1
|
Addison M, Hapeshi A, Wong ZX, Connolly JE, Waterfield NR. Insight into the emerging insect to human pathogen Photorhabdus revealing geographic differences in immune cell tropism. Front Microbiol 2024; 15:1425909. [PMID: 39360318 PMCID: PMC11444972 DOI: 10.3389/fmicb.2024.1425909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/07/2024] [Indexed: 10/04/2024] Open
Abstract
Background Photorhabdus asymbiotica is a species of the insect pathogenic Photorhabdus genus that has been isolated as an etiological agent in human infections. Since then, multiple isolates have been identified worldwide; however, actual clinical infections have so far only been identified in North America, Australia, and Nepal. Previous research on the clinical isolates had shown that the strains differed in their behaviour when infecting cultured human cells. Methods In this study, we investigate the differences between the pathogenic activities of P. asymbiotica isolates from different geographic locations. Pathogenicity was analysed using infection assays with both cultured cell lines (THP-1, CHO, and HEK cells) and primary immune cells, and peripheral blood mononuclear cells (PBMCs) isolated from human blood. Results Here, we present the findings from the Australian (Kingscliff) and North American (ATCC43949) clinical isolates, and non-clinical soilborne nematode isolates from Thailand (PB68) and Northern Europe (HIT and JUN) of P. asymbiotica. We also show the first findings from a new clinical isolate of P. luminescens (Texas), the first non-asymbiotica species to cause a human infection, confirming its ability to infect and survive inside human immune cells. Conclusion Here for the first time, we show how P. asymbiotica selectively infects certain immune cells while avoiding others and that infectivity varies depending on growth temperature. We also show that the tropism varies depending on the geographic location a strain is isolated from, with only the European HIT and JUN strains lack the ability to survive within mammalian cells in tissue culture.
Collapse
Affiliation(s)
- Max Addison
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Alexia Hapeshi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | | | - Nicholas Robin Waterfield
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
2
|
Masset Z, Gunaratnam S, Millette M, McFarland LV, Lacroix M. Environmental and Nutritional Parameters Modulating Genetic Expression for Virulence Factors of Clostridioides difficile. Antibiotics (Basel) 2024; 13:365. [PMID: 38667041 PMCID: PMC11047382 DOI: 10.3390/antibiotics13040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridioides difficile infections (CDIs) continue to be a persistent healthcare concern despite newer antibiotic treatments, enhanced infection control practices, and preventive strategies focused on restoring the protective intestinal microbial barrier. Recent strides in gene sequencing research have identified many genes regulating diverse virulence factors for CDIs. These genes may be over- or under-expressed when triggered by various environmental and nutritional factors. The aims of this paper are to review the important genes involved in C. difficile pathogenesis and to identify modifiable environmental, nutritional, and other factors that may trigger the expression of these genes and thus offer new strategies to prevent CDIs.
Collapse
Affiliation(s)
- Zoe Masset
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada; (Z.M.); (M.L.)
| | - Sathursha Gunaratnam
- Bio-K+, a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada; (S.G.); (M.M.)
| | - Mathieu Millette
- Bio-K+, a Kerry Company, Preclinical Research Division, 495 Armand-Frappier Blvd, Laval, QC H7V 4B3, Canada; (S.G.); (M.M.)
| | - Lynne V. McFarland
- Public Health Reserves Corps, Seattle, WA 98115, USA
- McFarland Consulting, Seattle, WA 98115, USA
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada; (Z.M.); (M.L.)
| |
Collapse
|
3
|
Guo X, Wang L, Zhang J, Liu Q, Wang B, Liu D, Gao F, Lanzi G, Zhao Y, Shi Y. Thwarting resistance: MgrA inhibition with methylophiopogonanone a unveils a new battlefront against S. aureus. NPJ Biofilms Microbiomes 2024; 10:15. [PMID: 38413623 PMCID: PMC10899606 DOI: 10.1038/s41522-024-00485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Limitations in the clinical treatment of Staphylococcus aureus (S. aureus) infections have arisen due to the advent of antibiotic-resistant strains. Given the immense potential of therapeutic strategies targeting bacterial virulence, the role of MgrA as a pivotal virulence determinant in S. aureus-orchestrating resistance, adherence, and hundreds of virulence targets-becomes indispensable. In this investigation, leveraging advanced virtual screening and fluorescence anisotropy assays, we discerned methylophiopogonanone A (Mo-A), a flavonoid derivative, as a potent disruptor of the MgrA-DNA interaction nexus. Subsequent analysis revealed that Mo-A effectively inhibits the expression of virulence factors such as Hla and Pvl in S. aureus and markedly reduces its adhesion capability to fibrinogen. On a cellular landscape, Mo-A exerts a mitigating influence on the deleterious effects inflicted by S. aureus USA300 on A549 cells. Furthermore, our data indicate that Mo-A downregulates the transcription of genes associated with immune evasion, such as nucleases (nuc), Staphylococcal Chemotaxis Inhibitory Protein (chips), and Staphylococcal Complement Inhibitor (scin), thereby undermining immune escape and amplifying neutrophil chemotaxis. Upon application in an in vivo setting, Mo-A assumes a protective persona in a murine model of S. aureus USA300-induced pneumonia and demonstrates efficacy in the Galleria mellonella infection model. Of note, S. aureus displayed no swift acquisition of resistance to Mo-A, and the effect was synergistically enhanced when used in combination with vancomycin. Our findings add substantive weight to the expanding field of virulence-targeted therapeutic strategies and set the stage for more comprehensive exploration of Mo-A potential in combating antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Jinlong Zhang
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Quan Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | | | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Trouillon J, Attrée I, Elsen S. The regulation of bacterial two-partner secretion systems. Mol Microbiol 2023; 120:159-177. [PMID: 37340956 DOI: 10.1111/mmi.15112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Two-partner secretion (TPS) systems, also known as Type Vb secretion systems, allow the translocation of effector proteins across the outer membrane of Gram-negative bacteria. By secreting different classes of effectors, including cytolysins and adhesins, TPS systems play important roles in bacterial pathogenesis and host interactions. Here, we review the current knowledge on TPS systems regulation and highlight specific and common regulatory mechanisms across TPS functional classes. We discuss in detail the specific regulatory networks identified in various bacterial species and emphasize the importance of understanding the context-dependent regulation of TPS systems. Several regulatory cues reflecting host environment during infection, such as temperature and iron availability, are common determinants of expression for TPS systems, even across relatively distant species. These common regulatory pathways often affect TPS systems across subfamilies with different effector functions, representing conserved global infection-related regulatory mechanisms.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| |
Collapse
|
6
|
Scheller D, Becker F, Wimbert A, Meggers D, Pienkoß S, Twittenhoff C, Knoke LR, Leichert LI, Narberhaus F. The oxidative stress response, in particular the katY gene, is temperature-regulated in Yersinia pseudotuberculosis. PLoS Genet 2023; 19:e1010669. [PMID: 37428814 PMCID: PMC10358904 DOI: 10.1371/journal.pgen.1010669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Pathogenic bacteria, such as Yersinia pseudotuberculosis encounter reactive oxygen species (ROS) as one of the first lines of defense in the mammalian host. In return, the bacteria react by mounting an oxidative stress response. Previous global RNA structure probing studies provided evidence for temperature-modulated RNA structures in the 5'-untranslated region (5'-UTR) of various oxidative stress response transcripts, suggesting that opening of these RNA thermometer (RNAT) structures at host-body temperature relieves translational repression. Here, we systematically analyzed the transcriptional and translational regulation of ROS defense genes by RNA-sequencing, qRT-PCR, translational reporter gene fusions, enzymatic RNA structure probing and toeprinting assays. Transcription of four ROS defense genes was upregulated at 37°C. The trxA gene is transcribed into two mRNA isoforms, of which the most abundant short one contains a functional RNAT. Biochemical assays validated temperature-responsive RNAT-like structures in the 5'-UTRs of sodB, sodC and katA. However, they barely conferred translational repression in Y. pseudotuberculosis at 25°C suggesting partially open structures available to the ribosome in the living cell. Around the translation initiation region of katY we discovered a novel, highly efficient RNAT that was primarily responsible for massive induction of KatY at 37°C. By phenotypic characterization of catalase mutants and through fluorometric real-time measurements of the redox-sensitive roGFP2-Orp1 reporter in these strains, we revealed KatA as the primary H2O2 scavenger. Consistent with the upregulation of katY, we observed an improved protection of Y. pseudotuberculosis at 37°C. Our findings suggest a multilayered regulation of the oxidative stress response in Yersinia and an important role of RNAT-controlled katY expression at host body temperature.
