linked PROTACs significantly reduced TBL1X levels, suggesting the crucial role of the linker attachment site in successful TBL1X degradation. Our mechanistic study revealed that TBL1X degradation induced by TD11 relied on the formation of the ternary complex and was dependent on the proteasome. The TBL1X degraders developed in this study could be a valuable chemical tool for investigating TBL1X-related pathways.
Collapse
Affiliation(s)
- Rui Yang
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Betsy Pray
- Division
of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lapo Alinari
- Division
of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pui Kai Li
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaolin Cheng
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Translational
Data Analytics Institute, The Ohio State
University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Asmamaw MD, He A, Zhang LR, Liu HM, Gao Y. Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer 2024; 1879:189150. [PMID: 38971208 DOI: 10.1016/j.bbcan.2024.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ang He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
6
|
McClarty BM, Rodriguez G, Dong H. Class 1 histone deacetylases differentially modulate memory and synaptic genes in a spatial and temporal manner in aged and APP/PS1 mice. Brain Res 2024; 1837:148951. [PMID: 38642789 PMCID: PMC11182336 DOI: 10.1016/j.brainres.2024.148951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Epigenetics plays a vital role in aging and Alzheimer's disease (AD); however, whether epigenetic alterations during aging can initiate AD and exacerbate AD progression remains unclear. In this study, using 3-, 12- and 18- month-old APP/PS1 mice and age matched WT littermates, we conducted a series of memory tests, measured synapse-related gene expression, class 1 histone deacetylases (HDACs) abundance, and H3K9ac levels at target gene promoters in the hippocampus and prefrontal cortex (PFC). Our results showed impaired recognition and long-term spatial memory in 18-month-old WT mice and impaired recognition, short-term working, and long-term spatial reference memory in 12-and 18- month-old APP/PS1 mice. These memory impairments are associated with changes of synapse-related gene (nr2a, glur1, glur2, psd95) expression, HDAC abundance, and H3K9ac levels; more specifically, increased HDAC2 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during aging and AD progression in the hippocampus. Conversely, increased HDAC3 was associated with synapse-related gene expression changes through modulation of H3K9ac at the gene promoters during AD progression in the PFC. These findings suggest memory impairments in aging and AD may associated with a differential HDAC modulation of synapse-related gene expression in the brain.
Collapse
Affiliation(s)
- Bryan M McClarty
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA.
| |
Collapse
|
7
|
Savage SR, Yi X, Lei JT, Wen B, Zhao H, Liao Y, Jaehnig EJ, Somes LK, Shafer PW, Lee TD, Fu Z, Dou Y, Shi Z, Gao D, Hoyos V, Gao Q, Zhang B. Pan-cancer proteogenomics expands the landscape of therapeutic targets. Cell 2024; 187:4389-4407.e15. [PMID: 38917788 DOI: 10.1016/j.cell.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.
Collapse
Affiliation(s)
- Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongwei Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren K Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul W Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tobie D Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zile Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Valentina Hoyos
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Lu Y, Ma WB, Ren GM, Li YT, Wang T, Zhan YQ, Xiang SS, Chen H, Gao HY, Zhao K, Yu M, Li CY, Yang XM, Yin RH. GPS2 promotes erythroid differentiation in K562 erythroleukemia cells primarily via NCOR1. Int J Hematol 2024; 120:157-166. [PMID: 38814500 DOI: 10.1007/s12185-024-03797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Bing Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ya-Ting Li
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ting Wang
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shen-Si Xiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Miao Yu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiao-Ming Yang
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
9
|
Lee SY, Park J, Seo SB. Negative regulation of HDAC3 transcription by histone acetyltransferase TIP60 in colon cancer. Genes Genomics 2024; 46:871-879. [PMID: 38805168 PMCID: PMC11208239 DOI: 10.1007/s13258-024-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Colon cancer is the third most common cancer globally. The expression of histone deacetylase 3 (HDAC3) is upregulated, whereas the expression of tat interactive protein, 60 kDa (TIP60) is downregulated in colon cancer. However, the relationship between HDAC3 and TIP60 in colon cancer has not been clearly elucidated. OBJECTIVE We investigated whether TIP60 could regulate the expression of HDAC3 and suppress colon cancer cell proliferation. METHODS RNA sequencing data (GSE108834) showed that HDAC3 expression was regulated by TIP60. Subsequently, we generated TIP60-knockdown HCT116 cells and examined the expression of HDAC3 by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined the expression pattern of HDAC3 in various cancers using publicly available datasets. The promoter activity of HDAC3 was validated using a dual-luciferase assay, and transcription factors binding to HDAC3 were identified using GeneCards and Promo databases, followed by validation using chromatin immunoprecipitation-quantitative polymerase chain reaction. Cell proliferation and apoptosis were assessed using colony formation assays and fluorescence-activated cell sorting analysis of HCT116 cell lines. RESULTS In response to TIP60 knockdown, the expression level and promoter activity of HDAC3 increased. Conversely, when HDAC3 was downregulated by overexpression of TIP60, proliferation of HCT116 cells was inhibited and apoptosis was promoted. CONCLUSION TIP60 plays a crucial role in the regulation of HDAC3 transcription, thereby influencing cell proliferation and apoptosis in colon cancer. Consequently, TIP60 may function as a tumor suppressor by inhibiting HDAC3 expression in colon cancer cells.
Collapse
Affiliation(s)
- Seong Yun Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Beom Seo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
10
|
Hauck AK, Mehmood R, Carpenter BJ, Frankfurter MT, Tackenberg MC, Inoue SI, Krieg MK, Cassim Bawa FN, Midha MK, Zundell DM, Batmanov K, Lazar MA. Nuclear receptor corepressors non-canonically drive glucocorticoid receptor-dependent activation of hepatic gluconeogenesis. Nat Metab 2024; 6:825-836. [PMID: 38622413 PMCID: PMC11459266 DOI: 10.1038/s42255-024-01029-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Nuclear receptor corepressors (NCoRs) function in multiprotein complexes containing histone deacetylase 3 (HDAC3) to alter transcriptional output primarily through repressive chromatin remodelling at target loci1-5. In the liver, loss of HDAC3 causes a marked hepatosteatosis largely because of de-repression of genes involved in lipid metabolism6,7; however, the individual roles and contribution of other complex members to hepatic and systemic metabolic regulation are unclear. Here we show that adult loss of both NCoR1 and NCoR2 (double knockout (KO)) in hepatocytes phenocopied the hepatomegalic fatty liver phenotype of HDAC3 KO. In addition, double KO livers exhibited a dramatic reduction in glycogen storage and gluconeogenic gene expression that was not observed with hepatic KO of individual NCoRs or HDAC3, resulting in profound fasting hypoglycaemia. This surprising HDAC3-independent activation function of NCoR1 and NCoR2 is due to an unexpected loss of chromatin accessibility on deletion of NCoRs that prevented glucocorticoid receptor binding and stimulatory effect on gluconeogenic genes. These studies reveal an unanticipated, non-canonical activation function of NCoRs that is required for metabolic health.
