1
|
Yu J, Zhang H, Ju Z, Huang J, Lin C, Wu J, Wu Y, Sun S, Wang H, Hao G, Zhang A. Increased mutations in lipopolysaccharide biosynthetic genes cause time-dependent development of phage resistance in Salmonella. Antimicrob Agents Chemother 2024; 68:e0059423. [PMID: 38193669 PMCID: PMC10848759 DOI: 10.1128/aac.00594-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/12/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding how bacteria evolve resistance to phages has implications for phage-based therapies and microbial evolution. In this study, the susceptibility of 335 Salmonella isolates to the wide host range Salmonella phage BPSELC-1 was tested. Potentially significant gene sets that could confer resistance were identified using bioinformatics approaches based on phage susceptibility phenotypes; more than 90 potential antiphage defense gene sets, including those involved in lipopolysaccharide (LPS) biosynthesis, DNA replication, secretion systems, and respiratory chain, were found. The evolutionary dynamics of Salmonella resistance to phage were assessed through laboratory evolution experiments, which showed that phage-resistant mutants rapidly developed and exhibited genetic heterogeneity. Most representative Salmonella hosts (58.1% of 62) rapidly developed phage resistance within 24 h. All phage-resistant mutant clones exhibited genetic heterogeneity and observed mutations in LPS-related genes (rfaJ and rfaK) as well as other genes such as cellular respiration, transport, and cell replication-related genes. The study also identified potential trade-offs, indicating that bacteria tend to escape fitness trade-offs through multi-site mutations, all tested mutants increased sensitivity to polymyxin B, but this does not always affect their relative fitness or biofilm-forming capacity. Furthermore, complementing the rfaJ mutant gene could partially restore the phage sensitivity of phage-resistant mutants. These results provide insight into the phage resistance mechanisms of Salmonella and the complexity of bacterial evolution resulting from phage predation, which can inform future strategies for phage-based therapies and microbial evolution.
Collapse
Affiliation(s)
- Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zijing Ju
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Cong Lin
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yingting Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hussain A, Ong EBB, Balaram P, Ismail A, Kien PK. Deletion of Salmonella enterica serovar Typhi tolC reduces bacterial adhesion and invasion toward host cells. Front Microbiol 2023; 14:1301478. [PMID: 38029101 PMCID: PMC10655110 DOI: 10.3389/fmicb.2023.1301478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background S. Typhi is a Gram-negative bacterium that causes typhoid fever in humans. Its virulence depends on the TolC outer membrane pump, which expels toxic compounds and antibiotics. However, the role of TolC in the host cell adhesion and invasion by S. Typhi is unclear. Objective We aimed to investigate how deleting the tolC affects the adhesion and invasion of HT-29 epithelial and THP-1 macrophage cells by S. Typhi in vitro. Methods We compared the adhesion and invasion rates of the wild-type and the tolC mutant strains of S. Typhi using in vitro adhesion and invasion assays. We also measured the expression levels of SPI-1 genes (invF, sipA, sipC, and sipD) using quantitative PCR. Results We found that the tolC mutant showed a significant reduction in adhesion and invasion compared to the wild-type strain in both cell types. We also observed that the expression of SPI-1 genes was downregulated in the tolC mutant. Discussion Our results suggest that TolC modulates the expression of SPI-1 genes and facilitates the adhesion and invasion of host cells by S. Typhi. Our study provides new insights into the molecular mechanisms of S. Typhi pathogenesis and antibiotic resistance. However, our study is limited by the use of in vitro models and does not reflect the complex interactions between S. Typhi and host cells in vivo.
Collapse
Affiliation(s)
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), University Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
3
|
Jinapon C, Wangman P, Pengsuk C, Chaivisuthangkura P, Sithigorngul P, Longyant S. Development of monoclonal antibodies for the rapid detection and identification of
Salmonella enterica
serovar Enteritidis in food sample using dot‐blot assays. J Food Saf 2020. [DOI: 10.1111/jfs.12841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chontichar Jinapon
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
| | - Pradit Wangman
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Chalinan Pengsuk
- Faculty of Agricultural Product Innovation and Technology Srinakharinwirot University Nakhon Nayok Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Paisarn Sithigorngul
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science Srinakharinwirot University Bangkok Thailand
- Center of Excellence in Animal, Plant and Parasite Biotechnology Srinakharinwirot University Bangkok Thailand
| |
Collapse
|
4
|
Correia DM, Sargo CR, Silva AJ, Santos ST, Giordano RC, Ferreira EC, Zangirolami TC, Ribeiro MPA, Rocha I. Mapping Salmonella typhimurium pathways using 13C metabolic flux analysis. Metab Eng 2019; 52:303-314. [PMID: 30529284 DOI: 10.1016/j.ymben.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
In the last years, Salmonella has been extensively studied not only due to its importance as a pathogen, but also as a host to produce pharmaceutical compounds. However, the full exploitation of Salmonella as a platform for bioproduct delivery has been hampered by the lack of information about its metabolism. Genome-scale metabolic models can be valuable tools to delineate metabolic engineering strategies as long as they closely represent the actual metabolism of the target organism. In the present study, a 13C-MFA approach was applied to map the fluxes at the central carbon pathways of S. typhimurium LT2 growing at glucose-limited chemostat cultures. The experiments were carried out in a 2L bioreactor, using defined medium enriched with 20% 13C-labeled glucose. Metabolic flux distributions in central carbon pathways of S. typhimurium LT2 were estimated using OpenFLUX2 based on the labeling pattern of biomass protein hydrolysates together with biomass composition. The results suggested that pentose phosphate is used to catabolize glucose, with minor fluxes through glycolysis. In silico simulations, using Optflux and pFBA as simulation method, allowed to study the performance of the genome-scale metabolic model. In general, the accuracy of in silico simulations was improved by the superimposition of estimated intracellular fluxes to the existing genome-scale metabolic model, showing a better fitting to the experimental extracellular fluxes, whereas the intracellular fluxes of pentose phosphate and anaplerotic reactions were poorly described.
