1
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Meng S, Wei Q, Chen S, Liu X, Cui S, Huang Q, Chu Z, Ma K, Zhang W, Hu W, Li S, Wang Z, Tian L, Zhao Z, Li H, Fu X, Zhang C. MiR-141-3p-Functionalized Exosomes Loaded in Dissolvable Microneedle Arrays for Hypertrophic Scar Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305374. [PMID: 37724002 DOI: 10.1002/smll.202305374] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-β2 to suppress the TGF-β2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-β2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.
Collapse
Affiliation(s)
- Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengqiu Chen
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shiyi Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Lige Tian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Haihong Li
- Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| |
Collapse
|
3
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
4
|
Evangelatov A, Georgiev G, Arabadjiev B, Pankov S, Krastev P, Momchilova A, Pankov R. Hyperglycemia attenuates fibroblast contractility via suppression of TβRII receptor modulated α-smooth muscle actin expression. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2041486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Alexandar Evangelatov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Georgi Georgiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Borislav Arabadjiev
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Stefan Pankov
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Plamen Krastev
- Cardiology Clinic, University Hospital “St. Ekaterina”, Sofia, Bulgaria
| | - Albena Momchilova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumen Pankov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
5
|
Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66:26-37. [PMID: 35690568 DOI: 10.1016/j.cytogfr.2022.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
The process of wound healing involves a complex and vast interplay of growth factors and cytokines that coordinate the recruitment and interaction of various cell types. A series of events involving inflammation, proliferation, and remodeling eventually leads to the restoration of the damaged tissue. Abrogation in the regulation of these events has been shown to result in excessive scarring or non-healing wounds. While the process of wound healing is not fully elucidated, it has been documented that the early events of wound healing play a key role in the outcome of the wound. Furthermore, high levels of inflammation have been shown to lead to scarring. The regulation of these events may result in scarless wound healing, especially in adults. The inhibition of transforming growth factor-β (TGF-β) and the administration of keratinocyte growth factors (KGF), KGF-1 and KGF-2, has in recent years yielded positive results in the acceleration of wound closure and reduced scarring. Here, we encapsulate recent knowledge on the roles of TGF-β, KGF1, and KGF2 in wound healing and scar formation and highlight the areas that need further investigation. We also discuss potential future directions for the use of growth factors in wound management.
Collapse
Affiliation(s)
| | | | - Hui Qi
- Wenzhou Medical University, China
| | | | | | - Lu Chao
- Wenzhou Medical University, China
| | | |
Collapse
|
6
|
Zhong Y, Mahoney RC, Khatun Z, Chen HH, Nguyen CT, Caravan P, Roberts JD. Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2022; 322:L204-L223. [PMID: 34878944 PMCID: PMC8794022 DOI: 10.1152/ajplung.00158.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFβ-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFβ treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFβ stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFβ and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Collapse
Affiliation(s)
- Ying Zhong
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rose C. Mahoney
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Zehedina Khatun
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Howard H. Chen
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher T. Nguyen
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts,7The Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse D. Roberts
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,2Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts,3Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
7
|
Skibba ME, Xu X, Weiss K, Huisken J, Brasier AR. Role of Secretoglobin + (club cell) NFκB/RelA-TGFβ signaling in aero-allergen-induced epithelial plasticity and subepithelial myofibroblast transdifferentiation. Respir Res 2021; 22:315. [PMID: 34930252 PMCID: PMC8690490 DOI: 10.1186/s12931-021-01910-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Repetitive aeroallergen exposure is linked to sensitization and airway remodeling through incompletely understood mechanisms. In this study, we examine the dynamic mucosal response to cat dander extract (CDE), a ubiquitous aero-allergen linked to remodeling, sensitization and asthma. We find that daily exposure of CDE in naïve C57BL/6 mice activates innate neutrophilic inflammation followed by transition to a lymphocytic response associated with waves of mucosal transforming growth factor (TGF) isoform expression. In parallel, enhanced bronchiolar Smad3 expression and accumulation of phospho-SMAD3 was observed, indicating paracrine activation of canonical TGFβR signaling. CDE exposure similarly triggered epithelial cell plasticity, associated with expression of mesenchymal regulatory factors (Snai1 and Zeb1), reduction of epithelial markers (Cdh1) and activation of the NFκB/RelA transcriptional activator. To determine whether NFκB functionally mediates CDE-induced growth factor response, mice were stimulated with CDE in the absence or presence of a selective IKK inhibitor. IKK inhibition substantially reduced the level of CDE-induced TGFβ1 expression, pSMAD3 accumulation, Snai1 and Zeb1 expression. Activation of epithelial plasticity was demonstrated by flow cytometry in whole lung homogenates, where CDE induces accumulation of SMA+Epcam+ population. Club cells are important sources of cytokine and growth factor production. To determine whether Club cell innate signaling through NFκB/RelA mediated CDE induced TGFβ signaling, we depleted RelA in Secretoglobin (Scgb1a1)-expressing bronchiolar cells. Immunofluorescence-optical clearing light sheet microscopy showed a punctate distribution of Scgb1a1 progenitors throughout the small airway. We found that RelA depletion in Secretoglobin+ cells results in inhibition of the mucosal TGFβ response, blockade of EMT and reduced subepithelial myofibroblast expansion. We conclude that the Secretoglobin—derived bronchiolar cell is central to coordinating the innate response required for mucosal TGFβ1 response, EMT and myofibroblast expansion. These data have important mechanistic implications for how aero-allergens trigger mucosal injury response and remodeling in the small airway.