Collapse
Affiliation(s)
- Amy K Hauck
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rashid Mehmood
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bryce J Carpenter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell T Frankfurter
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Tackenberg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin-Ichi Inoue
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria K Krieg
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fathima N Cassim Bawa
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohit K Midha
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Delaine M Zundell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirill Batmanov
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Du R, Li K, Guo K, Chen Z, Zhao X, Han L, Bian H. Two decades of a protooncogene TBL1XR1: from a transcription modulator to cancer therapeutic target. Front Oncol 2024; 14:1309687. [PMID: 38347836 PMCID: PMC10859502 DOI: 10.3389/fonc.2024.1309687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Transducin beta-like 1X-related protein 1 (TBL1XR1) was discovered two decades ago and was implicated as part of the nuclear transcription corepressor complex. Over the past 20 years, the emerging oncogenic function of TBL1XR1 in cancer development has been discovered. Recent studies have highlighted that the genetic aberrations of TBL1XR1 in cancers, especially in hematologic tumors, are closely associated with tumorigenesis. In solid tumors, TBL1XR1 is proposed to be a promising prognostic biomarker due to the correlation between abnormal expression and clinicopathological parameters. Post-transcriptional and post-translational modification are responsible for the expression and function of TBL1XR1 in cancer. TBL1XR1 exerts its functional role in various processes that involves cell cycle and apoptosis, cell proliferation, resistance to chemotherapy and radiotherapy, cell migration and invasion, stemness and angiogenesis. Multitude of cancer-related signaling cascades like Wnt-β-catenin, PI3K/AKT, ERK, VEGF, NF-κB, STAT3 and gonadal hormone signaling pathways are tightly modulated by TBL1XR1. This review provided a comprehensive overview of TBL1XR1 in tumorigenesis, shedding new light on TBL1XR1 as a promising diagnostic biomarker and druggable target in cancer.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - KeLei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xulin Zhao
- Oncology Department, Nanyang First People’s Hospital, Nan Yang, Henan, China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
12
|
Li J, Zhai Y, Tang M. Integrative function of histone deacetylase 3 in inflammation. Mol Biol Rep 2024; 51:83. [PMID: 38183491 DOI: 10.1007/s11033-023-09077-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 01/08/2024]
Abstract
Inflammation is a complex biological response triggered when an organism encounters internal or external stimuli. These triggers activate various signaling pathways, leading to the release of numerous inflammatory mediators aimed at the affected tissue. Ensuring precision and avoiding the excessive activation, the inflammatory process is subject to tight regulation. Histone deacetylase 3 (HDAC3), a member of class I HDACs family, stands out for its significant role in modulating various inflammatory signaling, including Nuclear Factor kappa B (NF-κB) signaling, Mitogen-activated protein kinase (MAPK) signaling and Janus kinase/signal transduction and activator of transcription (JAK-STAT) signaling. In this review, we illuminate the intricate molecular mechanisms of HDAC3 across these inflammatory pathways. We emphasize its importance in orchestrating a balanced inflammatory response and highlight its promising potential as a therapeutic target.
Collapse
Affiliation(s)
- Junjie Li
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Yiyuan Zhai
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Min Tang
- Institute of Biochemistry and Molecular Biology, Hengyang College of Medicine, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
13
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
14
|
Wu G, Yoshida N, Liu J, Zhang X, Xiong Y, Heavican-Foral TB, Mandato E, Liu H, Nelson GM, Yang L, Chen R, Donovan KA, Jones MK, Roshal M, Zhang Y, Xu R, Nirmal AJ, Jain S, Leahy C, Jones KL, Stevenson KE, Galasso N, Ganesan N, Chang T, Wu WC, Louissaint A, Debaize L, Yoon H, Cin PD, Chan WC, Sui SJH, Ng SY, Feldman AL, Horwitz SM, Adelman K, Fischer ES, Chen CW, Weinstock DM, Brown M. TP63 fusions drive multicomplex enhancer rewiring, lymphomagenesis, and EZH2 dependence. Sci Transl Med 2023; 15:eadi7244. [PMID: 37729434 PMCID: PMC11014717 DOI: 10.1126/scitranslmed.adi7244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)-histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63-rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.
Collapse
Affiliation(s)
- Gongwei Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Noriaki Yoshida
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Jihe Liu
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Xiaoyang Zhang
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Oncological Sciences, Huntsman Cancer
Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yuan Xiong
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tayla B. Heavican-Foral
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Geoffrey M. Nelson
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical
School, Boston, MA 02115, USA
| | - Lu Yang
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Renee Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus K. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Ran Xu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ajit J. Nirmal
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Salvia Jain
- Massachusetts General Hospital Cancer Center, Boston, MA
02114, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen L. Jones
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kristen E. Stevenson
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Natasha Galasso
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Nivetha Ganesan
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Tiffany Chang
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Wen-Chao Wu
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Abner Louissaint
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Pathology, Massachusetts General Hospital,
Boston, MA 02114, USA
| | - Lydie Debaize
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Hojong Yoon
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women’s
Hospital, Boston, MA 02115, USA
| | - Wing C. Chan
- Department of Pathology, City of Hope Medical Center,
Duarte, CA 91010, USA
| | - Shannan J. Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School
of Public Health, Boston, MA 02115, USA
| | - Samuel Y. Ng
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopathology, Mayo Clinic College of
Medicine, Rochester, MN 55905, USA
| | - Andrew L. Feldman
- Current address: Department of Clinical Studies,
Radiation Effects Research Foundation, Hiroshima, 7320815, Japan
| | - Steven M. Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer
Center, New York, NY 10065, USA
| | - Karen Adelman
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Comprehensive
Cancer Center, Monrovia, CA 91016, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard University, Cambridge,
MA 02142, USA
- Current address: Merck Research Laboratories, Boston, MA
02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
15
|
Yu L, Gao Y, Aaron N, Qiang L. A glimpse of the connection between PPARγ and macrophage. Front Pharmacol 2023; 14:1254317. [PMID: 37701041 PMCID: PMC10493289 DOI: 10.3389/fphar.2023.1254317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors are ligand-regulated transcription factors that regulate vast cellular activities and serve as an important class of drug targets. Among them, peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family and have been extensively studied for their roles in metabolism, differentiation, development, and cancer, among others. Recently, there has been considerable interest in understanding and defining the function of PPARs and their agonists in regulating innate and adaptive immune responses and their pharmacological potential in combating chronic inflammatory diseases. In this review, we focus on emerging evidence for the potential role of PPARγ in macrophage biology, which is the prior innate immune executive in metabolic and tissue homeostasis. We also discuss the role of PPARγ as a regulator of macrophage function in inflammatory diseases. Lastly, we discuss the possible application of PPARγ antagonists in metabolic pathologies.
Collapse
Affiliation(s)
- Lexiang Yu
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Yuen Gao
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Nicole Aaron
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, United States
| | - Li Qiang
- Naomi Berrie Diabetes Center, Columbia University, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
16
|
Wu XH, Lin SZ, Liu ZX, Qi YF, Wang WQ, Li JY, Chen QD, Yang LL. A case of West syndrome and global developmental delay in a child with a heterozygous mutation in the TBL1XR1 gene: A case report. Medicine (Baltimore) 2023; 102:e33744. [PMID: 37171308 PMCID: PMC10174347 DOI: 10.1097/md.0000000000033744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND TBL1XR1, also known as IRA1 or TBLR1, encodes a protein that is localized in the nucleus and is expressed in most tissues. TBL1XR1 binds to histones H2B and H4 in vitro and functions in nuclear receptor-mediated transcription. TBL1XR1 is also involved in the regulation of the Wnt-β-catenin signaling pathway. Mutations in the TBL1XR1 gene impair the Wnt-β-catenin signaling pathway's ability to recruit Wnt-responsive element chromatin, affecting brain development. Mutations in this gene cause various clinical phenotypes, including Pierpont syndrome, autism spectrum disorder, speech and motor delays, mental retardation, facial dysmorphism, hypotonia, microcephaly, and hearing impairment. CASE SUMMARY A 5-month-old female child was admitted with "episodic limb tremors for more than 1 month." At the time of admission, the child had recurrent episodes of limb tremors with motor retardation and a partially atypical and hypsarrhythmic video electroencephalogram. It was determined that a heterozygous mutation in the TBL1XR1 gene caused West syndrome and global developmental delay. Recurrent episodes persisted for 6 months following oral treatment with topiramate; the addition of oral treatment with vigabatrin did not show any significant improvement, and the disease continued to recur. The child continued to have recurrent episodes of limb tremors at follow-up until 1 year and 3 months of age. Additionally, she developed poor eye contact and a poor response to name-calling. CONCLUSION We report the case of a child with West syndrome and a global developmental delay caused by a heterozygous mutation in the TBL1XR1 gene. This study adds to our understanding of the clinical phenotype of TBL1XR1 mutations and provides a realistic and reliable basis for clinicians.