Collapse
Affiliation(s)
- Daniela M Correia
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Cintia R Sargo
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Adilson J Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Sophia T Santos
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Eugénio C Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Marcelo P A Ribeiro
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal.
| |
Collapse
|
5
|
Application of Molecular Approaches for Understanding Foodborne Salmonella Establishment in Poultry Production. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/813275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salmonellosis in the United States is one of the most costly foodborne diseases. Given that Salmonella can originate from a wide variety of environments, reduction of this organism at all stages of poultry production is critical. Salmonella species can encounter various environmental stress conditions which can dramatically influence their survival and colonization. Current knowledge of Salmonella species metabolism and physiology in relation to colonization is traditionally based on studies conducted primarily with tissue culture and animal infection models. Consequently, while there is some information about environmental signals that control Salmonella growth and colonization, much still remains unknown. Genetic tools for comprehensive functional genomic analysis of Salmonella offer new opportunities for not only achieving a better understanding of Salmonella pathogens but also designing more effective intervention strategies. Now the function(s) of each single gene in the Salmonella genome can be directly assessed and previously unknown genetic factors that are required for Salmonella growth and survival in the poultry production cycle can be elucidated. In particular, delineating the host-pathogen relationships involving Salmonella is becoming very helpful for identifying optimal targeted gene mutagenesis strategies to generate improved vaccine strains. This represents an opportunity for development of novel vaccine approaches for limiting Salmonella establishment in early phases of poultry production. In this review, an overview of Salmonella issues in poultry, a general description of functional genomic technologies, and their specific application to poultry vaccine developments are discussed.
Collapse
|
6
|
Lipopolysaccharides belonging to different Salmonella serovars are differentially capable of activating Toll-like receptor 4. Infect Immun 2014; 82:4553-62. [PMID: 25135686 DOI: 10.1128/iai.02297-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar (serotype) Abortusovis is a member of the Enterobacteriaceae. This serotype is naturally restricted to ovine species and does not infect humans. Limited information is available about the immune response of sheep to S. Abortusovis. S. Abortusovis, like Salmonella enterica subsp. enterica serovar Typhi, causes a systemic infection in which, under natural conditions, animals are not able to raise a rapid immune response. Failure to induce the appropriate response allows pathogens to reach the placenta and results in an abortion. Lipopolysaccharides (LPSs) are pathogen-associated molecular patterns (PAMPs) that are specific to bacteria and are not synthesized by the host. Toll-like receptors (TLRs) are a family of receptors that specifically recognize PAMPs. As a first step, we were able to identify the presence of Toll-like receptor 4 (TLR4) on the ovine placenta by using an immunohistochemistry technique. To our knowledge, this is the first work describing the interaction between S. Abortusovis LPS and TLR4. Experiments using an embryonic cell line (HEK293) transfected with human and ovine TLR4s showed a reduction of interleukin 8 (IL-8) production by S. Abortusovis and Salmonella enterica subsp. enterica serovar Paratyphi upon LPS stimulation compared to Salmonella enterica subsp. enterica serovar Typhimurium. Identical results were observed using heat-killed bacteria instead of LPS. Based on data obtained with TLR4 in vitro stimulation, we demonstrated that the serotype S. Abortusovis is able to successfully evade the immune system whereas S. Typhimurium and other serovars fail to do so.
Collapse
|
7
|
Study of the effect exerted by fructo-oligosaccharides from yacon (Smallanthus sonchifolius) root flour in an intestinal infection model with Salmonella Typhimurium. Br J Nutr 2012; 109:1971-9. [DOI: 10.1017/s0007114512004230] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Beneficial effects of prebiotics like inulin and fructo-oligosaccharides (FOS) have been proven in health and nutrition. Yacon (Smallanthus sonchifolius), an Andean crop, contains FOS (50–70 % of its dry weight) and, therefore, is considered a prebiotic. Commercial FOS can up-regulate total secretory IgA (S-IgA) in infant mice, prevent infection with Salmonella in swine or enhance immune response for Salmonella vaccine in a mouse model. Previously, we found that administration of yacon root flour regulates gut microbiota balance and has immunomodulatory effects without inflammatory responses. The aim of the present paper is to analyse if yacon prevents enteric infection caused by a strain of Salmonella enteritidis serovar Typhimurium (S. Typhimurium) in a mouse model. BALB/c mice were supplemented with yacon flour (45 d), challenged with S. Typhimurium and killed to study pathogen translocation, total and specific IgA production by ELISA, presence of IgA and other cytokines and Toll-like receptor 4 (TLR4) and clustor of differentiation 206 (CD206) receptors positive cells by immunofluorescence and histological changes. Yacon flour administration had a protective effect from 15 to 30 d of treatment. We found a peak of total S-IgA production without translocation of the pathogen for these periods. At 30 d, there was an increase in IL-6 and macrophage inflammatory proteins-1α+ cells and expression of the receptors CD206 and TLR4. Yacon flour did not have incidence in pathogen-specific S-IgA production. Longer periods (45 d) of administration had no protective effect. Therefore, yacon can prevent enteric infection caused by S. Typhimurium when given up to 30 d; this effect would be mediated by enhancing non-specific immunity, such as total S-IgA, that improves the immunological intestinal barrier.