Collapse
Affiliation(s)
- Daniel Scheller
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Franziska Becker
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Andrea Wimbert
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Dominik Meggers
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Stephan Pienkoß
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Christian Twittenhoff
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| | - Lisa R Knoke
- Ruhr University Bochum, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Franz Narberhaus
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Microbial Biology, Bochum, Germany
| |
Collapse
|
7
|
Ali J, Joshi M, Ahmadi A, Strætkvern KO, Ahmad R. Increased growth temperature and vitamin B12 supplementation reduces the lag time for rapid pathogen identification in BHI agar and blood cultures. F1000Res 2023; 12:131. [PMID: 37122874 PMCID: PMC10133824 DOI: 10.12688/f1000research.129668.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Background: Rapid diagnostics of pathogens is essential to prescribe appropriate antibiotic therapy. The current methods for pathogen detection require the bacteria to grow in a culture medium, which is time-consuming. This increases the mortality rate and global burden of antimicrobial resistance. Culture-free detection methods are still under development and are not common in the clinical routine. Therefore, decreasing the culture time for accurately detecting infection and resistance is vital for diagnosis. Methods: This study investigated easy-to-implement factors (in a minimal laboratory set-up), including inoculum size, incubation temperature, and additional supplementation (e.g., vitamin B12 and trace metals), that can significantly reduce the bacterial lag time (tlag). These factors were arranged in simple two-level factorial designs using Gram-positive cocci (Staphylococcus aureus), Gram-positive bacilli (Bacillus subtilis), and Gram-negative bacilli (Escherichia coli and Pseudomonas aeruginosa) bacteria, including clinical isolates with known antimicrobial resistance profiles. Blood samples spiked with a clinical isolate of E. coli CCUG 17620 (Culture Collection University of Gothenburg) were also tested to see the effect of elevated incubation temperature on bacterial growth in blood cultures. Results: We observed that increased incubation temperature (42°C) along with vitamin B12 supplementation significantly reduced the tlag (10 – 115 minutes or 4% - 49%) in pure clinical isolates and blood samples spiked with E. coli CCUG17620. In the case of the blood sample, PCR results also detected bacterial DNA after only 3h of incubation and at three times the CFU/mL. Conclusion: Enrichment of bacterial culture media with growth supplements such as vitamin B12 and increased incubation temperature can be a cheap and rapid method for the early detection of pathogens. This proof-of-concept study is restricted to a few bacterial strains and growth conditions. In the future, the effect of other growth conditions and difficult-to-culture bacteria should be explored to shorten the lag phase.
Collapse
Affiliation(s)
- Jawad Ali
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Mukund Joshi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Asal Ahmadi
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Knut Olav Strætkvern
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Institute of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Serrano I, Verdial C, Tavares L, Oliveira M. The Virtuous Galleria mellonella Model for Scientific Experimentation. Antibiotics (Basel) 2023; 12:505. [PMID: 36978373 PMCID: PMC10044286 DOI: 10.3390/antibiotics12030505] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The first research on the insect Galleria mellonella was published 85 years ago, and the larva is now widely used as a model to study infections caused by bacterial and fungal pathogens, for screening new antimicrobials, to study the adjacent immune response in co-infections or in host-pathogen interaction, as well as in a toxicity model. The immune system of the G. mellonella model shows remarkable similarities with mammals. Furthermore, results from G. mellonella correlate positively with mammalian models and with other invertebrate models. Unlike other invertebrate models, G. mellonella can withstand temperatures of 37 °C, and its handling and experimental procedures are simpler. Despite having some disadvantages, G. mellonella is a virtuous in vivo model to be used in preclinical studies, as an intermediate model between in vitro and mammalian in vivo studies, and is a great example on how to apply the bioethics principle of the 3Rs (Replacement, Reduction, and Refinement) in animal experimentation. This review aims to discuss the progress of the G. mellonella model, highlighting the key aspects of its use, including experimental design considerations and the necessity to standardize them. A different score in the "cocoon" category included in the G. mellonella Health Index Scoring System is also proposed.
Collapse
Affiliation(s)
- Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Verdial
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
9
|
Dhimal M, Bhandari D. Climate change and imperatives to ascertain causes of infectious diarrhoea in low-income and middle-income countries. Lancet Glob Health 2023; 11:e308-e309. [PMID: 36796967 DOI: 10.1016/s2214-109x(23)00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Affiliation(s)
| | - Dinesh Bhandari
- School of Nursing and Midwifery, Monash University, VIC, Australia
| |
Collapse
|
10
|
Zhang Y, Huang Y, Ding H, Ma J, Tong X, Zhang Y, Tao Z, Wang Q. A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida. Microbiol Res 2023; 266:127220. [DOI: 10.1016/j.micres.2022.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
|
11
|
Stevenson B, Krusenstjerna AC, Castro-Padovani TN, Savage CR, Jutras BL, Saylor TC. The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status. J Bacteriol 2022; 204:e0060621. [PMID: 35380872 PMCID: PMC9112904 DOI: 10.1128/jb.00606-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by alternatingly cycling between ticks and vertebrates. During each stage of the infectious cycle, B. burgdorferi produces surface proteins that are necessary for interactions with the tick or vertebrate tissues it encounters while also repressing the synthesis of unnecessary proteins. Among these are the Erp surface proteins, which are produced during vertebrate infection for interactions with host plasmin, laminin, glycosaminoglycans, and components of the complement system. Erp proteins are not expressed during tick colonization but are induced when the tick begins to ingest blood from a vertebrate host, a time when the bacteria undergo rapid growth and division. Using the erp genes as a model of borrelial gene regulation, our research group has identified three novel DNA-binding proteins that interact with DNA to control erp transcription. At least two of those regulators are, in turn, affected by DnaA, the master regulator of chromosome replication. Our data indicate that B. burgdorferi has evolved to detect the change from slow to rapid replication during tick feeding as a signal to begin expression of Erp and other vertebrate-specific proteins. The majority of other known regulatory factors of B. burgdorferi also respond to metabolic cues. These observations lead to a model in which the Lyme spirochete recognizes unique environmental conditions encountered during the infectious cycle to "know" where they are and adapt accordingly.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R. Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Maharajan AD, Hjerde E, Hansen H, Willassen NP. Quorum Sensing Controls the CRISPR and Type VI Secretion Systems in Aliivibrio wodanis 06/09/139. Front Vet Sci 2022; 9:799414. [PMID: 35211539 PMCID: PMC8861277 DOI: 10.3389/fvets.2022.799414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
For bacteria to thrive in an environment with competitors, phages and environmental cues, they use different strategies, including Type VI Secretion Systems (T6SSs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to compete for space. Bacteria often use quorum sensing (QS), to coordinate their behavior as the cell density increases. Like other aliivibrios, Aliivibrio wodanis 06/09/139 harbors two QS systems, the main LuxS/LuxPQ system and an N-acyl homoserine lactone (AHL)-mediated AinS/AinR system and a master QS regulator, LitR. To explore the QS and survival strategies, we performed genome analysis and gene expression profiling on A. wodanis and two QS mutants (ΔainS and ΔlitR) at two cell densities (OD600 2.0 and 6.0) and temperatures (6 and 12°C). Genome analysis of A. wodanis revealed two CRISPR systems, one without a cas loci (CRISPR system 1) and a type I-F CRISPR system (CRISPR system 2). Our analysis also identified three main T6SS clusters (T6SS1, T6SS2, and T6SS3) and four auxiliary clusters, as well about 80 potential Type VI secretion effectors (T6SEs). When comparing the wildtype transcriptome data at different cell densities and temperatures, 13-18% of the genes were differentially expressed. The CRISPR system 2 was cell density and temperature-independent, whereas the CRISPR system 1 was temperature-dependent and cell density-independent. The primary and auxiliary clusters of T6SSs were both cell density and temperature-dependent. In the ΔlitR and ΔainS mutants, several CRISPR and T6SS related genes were differentially expressed. Deletion of litR resulted in decreased expression of CRISPR system 1 and increased expression of CRISPR system 2. The T6SS1 and T6SS2 gene clusters were less expressed while the T6SS3 cluster was highly expressed in ΔlitR. Moreover, in ΔlitR, the hcp1 gene was strongly activated at 6°C compared to 12°C. AinS positively affected the csy genes in the CRISPR system 2 but did not affect the CRISPR arrays. Although AinS did not significantly affect the expression of T6SSs, the hallmark genes of T6SS (hcp and vgrG) were AinS-dependent. The work demonstrates that T6SSs and CRISPR systems in A. wodanis are QS dependent and may play an essential role in survival in its natural environment.
Collapse
Affiliation(s)
- Amudha Deepalakshmi Maharajan
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
14
|
Ménard G, Rouillon A, Cattoir V, Donnio PY. Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Front Cell Infect Microbiol 2022; 11:782733. [PMID: 35004350 PMCID: PMC8727906 DOI: 10.3389/fcimb.2021.782733] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
The increasing interest for Galleria mellonella larvae as an infection model is evidenced by the number of papers reporting its use, which increases exponentially since the early 2010s. This popularity was initially linked to limitation of conventional animal models due to financial, technical and ethical aspects. In comparison, alternative models (e.g. models using Caenorhabditis elegans, Drosophila melanogaster or G. mellonella) were cheap, simple to use and not limited by ethical regulation. Since then, similar results have been established with G. mellonella model comparatively to vertebrates, and it is more and more often used as a robust model per se, not only as an alternative to the murine model. This review attempts to summarize the current knowledge supporting the development of this model, both on immunological and microbiological aspects. For that, we focus on investigation of virulence and new therapies for the most important pathogenic bacteria. We also discuss points out directions for standardization, as well as recent advances and new perspectives for monitoring host-pathogen interactions.