Collapse
Affiliation(s)
- Xiao-Hui Wu
- Quanzhou Children's Hospital, Quanzhou, Fujian Province, China
| | - Shuang-Zhu Lin
- Diagnosis and Treatment Center for Children, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Zhen-Xian Liu
- Diagnosis and Treatment Center for Children, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Yang-Fan Qi
- Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Wan-Qi Wang
- Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Jia-Yi Li
- Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Qian-Dui Chen
- Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Lu-Lu Yang
- Emergency Department, The Changchun Hospital of Traditional Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
17
|
Lackner A, Müller M, Gamperl M, Stoeva D, Langmann O, Papuchova H, Roitinger E, Dürnberger G, Imre R, Mechtler K, Latos PA. The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate. Nat Commun 2023; 14:2559. [PMID: 37137875 DOI: 10.1038/s41467-023-38101-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
Placental development relies on coordinated cell fate decisions governed by signalling inputs. However, little is known about how signalling cues are transformed into repressive mechanisms triggering lineage-specific transcriptional signatures. Here, we demonstrate that upon inhibition of the Fgf/Erk pathway in mouse trophoblast stem cells (TSCs), the Ets2 repressor factor (Erf) interacts with the Nuclear Receptor Co-Repressor Complex 1 and 2 (NCoR1/2) and recruits it to key trophoblast genes. Genetic ablation of Erf or Tbl1x (a component of the NCoR1/2 complex) abrogates the Erf/NCoR1/2 interaction. This leads to mis-expression of Erf/NCoR1/2 target genes, resulting in a TSC differentiation defect. Mechanistically, Erf regulates expression of these genes by recruiting the NCoR1/2 complex and decommissioning their H3K27ac-dependent enhancers. Our findings uncover how the Fgf/Erf/NCoR1/2 repressive axis governs cell fate and placental development, providing a paradigm for Fgf-mediated transcriptional control.
Collapse
Affiliation(s)
- Andreas Lackner
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Michael Müller
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Delyana Stoeva
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Olivia Langmann
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Henrieta Papuchova
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | | | | | - Richard Imre
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
18
|
Dai B, Wang F, Wang Y, Zhu J, Li Y, Zhang T, Zhao L, Wang L, Gao W, Li J, Zhu H, Li K, Hu J. Targeting HDAC3 to overcome the resistance to ATRA or arsenic in acute promyelocytic leukemia through ubiquitination and degradation of PML-RARα. Cell Death Differ 2023; 30:1320-1333. [PMID: 36894687 PMCID: PMC10154408 DOI: 10.1038/s41418-023-01139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is driven by the oncoprotein PML-RARα, which recruits corepressor complexes, including histone deacetylases (HDACs), to suppress cell differentiation and promote APL initiation. All-trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) or chemotherapy highly improves the prognosis of APL patients. However, refractoriness to ATRA and ATO may occur, which leads to relapsed disease in a group of patients. Here, we report that HDAC3 was highly expressed in the APL subtype of AML, and the protein level of HDAC3 was positively associated with PML-RARα. Mechanistically, we found that HDAC3 deacetylated PML-RARα at lysine 394, which reduced PIAS1-mediated PML-RARα SUMOylation and subsequent RNF4-induced ubiquitylation. HDAC3 inhibition promoted PML-RARα ubiquitylation and degradation and reduced the expression of PML-RARα in both wild-type and ATRA- or ATO-resistant APL cells. Furthermore, genetic or pharmacological inhibition of HDAC3 induced differentiation, apoptosis, and decreased cellular self-renewal of APL cells, including primary leukemia cells from patients with resistant APL. Using both cell line- and patient-derived xenograft models, we demonstrated that treatment with an HDAC3 inhibitor or combination of ATRA/ATO reduced APL progression. In conclusion, our study identifies the role of HDAC3 as a positive regulator of the PML-RARα oncoprotein by deacetylating PML-RARα and suggests that targeting HDAC3 could be a promising strategy to treat relapsed/refractory APL.
Collapse
Affiliation(s)
- Bo Dai
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Ying Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- Department of Hematology, Tong Ji Hospital, Tong Ji University School of Medicine, No 389 Xincun Road, Shanghai, 200065, China
| | - Jiayan Zhu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Yunxuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Tingting Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Luyao Zhao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Lining Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Wenhui Gao
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Junmin Li
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, and Institute of Hematology, Zhejiang University, Zhejiang, 310003, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China.
| | - Jiong Hu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China.
| |
Collapse
|
19
|
Tanizaki Y, Bao L, Shi YB. Steroid-receptor coactivator complexes in thyroid hormone-regulation of Xenopus metamorphosis. VITAMINS AND HORMONES 2023; 123:483-502. [PMID: 37717995 PMCID: PMC11274430 DOI: 10.1016/bs.vh.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively. By using molecular and genetic approaches, we and others have investigated the role of corepressor or coactivator complexes in TR function during the development of two highly related anuran species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis. Here we will review some of these studies that demonstrate a critical role of coactivator complexes, particularly those containing steroid receptor coactivator (SRC) 3, in regulating metamorphic rate and ensuring the completion of metamorphosis.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
20
|
MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism. Int J Mol Sci 2023; 24:ijms24044218. [PMID: 36835623 PMCID: PMC9966807 DOI: 10.3390/ijms24044218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
DNA methylation, one of the most well-studied epigenetic modifications, is involved in a wide spectrum of biological processes. Epigenetic mechanisms control cellular morphology and function. Such regulatory mechanisms involve histone modifications, chromatin remodeling, DNA methylation, non-coding regulatory RNA molecules, and RNA modifications. One of the most well-studied epigenetic modifications is DNA methylation that plays key roles in development, health, and disease. Our brain is probably the most complex part of our body, with a high level of DNA methylation. A key protein that binds to different types of methylated DNA in the brain is the methyl-CpG binding protein 2 (MeCP2). MeCP2 acts in a dose-dependent manner and its abnormally high or low expression level, deregulation, and/or genetic mutations lead to neurodevelopmental disorders and aberrant brain function. Recently, some of MeCP2-associated neurodevelopmental disorders have emerged as neurometabolic disorders, suggesting a role for MeCP2 in brain metabolism. Of note, MECP2 loss-of-function mutation in Rett Syndrome is reported to cause impairment of glucose and cholesterol metabolism in human patients and/or mouse models of disease. The purpose of this review is to outline the metabolic abnormalities in MeCP2-associated neurodevelopmental disorders that currently have no available cure. We aim to provide an updated overview into the role of metabolic defects associated with MeCP2-mediated cellular function for consideration of future therapeutic strategies.
Collapse
|
21
|
English J, Orofino J, Cederquist CT, Paul I, Li H, Auwerx J, Emili A, Belkina A, Cardamone D, Perissi V. GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity. Mol Metab 2023; 69:101682. [PMID: 36731652 PMCID: PMC9922684 DOI: 10.1016/j.molmet.2023.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2 Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the communication between adipocytes and other stromal cells. METHODS We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKO) mice at the cellular, tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling, via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal cargo after 5 weeks of HFD feeding. RESULTS Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling. Loss of GPS2 results in increased expression of secreted factors promoting a TGFβ-driven fibrotic microenvironment favoring unhealthy tissue remodeling and expansion. CONCLUSIONS Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our study highlights the importance of proper regulation of the 'secretome' released by energetically stressed adipocytes at the onset of obesity. Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional phenotype.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Joseph Orofino
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Carly T. Cederquist
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Indranil Paul
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA.
| | - Anna Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
22
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
23
|
Huang Z, Efthymiadou A, Liang N, Fan R, Treuter E. Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4. Nucleic Acids Res 2023; 51:1067-1086. [PMID: 36610795 PMCID: PMC9943668 DOI: 10.1093/nar/gkac1230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
The Th2 cytokine interleukin 4 (IL4) promotes macrophage differentiation into alternative subtypes and plays important roles in physiology, in metabolic and inflammatory diseases, in cancer and in tissue regeneration. While the regulatory transcription factor networks governing IL4 signaling are already well-characterized, it is currently less understood which transcriptional coregulators are involved and how they operate mechanistically. In this study, we discover that G protein pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex assembled by SMRT and NCOR, represses IL4-dependent enhancer activation in mouse macrophages. Our genome-wide and gene-specific characterization revealed that, instead of directly repressing STAT6, chromatin-bound GPS2 cooperates with SMRT and NCOR to antagonize enhancer activation by lysine demethylase 1A (KDM1A, LSD1). Mechanistically, corepressor depletion increased KDM1A recruitment to enhancers linked to IL4-induced genes, accompanied by demethylation of the repressive histone marks H3K9me2/3 without affecting H3K4me1/2, the classic KDM1A substrates for demethylation in other cellular contexts. This in turn caused enhancer and gene activation already in the absence of IL4/STAT6 and sensitized the STAT6-dependent IL4 responsiveness of macrophages. Thus, our work identified with the antagonistic action of a GPS2-containing corepressor complex and the lysine demethylase KDM1A a hitherto unknown epigenetic corepressor-coactivator switching mechanism that governs alternative macrophage activation.