Collapse
|
8
|
Bolhassani A, Zahedifard F. Therapeutic live vaccines as a potential anticancer strategy. Int J Cancer 2012; 131:1733-43. [PMID: 22610886 DOI: 10.1002/ijc.27640] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/10/2012] [Indexed: 01/13/2023]
Abstract
The design of efficient cancer treatments is one of the major challenges of medical science. Therapeutic vaccines of cancer have been emerged as an attractive approach for their capacity of breaking the immune tolerance and invoking long-term immune response targeting cancer cells without autoimmunity. An efficient antigen delivery system is the key issue of developing an effective cancer vaccine. In this regard, live vaccination strategies including various live bacterial and viral vectors have attracted a great attention. Several bacterial strains such as Salmonella, Listeria monocytogenes and Lactococcus lactis effectively colonize solid tumors and act as antitumor therapeutics. On the other hand, the use of viruses as vaccine vectors such as Vaccinia, Adenovirus, Herpes simplex virus, Paramyxovirus and Retroviruses utilizes mechanisms that evolved in these microbes for entering cells and capturing the cellular machinery to express viral proteins. Viral/bacterial-vectored vaccines induce systemic T-cell responses including polyfunctional cytokine-secreting CD4+ and CD8+ T-cells. However, there is an urgent need for the development of new safe live vaccine vectors that are capable of enhancing antigen presentation and eliciting potent immune responses without the risk of development of disease in humans. Recently, nonpathogenic parasites including Leishmania tarentolae, Toxoplasma gondii and Trypanosoma cruzi have emerged to be a novel candidate for gene delivery and heterologous genes expression. In this review, recent researches on cancer therapy using genetically modified bacteria and virus are summarized. In addition, live parasite-based vectors will be discussed as a novel anticancer therapeutic approach.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
9
|
Nalbantsoy A, Karabay-Yavasoglu N, Deliloglu-Gurhan I. Determination ofin vivotoxicity andin vitrocytotoxicity of lipopolysaccharide isolated fromSalmonellaEnteritidis and its potential use for production of polyclonal antibody. FOOD AGR IMMUNOL 2011. [DOI: 10.1080/09540105.2011.569883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Nalbantsoy A, Karaboz I, Gurhan ID. Production of monoclonal antibody against Salmonella H: g,m flagellar antigen and potential diagnostic application. Hybridoma (Larchmt) 2011; 29:419-23. [PMID: 21050043 DOI: 10.1089/hyb.2010.0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the flagella antigen was detached at high speed by shaking vigorously with glass pearl beads, from Salmonella enteritidis in a yield of 3.9 mg/mL(-1) after being concentrated with polyethylene glycol (PEG). A monoclonal antibody (MAb), designated D7 clone, was generated from Balb/c mice immunized with Salmonella enteritidis flagella using the conventional hybridoma method. The D7 clone secreting MAb was classified as IgG2a isotype. ELISA analyses of D7 MAb to Salmonella-specific flagella demonstrated that the antibody reacted with H: m. However, Western immunoblot analyses of D7 clone appear to be secreting heavy chain of IgG2a antibody, which was eligible for the diagnosis of Salmonella enteritidis.