Collapse
Affiliation(s)
- Guillaume Ménard
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Astrid Rouillon
- Univ Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), UMR_S 1230, Rennes, France
| | - Vincent Cattoir
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| | - Pierre-Yves Donnio
- Univ Rennes, CHU Rennes, INSERM, Bacterial Regulatory RNAs and Medicine (BRM), service de Bactériologie Hygiène-Hospitalière (SB2H), UMR_S 1230, Rennes, France
| |
Collapse
|
15
|
Reichert J, Tirpitz V, Anand R, Bach K, Knopp J, Schubert P, Wilke T, Ziegler M. Interactive effects of microplastic pollution and heat stress on reef-building corals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118010. [PMID: 34488160 DOI: 10.1016/j.envpol.2021.118010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution is an emerging stressor that increases pressure on ecosystems such as coral reefs that are already challenged by climate change. However, the effects of plastic pollution in combination with global warming are largely unknown. Thus, the goal of this study was to determine the cumulative effects of microplastic pollution with that of global warming on reef-building coral species and to compare the severity of both stressors. For this, we conducted a series of three controlled laboratory experiments and exposed a broad range of coral species (Acropora muricata, Montipora digitata, Porites lutea, Pocillopora verrucosa, and Stylophora pistillata) to microplastic particles in a range of concentrations (2.5-2500 particles L-1) and mixtures (from different industrial sectors) at ambient temperatures and in combination with heat stress. We show that microplastic can occasionally have both aggravating or mitigating effects on the corals' thermal tolerance. In comparison to heat stress, however, microplastic constitutes a minor stressor. While heat stress led to decreased photosynthetic efficiency of algal symbionts, and increased bleaching, tissue necrosis, and mortality, treatment with microplastic particles had only minor effects on the physiology and health of the tested coral species at ambient temperatures. These findings underline that while efforts to reduce plastic pollution should continue, they should not replace more urgent efforts to halt global warming, which are immediately needed to preserve remaining coral reef ecosystems.
Collapse
Affiliation(s)
- Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Vanessa Tirpitz
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Rajshree Anand
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Katharina Bach
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Jonas Knopp
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Patrick Schubert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
16
|
Briaud P, Frey A, Marino EC, Bastock RA, Zielinski RE, Wiemels RE, Keogh RA, Murphy ER, Shaw LN, Carroll RK. Temperature Influences the Composition and Cytotoxicity of Extracellular Vesicles in Staphylococcus aureus. mSphere 2021; 6:e0067621. [PMID: 34612674 PMCID: PMC8510519 DOI: 10.1128/msphere.00676-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium but also a commensal of skin and anterior nares in humans. As S. aureus transits from skins/nares to inside the human body, it experiences changes in temperature. The production and content of S. aureus extracellular vesicles (EVs) have been increasingly studied over the past few years, and EVs are increasingly being recognized as important to the infectious process. Nonetheless, the impact of temperature variation on S. aureus EVs has not been studied in detail, as most reports that investigate EV cargoes and host cell interactions are performed using vesicles produced at 37°C. Here, we report that EVs in S. aureus differ in size and protein/RNA cargo depending on the growth temperature used. We demonstrate that the temperature-dependent regulation of vesicle production in S. aureus is mediated by the alpha phenol-soluble modulin peptides (αPSMs). Through proteomic analysis, we observed increased packaging of virulence factors at 40°C, whereas the EV proteome has greater diversity at 34°C. Similar to the protein content, we perform transcriptomic analysis and demonstrate that the RNA cargo also is impacted by temperature. Finally, we demonstrate greater αPSM- and alpha-toxin-mediated erythrocyte lysis with 40°C EVs, but 34°C EVs are more cytotoxic toward THP-1 cells. Together, our study demonstrates that small temperature variations have great impact on EV biogenesis and shape the interaction with host cells. IMPORTANCE Extracellular vesicles (EVs) are lipid bilayer spheres that contain proteins, nucleic acids, and lipids secreted by bacteria. They are involved in Staphylococcus aureus infections, as they package virulence factors and deliver their contents inside host cells. The impact of temperature variations experienced by S. aureus during the infectious process on EVs is unknown. Here, we demonstrate the importance of temperature in vesicle production and packaging. High temperatures promote packaging of virulence factors and increase the protein and lipid concentration but reduce the overall RNA abundance and protein diversity in EVs. The importance of temperature changes is highlighted by the fact that EVs produced at low temperature are more toxic toward macrophages, whereas EVs produced at high temperature display more hemolysis toward erythrocytes. Our research brings new insights into temperature-dependent vesiculation and interaction with the host during S. aureus transition from colonization to virulence.
Collapse
Affiliation(s)
- Paul Briaud
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Andrew Frey
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Emily C. Marino
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Raeven A. Bastock
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | | | | | - Rebecca A. Keogh
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Erin R. Murphy
- Heritage College of Osteopathic Medicine, Department of Biomedical Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Ronan K. Carroll
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
- Infectious and Tropical Disease Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
17
|
Huang B, Zhang X, Wang C, Bai C, Li C, Li C, Xin L. Isolation and Characterization of Vibrio kanaloae as a Major Pathogen Associated with Mass Mortalities of Ark Clam, Scapharca broughtonii, in Cold Season. Microorganisms 2021; 9:2161. [PMID: 34683482 PMCID: PMC8541523 DOI: 10.3390/microorganisms9102161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
High temperature is a risk factor for vibriosis outbreaks. Most vibrios are opportunistic pathogens that cause the mortality of aquatic animals at the vibrio optimal growth temperature (~25 °C), whereas a dominant Vibrio kanaloae strain SbA1-1 is isolated from natural diseased ark clams (Scapharca broughtonii) during cold seasons in this study. Consistent symptoms and histopathological features reappeared under an immersion infection with SbA1-1 performed at 15 °C. The pathogenicity difference of SbA1-1 was assessed under different temperatures (15 °C and 25 °C). The cumulative mortality rates of ark clams were significantly higher at the low temperature (15 °C) than at the high temperature (25 °C); up to 98% on 16th day post SbA1-1 infection. While the growth ratio of SbA1-1 was retarded at the low temperature, the hemolytic activity and siderophores productivity of SbA1-1 were increased. This study constitutes the first isolation of V. kanaloae from the natural diseased ark clams (S. broughtonii) in cold seasons and the exposition of the dissimilar pathogenicity of SbA1-1 at a different temperature. All the above indicates that V. kanaloae constitutes a threat to ark clam culture, especially in cold seasons.
Collapse
Affiliation(s)
- Bowen Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Xiang Zhang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chongming Wang
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Changming Bai
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chen Li
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Lusheng Xin
- Key Laboratory of Marine Aquaculture Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Marine Aquaculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.Z.); (C.W.); (C.B.); (C.L.)
| |
Collapse
|
18
|
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021; 10:1205. [PMID: 34578236 PMCID: PMC8466566 DOI: 10.3390/pathogens10091205] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Orestis Stavrakidis-Zachou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Ivona Mladineo
- Biology Center of Czech Academy of Sciences, Laboratory of Functional Helminthology, Institute of Parasitology, 370 05 Ceske Budejovice, Czech Republic;
| | - Kim D. Thompson
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| |
Collapse
|
19
|
Patil PP, Kumar S, Kaur A, Midha S, Bansal K, Patil PB. Global transcriptome analysis of Stenotrophomonas maltophilia in response to growth at human body temperature. Microb Genom 2021; 7. [PMID: 34252021 PMCID: PMC8477401 DOI: 10.1099/mgen.0.000600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stenotrophomonas maltophilia is a typical example of an environmental originated opportunistic human pathogen, which can thrive at different habitats including the human body and can cause a wide range of infections. It must cope with heat stress during transition from the environment to the human body as the physiological temperature of the human body (37 °C) is higher than environmental niches (22–30 °C). Interestingly, S. rhizophila a phylogenetic neighbour of S. maltophilia within genus Stenotrophomonas is unable to grow at 37 °C. Thus, it is crucial to understand how S. maltophilia is adapted to human body temperature, which could suggest its evolution as an opportunistic human pathogen. In this study, we have performed comparative transcriptome analysis of S. maltophilia grown at 28 and 37 °C as temperature representative for environmental niches and the human body, respectively. RNA-Seq analysis revealed several interesting findings showing alterations in gene-expression levels at 28 and 37 °C, which can play an important role during infection. We have observed downregulation of genes involved in cellular motility, energy production and metabolism, replication and repair whereas upregulation of VirB/D4 type IV secretion system, aerotaxis, cation diffusion facilitator family transporter and LacI family transcriptional regulators at 37 °C. Microscopy and plate assays corroborated altered expression of genes involved in motility. The results obtained enhance our understanding of the strategies employed by S. maltophilia during adaptation towards the human body.