Collapse
Affiliation(s)
- Zhiqiang Huang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Astradeni Efthymiadou
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Rongrong Fan
- Correspondence may also be addressed to Rongrong Fan. Tel: +46 8 524 81161;
| | - Eckardt Treuter
- To whom correspondence should be addressed. Tel: +46 8 524 81060;
| |
Collapse
|
24
|
Acosta-Martinez M, Cabail MZ. The PI3K/Akt Pathway in Meta-Inflammation. Int J Mol Sci 2022; 23:ijms232315330. [PMID: 36499659 PMCID: PMC9740745 DOI: 10.3390/ijms232315330] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Obesity is a global epidemic representing a serious public health burden as it is a major risk factor for the development of cardiovascular disease, stroke and all-cause mortality. Chronic low-grade systemic inflammation, also known as meta-inflammation, is thought to underly obesity's negative health consequences, which include insulin resistance and the development of type 2 diabetes. Meta-inflammation is characterized by the accumulation of immune cells in adipose tissue, a deregulation in the synthesis and release of adipokines and a pronounced increase in the production of proinflammatory factors. In this state, the infiltration of macrophages and their metabolic activation contributes to complex paracrine and autocrine signaling, which sustains a proinflammatory microenvironment. A key signaling pathway mediating the response of macrophages and adipocytes to a microenvironment of excessive nutrients is the phosphoinositide 3-kinase (PI3K)/Akt pathway. This multifaceted network not only transduces metabolic information but also regulates macrophages' intracellular changes, which are responsible for their phenotypic switch towards a more proinflammatory state. In the present review, we discuss how the crosstalk between macrophages and adipocytes contributes to meta-inflammation and provide an overview on the involvement of the PI3K/Akt signaling pathway, and how its impairment contributes to the development of insulin resistance.
Collapse
Affiliation(s)
- Maricedes Acosta-Martinez
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Zulema Cabail
- Biological Science Department, State University of New York-College at Old Westbury, Old Westbury, NY 11568, USA
- Correspondence:
| |
Collapse
|
25
|
Pray BA, Youssef Y, Alinari L. TBL1X: At the crossroads of transcriptional and posttranscriptional regulation. Exp Hematol 2022; 116:18-25. [PMID: 36206873 PMCID: PMC9929687 DOI: 10.1016/j.exphem.2022.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/02/2023]
Abstract
Over the past 2 decades, the adaptor protein transducin β-like 1 (TBL1X) and its homolog TBL1XR1 have been shown to be upregulated in solid tumors and hematologic malignancies, and their overexpression is associated with poor clinical outcomes. Moreover, dysregulation of the TBL1 family of proteins has been implicated as a key component of oncogenic prosurvival signaling, cancer progression, and metastasis. Herein, we discuss how TBL1X and TBL1XR1 are required for the regulation of major transcriptional programs through the silencing mediator for tetanoid and thyroid hormone receptor (SMRT)/nuclear receptor corepressor (NCOR)/ B cell lymphoma 6 (BCL6) complex, Wnt/β catenin, and NF-κB signaling. We outline the utilization of tegavivint (Iterion Therapeutics), a first-in-class small molecule targeting the N-terminus domain of TBL1, as a novel therapeutic strategy in preclinical models of cancer and clinically. Although most published work has focused on the transcriptional role of TBL1X, we recently showed that in diffuse large B-cell lymphoma (DLBCL), the most common lymphoma subtype, genetic knockdown of TBL1X and treatment with tegavivint resulted in decreased expression of critical (onco)-proteins in a posttranscriptional/β-catenin-independent manner by promoting their proteasomal degradation through a Skp1/Cul1/F-box (SCF)/TBL1X supercomplex and potentially through the regulation of protein synthesis. However, given that TBL1X controls multiple oncogenic signaling pathways in cancer, treatment with tegavivint may ultimately result in drug resistance, providing the rationale for combination strategies. Although many questions related to TBL1X function remain to be answered in lymphoma and other diseases, these data provide a growing body of evidence that TBL1X is a promising therapeutic target in oncology.
Collapse
Affiliation(s)
- Betsy A Pray
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Youssef Youssef
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Lapo Alinari
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH.
| |
Collapse
|
26
|
Zhang H, Gao H, Gu Y, John A, Wei L, Huang M, Yu J, Adeosun AA, Weinshilboum RM, Wang L. 3D CRISPR screen in prostate cancer cells reveals PARP inhibitor sensitization through TBL1XR1-SMC3 interaction. Front Oncol 2022; 12:999302. [PMID: 36523978 PMCID: PMC9746894 DOI: 10.3389/fonc.2022.999302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribose) (PAR) polymerase inhibitors (PARPi) either have been approved or being tested in the clinic for the treatment of a variety of cancers with homologous recombination deficiency (HRD). However, cancer cells can develop resistance to PARPi drugs through various mechanisms, and new biomarkers and combination therapeutic strategies need to be developed to support personalized treatment. In this study, a genome-wide CRISPR screen was performed in a prostate cancer cell line with 3D culture condition which identified novel signals involved in DNA repair pathways. One of these genes, TBL1XR1, regulates sensitivity to PARPi in prostate cancer cells. Mechanistically, we show that TBL1XR1 interacts with and stabilizes SMC3 on chromatin and promotes γH2AX spreading along the chromatin of the cells under DNA replication stress. TBL1XR1-SMC3 double knockdown (knockout) cells have comparable sensitivity to PARPi compared to SMC3 knockdown or TBL1XR1 knockout cells, and more sensitivity than WT cells. Our findings provide new insights into mechanisms underlying response to PARPi or platin compounds in the treatment of malignancies.
Collapse
Affiliation(s)
- Huan Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Huanyao Gao
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Yayun Gu
- School of Medicine, Nantong University, Nantong, China
| | - August John
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Lixuan Wei
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Minhong Huang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Jia Yu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Adeyemi A. Adeosun
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Richard M. Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
27
|
HDAC3 Knockdown Dysregulates Juvenile Hormone and Apoptosis-Related Genes in Helicoverpa armigera. Int J Mol Sci 2022; 23:ijms232314820. [PMID: 36499148 PMCID: PMC9740019 DOI: 10.3390/ijms232314820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Insect development requires genes to be expressed in strict spatiotemporal order. The dynamic regulation of genes involved in insect development is partly orchestrated by the histone acetylation-deacetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although histone deacetylase 3 (HDAC3) is required for mice during early embryonic development, its functions in Helicoverpa armigera (H. armigera) and its potential to be used as a target of insecticides remain unclear. We treated H. armigera with HDAC3 siRNA and RGFP966, a specific inhibitor, examining how the HDAC3 loss-of-function affects growth and development. HDAC3 siRNA and RGFP966 treatment increased mortality at each growth stage and altered metamorphosis, hampering pupation and causing abnormal wing development, reduced egg production, and reduced hatching rate. We believe that the misregulation of key hormone-related genes leads to abnormal pupa development in HDAC3 knockout insects. RNA-seq analysis identified 2788 differentially expressed genes (≥two-fold change; p ≤ 0.05) between siHDAC3- and siNC-treated larvae. Krüppel homolog 1 (Kr-h1), was differentially expressed in HDAC3 knockdown larvae. Pathway-enrichment analysis revealed the significant enrichment of genes involved in the Hippo, MAPK, and Wnt signaling pathways following HDAC3 knockdown. Histone H3K9 acetylation was increased in H. armigera after siHDAC3 treatment. In conclusion, HDAC3 knockdown dysregulated juvenile hormone (JH)-related and apoptosis-related genes in H. armigera. The results showed that the HDAC3 gene is a potential target for fighting H. armigera.