Collapse
Affiliation(s)
- Ayse Nalbantsoy
- Faculty of Engineering, Bioengineering Department, Ege University, Bornova, Izmir, Turkey
| | | | | |
Collapse
|
11
|
Nalbantsoy A, Karaboz I, Gurhan ID. Production of Monoclonal Antibodies in a Mouse Model via Lipopolysaccharide Conjugates with Synthetic Polymers Specific toSalmonellaEnteritidis O Antigen. Foodborne Pathog Dis 2010; 7:1521-9. [DOI: 10.1089/fpd.2010.0612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Ismail Karaboz
- Basic and Industrial Microbiology Section, Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | | |
Collapse
|
12
|
Nalbantsoy A, Karaboz I, Ivanova R, Deliloglu-Gurhan I. Isolation and purification of O and H antigens from Salmonella Enteritidis as diagnostic tool. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0093-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Salmonella enterica serovar Typhimurium-induced placental inflammation and not bacterial burden correlates with pathology and fatal maternal disease. Infect Immun 2010; 78:2292-301. [PMID: 20194592 DOI: 10.1128/iai.01186-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Food-borne infections caused by Salmonella enterica species are increasing globally, and pregnancy poses a high risk. Pregnant mice rapidly succumb to S. enterica serovar Typhimurium infection. To determine the mechanisms involved, we addressed the role of inflammation and bacterial burden in causing placental and systemic disease. In vitro, choriocarcinoma cells were a highly conducive niche for intracellular S. Typhimurium proliferation. While infection of mice with S. Typhimurium wild-type (WT) and mutant (Delta aroA and Delta invA) strains led to profound pathogen proliferation and massive burden within placental cells, only the virulent WT S. Typhimurium infection evoked total fetal loss and adverse host outcome. This correlated with substantial placental expression of granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) and increased serum inflammatory cytokines/chemokines, such as G-CSF, IL-6, CCL1, and KC, evoked by WT S. Typhimurium infection. In contrast, infection with high doses of S. Typhimurium Delta aroA, despite causing massive placental infection, resulted in reduced inflammatory cellular and cytokine response. While S. Typhimurium WT bacteria were dispersed in large numbers across all regions of the placenta, including the deeper labyrinth trophoblast, S. Typhimurium Delta aroA bacteria localized primarily to the decidua. This correlated with the widespread placental necrosis accompanied by neutrophil infiltration evoked by the S. Typhimurium WT bacteria. Thus, the ability of Salmonella to localize to deeper layers of the placenta and the nature of inflammation triggered by the pathogen, rather than bacterial burden, profoundly influenced placental integrity and host survival.
Collapse
|
14
|
Valdez Y, Ferreira RBR, Finlay BB. Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 2010; 337:93-127. [PMID: 19812981 DOI: 10.1007/978-3-642-01846-6_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salmonella species can cause typhoid fever and gastroenteritis in humans and pose a global threat to human health. In order to establish a successful infection, Salmonella utilize a large number of genes encoding a variety of virulence factors. Different animal models of infection have been used to better understand the mechanisms underlying each disease including cattle, rodents, and nematodes. To date, a number of different bacterial virulence factors have been identified using such animal models, most of which are secreted by two type three secretion systems (T3SS) encoded within Salmonella pathogenicity islands (SPI) 1 and 2. These proteins alter various host cell pathways, facilitating the invasion of epithelial cells during infection, as well as the survival and replication of Salmonella inside phagocytic cells. On the other hand, host genetics and resistance also play a role in the susceptibility to Salmonella infection. The natural resistance-associated macrophage protein 1 (Nramp1), for example, is critical for host defense, since mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S. Typhimurium. In this chapter, we analyze the different pathogen and host factors that play a role in the dynamic interaction between Salmonella and its host and their impact on disease.
Collapse
Affiliation(s)
- Yanet Valdez
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
15
|
Shahabi V, Maciag PC, Rivera S, Wallecha A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs 2010; 1:235-43. [PMID: 21327055 DOI: 10.4161/bbug.1.4.11243] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/28/2009] [Accepted: 01/04/2010] [Indexed: 02/07/2023] Open
Abstract
Live, attenuated strains of many bacteria that synthesize and secrete foreign antigens are being developed as vaccines for a number of infectious diseases and cancer. Bacterial-based vaccines provide a number of advantages over other antigen delivery strategies including low cost of production, the absence of animal products, genetic stability and safety. In addition, bacterial vaccines delivering a tumor-associated antigen (TAA) stimulate innate immunity and also activate both arms of the adaptive immune system by which they exert efficacious anti-tumor effects. Listeria monocytogenes and several strains of Salmonella have been most extensively studied for this purpose. A number of attenuated strains have been generated and used to deliver antigens associated with infectious diseases and cancer. Although both bacteria are intracellular, the immune responses invoked by Listeria and Salmonella are different due to their sub-cellular locations. Upon entering antigen-presenting cells by phagocytosis, Listeria is capable of escaping from the phagosomal compartment and thus has direct access to the cell cytosol. Proteins delivered by this vector behave as endogenous antigens, are presented on the cell surface in the context of MHC class I molecules, and generate strong cell-mediated immune responses. In contrast, proteins delivered by Salmonella, which lacks a phagosomal escape mechanism, are treated as exogenous antigens and presented by MHC class II molecules resulting predominantly in Th2 type immune responses. This fundamental disparity between the life cycles of the two vectors accounts for their differential application as antigen delivery vehicles. The present paper includes a review of the most recent advances in the development of these two bacterial vectors for treatment of cancer. Similarities and differences between the two vectors are discussed.
Collapse
Affiliation(s)
- Vafa Shahabi
- Advaxis Inc., Research and Development, North Brunswick, NJ, USA
| | | | | | | |
Collapse
|
16
|
Alakomi HL, Saarela M. Salmonellaimportance and current status of detection and surveillance methods. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2009. [DOI: 10.1111/j.1757-837x.2009.00032.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Sad S, Dudani R, Gurnani K, Russell M, van Faassen H, Finlay B, Krishnan L. Pathogen proliferation governs the magnitude but compromises the function of CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:5853-61. [PMID: 18424704 DOI: 10.4049/jimmunol.180.9.5853] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen.