Collapse
Affiliation(s)
- Prashant P Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Samriti Midha
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Present address: Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
20
|
Ante VM, Farris LC, Saputra EP, Hall AJ, O'Bier NS, Oliva Chávez AS, Marconi RT, Lybecker MC, Hyde JA. The Borrelia burgdorferi Adenylate Cyclase, CyaB, Is Important for Virulence Factor Production and Mammalian Infection. Front Microbiol 2021; 12:676192. [PMID: 34113333 PMCID: PMC8186283 DOI: 10.3389/fmicb.2021.676192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, traverses through vastly distinct environments between the tick vector and the multiple phases of the mammalian infection that requires genetic adaptation for the progression of pathogenesis. Borrelial gene expression is highly responsive to changes in specific environmental signals that initiate the RpoS regulon for mammalian adaptation, but the mechanism(s) for direct detection of environmental cues has yet to be identified. Secondary messenger cyclic adenosine monophosphate (cAMP) produced by adenylate cyclase is responsive to environmental signals, such as carbon source and pH, in many bacterial pathogens to promote virulence by altering gene regulation. B. burgdorferi encodes a single non-toxin class IV adenylate cyclase (bb0723, cyaB). This study investigates cyaB expression along with its influence on borrelial virulence regulation and mammalian infectivity. Expression of cyaB was specifically induced with co-incubation of mammalian host cells that was not observed with cultivated tick cells suggesting that cyaB expression is influenced by cellular factor(s) unique to mammalian cell lines. The 3′ end of cyaB also encodes a small RNA, SR0623, in the same orientation that overlaps with bb0722. The differential processing of cyaB and SR0623 transcripts may alter the ability to influence function in the form of virulence determinant regulation and infectivity. Two independent cyaB deletion B31 strains were generated in 5A4-NP1 and ML23 backgrounds and complemented with the cyaB ORF alone that truncates SR0623, cyaB with intact SR0623, or cyaB with a mutagenized full-length SR0623 to evaluate the influence on transcriptional and posttranscriptional regulation of borrelial virulence factors and infectivity. In the absence of cyaB, the expression and production of ospC was significantly reduced, while the protein levels for BosR and DbpA were substantially lower than parental strains. Infectivity studies with both independent cyaB mutants demonstrated an attenuated phenotype with reduced colonization of tissues during early disseminated infection. This work suggests that B. burgdorferi utilizes cyaB and potentially cAMP as a regulatory pathway to modulate borrelial gene expression and protein production to promote borrelial virulence and dissemination in the mammalian host.
Collapse
Affiliation(s)
- Vanessa M Ante
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Lauren C Farris
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Elizabeth P Saputra
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Allie J Hall
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, United States
| | - Meghan C Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, CO, United States
| | - Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
21
|
Bisht K, Moore JL, Caprioli RM, Skaar EP, Wakeman CA. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes 2021; 7:22. [PMID: 33727555 PMCID: PMC7966754 DOI: 10.1038/s41522-021-00194-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that forms robust biofilms in the different niches it occupies. Numerous physiological adaptations are required as this organism shifts from soil or aquatic environments to a host-associated lifestyle. While many conditions differ between these niches, temperature shifts are a factor that can contribute to physiological stress during this transition. To understand how temperature impacts biofilm formation in this pathogen, we used proteomic and transcriptomic tools to elucidate physiological responses in environment-relevant vs. host-relevant temperatures. These studies uncovered differential expression of various proteins including a phage protein that is associated with the EPS matrix in P. aeruginosa. This filamentous phage was induced at host temperatures and was required for full biofilm-forming capacity specifically at human body temperature. These data highlight the importance of temperature shift in biofilm formation and suggest bacteriophage proteins could be a possible therapeutic target in biofilm-associated infections.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jessica L Moore
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
22
|
Zhang H, Hall I, Nissley AJ, Abdallah K, Keane SC. A Tale of Two Transitions: The Unfolding Mechanism of the prfA RNA Thermosensor. Biochemistry 2020; 59:4533-4545. [PMID: 33231432 DOI: 10.1021/acs.biochem.0c00588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA thermosensors (RNATs), found in the 5' untranslated region (UTR) of some bacterial messenger RNAs (mRNAs), control the translation of the downstream gene in a temperature-dependent manner. In Listeria monocytogenes, the expression of a key transcription factor, PrfA, is mediated by an RNAT in its 5' UTR. PrfA functions as a master regulator of virulence in L. monocytogenes, controlling the expression of many virulence factors. The temperature-regulated expression of PrfA by its RNAT element serves as a signal of successful host invasion for the bacteria. Structurally, the prfA RNAT bears little resemblance to known families of RNATs, and prior studies demonstrated that the prfA RNAT is highly responsive over a narrow temperature range. Herein, we have undertaken a comprehensive mutational and thermodynamic analysis to ascertain the molecular determinants of temperature sensitivity. We provide evidence to support the idea that the prfA RNAT unfolding is different from that of cssA, a well-characterized RNAT, suggesting that these RNATs function via distinct mechanisms. Our data show that the unfolding of the prfA RNAT occurs in two distinct events and that the internal loops play an important role in mediating the cooperativity of RNAT unfolding. We further demonstrated that regions distal to the ribosome binding site (RBS) not only contribute to RNAT structural stability but also impact translation of the downstream message. Our collective results provide insight connecting the thermal stability of the prfA RNAT structure, unfolding energetics, and translational control.
Collapse
Affiliation(s)
- Huaqun Zhang
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amos J Nissley
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kyrillos Abdallah
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Metabolic Feedback Inhibition Influences Metabolite Secretion by the Human Gut Symbiont Bacteroides thetaiotaomicron. mSystems 2020; 5:5/5/e00252-20. [PMID: 32873608 PMCID: PMC7470985 DOI: 10.1128/msystems.00252-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteroides is a highly abundant taxon in the human gut, and Bacteroides thetaiotaomicron (B. theta) is a ubiquitous human symbiont that colonizes the host early in development and persists throughout its life span. The phenotypic plasticity of keystone organisms such as B. theta is important to understand in order to predict phenotype(s) and metabolic interactions under changing nutrient conditions such as those that occur in complex gut communities. Our study shows B. theta prioritizes energy conservation and suppresses secretion of “overflow metabolites” such as organic acids and amino acids when concentrations of acetate are high. Secreted metabolites, especially amino acids, can be a source of nutrients or signals for the host or other microbes in the community. Our study suggests that when metabolically stressed by acetate, B. theta stops sharing with its ecological partners. Microbial metabolism and trophic interactions between microbes give rise to complex multispecies communities in microbe-host systems. Bacteroides thetaiotaomicron (B. theta) is a human gut symbiont thought to play an important role in maintaining host health. Untargeted nuclear magnetic resonance metabolomics revealed B. theta secretes specific organic acids and amino acids in defined minimal medium. Physiological concentrations of acetate and formate found in the human intestinal tract were shown to cause dose-dependent changes in secretion of metabolites known to play roles in host nutrition and pathogenesis. While secretion fluxes varied, biomass yield was unchanged, suggesting feedback inhibition does not affect metabolic bioenergetics but instead redirects carbon and energy to CO2 and H2. Flux balance analysis modeling showed increased flux through CO2-producing reactions under glucose-limiting growth conditions. The metabolic dynamics observed for B. theta, a keystone symbiont organism, underscores the need for metabolic modeling to complement genomic predictions of microbial metabolism to infer mechanisms of microbe-microbe and microbe-host interactions. IMPORTANCEBacteroides is a highly abundant taxon in the human gut, and Bacteroides thetaiotaomicron (B. theta) is a ubiquitous human symbiont that colonizes the host early in development and persists throughout its life span. The phenotypic plasticity of keystone organisms such as B. theta is important to understand in order to predict phenotype(s) and metabolic interactions under changing nutrient conditions such as those that occur in complex gut communities. Our study shows B. theta prioritizes energy conservation and suppresses secretion of “overflow metabolites” such as organic acids and amino acids when concentrations of acetate are high. Secreted metabolites, especially amino acids, can be a source of nutrients or signals for the host or other microbes in the community. Our study suggests that when metabolically stressed by acetate, B. theta stops sharing with its ecological partners.