Collapse
Affiliation(s)
- Melissa E Skibba
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA
| | - Xiaofang Xu
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA
| | - Kurt Weiss
- Morgridge Institute for Research, Madison, WI, USA
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, USA.,Dept. of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, 4248 Health Sciences Learning Center, Madison, WI, 53705, USA. .,Institute for Clinical and Translational Research, Madison, WI, USA.
| |
Collapse
|
8
|
Awonuga AO, Chatzicharalampous C, Thakur M, Rambhatla A, Qadri F, Awonuga M, Saed G, Diamond MP. Genetic and Epidemiological Similarities, and Differences Between Postoperative Intraperitoneal Adhesion Development and Other Benign Fibro-proliferative Disorders. Reprod Sci 2021; 29:3055-3077. [PMID: 34515982 DOI: 10.1007/s43032-021-00726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Intraperitoneal adhesions complicate over half of abdominal-pelvic surgeries with immediate, short, and long-term sequelae of major healthcare concern. The pathogenesis of adhesion development is similar to the pathogenesis of wound healing in all tissues, which if unchecked result in production of fibrotic conditions. Given the similarities, we explore the published literature to highlight the similarities in the pathogenesis of intra-abdominal adhesion development (IPAD) and other fibrotic diseases such as keloids, endometriosis, uterine fibroids, bronchopulmonary dysplasia, and pulmonary, intraperitoneal, and retroperitoneal fibrosis. Following a literature search using PubMed database for all relevant English language articles up to November 2020, we reviewed relevant articles addressing the genetic and epidemiological similarities and differences in the pathogenesis and pathobiology of fibrotic diseases. We found genetic and epidemiological similarities and differences between the pathobiology of postoperative IPAD and other diseases that involve altered fibroblast-derived cells. We also found several genes and single nucleotide polymorphisms that are up- or downregulated and whose products directly or indirectly increase the propensity for postoperative adhesion development and other fibrotic diseases. An understanding of the similarities in pathophysiology of adhesion development and other fibrotic diseases contributes to a greater understanding of IPAD and these disease processes. At a very fundamental level, blocking changes in the expression or function of genes necessary for the transformation of normal to altered fibroblasts may curtail adhesion formation and other fibrotic disease since this is a prerequisite for their development. Similarly, applying measures to induce apoptosis of altered fibroblast may do the same; however, apoptosis should be at a desired level to simultaneously ameliorate development of fibrotic diseases while allowing for normal healing. Scientists may use such information to develop pharmacologic interventions for those most at risk for developing these fibrotic conditions.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Charalampos Chatzicharalampous
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mili Thakur
- Reproductive Genomics Program, The Fertility Center, Grand Rapids, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Anupama Rambhatla
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Farnoosh Qadri
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Modupe Awonuga
- Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, 1355 Bogue Street, East Lansing, MI, USA
| | - Ghassan Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, 1120 15th Street, CJ-1036, Augusta, GA, 30912, USA
| |
Collapse
|
9
|
Cheng L, Lei X, Yang Z, Kong Y, Xu P, Peng S, Wang J, Chen C, Dong Y, Hu X, Zhang X, Forouzanfar T, Wu G, Fu X. Histatin 1 enhanced the speed and quality of wound healing through regulating the behaviour of fibroblast. Cell Prolif 2021; 54:e13087. [PMID: 34255393 PMCID: PMC8349656 DOI: 10.1111/cpr.13087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives Histatin 1(Hst 1) has been proved to promote wound healing. However, there was no specific study on the regulation made by Hst 1 of fibroblasts in the process of wound healing. This research comprehensively studied the regulation of Hst 1 on the function of fibroblasts in the process of wound healing and preliminary mechanism about it. Materials and methods The full‐thickness skin wound model was made on the back of C57/BL6 mice. The wound healing, collagen deposition and fibroblast distribution were detected on days 3, 5 and 7 after injury. Fibroblast was cultured in vitro and stimulated with Hst 1, and then, their biological characteristics and functions were detected. Results Histatin 1 can effectively promote wound healing, improve collagen deposition during and after healing and increase the number and function of fibroblasts. After healing, the mechanical properties of the skin also improved. In vitro, the migration ability of fibroblasts stimulated by Hst 1 was significantly improved, and the fibroblasts transformed more into myofibroblasts, which improved the function of contraction and collagen secretion. In fibroblasts, mTOR signalling pathway can be activated by Hst 1. Conclusions Histatin 1 can accelerate wound healing and improve the mechanical properties of healed skin by promoting the function of fibroblasts. The intermolecular mechanisms need to be further studied, and this study provides a direction about mTOR signalling pathway.