Collapse
Affiliation(s)
- Subash Sad
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
18
|
Alaniz RC, Deatherage BL, Lara JC, Cookson BT. Membrane Vesicles Are Immunogenic Facsimiles ofSalmonella typhimuriumThat Potently Activate Dendritic Cells, Prime B and T Cell Responses, and Stimulate Protective Immunity In Vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:7692-701. [DOI: 10.4049/jimmunol.179.11.7692] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Liu T, König R, Sha J, Agar SL, Tseng CTK, Klimpel GR, Chopra AK. Immunological responses against Salmonella enterica serovar Typhimurium Braun lipoprotein and lipid A mutant strains in Swiss-Webster mice: potential use as live-attenuated vaccines. Microb Pathog 2007; 44:224-37. [PMID: 17997275 DOI: 10.1016/j.micpath.2007.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/19/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
We generated and characterized Salmonella enterica serovar Typhimurium mutants that were deleted for the genes encoding Braun lipoprotein (lpp) alone or in conjunction with the msbB gene, which codes for an enzyme required for the acylation of the lipid A moiety of lipopolysaccharide. Two copies of the lpp gene, designated as lppA and lppB, exist on the chromosome of S. Typhimurium. These mutants were highly attenuated in a mouse infection model and induced minimal histopathological changes in mouse organs compared to those seen in infection with wild-type (WT) S. Typhimurium. The lppB/msbB and the lppAB/msbB mutants were maximally attenuated, and hence further examined in this study for their ability to induce humoral and cellular immune responses. Importantly, infection of out-bred Swiss-Webster mice with the mutant S. Typhimurium generated superior T helper cell type 2 (Th2) responses compared to WT S. Typhimurium, as determined by measuring IgG subclasses and cytokines. WT S. Typhimurium induced higher levels of IgG2a in sera of infected mice, while the lppB/msbB and lppAB/msbB mutants mounted higher levels of IgG1 as determined by an enzyme-linked immunosorbent assay. Mice immunized with lppB/msbB and lppAB/msbB mutants rapidly cleared WT S. Typhimurium upon subsequent rechallenge, and naïve mice passively immunized with sera from animals infected with S. Typhimurium mutants were protected against subsequent challenge with WT S. Typhimurium. Splenic T cells produced higher levels of interferon-gamma following ex vivo exposure to WT S. Typhimurium, while splenic T cells infected with the above-mentioned two mutants evoked higher levels of interleukin-6. Further, mice infected with lppB/msbB and lppAB/msbB mutants showed much higher levels of splenic T cell activation as measured by CD44(+) expression on CD4(+) T cells by flow cytometry and by incorporation of (3)H-thymidine compared to mice that were infected with WT S. Typhimurium. We expect the lppB/msbB and lppAB/msbB mutants to be excellent live-attenuated vaccine candidates, because they induced minimal inflammatory responses and evoked stronger and specific antibody and cellular immune responses.
Collapse
Affiliation(s)
- Tie Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 775551070, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Russell MS, Iskandar M, Mykytczuk OL, Nash JHE, Krishnan L, Sad S. A reduced antigen load in vivo, rather than weak inflammation, causes a substantial delay in CD8+ T cell priming against Mycobacterium bovis (bacillus Calmette-Guérin). THE JOURNAL OF IMMUNOLOGY 2007; 179:211-20. [PMID: 17579040 PMCID: PMC4015951 DOI: 10.4049/jimmunol.179.1.211] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Regardless of the dose of Ag, Ag presentation occurs rapidly within the first few days which results in rapid expansion of the CD8+ T cell response that peaks at day 7. However, we have previously shown that this rapid priming of CD8+ T cells is absent during infection of mice with Mycobacterium bovis (bacillus Calmette-Guérin (BCG)). In this study, we have evaluated the mechanisms responsible for the delayed CD8+ T cell priming. Because BCG replicates poorly and survives within phagosomes we considered whether 1) generation of reduced amounts of Ag or 2) weaker activation by pathogen-associated molecular patterns (PAMPs) during BCG infection is responsible for the delay in CD8+ T cell priming. Using rOVA-expressing bacteria, our results indicate that infection of mice with BCG-OVA generates greatly reduced levels of OVA, which are 70-fold lower in comparison to the levels generated during infection of mice with Listeria monocytogenes-expressing OVA. Furthermore, increasing the dose of OVA, but not PAMP signaling during BCG-OVA infection resulted in rapid Ag presentation and consequent expansion of the CD8+ T cell response, indicating that the generation of reduced Ag levels, not lack of PAMP-associated inflammation, was responsible for delayed priming of CD8+ T cells. There was a strong correlation between the relative timing of Ag presentation and the increase in the level of OVA in vivo. Taken together, these results reveal that some slowly replicating pathogens, such as mycobacteria, may facilitate their chronicity by generating reduced Ag levels which causes a substantial delay in the development of acquired immune responses.