Collapse
|
24
|
Pattanayak S, Priyadarsini S, Paul A, Kumar PR, Sahoo PK. Diversity of virulence-associated genes in pathogenic Aeromonas hydrophila isolates and their in vivo modulation at varied water temperatures. Microb Pathog 2020; 147:104424. [PMID: 32771658 DOI: 10.1016/j.micpath.2020.104424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Most environmental parameters have no consistent effect on the expression of bacterial genes responsible for their virulence. However, as fish are poikilothermic, the possibility of temperature variation having a pronounced effect on the expression of virulence-associated gene(s) of bacteria infecting the host needs to be investigated. In this study, the diversity of virulence genes in seven Aeromonas hydrophila isolates collected from diseased fish from different parts of India was characterized, and the effect of temperature variation on the extent of expression of their virulence was investigated. All bacterial isolates were screened for a total of nine bacterial virulent genes {aerolysin, hemolysin, cytoen, outer membrane protein TS (Omp TS), elastase, flagellin, lipase, β hemolysin and type 3 secretion system}, and the diversity in their presence or absence were marked at a particular in vitro condition. Three bacterial isolates (nos. 1, 7 and 2) were selected for further study, based on their ability to cause varied mortalities (20-100%) in Labeo rohita juveniles in intraperitoneal challenge study. Further, three isolates were injected intraperitoneally into L. rohita fingerlings at three different temperatures (i.e., 20, 28 and 37 °C) and at 6 h post-challenge, the kidney samples were collected to measure the levels of all nine bacterial virulence genes using semi-quantitative PCR. The maximum level of amplicons of virulence genes in all three A. hydrophila isolates was noticed at 28 °C as compared to 37 °C and 20 °C. It was also observed that haemolysin played a more prominent role in the expression of virulence, when compared to cytoen gene. Hence, it was concluded that water temperature does play a crucial role in governing virulence gene expression, and a temperature of 28 °C would be considered as suitable for looking into the pathogenicity of A. hydrophila for conducting any challenge study with this organism in tropical environment.
Collapse
Affiliation(s)
- Sabyasachi Pattanayak
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Swatismita Priyadarsini
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Anirban Paul
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - P Rajesh Kumar
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - P K Sahoo
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India.
| |
Collapse
|
25
|
Obana N, Nakamura K, Nomura N. Temperature-regulated heterogeneous extracellular matrix gene expression defines biofilm morphology in Clostridium perfringens. NPJ Biofilms Microbiomes 2020; 6:29. [PMID: 32737303 PMCID: PMC7395162 DOI: 10.1038/s41522-020-00139-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cells in biofilms dynamically adapt to surrounding environmental conditions, which alters biofilm architecture. The obligate anaerobic pathogen Clostridium perfringens shows different biofilm structures in different temperatures. Here we find that the temperature-regulated production of extracellular polymeric substance (EPS) is necessary for morphological changes in biofilms. We identify BsaA proteins as an EPS matrix necessary for pellicle biofilm formation at lower temperature and find that extracellularly secreted BsaA protein forms filamentous polymers. We show that sipW-bsaA operon expression is bimodal, and the EPS-producing population size is increased at a lower temperature. This heterogeneous expression of the EPS gene requires a two-component system. We find that EPS-producing cells cover EPS-nonproducing cells attaching to the bottom surface. In the deletion mutant of pilA2, encoding a type IV pilin, the EPS gene expression is ON in the whole population. This heterogeneity is further regulated by the cleavage of the pilA2 mRNA by RNase Y, causing temperature-responsive EPS expression in biofilms. As temperature is an environmental cue, C. perfringens may modulate EPS expression to induce morphological changes in biofilm structure as a strategy for adapting to interhost and external environments.
Collapse
Affiliation(s)
- Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Kouji Nakamura
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Nobuhiko Nomura
- Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
26
|
Hernández-Cabanyero C, Sanjuán E, Fouz B, Pajuelo D, Vallejos-Vidal E, Reyes-López FE, Amaro C. The Effect of the Environmental Temperature on the Adaptation to Host in the Zoonotic Pathogen Vibrio vulnificus. Front Microbiol 2020; 11:489. [PMID: 32296402 PMCID: PMC7137831 DOI: 10.3389/fmicb.2020.00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - David Pajuelo
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
27
|
Liao JX, Li KH, Wang JP, Deng JR, Liu QG, Chang CQ. RNA-seq analysis provides insights into cold stress responses of Xanthomonas citri pv. citri. BMC Genomics 2019; 20:807. [PMID: 31694530 PMCID: PMC6833247 DOI: 10.1186/s12864-019-6193-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
Background Xanthomonas citri pv. citri (Xcc) is a citrus canker causing Gram-negative bacteria. Currently, little is known about the biological and molecular responses of Xcc to low temperatures. Results Results depicted that low temperature significantly reduced growth and increased biofilm formation and unsaturated fatty acid (UFA) ratio in Xcc. At low temperature Xcc formed branching structured motility. Global transcriptome analysis revealed that low temperature modulates multiple signaling networks and essential cellular processes such as carbon, nitrogen and fatty acid metabolism in Xcc. Differential expression of genes associated with type IV pilus system and pathogenesis are important cellular adaptive responses of Xcc to cold stress. Conclusions Study provides clear insights into biological characteristics and genome-wide transcriptional analysis based molecular mechanism of Xcc in response to low temperature.
Collapse
Affiliation(s)
- Jin-Xing Liao
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Kai-Huai Li
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Jin-Pei Wang
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Jia-Ru Deng
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Qiong-Guang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China
| | - Chang-Qing Chang
- Integrative Microbiology Research Centre, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China. .,Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, No. 483 Wushan Road, Tianhe, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
28
|
Nakata M, Sumitomo T, Patenge N, Kreikemeyer B, Kawabata S. Thermosensitive pilus production by FCT type 3 Streptococcus pyogenes controlled by Nra regulator translational efficiency. Mol Microbiol 2019; 113:173-189. [PMID: 31633834 PMCID: PMC7079067 DOI: 10.1111/mmi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2019] [Indexed: 01/18/2023]
Abstract
Streptococcus pyogenes produces a diverse variety of pili in a serotype‐dependent manner and thermosensitive expression of pilus biogenesis genes was previously observed in a serotype M49 strain. However, the precise mechanism and biological significance remain unclear. Herein, the pilus expression analysis revealed the thermosensitive pilus production only in strains possessing the transcriptional regulator Nra. Experimental data obtained for nra deletion and conditional nra‐expressing strains in the background of an M49 strain and the Lactococcus heterologous expression system, indicated that Nra is a positive regulator of pilus genes and also highlighted the importance of the level of intracellular Nra for the thermoregulation of pilus expression. While the nra mRNA level was not significantly influenced by a temperature shift, the Nra protein level was concomitantly increased when the culture temperature was decreased. Intriguingly, a putative stem‐loop structure within the coding region of nra mRNA was a factor related to the post‐transcriptional efficiency of nra mRNA translation. Either deletion of the stem‐loop structure or introduction of silent chromosomal mutations designed to melt the structure attenuated Nra levels, resulting in decreased pilus production. Consequently, the temperature‐dependent translational efficacy of nra mRNA influenced pilus thermoregulation, thereby potentially contributing to the fitness of nra‐positive S. pyogenes in human tissues.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, D-18057, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, D-18057, Germany
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Datta S, Kenton RJ. Characterization of temperature-dependent hemin uptake receptors HupA and HvtA in Vibrio vulnificus. Microbiologyopen 2019; 8:e905. [PMID: 31290613 PMCID: PMC6813434 DOI: 10.1002/mbo3.905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
The Gram-negative pathogen Vibrio vulnificus produces several iron-sequestration systems including a hemin uptake system in response to iron limitation as a means to acquire this essential element. Strains of this organism are capable of causing serious septicemia in humans and eels, where hemin is abundant and an advantageous source of iron. Vibrio vulnificus hemin uptake systems consist of HupA, a well studied outer membrane protein, and a recently identified HvtA protein receptor. In this study, we confirmed that the expression of the hvtA gene is iron-regulated in a fur-dependent manner. When analyzed for virulence in a hemin-overloaded murine model system, the hupA gene was more important for establishing infection than the hvtA gene. Transcriptional profiling of these genes using strains of two different biotypes, biotype 1 (human pathogen) and biotype 2 (eel pathogen), showed that the expression of the two receptors was also regulated in response to temperature. The expression of hupA was highly induced in elevated temperatures in the human pathogenic strain when tested in iron-depleted conditions. Conversely, hvtA expression was induced significantly in the eel pathogenic strain at a lower temperature, a condition where the hupA locus was relatively repressed. Our results indicate that although both hupA and hvtA are involved for optimal hemin uptake in V. vulnificus, their expression is dually regulated by the environmental cues of iron concentration and temperature. Together, these data suggest that the virulence genes hupA and hvtA are tightly regulated and strictly induced during iron limitation combined with the physiological temperature of the host organism.