Collapse
|
28
|
Quintero J, Saad NY, Pagnoni SM, Jacquelin DK, Gatica LV, Harper SQ, Rosa AL. The DUX4 protein is a co-repressor of the progesterone and glucocorticoid nuclear receptors. FEBS Lett 2022; 596:2644-2658. [PMID: 35662006 DOI: 10.1002/1873-3468.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/09/2022]
Abstract
DUX4 is a transcription factor required during early embryonic development in placental mammals. In this work, we provide evidence that DUX4 is a co-repressor of nuclear receptors (NRs) of progesterone (PR) and glucocorticoids (GR). The DUX4 C-ter and N-ter regions, including the nuclear localization signals and homeodomain motifs, contribute to the co-repressor activity of DUX4 on PR and GR. Immunoprecipitation studies, using total protein extracts of cells expressing tagged versions of DUX4 and GR, support that these proteins are physically associated. Our studies suggest that DUX4 could modulate gene expression by co-regulating the activity of hormone NRs. This is the first report highlighting a potential endocrine role for DUX4.
Collapse
Affiliation(s)
- Julieta Quintero
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Nizar Y Saad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Daniela K Jacquelin
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Laura V Gatica
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
- Fundación Allende-CONICET, Córdoba, Argentina
| |
Collapse
|
29
|
Richter HJ, Hauck AK, Batmanov K, Inoue SI, So BN, Kim M, Emmett MJ, Cohen RN, Lazar MA. Balanced control of thermogenesis by nuclear receptor corepressors in brown adipose tissue. Proc Natl Acad Sci U S A 2022; 119:e2205276119. [PMID: 35939699 PMCID: PMC9388101 DOI: 10.1073/pnas.2205276119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Brown adipose tissue (BAT) is a key thermogenic organ whose expression of uncoupling protein 1 (UCP1) and ability to maintain body temperature in response to acute cold exposure require histone deacetylase 3 (HDAC3). HDAC3 exists in tight association with nuclear receptor corepressors (NCoRs) NCoR1 and NCoR2 (also known as silencing mediator of retinoid and thyroid receptors [SMRT]), but the functions of NCoR1/2 in BAT have not been established. Here we report that as expected, genetic loss of NCoR1/2 in BAT (NCoR1/2 BAT-dKO) leads to loss of HDAC3 activity. In addition, HDAC3 is no longer bound at its physiological genomic sites in the absence of NCoR1/2, leading to a shared deregulation of BAT lipid metabolism between NCoR1/2 BAT-dKO and HDAC3 BAT-KO mice. Despite these commonalities, loss of NCoR1/2 in BAT does not phenocopy the cold sensitivity observed in HDAC3 BAT-KO, nor does loss of either corepressor alone. Instead, BAT lacking NCoR1/2 is inflamed, particularly with respect to the interleukin-17 axis that increases thermogenic capacity by enhancing innervation. Integration of BAT RNA sequencing and chromatin immunoprecipitation sequencing data revealed that NCoR1/2 directly regulate Mmp9, which integrates extracellular matrix remodeling and inflammation. These findings reveal pleiotropic functions of the NCoR/HDAC3 corepressor complex in BAT, such that HDAC3-independent suppression of BAT inflammation counterbalances stimulation of HDAC3 activity in the control of thermogenesis.
Collapse
Affiliation(s)
- Hannah J. Richter
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Amy K. Hauck
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Kirill Batmanov
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Shin-Ichi Inoue
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Bethany N. So
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Matthew J. Emmett
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Ronald N. Cohen
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL 60637
| | - Mitchell A. Lazar
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
30
|
Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Sarada DVL, Siti Rahayu N, Ramkumar KM. Vitamin D resistant genes - promising therapeutic targets of chronic diseases. Food Funct 2022; 13:7984-7998. [PMID: 35856462 DOI: 10.1039/d2fo00822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D is an essential vitamin indispensable for calcium and phosphate metabolism, and its deficiency has been implicated in several extra-skeletal pathologies, including cancer and chronic kidney disease. Synthesized endogenously in the layers of the skin by the action of UV-B radiation, the vitamin maintains the integrity of the bones, teeth, and muscles and is involved in cell proliferation, differentiation, and immunity. The deficiency of Vit-D is increasing at an alarming rate, with nearly 32% of children and adults being either deficient or having insufficient levels. This has been attributed to Vit-D resistant genes that cause a reduction in circulatory Vit-D levels through a set of signaling pathways. CYP24A1, SMRT, and SNAIL are three genes responsible for Vit-D resistance as their activity either lowers the circulatory levels of Vit-D or reduces its availability in target tissues. The hydroxylase CYP24A1 inactivates analogs and prohormonal and/or hormonal forms of calcitriol. Elevation of the expression of CYP24A1 is the major cause of exacerbation of several diseases. CYP24A1 is rate-limiting, and its induction has been correlated with increased prognosis of diseases, while loss of function mutations cause hypersensitivity to Vit-D. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and its corepressor are involved in the transcriptional repression of VDR-target genes. SNAIL1 (SNAIL), SNAIL2 (Slug), and SNAIL3 (Smuc) are involved in transcriptional repression and binding to histone deacetylases and methyltransferases in addition to recruiting polycomb repressive complexes to the target gene promoters. An inverse relationship between the levels of calcitriol and the epithelial-to-mesenchymal transition is reported. Studies have demonstrated a strong association between Vit-D deficiency and chronic diseases, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, infectious diseases, etc. Vit-D resistant genes associated with the aforementioned chronic diseases could serve as potential therapeutic targets. This review focuses on the basic structures and mechanisms of the repression of Vit-D regulated genes and highlights the role of Vit-D resistant genes in chronic diseases.
Collapse
Affiliation(s)
- Kunnath Lakshmanan Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Murugesan Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603 203, Tamil Nadu, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Nadhiroh Siti Rahayu
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Indonesia
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
31
|
Poole J, Ray D. The Role of Circadian Clock Genes in Critical Illness: The Potential Role of Translational Clock Gene Therapies for Targeting Inflammation, Mitochondrial Function, and Muscle Mass in Intensive Care. J Biol Rhythms 2022; 37:385-402. [PMID: 35880253 PMCID: PMC9326790 DOI: 10.1177/07487304221092727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Earth's 24-h planetary rotation, with predictable light and heat cycles, has driven profound evolutionary adaptation, with prominent impacts on physiological mechanisms important for surviving critical illness. Pathways of interest include inflammation, mitochondrial function, energy metabolism, hypoxic signaling, apoptosis, and defenses against reactive oxygen species. Regulation of these by the cellular circadian clock (BMAL-1 and its network) has an important influence on pulmonary inflammation; ventilator-associated lung injury; septic shock; brain injury, including vasospasm; and overall mortality in both animals and humans. Whether it is cytokines, the inflammasome, or mitochondrial biogenesis, circadian medicine represents exciting opportunities for translational therapy in intensive care, which is currently lacking. Circadian medicine also represents a link to metabolic determinants of outcome, such as diabetes and cardiovascular disease. More than ever, we are appreciating the problem of circadian desynchrony in intensive care. This review explores the rationale and evidence for the importance of the circadian clock in surviving critical illness.
Collapse
Affiliation(s)
- Joanna Poole
- Anaesthetics and Critical Care, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | - David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. Proc Natl Acad Sci U S A 2022; 119:e2115308119. [PMID: 35263230 PMCID: PMC8931256 DOI: 10.1073/pnas.2115308119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.
Collapse
|
33
|
Krivdova G, Voisin V, Schoof EM, Marhon SA, Murison A, McLeod JL, Gabra MM, Zeng AGX, Aigner S, Yee BA, Shishkin AA, Van Nostrand EL, Hermans KG, Trotman-Grant AC, Mbong N, Kennedy JA, Gan OI, Wagenblast E, De Carvalho DD, Salmena L, Minden MD, Bader GD, Yeo GW, Dick JE, Lechman ER. Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML. Cell Rep 2022; 38:110481. [PMID: 35263585 PMCID: PMC11185845 DOI: 10.1016/j.celrep.2022.110481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.
Collapse
Affiliation(s)
- Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Erwin M Schoof
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica L McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Martino M Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexander A Shishkin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Karin G Hermans
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Program of Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Aaron C Trotman-Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON M4N3M5, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada.