Collapse
Affiliation(s)
- Liuhanghang Cheng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxuan Lei
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije University Amsterdam (VU), Amsterdam Movement Science, Amsterdam, The Netherlands.,Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanan Kong
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pengcheng Xu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Shiya Peng
- Department of Dermatology and Rheumatology Immunology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, The First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, The First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, The First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, The First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije University Amsterdam (VU), Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije University Amsterdam (VU), Amsterdam Movement Science, Amsterdam, The Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
PPARγ mediates the anti-pulmonary fibrosis effect of icaritin. Toxicol Lett 2021; 350:81-90. [PMID: 34153405 DOI: 10.1016/j.toxlet.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pulmonary fibrosis is a fatal lung disease with limited treatment options. Icaritin is the active ingredient derived from the traditional Chinese medical plant Epimedium and possesses many biomedical activities. This study aimed to investigate the effects and molecular mechanisms of icaritin on bleomycin-induced pulmonary fibrosis in mice. METHODS To assess its preventative effects, bleomycin treated mice received 0, 0.04, 0.2, and 1 mg/kg of icaritin from day 1 onwards. To assess its therapeutic effects, bleomycin treated mice received 0 and 1 mg/kg of icaritin from day 15 onwards. Mice were sacrificed on day 21 and lung tissues were collected, stained with HE, Masson and immunohistochemistry. Q-PCR was used to measure Collagen I and Collagen III expression, western blotting was used to quantify α-SMA, Collagen I expression. Hydroxyproline content was measured using a biochemical method. NIH3T3 and HLF-1 cells were treated with TGF-β1with or without icaritin, and α-SMA, Collagen I were tested. PPARγ antagonist GW9662 and PPARγ-targeted siRNA were used to investigate the mechanism of icaritin in inhibiting myofibroblast differentiation. RESULTS Both preventative and therapeutic administration of icaritin improved the histopathological changes, decreased Collagen and α-SMA, lowered hydroxyproline content in bleomycin-treated lung tissues. Icaritin decreased α-SMA and Collagen I expression in TGF-β1-stimulated NIH3T3 and HLF-1 cells. However, its effect in reducing α-SMA and Collagen I expression was suppressed when expression or activity of PPARγ was inhibited. CONCLUSIONS Icaritin has therapeutic potential against pulmonary fibrosis via the inhibition of myofibroblast differentiation, which may be mediated by PPARγ.
Collapse
|
11
|
Nagano H, Togawa T, Watanabe T, Ohnishi K, Kimura T, Iida A, Noriki S, Imamura Y, Sato Y, Goi T. Heterotopic ossification in lymph node metastasis after rectal cancer resection: a case report and literature review. World J Surg Oncol 2021; 19:2. [PMID: 33388078 PMCID: PMC7778818 DOI: 10.1186/s12957-020-02098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/26/2020] [Indexed: 01/16/2023] Open
Abstract
Background Heterotopic ossification (HO) is the formation of osseous tissue outside the skeleton. HO in malignant tumors of the digestive tract is extremely rare, as is ossification in metastatic lesions from HO-negative digestive tract tumors. Regarding the pathogenesis of HO, two theories have been proposed. The first is that the osteoblastic metaplasia of tumor cells (driven by the epithelial-mesenchymal transition, EMT) results in HO, and the second is that factors secreted by cancer cells lead to the metaplasia of stromal pluripotent cells into osteoblasts. However, the osteogenic mechanisms remain unclear. Case presentation An 83-year-old Japanese woman underwent low anterior rectal resection for rectal cancer before presentation at our institution, in June 2018. The final diagnosis was stage IIB rectal adenocarcinoma (T4aN0M0). Histological examination did not reveal HO in the primary tumor. Thirteen months after the operation, a solitary metastatic lesion in the brain 20 mm in size and a solitary metastatic lesion in a right axillary lymph node 20 mm in size were diagnosed. The patient was treated with gamma-knife therapy for the brain metastasis. One month later, she was referred to our institution. She underwent lymph node resection. Histological examination revealed that most portions of the affected lymph node were occupied by metastatic tumor cells and that central necrosis and four small ossified lesions without an osteoblast-like cell rim were present in the peripheral region. Immunohistochemical analysis showed tumor cells positive for BMP-2, osteonectin, osteocalcin, AE1/AE3, TGF-β1, Gli2, Smad2/3, and CDX2 and negative for nestin, CD56, and CK7. Conclusion This is the first English case report of HO in a metachronous metastatic lymph node after the curative resection of HO-negative rectal cancer. Unlike HO lesions in past reports, the HO lesion did not show peripheral osteoblast-like cells, and the immunohistochemical findings indicated that the present case resulted from the EMT.
Collapse
Affiliation(s)
- Hideki Nagano
- Department of Surgery, National Hospital Organization Tsuruga Medical Center, 33-1, Sakuragaoka Tsuruga, Fukui, 914-0195, Japan. .,Department of Surgery, Municipal Tsuruga Hospital, 1-6-60, Mishima-cho, Tsuruga, Fukui, 914-8502, Japan.
| | - Tamotsu Togawa
- Department of Surgery, National Hospital Organization Tsuruga Medical Center, 33-1, Sakuragaoka Tsuruga, Fukui, 914-0195, Japan
| | - Takeshi Watanabe
- Department of Surgery, National Hospital Organization Tsuruga Medical Center, 33-1, Sakuragaoka Tsuruga, Fukui, 914-0195, Japan
| | - Kenji Ohnishi
- Department of Surgery, National Hospital Organization Tsuruga Medical Center, 33-1, Sakuragaoka Tsuruga, Fukui, 914-0195, Japan
| | - Toshihisa Kimura
- Department of Surgery, National Hospital Organization Tsuruga Medical Center, 33-1, Sakuragaoka Tsuruga, Fukui, 914-0195, Japan
| | - Atsushi Iida
- Department of Surgery, National Hospital Organization Tsuruga Medical Center, 33-1, Sakuragaoka Tsuruga, Fukui, 914-0195, Japan
| | - Sakon Noriki
- Division of Surgical Pathology, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yoshiaki Imamura
- Division of Surgical Pathology, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Yasunori Sato
- Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takanori Goi
- First Department of Surgery, Faculty of Medicine, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
12
|
Is There a Genetic Predisposition to Postoperative Adhesion Development? Reprod Sci 2020; 28:2076-2086. [PMID: 33090376 PMCID: PMC7579853 DOI: 10.1007/s43032-020-00356-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
Adhesions are permanent fibrovascular bands between peritoneal surfaces, which develop following virtually all body cavity surgeries. The susceptibility to develop, and the severity, of adhesions following intra-abdominal surgery varies within and between individuals, suggesting that heritable factors influence adhesion development. In this manuscript, we discuss the pathophysiology of adhesion development from the perspective of genetic susceptibility. We restrict our discussion to genes and single-nucleotide polymorphisms (SNPs) that are specifically involved in, or that cause modification of, the adhesion development process. We performed a literature search using the PubMed database for all relevant English language articles up to March 2020 (n = 186). We identified and carefully reviewed all relevant articles addressing genetic mutations or single-nucleotide polymorphisms (SNPs) that impact the risk for adhesion development. We also reviewed references from these articles for additional information. We found several reported SNPs, genetic mutations, and upregulation of messenger RNAs that directly or indirectly increase the propensity for postoperative adhesion development, namely in genes for transforming growth factor beta, vascular endothelial growth factor, interferon-gamma, matrix metalloproteinase, plasminogen activator inhibitor-1, and the interleukins. An understanding of genetic variants could provide insight into the pathophysiology of adhesion development. The information presented in this review contributes to a greater understanding of adhesion development at the genetic level and may allow modification of these genetic risks, which may subsequently guide management in preventing and treating this challenging complication of abdominal surgery. In particular, the information could help identify patients at greater risk for adhesion development, which would make them candidates for anti-adhesion prophylaxis. Currently, agents to reduce postoperative adhesion development exist, and in the future, development of agents, which specifically target individual genetic profile, would be more specific in preventing intraperitoneal adhesion development.