Collapse
Affiliation(s)
| | - Ryan J. Kenton
- Department of BiologyUniversity of PortlandPortlandORUSA
| |
Collapse
|
30
|
Bhandari D, Bi P, Sherchand JB, Dhimal M, Hanson-Easey S. Assessing the effect of climate factors on childhood diarrhoea burden in Kathmandu, Nepal. Int J Hyg Environ Health 2019; 223:199-206. [PMID: 31537454 DOI: 10.1016/j.ijheh.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION This study was undertaken to assess the effect of climate variability on diarrhoeal disease burden among children under 5 years of age living in Kathmandu, Nepal. The researchers sought to predict future risk of childhood diarrhoea under different climate change scenarios to advance the evidence base available to public health decision-makers, and the Nepalese infection control division, in planning for climate impacts. METHODS A time series study was conducted using the monthly case count of diarrhoeal disease (2003-2013) among children under 5 years of age living in Kathmandu, Nepal. A quasi Poisson generalised linear equation with distributed lag linear model was fitted to estimate the lagged effect of monthly maximum temperature and rainfall on childhood diarrhoea. The environmental framework of comparative risk assessment was used to assess the environmental burden of diarrhoea within this population. RESULTS A total of 219,774 cases of diarrhoeal disease were recorded during the study period with a median value of 1286 cases per month. The results of a regression model revealed that the monthly count of diarrhoea cases increased by 8.1% (RR: 1.081; 95% CI: 1.02-1.14) per 1 °C increase in maximum temperature above the monthly average recorded within that month. Similarly, rainfall was found to have significant effect on the monthly diarrhoea count, with a 0.9% (RR; 1.009; 95% CI: 1.004-1.015) increase in cases for every 10 mm increase in rainfall above the monthly cumulative value recorded within that month. It was estimated that 7.5% (95% CI: 2.2%-12.5%) of the current burden of diarrhoea among children under 5 years of age could be attributed to climatic factors (maximum temperature), and projected that 1357 (UI: 410-2274) additional cases of childhood diarrhoea could be climate attributable by the year 2050 under low-risk scenario (0.9 °C increase in maximum temperature). CONCLUSION It is estimated that there exists a significant association (p < 0.05) between childhood diarrhoea and an increase in maximum temperature and rainfall in Kathmandu, Nepal. The findings of this study may inform the conceptualization and design of early warning systems for the prediction and control of childhood diarrhoea, based upon the observed pattern of climate change in Kathmandu.
Collapse
Affiliation(s)
- Dinesh Bhandari
- The University of Adelaide, School of Public Health, Adelaide, South Australia, Australia.
| | - Peng Bi
- The University of Adelaide, School of Public Health, Adelaide, South Australia, Australia.
| | - Jeevan Bahadur Sherchand
- Public Health Research Laboratory, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal.
| | | | - Scott Hanson-Easey
- The University of Adelaide, School of Public Health, Adelaide, South Australia, Australia.
| |
Collapse
|
31
|
Suay-García B, Alemán-López PA, Bueso-Bordils JI, Falcó A, Antón-Fos G, Pérez-Gracia MT. New solvent options for in vivo assays in the Galleria mellonella larvae model. Virulence 2019; 10:776-782. [PMID: 31451073 PMCID: PMC6735471 DOI: 10.1080/21505594.2019.1659663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Experimentation in mammals is a long and expensive process in which ethical aspects must be considered, which has led the scientific community to develop alternative models such as that of Galleria mellonella. This model is a cost and time effective option to act as a filter in the drug discovery process. The main limitation of this model is the lack of variety in the solvents used to administer compounds, which limits the compounds that can be studied using this model. Five aqueous (DMSO, MeOH, acetic acid, HCl and NaOH) and four non-aqueous (olive oil, isopropyl myristate, benzyl benzoate and ethyl oleate) solvents was assessed to be used as vehicles for toxicity and antimicrobial activity in vivo assays. All the tested solvents were innocuous at the tested concentrations except for NaOH, which can be used at a maximum concentration of 0.5 M. The toxicity of two additional compounds, 5-aminosalicylic acid and DDT, was also assessed. The results obtained allow for the testing of a broader range of compounds using wax moth larvae. This model appears as an alternative to mammal models, by acting as a filter in the drug development process and reducing costs and time invested in new drugs.
Collapse
Affiliation(s)
- Beatriz Suay-García
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Pedro A Alemán-López
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - José Ignacio Bueso-Bordils
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Antonio Falcó
- ESI International Chair@CEU-UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Gerardo Antón-Fos
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - María Teresa Pérez-Gracia
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| |
Collapse
|
32
|
Liu S, Feng J, Pu J, Xu X, Lu S, Yang J, Wang Y, Jin D, Du X, Meng X, Luo X, Sun H, Xiong Y, Ye C, Lan R, Xu J. Genomic and molecular characterisation of Escherichia marmotae from wild rodents in Qinghai-Tibet plateau as a potential pathogen. Sci Rep 2019; 9:10619. [PMID: 31337784 PMCID: PMC6650469 DOI: 10.1038/s41598-019-46831-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Wildlife is a reservoir of emerging infectious diseases of humans and domestic animals. Marmota himalayana mainly resides 2800-4000 m above sea level in the Qinghai-Tibetan Plateau, and is the primary animal reservoir of plague pathogen Yersinia pestis. Recently we isolated a new species, Escherichia marmotae from the faeces of M. himalayana. In this study we characterised E. marmotae by genomic analysis and in vitro virulence testing to determine its potential as a human pathogen. We sequenced the genomes of the seven E. marmotae strains and found that they contained a plasmid that carried a Shigella-like type III secretion system (T3SS) and their effectors, and shared the same O antigen gene cluster as Shigella dysenterae 8 and E. coli O38. We also showed that E. marmotae was invasive to HEp-2 cells although it was much less invasive than Shigella. Thus E. marmotae is likely to be an invasive pathogen. However, E. marmotae has a truncated IpaA invasin, and lacks the environmental response regulator VirF and the IcsA-actin based intracellular motility, rendering it far less invasive in comparison to Shigella. E. marmotae also carried a diverse set of virulence factors in addition to the T3SS, including an IS1414 encoded enterotoxin gene astA with 37 copies, E. coli virulence genes lifA/efa, cif, and epeA, and the sfp gene cluster, Yersinia T3SS effector yopJ, one Type II secretion system and two Type VI secretion systems. Therefore, E. marmotae is a potential invasive pathogen.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China.,Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jie Feng
- Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing, 100101, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Xuefang Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Yiting Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Xiaochen Du
- Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing, 100101, China
| | - Xiangli Meng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Xia Luo
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China. .,Shanghai Institute of Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, China.
| |
Collapse
|
33
|
Sung HL, Nesbitt DJ. Novel Heat-Promoted Folding Dynamics of the yybP-ykoY Manganese Riboswitch: Kinetic and Thermodynamic Studies at the Single-Molecule Level. J Phys Chem B 2019; 123:5412-5422. [DOI: 10.1021/acs.jpcb.9b02852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - David J. Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
34
|
|
35
|
Zhou L, He B, Deng J, Pang S, Tang H. Histone acetylation promotes long-lasting defense responses and longevity following early life heat stress. PLoS Genet 2019; 15:e1008122. [PMID: 31034475 PMCID: PMC6508741 DOI: 10.1371/journal.pgen.1008122] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/09/2019] [Accepted: 04/03/2019] [Indexed: 02/02/2023] Open
Abstract
Early exposure to some mild stresses can slow down the aging process and extend lifespan, raising the question of how early life stress might impact the somatic health of aged animals. Here, we reveal that early life heat experience triggers the establishment of epigenetic memory in soma, which promotes long-lasting stress responses and longevity in C. elegans. Unlike lethal heat shock, mild heat activates a unique transcriptional program mimicking pathogen defense responses, characterized by the enhanced expression of innate immune and detoxification genes. Surprisingly, the expression of defense response genes persists long after heat exposure, conferring enhanced stress resistance even in aged animals. Further studies identify the histone acetyltransferase CBP-1 and the chromatin remodeling SWI/SNF complex as epigenetic modulators of the long-lasting defense responses. Histone acetylation is elevated by heat stress and maintained into agedness thereafter. Accordingly, histone acetylation levels were increased on the promoters of defense genes. Moreover, disruption of epigenetic memory abrogates the longevity response to early hormetic heat stress, indicating that long-lasting defense responses are crucial for the survival of aged animals. Together, our findings provide mechanistic insights into how temperature stress experienced in early life provides animals with lifetime health benefits. Organism aging is a deleterious process characterized by the progressive decline of cellular and tissue functions in the late life stage. However, the rate of aging is often determined by an organism’s historic experiences that occur in early life. For example, some mild stresses experienced in early life can extend animal lifespan, implying that early stresses might impact the health of aged animals, the mechanisms of which remain largely unknown. Here, by using the model organism C. elegans, we reveal a mechanism of how early life heat stress impacts the health of aged animals and promotes longevity. We find that early exposure to mild heat activates basal innate immune and detoxification responses, which are surprisingly maintained long after temperature drop, even into agedness, and therefore contribute to lifespan extension. Remarkably, the long-lasting defense responses require epigenetic memory established by histone acetyltransferase CBP-1 and chromatin remodeling complex SWI/SNF. As a previous study has reported high temperature-induced transgenerational epigenetic effects in germline that involve histone methylation, our findings suggest that temperature may trigger distinct epigenetic changes in soma and germline, conferring adaptations in both the parental generation and their offspring.