Collapse
Affiliation(s)
- Marsha S. Russell
- National Research Council–Institute for Biological Sciences, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Monica Iskandar
- National Research Council–Institute for Biological Sciences, Ottawa, Ontario, Canada
| | - Oksana L. Mykytczuk
- National Research Council–Institute for Biological Sciences, Ottawa, Ontario, Canada
| | - John H. E. Nash
- National Research Council–Institute for Biological Sciences, Ottawa, Ontario, Canada
| | - Lakshmi Krishnan
- National Research Council–Institute for Biological Sciences, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Subash Sad
- National Research Council–Institute for Biological Sciences, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Address correspondence and reprint requests to Dr. Subash Sad, Institute for Biological Sciences, National Research Council, 1200 Montreal Road, Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
21
|
Medina FA, de Almeida CJ, Dew E, Li J, Bonuccelli G, Williams TM, Cohen AW, Pestell RG, Frank PG, Tanowitz HB, Lisanti MP. Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infect Immun 2006; 74:6665-74. [PMID: 16982844 PMCID: PMC1698056 DOI: 10.1128/iai.00949-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of studies have shown an association of pathogens with caveolae. To this date, however, there are no studies showing a role for caveolin-1 in modulating immune responses against pathogens. Interestingly, expression of caveolin-1 has been shown to occur in a regulated manner in immune cells in response to lipopolysaccharide (LPS). Here, we sought to determine the role of caveolin-1 (Cav-1) expression in Salmonella pathogenesis. Cav-1(-/-) mice displayed a significant decrease in survival when challenged with Salmonella enterica serovar Typhimurium. Spleen and tissue burdens were significantly higher in Cav-1(-/-) mice. However, infection of Cav-1(-/-) macrophages with serovar Typhimurium did not result in differences in bacterial invasion. In addition, Cav-1(-/-) mice displayed increased production of inflammatory cytokines, chemokines, and nitric oxide. Regardless of this, Cav-1(-/-) mice were unable to control the systemic infection of Salmonella. The increased chemokine production in Cav-1(-/-) mice resulted in greater infiltration of neutrophils into granulomas but did not alter the number of granulomas present. This was accompanied by increased necrosis in the liver. However, Cav-1(-/-) macrophages displayed increased inflammatory responses and increased nitric oxide production in vitro in response to Salmonella LPS. These results show that caveolin-1 plays a key role in regulating anti-inflammatory responses in macrophages. Taken together, these data suggest that the increased production of toxic mediators from macrophages lacking caveolin-1 is likely to be responsible for the marked susceptibility of caveolin-1-deficient mice to S. enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Freddy A Medina
- Department of Cancer Biology, Kimmel Cancer Center, Bluemle Life Sciences Building, Room 933, 233 S. 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Luu RA, Gurnani K, Dudani R, Kammara R, van Faassen H, Sirard JC, Krishnan L, Sad S. Delayed expansion and contraction of CD8+ T cell response during infection with virulent Salmonella typhimurium. THE JOURNAL OF IMMUNOLOGY 2006; 177:1516-25. [PMID: 16849458 PMCID: PMC4015949 DOI: 10.4049/jimmunol.177.3.1516] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ag presentation to CD8(+) T cells often commences immediately after infection, which facilitates their rapid expansion and control of infection. Subsequently, the primed cells undergo rapid contraction. We report that this paradigm is not followed during infection with virulent Salmonella enterica, serovar Typhimurium (ST), an intracellular bacterium that replicates within phagosomes of infected cells. Although susceptible mice die rapidly (approximately 7 days), resistant mice (129 x 1SvJ) harbor a chronic infection lasting approximately 60-90 days. Using rOVA-expressing ST (ST-OVA), we show that T cell priming is considerably delayed in the resistant mice. CD8(+) T cells that are induced during ST-OVA infection undergo delayed expansion, which peaks around day 21, and is followed by protracted contraction. Initially, ST-OVA induces a small population of cycling central phenotype (CD62L(high)IL-7Ralpha(high)CD44(high)) CD8(+) T cells. However, by day 14-21, majority of the primed CD8(+) T cells display an effector phenotype (CD62L(low)IL-7Ralpha(low)CD44(high)). Subsequently, a progressive increase in the numbers of effector memory phenotype cells (CD62L(low)IL-7Ralpha(high)CD44(high)) occurs. This differentiation program remained unchanged after accelerated removal of the pathogen with antibiotics, as majority of the primed cells displayed an effector memory phenotype even at 6 mo postinfection. Despite the chronic infection, CD8(+) T cells induced by ST-OVA were functional as they exhibited killing ability and cytokine production. Importantly, even memory CD8(+) T cells failed to undergo rapid expansion in response to ST-OVA infection, suggesting a delay in T cell priming during infection with virulent ST-OVA. Thus, phagosomal lifestyle may allow escape from host CD8(+) T cell recognition, conferring a survival advantage to the pathogen.