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
34
|
Nanamori H, Sawada Y. Epigenetic Modification of PD-1/PD-L1-Mediated Cancer Immunotherapy against Melanoma. Int J Mol Sci 2022; 23:ijms23031119. [PMID: 35163049 PMCID: PMC8835029 DOI: 10.3390/ijms23031119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma is one of the representative skin cancers with unfavorable clinical behavior. Immunotherapy is currently used for the treatment, and it dramatically improves clinical outcomes in patients with advanced malignant melanoma. On the other hand, not all these patients can obtain therapeutic efficacy. To overcome this limitation of current immunotherapy, epigenetic modification is a highlighted issue for clinicians. Epigenetic modification is involved in various physiological and pathological conditions in the skin. Recent studies identified that skin cancer, especially malignant melanoma, has advantages in tumor development, indicating that epigenetic manipulation for regulation of gene expression in the tumor can be expected to result in additional therapeutic efficacy during immunotherapy. In this review, we focus on the detailed molecular mechanism of epigenetic modification in immunotherapy, especially anti-PD-1/PD-L1 antibody treatment for malignant melanoma.
Collapse
|
35
|
Si Y, Zhang H, Peng P, Zhu C, Shen J, Xiong Y, Liu X, Xiang Y, Li W, Ren Y, Wan F, Zhang L, Liu Y. G protein pathway suppressor 2 suppresses gastric cancer by destabilizing epidermal growth factor receptor. Cancer Sci 2021; 112:4867-4882. [PMID: 34609770 PMCID: PMC8645722 DOI: 10.1111/cas.15151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is expressed in most human tissues, including the stomach. However, the biological functions of GPS2 in cancer, as well as the underlying molecular mechanisms, remain poorly understood. Here, we report that GPS2 expression was aberrantly downregulated in gastric cancer (GC) tissues compared with control tissues. Clinicopathologic analysis showed that low GPS2 expression was significantly correlated with pathological grade, lymph node stage, and invasive depth. Kaplan-Meier analysis indicated that patients with low GPS2 expression showed poorer overall survival rates than those with high GPS2 expression. Moreover, GPS2 overexpression decreased GC cell proliferation, colony formation, tumorigenesis, and invasion. Overexpression of GPS2 reduced the protein expression of epidermal growth factor receptor (EGFR) and inhibited its downstream signaling in GC cells. Interestingly, GPS2 decreased EGFR protein expression, which was reversed by a lysosome inhibitor. Furthermore, GPS2 reduced EGFR protein stability by enhancing the binding of EGFR and an E3 ligase, c-Cbl, which promoted the ubiquitination of EGFR, ultimately leading to its degradation through the lysosomal pathway. Further analysis indicated that GPS2 activated autophagy and promoted the autophagic flux by destabilizing EGFR. Taken together, these results suggest that low GPS2 expression is associated with GC progression and provide insights into the applicability of the GPS2-EGFR axis as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
| | - Haitao Zhang
- Sir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Peng Peng
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
- Laboratory of Molecular Targeted Therapy of CancerBiomedical Research InstituteHubei University of MedicineShiyanChina
| | - Chu Zhu
- Sir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jie Shen
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
| | - Yilian Xiong
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
| | - Xuewen Liu
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Laboratory of Molecular Targeted Therapy of CancerBiomedical Research InstituteHubei University of MedicineShiyanChina
| | - Yuchen Xiang
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
- Laboratory of Molecular Targeted Therapy of CancerBiomedical Research InstituteHubei University of MedicineShiyanChina
| | - Wenjuan Li
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
| | - Yuliang Ren
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
| | - Fang Wan
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
| | - Liang Zhang
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
- Laboratory of Molecular Targeted Therapy of CancerBiomedical Research InstituteHubei University of MedicineShiyanChina
| | - Ying Liu
- Laboratory of Molecular Targeted Therapy of CancerInstitute of Basic Medical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Wudang Local Chinese Medicine ResearchHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanChina
- Laboratory of Molecular Targeted Therapy of CancerBiomedical Research InstituteHubei University of MedicineShiyanChina
| |
Collapse
|
36
|
Li J, Guo C, Rood C, Zhang J. A C terminus-dependent conformational change is required for HDAC3 activation by nuclear receptor corepressors. J Biol Chem 2021; 297:101192. [PMID: 34520758 PMCID: PMC8502911 DOI: 10.1016/j.jbc.2021.101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) plays an important role in signal-dependent transcription and is dysregulated in diseases such as cancer. Previous studies have shown that the function of HDAC3 requires an activation step, which is mediated by the interactions of HDAC3 with the deacetylase-activation domain (DAD) of nuclear receptor corepressors and inositol tetraphosphate (IP4). However, the role of the unique HDAC3 C-terminal region in HDAC3 activation is elusive. Here multiple biochemical, structural, and functional studies show that HDAC3 activation requires a priming step mediated by the C terminus to remodel HDAC3 conformation. We show that multiple C-terminal mutations prevent HDAC3 activation by preventing this C terminus–dependent conformational change. Mechanistically, we demonstrate that the C terminus–mediated function in altering HDAC3 conformation is required for proper complex formation of HDAC3 with DAD and IP4 by allowing HDAC3 to undergo IP4-dependent interaction with DAD. Remarkably, we found that this C terminus function is conformation dependent, being necessary for HDAC3 activation prior to but not after the conformational change. Together, our study defines two functional states of free HDAC3, reveals the complete HDAC3 activation pathway, and links the C terminus function to the specific interaction between HDAC3 and DAD. These results also have implications in how signaling pathways may converge on the C terminus to regulate HDAC3 and suggest that the C terminus–mediated conformational change could represent a new target for inhibiting HDAC3 in diseases such as cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Chun Guo
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Christopher Rood
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Jinsong Zhang
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
37
|
Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Life (Basel) 2021; 11:life11090951. [PMID: 34575100 PMCID: PMC8470942 DOI: 10.3390/life11090951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.
Collapse
|
38
|
Ishii S. The Role of Histone Deacetylase 3 Complex in Nuclear Hormone Receptor Action. Int J Mol Sci 2021; 22:ijms22179138. [PMID: 34502048 PMCID: PMC8431225 DOI: 10.3390/ijms22179138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear hormone receptors (NRs) regulate transcription of the target genes in a ligand-dependent manner in either a positive or negative direction, depending on the case. Deacetylation of histone tails is associated with transcriptional repression. A nuclear receptor corepressor (N-CoR) and a silencing mediator for retinoid and thyroid hormone receptors (SMRT) are the main corepressors responsible for gene suppression mediated by NRs. Among numerous histone deacetylases (HDACs), HDAC3 is the core component of the N-CoR/SMRT complex, and plays a central role in NR-dependent repression. Here, the roles of HDAC3 in ligand-independent repression, gene repression by orphan NRs, NRs antagonist action, ligand-induced repression, and the activation of a transcriptional coactivator are reviewed. In addition, some perspectives regarding the non-canonical mechanisms of HDAC3 action are discussed.
Collapse
Affiliation(s)
- Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8501, Japan
| |
Collapse
|
39
|
Lu R, Cui SS, Wang XX, Chen L, Liu F, Gao J, Wang W. Astrocytic c-Jun N-terminal kinase-histone deacetylase-2 cascade contributes to glutamate transporter-1 decrease and mechanical allodynia following peripheral nerve injury in rats. Brain Res Bull 2021; 175:213-223. [PMID: 34333051 DOI: 10.1016/j.brainresbull.2021.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
Decrease of glutamate transporter-1 (GLT-1) in the spinal dorsal horn after nerve injury induces enhanced excitatory transmission and causes persistent pain. Histone deacetylases (HDACs)-catalyzed deacetylation might contribute to the decrease of GLT-1, while the detailed mechanisms have yet to be fully elaborated. Spinal nerve ligation (SNL) induced significant increases of HDAC2 and decreases of GLT-1 in spinal astrocytes. Intrathecal infusion of the HDAC2 inhibitors attenuated the decrease of GLT-1 and enhanced phosphorylation of glutamate receptors. GLT-1 and phosphorylated c-Jun N-terminal kinase (JNK) were highly colocalized in the spinal cord, and a large number of pJNK positive cells were HDAC2 positive. Intrathecally infusion of the JNK inhibitor SP600125 significantly inhibited SNL-induced upregulation of HDAC2. SNL-induced HDAC2 up-regulation could be inhibited by the neutralizing anti-tumor necrosis factor-α (TNF-α) binding protein etanercept or the microglial inhibitor minocycline. In cultured astrocytes, TNF-α induced enhanced phosphorylation of JNK and a significant increase of HDAC2, as well as a remarkable decrease of GLT-1, which could be prevented by SP600125 or the HDAC2 specific inhibitor CAY10683. Our data suggest that astrocytic JNK-HDAC2 cascade contributes to GLT-1 decrease and mechanical allodynia following peripheral nerve injury. Neuroimmune activation after peripheral nerve injury could induce epigenetic modification changes in astrocytes and contribute to chronic pain maintenance.