Collapse
Affiliation(s)
- Lei Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Bin He
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jianhui Deng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
- * E-mail: (SP); (HT)
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China
- * E-mail: (SP); (HT)
| |
Collapse
|
36
|
An unconventional RNA-based thermosensor within the 5' UTR of Staphylococcus aureus cidA. PLoS One 2019; 14:e0214521. [PMID: 30933991 PMCID: PMC6443170 DOI: 10.1371/journal.pone.0214521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen of global concern and a leading cause of bacterial infections worldwide. Asymptomatic carriage of S. aureus on the skin and in the anterior nares is common and recognized as a predisposing factor to invasive infection. Transition of S. aureus from the carriage state to that of invasive infection is often accompanied by a temperature upshift from approximately 33°C to 37°C. Such a temperature shift is known in other pathogens to influence gene expression, often resulting in increased production of factors that promote survival or virulence within the host. One mechanism by which bacteria modulate gene expression in response to temperature is by the regulatory activity of RNA-based thermosensors, cis-acting riboregulators that control translation efficiency. This study was designed to identify and characterize RNA-based thermosensors in S. aureus. Initially predicted by in silico analyses of the S. aureus USA300 genome, reporter-based gene expression analyses and site-specific mutagenesis were performed to demonstrate the presence of a functional thermosensor within the 5’ UTR of cidA, a gene implicated in biofilm formation and survival of the pathogen. The nucleic sequence composing the identified thermosensor are sufficient to confer temperature-dependent post-transcriptional regulation, and activity is predictably altered by the introduction of site-specific mutations designed to stabilize or destabilize the structure within the identified thermosensor. The identified regulator is functional in both the native bacterial host S. aureus and in the distally related species Escherichia coli, suggesting that its regulatory activity is independent of host-specific factors. Interestingly, unlike the majority of bacterial RNA-based thermosensors characterized to date, the cidA thermosensor facilitates increased target gene expression at lower temperatures. In addition to the characterization of the first RNA-based thermosensor in the significant pathogen S. aureus, it highlights the diversity of function within this important class of ribo-regulators.
Collapse
|
37
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|
38
|
Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont. Sci Rep 2019; 9:1363. [PMID: 30718608 PMCID: PMC6361982 DOI: 10.1038/s41598-018-37062-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/23/2018] [Indexed: 12/29/2022] Open
Abstract
Our understanding of diseases has been transformed by the realisation that people are holobionts, comprised of a host and its associated microbiome(s). Disease can also have devastating effects on populations of marine organisms, including dominant habitat formers such as seaweed holobionts. However, we know very little about how interactions between microorganisms within microbiomes - of humans or marine organisms – affect host health and there is no underpinning theoretical framework for exploring this. We applied ecological models of succession to bacterial communities to understand how interactions within a seaweed microbiome affect the host. We observed succession of surface microbiomes on the red seaweed Delisea pulchra in situ, following a disturbance, with communities ‘recovering’ to resemble undisturbed states after only 12 days. Further, if this recovery was perturbed, a bleaching disease previously described for this seaweed developed. Early successional strains of bacteria protected the host from colonisation by a pathogenic, later successional strain. Host chemical defences also prevented disease, such that within-microbiome interactions were most important when the host’s chemical defences were inhibited. This is the first experimental evidence that interactions within microbiomes have important implications for host health and disease in a dominant marine habitat-forming organism.
Collapse
|
39
|
Boháčová M, Pazlarová J, Fuchsová V, Švehláková T, Demnerová K. Quantitative evaluation of biofilm extracellular DNA by fluorescence-based techniques. Folia Microbiol (Praha) 2019; 64:567-577. [DOI: 10.1007/s12223-019-00681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/10/2019] [Indexed: 10/27/2022]
|
40
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Pereira TC, de Barros PP, Fugisaki LRDO, Rossoni RD, Ribeiro FDC, de Menezes RT, Junqueira JC, Scorzoni L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel) 2018; 4:jof4040128. [PMID: 30486393 PMCID: PMC6308929 DOI: 10.3390/jof4040128] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
The use of invertebrates for in vivo studies in microbiology is well established in the scientific community. Larvae of Galleria mellonella are a widely used model for studying pathogenesis, the efficacy of new antimicrobial compounds, and immune responses. The immune system of G. mellonella larvae is structurally and functionally similar to the innate immune response of mammals, which makes this model suitable for such studies. In this review, cellular responses (hemocytes activity: phagocytosis, nodulation, and encapsulation) and humoral responses (reactions or soluble molecules released in the hemolymph as antimicrobial peptides, melanization, clotting, free radical production, and primary immunization) are discussed, highlighting the use of G. mellonella as a model of immune response to different human pathogenic microorganisms.
Collapse
Affiliation(s)
- Thais Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Luciana Ruano de Oliveira Fugisaki
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Felipe de Camargo Ribeiro
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Raquel Teles de Menezes
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| | - Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 12245-000, Brazil.
| |
Collapse
|
42
|
Kraay ANM, Brouwer AF, Lin N, Collender PA, Remais JV, Eisenberg JNS. Modeling environmentally mediated rotavirus transmission: The role of temperature and hydrologic factors. Proc Natl Acad Sci U S A 2018; 115:E2782-E2790. [PMID: 29496960 PMCID: PMC5866583 DOI: 10.1073/pnas.1719579115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus is considered a directly transmitted disease due to its high infectivity. Environmental pathways have, therefore, largely been ignored. Rotavirus, however, persists in water sources, and both its surface water concentrations and infection incidence vary with temperature. Here, we examine the potential for waterborne rotavirus transmission. We use a mechanistic model that incorporates both direct and waterborne transmission pathways, coupled with a hydrological model, and we simulate rotavirus transmission between two communities with interconnected water sources. To parameterize temperature dependency, we estimated temperature-dependent decay rates in water through a meta-analysis. Our meta-analysis suggests that rotavirus decay rates are positively associated with temperature (n = 39, P [Formula: see text] 0.001). This association is stronger at higher temperatures (over 20 °C), consistent with tropical climate conditions. Our model analysis demonstrates that water could disseminate rotavirus between the two communities for all modeled temperatures. While direct transmission was important for disease amplification within communities, waterborne transmission could also amplify transmission. In standing-water systems, the modeled increase in decay led to decreased disease, with every 1 °C increase in temperature leading to up to a 2.4% decrease in incidence. These effect sizes are consistent with prior meta-analyses, suggesting that environmental transmission through water sources may partially explain the observed associations between temperature and rotavirus incidence. Waterborne rotavirus transmission is likely most important in cooler seasons and in communities that use slow-moving or stagnant water sources. Even when indirect transmission through water cannot sustain outbreaks, it can seed outbreaks that are maintained by high direct transmission rates.
Collapse
Affiliation(s)
- Alicia N M Kraay
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48104
| | - Andrew F Brouwer
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Nan Lin
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Philip A Collender
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Justin V Remais
- Department of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | | |
Collapse
|
43
|
The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues. mBio 2018; 9:mBio.02122-17. [PMID: 29339429 PMCID: PMC5770552 DOI: 10.1128/mbio.02122-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli, Salmonella, and Campylobacter jejuni, are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs), which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks.
Collapse
|
44
|
Pietri JE, Liang D. Virulence of entomopathogenic bacteria in the bed bug, Cimex lectularius. J Invertebr Pathol 2018; 151:1-6. [DOI: 10.1016/j.jip.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 01/26/2023]
|
45
|
Meyer S, Carlson PD, Lucks JB. Characterizing the Structure-Function Relationship of a Naturally Occurring RNA Thermometer. Biochemistry 2017; 56:6629-6638. [PMID: 29172455 PMCID: PMC5807002 DOI: 10.1021/acs.biochem.7b01170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A large number of bacteria have been found to govern virulence and heat shock responses using temperature-sensing RNAs known as RNA thermometers. A prime example is the agsA thermometer known to regulate the production of the AgsA heat shock protein in Salmonella enterica using a "fourU" structural motif. Using the SHAPE-Seq RNA structure-probing method in vivo and in vitro, we found that the regulator functions by a subtle shift in equilibrium RNA structure populations that leads to a partial melting of the helix containing the ribosome binding site. We also demonstrate that binding of the ribosome to the agsA mRNA causes changes to the thermometer structure that appear to facilitate thermometer helix unwinding. These results demonstrate how subtle RNA structural changes can govern gene expression and illuminate the function of an important bacterial regulatory motif.