Collapse
|
13
|
Krassovka JM, Suschek CV, Prost M, Grotheer V, Schiefer JL, Demir E, Fuchs PC, Windolf J, Stürmer EK, Opländer C. The impact of non-toxic blue light (453 nm) on cellular antioxidative capacity, TGF-β1 signaling, and myofibrogenesis of human skin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111952. [PMID: 32659647 DOI: 10.1016/j.jphotobiol.2020.111952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
Abstract
Studies have demonstrated that blue light induces biological effects, such as cell death, and inhibition of proliferation and differentiation. Since blue light at longer wavelength (>440 nm) exerts less injurious effects on cells than at shorter wavelengths, (400-440 nm), we have investigated the impact of non-toxic (LED) blue light at 453 nm wavelength on human skin fibroblasts (hsFBs). We found that besides its decreasing effects on the proliferation rate, repeated blue light irradiations (80 J/cm2) also significantly reduced TGF-β1-induced myofibrogenesis as shown by diminished α-SMA and EDA-FN expression accompanied by reduced protein expression and phosphorylation of ERK 1/2, SMAD 2/3, and p38-key players of TGF-β1-induced myofibrogenesis. In parallel, catalase protein expression, intracellular FAD concentrations as well as NADP+/NADPH ratio were reduced, whereas intracellular reactive oxygen species (ROS) were increased. We postulate that as a molecular mechanism downregulation of catalase and photoreduction of FAD induce intracellular oxidative stress which, in turn, affects the signaling factors of myofibrogenesis leading to a lower rate of α-SMA and EDA-FN expression and, therefore, myofibroblast formation. In conclusion, blue light even at longer wavelengths shows antifibrotic activity and may represent a suitable and safe approach in the treatment of fibrotic skin diseases including hypertrophic scarring and scleroderma.
Collapse
Affiliation(s)
- Julia M Krassovka
- Department of Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph V Suschek
- Department of Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Max Prost
- Department of Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Vera Grotheer
- Department of Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer L Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Erhan Demir
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Joachim Windolf
- Department of Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), University Witten/Herdecke, 58453 Witten, Germany
| | - Christian Opländer
- Department of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), University Witten/Herdecke, 58453 Witten, Germany.
| |
Collapse
|
14
|
Shochet GE, Brook E, Bardenstein-Wald B, Grobe H, Edelstein E, Israeli-Shani L, Shitrit D. Integrin alpha-5 silencing leads to myofibroblastic differentiation in IPF-derived human lung fibroblasts. Ther Adv Chronic Dis 2020; 11:2040622320936023. [PMID: 32637060 PMCID: PMC7315658 DOI: 10.1177/2040622320936023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background and objective: The term ‘fibroblast’ covers a heterogeneous cell population in idiopathic pulmonary fibrosis (IPF). The fibroblasts are considered as main effector cells, because they promote disease progression by releasing exaggerated amounts of extracellular matrix proteins and modifying cell microenvironment. As IPF-derived human lung fibroblasts (IPF-HLFs) were shown to express higher levels of integrin alpha-5 (ITGA5) than normal derived HLFs (N-HLFs), we explored the importance of ITGA5 to IPF progression. Methods: IPF-HLF and N-HLF primary cultures were established. ITGA5 was silenced by specific small interfering RNA (siRNA)s and its effects on cell phenotype (e.g. cell number, size, cell death, migration) and gene expression (e.g. RNA sequencing, quantitative polymerase chain reaction [qPCR], western blot and immunofluorescence) were tested. Specific integrin expression was evaluated in IPF patient formalin-fixed paraffin embedded sections by immunohistochemistry (IHC). Results: ITGA5-silencing resulted in reduced IPF-HLF proliferation rates and cell migration (p < 0.05), as well as elevated cell death. transforming growth factor beta (TGF-β) targets (e.g. Fibronectin (FN1), Matrix metalloproteinase 2 (MMP2), TGFB1) were surprisingly elevated following ITGA5 silencing (p < 0.05). N-HLFs, however, were only slightly affected. Interestingly, ITGA5-silenced cells differentiated into myofibroblasts (e.g. elevated alpha-smooth muscle actin [αSMA], collagen1a, large cell size). RNA-sequencing revealed that following differentiation on 3D-Matrigel for 24 h, ITGA5 levels are reduced while integrin alpha-8 (ITGA8) are elevated in IPF-HLFs. This was confirmed in IPF patients, in which ITGA5 was mainly found in fibroblastic foci, while ITGA8 was mostly observed in old fibrous tissue in the same patient. Conclusions: ITGA5 expression facilitates a more aggressive proliferative phenotype. Downregulation of this integrin results in myofibroblastic differentiation, which is accompanied by elevated ITGA8. Specific targeting could present a therapeutic benefit.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Pulmonary Medicine Department, Meir Medical Department, 59 Tchernichovsky St., Kfar Saba 44281, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elizabetha Brook