Collapse
Affiliation(s)
- Rui Lu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Shan-Shan Cui
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei 430060, China
| | - Xiao-Xia Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Lei Chen
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Fei Liu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China
| | - Jing Gao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| | - Wei Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Shaanxi 710032, China.
| |
Collapse
|
40
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|
41
|
Zhao J, Sun G, Zhu S, Dai J, Chen J, Zhang M, Ni Y, Zhang H, Shen P, Zhao X, Zhang B, Pan X, Nie L, Yin X, Liang J, Zhang X, Wang Z, Zhu X, Liao B, Liu Z, Armstrong CM, Gao AC, Huang H, Chen N, Zeng H. Circulating tumour DNA reveals genetic traits of patients with intraductal carcinoma of the prostate. BJU Int 2021; 129:345-355. [PMID: 34185954 DOI: 10.1111/bju.15530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/05/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the genetic alterations of patients with prostate cancer (PCa) with and without intraductal carcinoma of the prostate (IDC-P). PATIENTS AND METHODS We performed targeted sequencing of plasma cell-free DNA on 161 patients with prostate adenocarcinoma (PAC) with IDC-P and 84 without IDC-P. Genomic alterations were compared between these two groups. The association between genetic alterations and patients' survival outcomes was also explored. RESULTS We identified that 29.8% (48/161) and 21.4% (18/84) of patients with and without IDC-P harboured genomic alterations in DNA repair pathways, respectively (P = 0.210). Pathogenic germline DNA repair alterations were frequently detected in IDC-P carriers compared to IDC-P non-carriers (11.8% [19/161] vs 2.4% [two of 84], P = 0.024). Germline BReast CAncer type 2 susceptibility protein (BRCA2) and somatic cyclin-dependent kinase 12 (CDK12) defects were specifically identified in IDC-P carriers relative to PAC (BRCA2: 8.7% [14/161] vs 0% and CDK12: 6.8% [11/161] vs 1.2% [one of 84]). Patients with IDC-P had a distinct androgen receptor (AR) pathway alteration, characterised by an enrichment of nuclear receptor corepressor 2 (NCOR2) mutations compared with patients with pure PAC (21.1% [34/161] vs 6.0% [five of 84], P = 0.004). Increased AR alterations were detected in patients harbouring tumours with an IDC-P proportion of ≥10% vs those with an IDC-P proportion of <10% (6.4% [five of 78] vs 18.1% [15/83], P = 0.045). For IDC-P carriers, tumour protein p53 (TP53) mutation was associated with shorter castration-resistant-free survival (median 10.9 vs 28.9 months, P = 0.026), and BRCA2 alteration was related to rapid prostate-specific antigen progression for those receiving abiraterone treatment (median 9.1 vs 11.9 months, P = 0.036). CONCLUSION Our findings provide genomic evidence explaining the aggressive phenotype of tumours with IDC-P, highlighting the potential therapeutic strategies for this patient population.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchao Ni
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaochen Zhao
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Bei Zhang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xiuyi Pan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xudong Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Banghua Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Allen C Gao
- Department of Urology, University of California Davis, Davis, CA, USA
| | | | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Interaction of NEP with G Protein Pathway Suppressor 2 Facilitates Influenza A Virus Replication by Weakening the Inhibition of GPS2 to RNA Synthesis and Ribonucleoprotein Assembly. J Virol 2021; 95:JVI.00008-21. [PMID: 33658351 PMCID: PMC8139649 DOI: 10.1128/jvi.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear export protein (NEP) serves multiple functions in the life cycle of influenza A virus (IAV). Identifying novel host proteins that interact with NEP and understanding their functions in IAV replication are of great interest. In this study, we screened and confirmed the direct interaction of G protein pathway suppressor 2 (GPS2) with NEP through a yeast two-hybrid screening assay and glutathione S-transferase-pulldown and co-immunoprecipitation assays. Knockdown or knockout of GPS2 enhanced IAV titers, whereas overexpression of GPS2 impaired IAV replication, demonstrating that GPS2 acted as a negative host factor in IAV replication. Meanwhile, GPS2 inhibited viral RNA synthesis by reducing the assembly of IAV polymerase. Interestingly, IAV NEP interacted with GPS2 and mediated its nuclear export, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication. Overall, this study identified the novel NEP-binding host partner GPS2 as a critical host factor to participate in IAV replication. These findings provided novel insights into the interactions between IAV and host cells, revealing a new function for GPS2 during IAV replication.Importance: NEP is proposed to play multiple biologically important roles in the life cycle of IAV, which largely relies on host factors by interaction. Our study demonstrated that GPS2 could reduce the interaction between PB1 and PB2 and interfere with vRNP assembly. Thus, GPS2 inhibited the RNA synthesis of IAV and negatively regulated its replication. Importantly, IAV NEP interacted with GPS2 and mediated the nuclear export of GPS2, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication.
Collapse
|
43
|
The dangers of déjà vu: memory B cells as the cells of origin of ABC-DLBCLs. Blood 2021; 136:2263-2274. [PMID: 32932517 DOI: 10.1182/blood.2020005857] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell (ABC)-diffuse large B-cell lymphomas (DLBCLs) are clinically aggressive and phenotypically complex malignancies, whose transformation mechanisms remain unclear. Partially differentiated antigen-secreting cells (plasmablasts) have long been regarded as cells-of-origin for these tumors, despite lack of definitive experimental evidence. Recent DLBCL reclassification based on mutational landscapes identified MCD/C5 tumors as specific ABC-DLBCLs with unfavorable clinical outcome, activating mutations in the signaling adaptors MYD88 and CD79B, and immune evasion through mutation of antigen-presenting genes. MCD/C5s manifest prominent extranodal dissemination and similarities with primary extranodal lymphomas (PENLs). In this regard, recent studies on TBL1XR1, a gene recurrently mutated in MCD/C5s and PENLs, suggest that aberrant memory B cells (MBs), and not plasmablasts, are the true cells-of-origin for these tumors. Moreover, transcriptional and phenotypic profiling suggests that MCD/C5s, as a class, represent bona fide MB tumors. Based on emerging findings we propose herein a generalized stepwise model for MCD/C5 and PENLs pathogenesis, whereby acquisition of founder mutations in activated B cells favors the development of aberrant MBs prone to avoid plasmacytic differentiation on recall and undergo systemic dissemination. Cyclic reactivation of these MBs through persistent antigen exposure favors their clonal expansion and accumulation of mutations, which further facilitate their activation. As a result, MB-like clonal precursors become trapped in an oscillatory state of semipermanent activation and phenotypic sway that facilitates ulterior transformation and accounts for the extranodal clinical presentation and biology of these tumors. In addition, we discuss diagnostic and therapeutic implications of a MB cell-of-origin for these lymphomas.
Collapse
|
44
|
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a group of diseases related to metabolic abnormalities, which severely impairs the life and health of patients, and brings great pressure to the society and medical resources. Currently, there is no specific treatment. Histone deacetylases (HDACs) have recently been reported to be involved in the pathogenesis of NAFLD and are considered as new targets for the treatment of NAFLD.Area covered: In this review, we summarized the role of HDACs in the pathogenesis of NAFLD and proposed possible therapeutic targets in order to provide new strategies for the treatment of NAFLD.Expert commentary: HDACs and related signal pathways are widely involved in the pathogenesis of NAFLD and have the potential to become therapeutic targets. However, based on current research alone, HDACs cannot be practical applied to the treatment of NAFLD. Therefore, more research on the pathogenesis of NAFLD and the mechanism of HDACs is what we need most now.