Collapse
Affiliation(s)
- Sarai Meyer
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University; 120 Olin Hall; Ithaca, NY 14853; USA
| | - Paul D. Carlson
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University; 120 Olin Hall; Ithaca, NY 14853; USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University; 2145 Sheridan Rd.; Evanston, IL 60208; USA
| |
Collapse
|
46
|
Santander RD, Biosca EG. Erwinia amylovora psychrotrophic adaptations: evidence of pathogenic potential and survival at temperate and low environmental temperatures. PeerJ 2017; 5:e3931. [PMID: 29085749 PMCID: PMC5660878 DOI: 10.7717/peerj.3931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
The fire blight pathogen Erwinia amylovora can be considered a psychrotrophic bacterial species since it can grow at temperatures ranging from 4 °C to 37 °C, with an optimum of 28 °C. In many plant pathogens the expression of virulence determinants is restricted to a certain range of temperatures. In the case of E. amylovora, temperatures above 18 °C are required for blossom blight epidemics under field conditions. Moreover, this bacterium is able to infect a variety of host tissues/organs apart from flowers, but it is still unknown how environmental temperatures, especially those below 18 °C, affect the pathogen ability to cause fire blight disease symptoms in such tissues/organs. There is also scarce information on how temperatures below 18 °C affect the E. amylovora starvation-survival responses, which might determine its persistence in the environment and probably contribute to the seasonal development of fire blight disease, as occurs in other pathogens. To characterize the virulence and survival of E. amylovora at temperate and low temperatures, we evaluated the effect of three temperatures (4 °C, 14 °C, 28 °C) on symptom development, and on different parameters linked to starvation and virulence. E. amylovora was pathogenic at the three assayed temperatures, with a slow-down of symptom development correlating with colder temperatures and slower growth rates. Siderophore secretion and motility also decreased in parallel to incubation temperatures. However, production of the exopolysaccharides amylovoran and levan was enhanced at 4 °C and 14 °C, respectively. Similarly, biofilm formation, and oxidative stress resistance were improved at 14 °C, with this temperature also favoring the maintenance of culturability, together with a reduction in cell size and the acquisition of rounded shapes in E. amylovora cells subjected to long-term starvation. However, starvation at 28 °C and 4 °C induced an enhanced viable but nonculturable (VBNC) response (to a lesser extent at 4 °C). This work reveals E. amylovora as a highly adaptable pathogen that retains its pathogenic potential even at the minimal growth temperatures, with an improved exopolysaccharide synthesis, biofilm formation or oxidative stress resistance at 14 °C, with respect to the optimal growth temperature (28 °C). Finally, our results also demonstrate the thermal modulation of starvation responses in E. amylovora, suggesting that the starvation-survival and the VBNC states are part of its life cycle. These results confirm the particular psychrotrophic adaptations of E. amylovora, revealing its pathogenic potential and survival at temperate and low environmental temperatures, which have probably contributed to its successful spread to countries with different climates. This knowledge might improve integrated control measures against fire blight.
Collapse
Affiliation(s)
- Ricardo D. Santander
- Department of Microbiology and Ecology, Universitat de València, Burjassot, Spain
| | - Elena G. Biosca
- Department of Microbiology and Ecology, Universitat de València, Burjassot, Spain
| |
Collapse
|
47
|
Varano M, Gaspari M, Quirino A, Cuda G, Liberto MC, Focà A. Temperature-dependent regulation of the Ochrobactrum anthropi proteome. Proteomics 2017; 16:3019-3024. [PMID: 27753207 DOI: 10.1002/pmic.201600048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/13/2016] [Accepted: 10/12/2016] [Indexed: 02/05/2023]
Abstract
Ochrobactrum anthropi is a Gram-negative rod belonging to the Brucellaceae family, able to colonize a variety of environments, and actually reported as a human opportunistic pathogen. Despite its low virulence, the bacterium causes a growing number of hospital-acquired infections mainly, but not exclusively, in immunocompromised patients. The aim of this study was to obtain an overview of the global proteome changes occurring in O. anthropi in response to different growth temperatures, in order to achieve a major understanding of the mechanisms by which the bacterium adapts to different habitats and to identify some potential virulence factors. Combined quantitative mass spectrometry-based proteomics and bioinformatics approaches were carried out on two O. anthropi strains grown at temperatures miming soil/plants habitat (25°C) and human host environment (37°C), respectively. Proteomic analysis led to the identification of over 150 differentially expressed proteins in both strains, out of over 1200 total protein identifications. Among them, proteins responsible for heat shock response (DnaK, GrpE), motility (FliC, FlgG, FlgE), and putative virulence factors (TolB) were identified. The study represents the first quantitative proteomic analysis of O. anthropi performed by high-resolution quantitative mass spectrometry.
Collapse
Affiliation(s)
- Mariaconcetta Varano
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Laboratory Proteomics@UMG, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Laboratory Proteomics@UMG, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Angela Quirino
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Giovanni Cuda
- Laboratory Proteomics@UMG, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Carla Liberto
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alfredo Focà
- Institute of Microbiology, Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
48
|
Merkley ED, Sego LH, Lin A, Leiser OP, Kaiser BLD, Adkins JN, Keim PS, Wagner DM, Kreuzer HW. Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague. PLoS One 2017; 12:e0183478. [PMID: 28854255 PMCID: PMC5576697 DOI: 10.1371/journal.pone.0183478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/05/2017] [Indexed: 11/19/2022] Open
Abstract
The rapid pace of bacterial evolution enables organisms to adapt to the laboratory environment with repeated passage and thus diverge from naturally-occurring environmental ("wild") strains. Distinguishing wild and laboratory strains is clearly important for biodefense and bioforensics; however, DNA sequence data alone has thus far not provided a clear signature, perhaps due to lack of understanding of how diverse genome changes lead to convergent phenotypes, difficulty in detecting certain types of mutations, or perhaps because some adaptive modifications are epigenetic. Monitoring protein abundance, a molecular measure of phenotype, can overcome some of these difficulties. We have assembled a collection of Yersinia pestis proteomics datasets from our own published and unpublished work, and from a proteomics data archive, and demonstrated that protein abundance data can clearly distinguish laboratory-adapted from wild. We developed a lasso logistic regression classifier that uses binary (presence/absence) or quantitative protein abundance measures to predict whether a sample is laboratory-adapted or wild that proved to be ~98% accurate, as judged by replicated 10-fold cross-validation. Protein features selected by the classifier accord well with our previous study of laboratory adaptation in Y. pestis. The input data was derived from a variety of unrelated experiments and contained significant confounding variables. We show that the classifier is robust with respect to these variables. The methodology is able to discover signatures for laboratory facility and culture medium that are largely independent of the signature of laboratory adaptation. Going beyond our previous laboratory evolution study, this work suggests that proteomic differences between laboratory-adapted and wild Y. pestis are general, potentially pointing to a process that could apply to other species as well. Additionally, we show that proteomics datasets (even archived data collected for different purposes) contain the information necessary to distinguish wild and laboratory samples. This work has clear applications in biomarker detection as well as biodefense.
Collapse
Affiliation(s)
- Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| | - Landon H. Sego
- Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Owen P. Leiser
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Paul S. Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
49
|
Stringent Expression Control of Pathogenic R-body Production in Legume Symbiont Azorhizobium caulinodans. mBio 2017; 8:mBio.00715-17. [PMID: 28743814 PMCID: PMC5527310 DOI: 10.1128/mbio.00715-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
R bodies are insoluble large polymers consisting of small proteins encoded by reb genes and are coiled into cylindrical structures in bacterial cells. They were first discovered in Caedibacter species, which are obligate endosymbionts of paramecia. Caedibacter confers a killer trait on the host paramecia. R-body-producing symbionts are released from their host paramecia and kill symbiont-free paramecia after ingestion. The roles of R bodies have not been explained in bacteria other than Caedibacter. Azorhizobium caulinodans ORS571, a microsymbiont of the legume Sesbania rostrata, carries a reb operon containing four reb genes that are regulated by the repressor PraR. Herein, deletion of the praR gene resulted in R-body formation and death of host plant cells. The rebR gene in the reb operon encodes an activator. Three PraR binding sites and a RebR binding site are present in the promoter region of the reb operon. Expression analyses using strains with mutations within the PraR binding site and/or the RebR binding site revealed that PraR and RebR directly control the expression of the reb operon and that PraR dominantly represses reb expression. Furthermore, we found that the reb operon is highly expressed at low temperatures and that 2-oxoglutarate induces the expression of the reb operon by inhibiting PraR binding to the reb promoter. We conclude that R bodies are toxic not only in paramecium symbiosis but also in relationships between other bacteria and eukaryotic cells and that R-body formation is controlled by environmental factors. Caedibacter species, which are obligate endosymbiotic bacteria of paramecia, produce R bodies, and R-body-producing endosymbionts that are released from their hosts are pathogenic to symbiont-free paramecia. Besides Caedibacter species, R bodies have also been observed in a few free-living bacteria, but the significance of R-body production in these bacteria is still unknown. Recent advances in genome sequencing technologies revealed that many Gram-negative bacteria possess reb genes encoding R-body components, and interestingly, many of them are animal and plant pathogens. Azorhizobium caulinodans, a microsymbiont of the tropical legume Sesbania rostrata, also possesses reb genes. In this study, we demonstrate that A. caulinodans has ability to kill the host plant cells by producing R bodies, suggesting that pathogenicity conferred by an R body might be universal in bacteria possessing reb genes. Furthermore, we provide the first insight into the molecular mechanism underlying the expression of R-body production in response to environmental factors, such as temperature and 2-oxoglutarate.
Collapse
|
50
|
Dawoud TM, Davis ML, Park SH, Kim SA, Kwon YM, Jarvis N, O’Bryan CA, Shi Z, Crandall PG, Ricke SC. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review. Front Vet Sci 2017; 4:93. [PMID: 28660201 PMCID: PMC5469892 DOI: 10.3389/fvets.2017.00093] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal) stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.
Collapse
Affiliation(s)
- Turki M. Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Morgan L. Davis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nathan Jarvis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Corliss A. O’Bryan
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Zhaohao Shi
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Philip G. Crandall
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|