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Hanna Grobe
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Edelstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Pathology Department, Meir Medical Center, Kfar Saba, Israel
| | - Lilach Israeli-Shani
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Shitrit
- Pulmonary Department, Meir Medical Center, Kfar Saba, Israel Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Tarbit E, Singh I, Peart JN, Rose'Meyer RB. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail Rev 2020; 24:1-15. [PMID: 29987445 DOI: 10.1007/s10741-018-9720-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Experimental research has recognized the importance of cardiac fibroblast and myofibroblast cells in heart repair and function. In a normal healthy heart, the cardiac fibroblast plays a central role in the structural, electrical, and chemical aspects within the heart. Interestingly, the transformation of cardiac fibroblast cells to cardiac myofibroblast cells is suspected to play a vital part in the development of heart failure. The ability to differentiate between the two cells types has been a challenge. Myofibroblast cells are only expressed in the stressed or failing heart, so a better understanding of cell function may identify therapies that aid repair of the damaged heart. This paper will provide an outline of what is currently known about cardiac fibroblasts and myofibroblasts, the physiological and pathological roles within the heart, and causes for the transition of fibroblasts into myoblasts. We also reviewed the potential markers available for characterizing these cells and found that there is no single-cell specific marker that delineates fibroblast or myofibroblast cells. To characterize the cells of fibroblast origin, vimentin is commonly used. Cardiac fibroblasts can be identified using discoidin domain receptor 2 (DDR2) while α-smooth muscle actin is used to distinguish myofibroblasts. A known cytokine TGF-β1 is well established to cause the transformation of cardiac fibroblasts to myofibroblasts. This review will also discuss clinical treatments that inhibit or reduce the actions of TGF-β1 and its contribution to cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Emiri Tarbit
- School of Medical Sciences, Griffith University, Griffith, QLD, 4222, Australia
| | - Indu Singh
- School of Medical Sciences, Griffith University, Griffith, QLD, 4222, Australia
| | - Jason N Peart
- School of Medical Sciences, Griffith University, Griffith, QLD, 4222, Australia
| | - Roselyn B Rose'Meyer
- School of Medical Sciences, Griffith University, Griffith, QLD, 4222, Australia.
| |
Collapse
|
16
|
Fan Z, Li L, Li X, Zhang M, Dou M, Zhao J, Cao J, Deng X, Zhang M, Li H, Suo Z. Anti-senescence role of heterozygous fumarate hydratase gene knockout in rat lung fibroblasts in vitro. Aging (Albany NY) 2020; 11:573-589. [PMID: 30668541 PMCID: PMC6366963 DOI: 10.18632/aging.101761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022]
Abstract
Abnormalities in tricarboxylic acid (TCA) cycle function were related to a variety of pathological processes. Fumarate hydratase (FH) is a required enzyme in the TCA cycle. To explore the general influence of FH knockout, we isolated FH+/- rat and normal rat lung fibroblasts and cultured these cells in vitro. The isolated fibroblasts with the current method were rather homogeneous and were confirmed spindle in morphology, positive for vimentin and negative for α-SMA (α-smooth muscle actin). Sequencing of the PCR (polymerase chain reaction) products flanking the FH gene mutation verified the FH+/- status, and the FH gene and protein expression were confirmed to be reduced in the FH+/- cells. No sign of ageing for the FH+/- cells after 61 passages was observed, but the controls died out at this stage. Flow cytometry revealed increased S-phase and decreased G1/G0 proportions with significantly less early apoptosis in FH+/- cells compared to that in control cells. At the same time, increased glucose consumption, intracellular fumarate production and extracellular lactate secretion were verified in the FH+/- cells. Correspondingly, FH+/- cells showed a lower basal oxygen consumption rate (OCR) but a higher level of reactive oxygen species (ROS) production. Single cell cloning and cell line establishment were successfully performed with the FH+/- cells at the 84th passage. All the above results indicate an important role for FH+/- in the longevity or immortality of the FH+/- cells, in which increased p53 and TERT (telomerase reverse transcriptase) protein expression, decreased p21 and p16 protein expression and negative SA-β-Gal (senescence-associated beta-galactosidase) were verified along with metabolic reprogramming.