Collapse
Affiliation(s)
- Shifeng Fu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Meihong Yu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Yuyong Tan
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Dengliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| |
Collapse
|
45
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
46
|
GPS2 promotes erythroid differentiation by control of the stability of EKLF protein. Blood 2021; 135:2302-2315. [PMID: 32384137 DOI: 10.1182/blood.2019003867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Erythropoiesis is a complex multistage process that involves differentiation of early erythroid progenitors to enucleated mature red blood cells, in which lineage-specific transcription factors play essential roles. Erythroid Krüppel-like factor (EKLF/KLF1) is a pleiotropic erythroid transcription factor that is required for the proper maturation of the erythroid cells, whose expression and activation are tightly controlled in a temporal and differentiation stage-specific manner. Here, we uncover a novel role of G-protein pathway suppressor 2 (GPS2), a subunit of the nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor corepressor complex, in erythrocyte differentiation. Our study demonstrates that knockdown of GPS2 significantly suppresses erythroid differentiation of human CD34+ cells cultured in vitro and xenotransplanted in nonobese diabetic/severe combined immunodeficiency/interleukin-2 receptor γ-chain null mice. Moreover, global deletion of GPS2 in mice causes impaired erythropoiesis in the fetal liver and leads to severe anemia. Flow cytometric analysis and Wright-Giemsa staining show a defective differentiation at late stages of erythropoiesis in Gps2-/- embryos. Mechanistically, GPS2 interacts with EKLF and prevents proteasome-mediated degradation of EKLF, thereby increasing EKLF stability and transcriptional activity. Moreover, we identify the amino acids 191-230 region in EKLF protein, responsible for GPS2 binding, that is highly conserved in mammals and essential for EKLF protein stability. Collectively, our study uncovers a previously unknown role of GPS2 as a posttranslational regulator that enhances the stability of EKLF protein and thereby promotes erythroid differentiation.
Collapse
|
47
|
Lu J, Bang H, Kim SM, Cho SJ, Ashktorab H, Smoot DT, Zheng CH, Ryeom SW, Yoon SS, Yoon C, Lee JH. Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling. Oncogene 2021; 40:922-936. [PMID: 33288885 DOI: 10.1038/s41388-020-01571-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
The poor prognosis of gastric cancer (GC) results largely from metastasis and chemotherapy resistance. Toward novel therapeutic strategies that target or evade these phenomena, we evaluated the function of the transcriptional regulator transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) in GC cells, including stem-like cells. In this study, the correlation of expression of TBL1XR1 and clinical features and GC patients' outcomes was evaluated. Knockdown or exogenous expression of TBL1XR1 was combined with in vitro (2D and 3D cultures) and in vivo (mouse lung and lymphatic metastasis models) assays to evaluate the function of TBL1XR1. TBL1XR1's downstream signaling was delineated by phospho-kinase array and knockdown of candidate mediators. Analysis of clinical data showed that TBL1XR1 overexpression was correlated with worse prognosis. Functional assays showed that TBL1XR1 promoted stemness, epithelial-mesenchymal transition (EMT), and lung and lymphatic metastasis in GC cells. TBL1XR1 activated ERK1/2-Sox2 signaling and was dependent on signaling via PI3K/AKT, in GC stem-like cells distinguished by CD44 expression. Moreover, inhibition of these signaling proteins reversed chemoresistance in in vitro and in vivo models. Taken together, our results indicate that TBL1XR1 promotes stemness and metastasis in GC, making it a potential prognostic indicator. The PI3K/AKT-TBL1XR1-ERK1/2-Sox2 axis may represent a target for the treatment of GC.
Collapse
Affiliation(s)
- Jun Lu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Heejin Bang
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Su Mi Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Gyeonggi-do, South Korea
| | - Soo-Jeong Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | - Duane T Smoot
- Department of Medicine, Howard University, Washington, DC, USA
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fujian, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jun Ho Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
48
|
Chan S, Smith E, Gao Y, Kwan J, Blum BC, Tilston-Lunel AM, Turcinovic I, Varelas X, Cardamone MD, Monti S, Emili A, Perissi V. Loss of G-Protein Pathway Suppressor 2 Promotes Tumor Growth Through Activation of AKT Signaling. Front Cell Dev Biol 2021; 8:608044. [PMID: 33490071 PMCID: PMC7817781 DOI: 10.3389/fcell.2020.608044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
G Protein Suppressor 2 (GPS2) is a multifunctional protein that exerts important roles in inflammation and metabolism in adipose, liver, and immune cells. GPS2 has recently been identified as a significantly mutated gene in breast cancer and other malignancies and proposed to work as a putative tumor suppressor. However, molecular mechanisms by which GPS2 prevents cancer development and/or progression are largely unknown. Here, we have profiled the phenotypic changes induced by GPS2 depletion in MDA-MB-231 triple negative breast cancer cells and investigated the underlying molecular mechanisms. We found that GPS2-deleted MDA-MB-231 cells exhibited increased proliferative, migratory, and invasive properties in vitro, and conferred greater tumor burden in vivo in an orthotopic xenograft mouse model. Transcriptomic, proteomic and phospho-proteomic profiling of GPS2-deleted MBA-MB-231 revealed a network of altered signals that relate to cell growth and PI3K/AKT signaling. Overlay of GPS2-regulated gene expression with MDA-MB-231 cells modified to express constitutively active AKT showed significant overlap, suggesting that sustained AKT activation is associated with loss of GPS2. Accordingly, we demonstrate that the pro-oncogenic phenotypes associated with GPS2 deletion are rescued by pharmacological inhibition of AKT with MK2206. Collectively, these observations confirm a tumor suppressor role for GPS2 and reveal that loss of GPS2 promotes breast cancer cell proliferation and tumor growth through uncontrolled activation of AKT signaling. Moreover, our study points to GPS2 as a potential biomarker for a subclass of breast cancers that would be responsive to PI3K-class inhibitor drugs.
Collapse
Affiliation(s)
- Stefanie Chan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Emma Smith
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Yuan Gao
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Julian Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | | | - Isabella Turcinovic
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Maria Dafne Cardamone
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Stefano Monti
- Division of Computational Biology, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
49
|
Dang TN, Taylor JL, Kilroy G, Yu Y, Burk DH, Floyd ZE. SIAH2 is Expressed in Adipocyte Precursor Cells and Interacts with EBF1 and ZFP521 to Promote Adipogenesis. Obesity (Silver Spring) 2021; 29:98-107. [PMID: 33155406 PMCID: PMC7902405 DOI: 10.1002/oby.23013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Expression of zinc finger protein 423 (ZFP423), a key proadipogenic transcription factor in adipocyte precursor cells, is regulated by interaction of the proadipogenic early B-cell factor 1 (EBF1) and antiadipogenic ZFP521. The ubiquitin ligase seven-in-absentia homolog 2 (SIAH2) targets ZFP521 for degradation. This study asked whether SIAH2 is expressed in adipocyte precursor cells and whether SIAH2 interacts with ZFP521 and EBF1 to regulate ZFP521 protein levels during adipogenesis. METHODS SIAH2 expression in precursor cells was assessed in primary cells and tissues from wild-type and SIAH2 null mice fed a control or high-fat diet. Primary cells, 3T3-L1 preadipocytes, and HEK293T cells were used to analyze Siah2, Ebf1, and Zfp521 expression and SIAH2-mediated changes in ZFP521 and EBF1 protein levels. RESULTS Siah2 is expressed in platelet-derived growth factor receptor α (PDGFRα)+ and stem cell antigen-1 (SCA1)+ adipocyte precursor cells. SIAH2 depletion reduces Ebf1 gene expression and increases EBF1 protein levels in early but not late adipogenesis. In early adipogenesis, SIAH2 forms a protein complex with EBF1 and ZFP521 to enhance SIAH2-mediated ubiquitylation and degradation of ZFP521 while increasing EBF1 protein levels. CONCLUSIONS Siah2 is expressed in PDGFRα+ adipocyte precursor cells and is linked to precursor cell commitment to adipogenesis by interacting with EBF1 and ZFP521 proteins to target the antiadipogenic ZFP521 for degradation.
Collapse
Affiliation(s)
- Thanh N Dang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Gail Kilroy
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Yongmei Yu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - David H Burk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
50
|
Garcia-Lopez J, Kumar R, Smith KS, Northcott PA. Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends Genet 2020; 37:235-250. [PMID: 33272592 DOI: 10.1016/j.tig.2020.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rahul Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|