Collapse
Affiliation(s)
- Rachel A. Luu
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Komal Gurnani
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Renu Dudani
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Rajagopal Kammara
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Henk van Faassen
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Jean-Claude Sirard
- Institut National de la Santé et de la Recherche Médicale, Institut de Biologie, Campus Pasteur Lille, Lille, France
| | - Lakshmi Krishnan
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
| | - Subash Sad
- Laboratory of Cellular Immunology, National Research Council-Institute for Biological Sciences, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada
- Address correspondence and reprint requests to Dr. Subash Sad, Institute for Biological Sciences, National Research Council, Building M-54, 1200 Montreal Road, Room 127, Ottawa, Ontario, Canada K1A 0R6.
| |
Collapse
|
23
|
Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 2006; 8:1812-25. [PMID: 16824040 DOI: 10.1111/j.1462-5822.2006.00751.x] [Citation(s) in RCA: 783] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Salmonella enterica serovar Typhimurium invades host macrophages and induces a unique caspase-1-dependent pathway of cell death termed pyroptosis, which is activated during bacterial infection in vivo. We demonstrate DNA cleavage during pyroptosis results from caspase-1-stimulated nuclease activity. Although poly(ADP-ribose) polymerase (PARP) activation by fragmented DNA depletes cellular ATP to cause lysis during oncosis, the rapid lysis characteristic of Salmonella-infected macrophages does not require PARP activity or DNA fragmentation. Membrane pores between 1.1 and 2.4 nm in diameter form during pyroptosis of host cells and cause swelling and osmotic lysis. Pore formation requires host cell actin cytoskeleton rearrangements and caspase-1 activity, as well as the bacterial type III secretion system (TTSS); however, insertion of functional TTSS translocons into the host membrane is not sufficient to directly evoke pore formation. Concurrent with pore formation, inflammatory cytokines are released from infected macrophages. This mechanism of caspase-1-mediated cell death provides additional experimental evidence supporting pyroptosis as a novel pathway of inflammatory programmed cell death.
Collapse
Affiliation(s)
- Susan L Fink
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
24
|
Pacheco LGC, Zucconi E, Mati VLT, Garcia RM, Miyoshi A, Oliveira SC, de Melo AL, Azevedo V. Oral administration of a live Aro attenuated Salmonella vaccine strain expressing 14-kDa Schistosoma mansoni fatty acid-binding protein induced partial protection against experimental schistosomiasis. Acta Trop 2005; 95:132-42. [PMID: 15993833 DOI: 10.1016/j.actatropica.2005.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 05/27/2005] [Indexed: 11/30/2022]
Abstract
We report the oral vaccination of SWISS mice with an Aro attenuated Salmonella enterica var. Typhimurium vaccine strain expressing the 14-kDa Schistosoma mansoni antigen, Sm14. Bacterial adjuvants, including (i) Lactococcus lactis expressing interleukin-12 (IL-12) and (ii) Lactobacillus delbrueckii UFV-H2b20, were also employed in oral immunization assays. Detection assays to specific IgG and IgA anti-Sm14 antibodies were performed to evaluate humoral immune responses in vaccinated mice. An increase in specific IgG titers was observed; however, no IgA production was detected. The protection levels against schistosomiasis (34.9-49.5%) obtained with all experimental formulations in this work were very similar to values reported by previous studies, which used purified recombinant Sm14 for parenteral vaccination of mice. There was a slight reduction in hepatic granulomas of mice vaccinated with Salmonella. Oogram studies showed diminished numbers of S. mansoni eggs in the intestinal wall of vaccinated mice, but individual female worm fecundity did not seem to be affected by our immunization protocol.
Collapse
Affiliation(s)
- Luis G C Pacheco
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sadeyen JR, Trotereau J, Velge P, Marly J, Beaumont C, Barrow PA, Bumstead N, Lalmanach AC. Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect 2004; 6:1278-86. [PMID: 15555534 DOI: 10.1016/j.micinf.2004.07.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 07/19/2004] [Indexed: 01/05/2023]
Abstract
Asymptomatic Salmonella enterica serovar Enteritidis carrier state in poultry has serious consequences on food safety and public health due to the risks of food poisoning following consumption of contaminated products. An understanding the mechanisms of persistence of Salmonella in the digestive tract of chicken can be achieved by a better knowledge of the defects in the control of infection in susceptible versus resistant animals. The gene expression of innate immune response factors including anti-microbial molecules, inflammatory and anti-infectious cytokines was studied in the caecal lymphoid tissue associated with the carrier state. Expression levels of these genes were assessed by real-time PCR and were compared in two inbred lines of chickens differing in resistance to the carrier state following oral inoculation of S. enterica serovar Enteritidis at 1 week of age. No correlation was observed between resistance/susceptibility to caecal carrier state and level of interleukin (IL)-1beta, IL-8, IL-18, inducible NO synthase (iNOS) and natural resistance associated macrophage protein 1 (NRAMP1). A high baseline level of defensin gene expression was recorded in young animals from the susceptible line. In contrast, a significantly low expression of interferon-gamma (IFN-gamma) gene was observed in these susceptible infected animals in comparison to resistant ones and healthy counterparts. IFN-gamma expression level represents a valuable indication of immunodeficiency associated with persistence of Salmonella in the chicken digestive tract, and IFN-gamma thus represents a factor to consider in the development of prophylactic measures for the reduction of Salmonella carrier state.