Collapse
Affiliation(s)
- Zhirui Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lifeng Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoli Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Meng Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengmeng Dou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaoming Deng
- Department of Chinese and Western Integrative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| |
Collapse
|
17
|
Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. Specific Overexpression of Mitofusin-2 in Hepatic Stellate Cells Ameliorates Liver Fibrosis in Mice Model. Hum Gene Ther 2020; 31:103-109. [PMID: 31802713 DOI: 10.1089/hum.2019.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a chronic liver disease that could further develop to cirrhosis and liver carcinoma. Hepatic stellate cells (HSCs) are primary effector cells to initiate liver fibrosis. We aimed to explore the function and underlying mechanisms of mitochondrial fusion protein Mitofusin-2 (MFN2) in liver fibrosis. First, we utilized an alpha-smooth muscle actin promoter to overexpress MFN2 specifically in HSCs using adeno-associated virus (AAV) vector (AAV-MFN2). Overexpression of MFN2 was specifically achieved in HSC-T6 cells, but not in murine bone marrow-derived macrophages or hepatocyte AML-12 cells. We found that high expression of MFN2 induced apoptosis of HSC-T6 cells. Mechanistically, we demonstrated that high level of MFN2 inhibited TGF-β1/Smad signaling pathway, triggered downregulation of type I, type III, and type IV collagen, and antagonized the formation of factors associated with liver fibrosis. Furthermore, we found that overexpression of MFN2 using AAV-MFN2 ameliorated CCl4-induced liver fibrosis in vivo with significantly decreased immune cell infiltration. Taken together, our findings indicate that MFN2 is critical in regulating apoptosis and liver fibrosis in HSCs, which might be a useful therapeutic target to treat liver fibrosis.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Yuqiang Shan
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Abstract
Endocardial cells are specialized endothelial cells that form the innermost layer of the heart wall. By virtue of genetic lineage-tracing technology, many of the unexpected roles of endocardium during murine heart development, diseases, and regeneration have been identified recently. In addition to heart valves developed from the well-known endothelial to mesenchymal transition, recent fate-mapping studies using mouse models reveal that multiple cardiac cell lineages are also originated from the endocardium. This review focuses on a variety of different cell types that are recently reported to be endocardium derived during murine heart development, diseases, and regeneration. These multiple cell fates underpin the unprecedented roles of endocardial progenitors in function, pathological progression, and regeneration of the heart. Because emerging studies suggest that developmental mechanisms can be redeployed and recapitulated in promoting heart disease development and also cardiac repair and regeneration, understanding the mechanistic regulation of endocardial plasticity and modulation of their cell fate conversion may uncover new therapeutic potential in facilitating heart regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Kathy O Lui
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| | - Bin Zhou
- From the The State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China (H.Z., B.Z.); School of Life Science and Technology, ShanghaiTech University, China (H.Z., B.Z.); Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China (K.O.L.); and Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China (B.Z.).
| |
Collapse
|
19
|
Kimura T, Monslow J, Klampatsa A, Leibowitz M, Sun J, Liousia M, Woodruff P, Moon E, Todd L, Puré E, Albelda SM. Loss of cells expressing fibroblast activation protein has variable effects in models of TGF-β and chronic bleomycin-induced fibrosis. Am J Physiol Lung Cell Mol Physiol 2019; 317:L271-L282. [PMID: 31188013 DOI: 10.1152/ajplung.00071.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibroblast activation protein (FAP), a cell surface serine protease, is upregulated on a subset of activated fibroblasts (often distinct from α-smooth muscle actin-expressing myofibroblasts) associated with matrix remodeling, including fibroblasts in idiopathic pulmonary fibrosis (Acharya PS, Zukas A, Chandan V, Katzenstein AL, Puré E. Hum Pathol 37: 352-360, 2006.). As FAP+ fibroblasts could be pivotal in either breakdown and/or production of collagen and other matrix components, the goal of this study was to define the role of FAP+ cells in pulmonary fibrosis in two established, but different, mouse models of chronic lung fibrosis: repetitive doses of intratracheal bleomycin and a single dose of an adenoviral vector encoding constitutively active TGF-β1 (Ad-TGFβ). To determine their role in fibrotic remodeling, FAP-expressing cells were depleted by injection of T cells expressing a chimeric antigen receptor specific for murine FAP in mice with established fibrosis. The contribution of FAP to the function of FAP-expressing cells was assessed in FAP knockout mice. Using histological analyses, quantification of soluble collagen content, and flow cytometry, we found that loss of FAP+ cells exacerbated fibrosis in the bleomycin model, a phenotype largely recapitulated by the genetic deletion of FAP, indicating that FAP plays a role in this model. In contrast, depletion of FAP+ cells or genetic deletion of FAP had little effect in the Ad-TGFβ model highlighting the potential for distinct mechanisms driving fibrosis depending on the initiating insult. The role of FAP in human lung fibrosis will need to be well understood to guide the use of FAP-targeted therapeutics that are being developed.
Collapse
Affiliation(s)
- Toru Kimura
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James Monslow
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Astero Klampatsa
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Leibowitz
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jing Sun
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Maria Liousia
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Patrick Woodruff
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Edmund Moon
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Leslie Todd
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Steven M Albelda
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Breton JD, Heydet D, Starrs LM, Veldre T, Ghildyal R. Molecular changes during TGFβ-mediated lung fibroblast-myofibroblast differentiation: implication for glucocorticoid resistance. Physiol Rep 2019; 6:e13669. [PMID: 29654633 PMCID: PMC5899214 DOI: 10.14814/phy2.13669] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022] Open
Abstract
Airway remodeling is an important process in response to repetitive inflammatory-mediated airway wall injuries. This is characterized by profound changes and reorganizations at the cellular and molecular levels of the lung tissue. It is of particular importance to understand the mechanisms involved in airway remodeling, as this is strongly associated with severe asthma leading to devastating airway dysfunction. In this study, we have investigated the transforming growth factor-β (TGFβ, a proinflammatory mediator)-activated fibroblast to myofibroblast transdifferentiation pathway, which plays a key role in asthma-related airway remodeling. We show that TGFβ induces fibroblast to myofibroblast transdifferentiation by the expression of αSMA, a specific myofibroblast marker. Furthermore, Smad2/Smad3 gene and protein expression patterns are different between fibroblasts and myofibroblasts. Such a change in expression patterns reveals an important role of these proteins in the cellular phenotype as well as their regulation by TGFβ during cellular transdifferentiation. Interestingly, our data show a myofibroblastic TGFβ-mediated increase in glucocorticoid receptor (GR) expression and a preferential localization of GR in the nucleus, compared to in fibroblasts. Furthermore, the GRβ (nonfunctional GR isoform) is increased relative to GRα (functional isoform) in myofibroblasts. These results are interesting as they support the idea of a GRβ-mediated glucocorticoid resistance observed in the severe asthmatic population. All together, we provide evidence that key players are involved in the TGFβ-mediated fibroblast to myofibroblast transdifferentiation pathway in a human lung fibroblast cell line. These players could be the targets of new treatments to limit airway remodeling and reverse glucocorticoid resistance in severe asthma.
Collapse
Affiliation(s)
- Jean-Didier Breton
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia.,ANU Medical School, The Australian National University, Canberra, Australia
| | - Déborah Heydet
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Lora M Starrs
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Tim Veldre
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Reena Ghildyal
- Respiratory Virology Group, Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
21
|
Bell-Cohn A, Mazur DJ, Hall C, Schaeffer AJ, Thumbikat P. Uropathogenic Escherichia coli-induced fibrosis, leading to lower urinary tract symptoms, is associated with type 2 cytokine signaling. Am J Physiol Renal Physiol 2019; 316:F682-F692. [PMID: 30623726 DOI: 10.1152/ajprenal.00222.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammation and prostate fibrosis have been identified as contributors to lower urinary tract symptoms (LUTS) pathophysiology in humans. It has been shown that transurethral infection of an Escherichia coli strain named CP1, which was isolated from a patient with chronic prostatitis, can lead to the develop of differential chronic inflammation and pain in certain mouse strains. Therefore, we hypothesized that differential inflammation would influence fibrotic response in the prostate. This study showed that while prostatic infection by CP1 causes the development of chronic tactile allodynia in NOD/ShiltJ (NOD) but not C57BL/6 (B6) mice, both mice developed evidence of prostate inflammation, prostate fibrosis, and urinary dysfunction. Fibrosis was confirmed by the upregulation of fibrosis-associated messenger RNAs (mRNAs), α-smooth muscle actin immunohistochemistry, and collagen staining with picrosirius red. These findings were mainly focused on the dorsolateral lobes of the prostate. Both mouse strains also developed smaller, more frequent voiding patterns postinfection, examined via cystometry. B6 mice responded to CP1 infection with type 2 cytokines (IL-4 and IL-13), while NOD mice did not, which may explain the differing tactile allodynia responses and level of collagen deposition. When mice lacking signal transducer and activator of transcription 6 (STAT6), a transcription factor known to be important for the production and signaling of IL-4 and IL-13, were infected with CP1, fibrosis was attenuated. This study provides a potential model for studying the development of infection-induced prostatic fibrosis and LUTS. This study also demonstrates that CP1-induced prostate fibrosis has a STAT6-dependent mechanism in B6 mice.
Collapse
Affiliation(s)
- Ashlee Bell-Cohn
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Daniel J Mazur
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Christel Hall
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
22
|
Xu R, Hu J, Zhou X, Yang Y. Heterotopic ossification: Mechanistic insights and clinical challenges. Bone 2018; 109:134-142. [PMID: 28855144 DOI: 10.1016/j.bone.2017.08.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
Bone formation is exquisitely controlled both spatially and temporally. Heterotopic ossification (HO) is pathological bone formation in soft tissues that often leads to deleterious outcomes. Inherited genetic forms of HO can be life-threatening and can happen as early as in infancy. However, there is currently no effective treatment for HO as the underlying cellular and molecular mechanisms have not been completely elucidated. Trauma-induced non-genetic forms of HO often occur as a common complication after surgeries or accidents, and the location of HO occurrence largely determines the symptom and outcome. While it has been difficult to determine the complicated factors causing HO, recent advancement in identifying cellular and molecular mechanism causing the genetic forms of HO may provide important insights in all HO. Here in this review, we summarize recent studies on HO to provide a current status of both clinical options of HO treatments and mechanical understanding of HO.
Collapse
Affiliation(s)
- Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China
| | - Jiajie Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China.
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.
| |
Collapse
|
23
|
Ishii T, Uchida K, Hata S, Hatta M, Kita T, Miyake Y, Okamura K, Tamaoki S, Ishikawa H, Yamazaki J. TRPV2 channel inhibitors attenuate fibroblast differentiation and contraction mediated by keratinocyte-derived TGF-β1 in an in vitro wound healing model of rats. J Dermatol Sci 2018; 90:332-342. [PMID: 29610016 DOI: 10.1016/j.jdermsci.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Keratinocytes release several factors that are involved in wound contracture and scar formation. We previously reported that a three-dimensional reconstruction model derived from rat skin represents a good wound healing model. OBJECTIVE We characterized the role of transient receptor potential (TRP) channels in the release of transforming growth factor (TGF)-β1 from keratinocytes and the differentiation of fibroblasts to identify possible promising pharmacological approaches to prevent scar formation and contractures. METHODS The three-dimensional culture model was made from rat keratinocytes seeded on a collagen gel in which dermal fibroblasts had been embedded. RESULTS Among the TRP channel inhibitors tested, the TRPV2 inhibitors SKF96365 and tranilast attenuated most potently keratinocyte-dependent and - independent collagen gel contraction due to TGF-β signaling as well as TGF-β1 release from keratinocytes and α-smooth muscle actin production in myofibroblasts. Besides the low amounts detected in normal dermis, TRPV2 mRNA and protein levels were increased after fibroblasts were embedded in the gel. TRPV2 was also expressed in the epidermis and keratinocyte layers of the model. Both inhibitors and TRPV2 siRNA attenuated the intracellular increase of Ca2+ induced by the TRPV agonist 2-aminoethoxydiphenyl borate in TGF-β1-pretreated fibroblasts. CONCLUSION This is the first study to show that compounds targeting TRPV2 channels ameliorate wound contraction through the inhibition of TGF-β1 release and the differentiation of dermal fibroblasts in a culture model.