Collapse
Affiliation(s)
- Jean-Rémy Sadeyen
- Unité de Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, Centre de Recherche de Tours, 37380 Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Strindelius L, Filler M, Sjöholm I. Mucosal immunization with purified flagellin from Salmonella induces systemic and mucosal immune responses in C3H/HeJ mice. Vaccine 2004; 22:3797-808. [PMID: 15315861 DOI: 10.1016/j.vaccine.2003.12.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 12/15/2003] [Indexed: 11/16/2022]
Abstract
This study investigated the immune response elicited in C3H/HeJ mice after oral, parenteral and nasal immunization with purified flagellin from Salmonella enterica serovar Enteritidis alone or conjugated to starch microparticles as adjuvant or together with the uptake-enhancer recombinant cholera toxin B-subunit (rCTB). Systemic (IgM-IgG, IgA, IgG2a, IgG2b, IgG1) and local (s-IgA) humoral immune responses in the mice were analyzed using enzyme-linked immunosorbent assays (ELISA). Primed splenocytes were also stimulated in vitro with flagellin and the supernatants analyzed for cytokine production. Finally, immunized mice were challenged orally with live Salmonella. A high flagellin-specific IgM-IgG response was seen in all groups, especially in mice immunized nasally with flagellin plus rCTB or subcutaneously, but a strong systemic antibody response was also induced when free antigen was given orally. Intranasal or subcutaneous immunization of mice with flagellin plus rCTB or oral immunization with flagellin plus microparticles resulted in a significantly greater mucosal response (higher s-IgA titers in feces) than seen in the control group (P <0.05). The mucosal IgA responses were significantly correlated with the serum IgA titers. The subclass profile in serum revealed a mixed Th1/Th2-type response, with a predominance of Th1-type, as indicated by the subclass ratio (IgG1/IgG2a + IgG2b). The splenocytes stimulated in vitro produced interferon (IFN)-gamma, at levels, which increased with time. The group immunized with flagellin plus rCTB subcutaneously had a relatively higher IFN-gamma response than the other groups. Interleukin (IL)-2 was also produced, especially in mice immunized nasally or subcutaneously with flagellin conjugated to microparticles. However, neither IL-4 nor IL-5 was produced in any of the groups. After oral challenge with live serovar Enteritidis, the groups immunized orally or nasally with free flagellin had significantly lower degree of infection than the control group (P <0.05).
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/biosynthesis
- Antibody Formation/immunology
- Cell Division/drug effects
- Chemistry, Pharmaceutical
- Cholera Toxin/pharmacology
- Cytokines/biosynthesis
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Feces/chemistry
- Female
- Flagellin/immunology
- Flagellin/isolation & purification
- Immunity, Mucosal/immunology
- Immunoblotting
- Injections, Intravenous
- Lipopolysaccharides/pharmacology
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C3H
- Microspheres
- Receptors, Cell Surface/genetics
- Salmonella Infections/immunology
- Salmonella Infections/prevention & control
- Salmonella Vaccines/immunology
- Salmonella enterica/chemistry
- Salmonella enterica/immunology
- Spleen/cytology
- Spleen/immunology
- Starch/analogs & derivatives
- Toll-Like Receptors
Collapse
Affiliation(s)
- Lena Strindelius
- Department of Pharmacy, Biomedical Centre, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
27
|
Nagy G, Dobrindt U, Hacker J, Emödy L. Oral immunization with an rfaH mutant elicits protection against salmonellosis in mice. Infect Immun 2004; 72:4297-301. [PMID: 15213179 PMCID: PMC427435 DOI: 10.1128/iai.72.7.4297-4301.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of the transcriptional antiterminator RfaH results in virulence attenuation (>10(4)-fold increase in 50% lethal dose) of the archetypal Salmonella enterica serovar Typhimurium strain SL1344 by both orogastric and intraperitoneal routes of infection in BALB/c mice. Oral immunization with the mutant efficiently protects mice against a subsequent oral infection with the wild-type strain. Interestingly, in vitro immunoreactivity is not confined to strain SL1344; rather, it is directed also towards other serovars of S. enterica and even Salmonella bongori strains.
Collapse
Affiliation(s)
- Gábor Nagy
- Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | | | | | | |
Collapse
|
28
|
Koebernick H, Grode L, David JR, Rohde W, Rolph MS, Mittrücker HW, Kaufmann SHE. Macrophage migration inhibitory factor (MIF) plays a pivotal role in immunity against Salmonella typhimurium. Proc Natl Acad Sci U S A 2002; 99:13681-6. [PMID: 12271144 PMCID: PMC129741 DOI: 10.1073/pnas.212488699] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytokine macrophage migration inhibitory factor (MIF) exerts a multitude of biological functions. Notably, it induces inflammation at the interface between the immune system and the hypothalamus-pituitary-adrenal stress axis. The role of MIF in infectious diseases is not understood completely. Here, we show that MIF-deficient (MIF(-/-)) knockout mice fail to control an infection with wild-type Salmonella typhimurium. Increased susceptibility was accompanied by a reduced Th1 response, demonstrated by decreased levels of IL-12, IFNgamma, and tumor necrosis factor alpha. In Salmonella-infected MIF(-/-) mice, levels of IL-1beta were markedly increased. Additionally, infected MIF(-/-) mice showed elevated serum levels of nitric oxide and corticosterone as compared with control mice. Our results point to MIF as a key mediator in the host response to S. typhimurium. MIF not only promotes development of a protective Th1 response but ameliorates disease by altering levels of reactive nitrogen intermediates and corticosteroid hormones, which both exert immunosuppressive functions.
Collapse
Affiliation(s)
- Heidrun Koebernick
- Max Planck Institute for Infection Biology, Department of Immunology, Schumannstrasse 20/21, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|