Collapse
Affiliation(s)
- Taro Ishii
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan
| | - Shozaburo Hata
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | - Mitsutoki Hatta
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan
| | - Tomo Kita
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan
| | - Yuki Miyake
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | - Kazuhiko Okamura
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth & Development, Fukuoka 814-0193, Japan
| | | | - Jun Yamazaki
- Department of Physiological Science & Molecular Biology, Fukuoka 814-0193, Japan.
| |
Collapse
|
24
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
25
|
Tiraravesit N, Humbert P, Robin S, Tissot M, Viennet C, Viyoch J. Artocarpin-enriched (Artocarpus altilis) Heartwood Extract Provides Protection Against UVB-induced Mechanical Damage in Dermal Fibroblasts. Photochem Photobiol 2017; 93:1232-1239. [PMID: 28477344 DOI: 10.1111/php.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/08/2017] [Indexed: 01/06/2023]
Abstract
This study aimed to evaluate the protective effect of artocarpin-enriched (Artocarpus altilis) heartwood extract on the mechanical properties of UVB-irradiated fibroblasts. Human skin fibroblasts were pretreated with 50 μg/mL-1 extract and later irradiated with UVB (200 mJ/cm-2 ). They were then cultured within three-dimensional of free-floating and tense collagen lattices. The pretreatment of fibroblasts with the extract prior to UVB radiation showed cells protection against UVB-induced suppression of α-SMA expression, fibroblast migration and contraction. These results reveal that the extract prevents mechanical damages induced by UVB irradiation in fibroblast-embedded collagen lattices, and therefore, has a potential as a natural photo-protectant.
Collapse
Affiliation(s)
- Narisara Tiraravesit
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Philippe Humbert
- Engineering and Cutaneous Biology Laboratory, UMR 1098, University of Bourgogne Franche-Comte, Besançon, France.,Department of Dermatology, University Hospital, Besançon, France
| | | | - Marion Tissot
- Engineering and Cutaneous Biology Laboratory, UMR 1098, University of Bourgogne Franche-Comte, Besançon, France
| | - Céline Viennet
- Engineering and Cutaneous Biology Laboratory, UMR 1098, University of Bourgogne Franche-Comte, Besançon, France
| | - Jarupa Viyoch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
26
|
Lee YZ, Shaari K, Cheema MS, Tham CL, Sulaiman MR, Israf DA. An orally active geranyl acetophenone attenuates airway remodeling in a murine model of chronic asthma. Eur J Pharmacol 2017; 797:53-64. [PMID: 28089919 DOI: 10.1016/j.ejphar.2017.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/25/2022]
Abstract
2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a synthetic compound that is naturally found in Melicope ptelefolia. We had previously demonstrated that parenteral administration of tHGA reduces pulmonary inflammation in OVA-sensitized mice. In this study, we evaluated the effect of orally administered tHGA upon airway remodeling in a murine model of chronic asthma. Female BALB/C mice were sensitized intraperitoneally with ovalbumin (OVA) on day 0, 7 and 14, followed by aerosolized 1% OVA 3 times per week for 6 weeks. Control groups were sensitized with saline. OVA sensitized animals were either treated orally with vehicle (saline with 1% DMSO and Tween 80), tHGA (80, 40, 20mg/kg) or zileuton (30mg/kg) 1h prior to each aerosolized OVA sensitization. On day 61, mice underwent methacholine challenge to determine airway hyperresponsiveness prior to collection of bronchoalveolar lavage (BAL) fluid and lung samples. BAL fluid inflammatory cell counts and cytokine concentrations were evaluated while histological analysis and extracellular matrix protein concentrations were determined on collected lung samples. Oral tHGA treatment attenuated airway hyperresponsiveness and inhibited airway remodeling in a dose-dependent fashion. tHGA's effect on airway remodeling could be attributed to the reduction of inflammatory cell infiltration and decreased expression of cytokines associated with airway remodeling. Oral administration of tHGA attenuates airway hyperresponsiveness and remodeling in OVA-induced BALB/c mice. tHGA is an interesting compound that should be evaluated further for its possible role as an alternative non-steroidal pharmacological approach in the management of asthma.
Collapse
Affiliation(s)
- Yu Zhao Lee
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
27
|
Cahill EF, Kennelly H, Carty F, Mahon BP, English K. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis. Stem Cells Transl Med 2016; 5:1307-1318. [PMID: 27388243 DOI: 10.5966/sctm.2015-0337] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
: The incidence of idiopathic pulmonary fibrosis is on the rise and existing treatments have failed to halt or reverse disease progression. Mesenchymal stromal cells (MSCs) have potent cytoprotective effects, can promote tissue repair, and have demonstrated efficacy in a range of fibrotic lung diseases; however, the exact mechanisms of action remain to be elucidated. Chemical antagonists and short hairpin RNA knockdown were used to identify the mechanisms of action used by MSCs in promoting wound healing, proliferation, and inhibiting apoptosis. Using the bleomycin induced fibrosis model, the protective effects of early or late MSC administration were examined. The role for hepatocyte growth factor (HGF) in MSC protection against bleomycin lung injury was examined using HGF knockdown MSC. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay was performed on ex vivo lung sections to examine the effects of MSC on apoptosis. MSC conditioned media (CM) enhanced wound closure and inhibited apoptosis of pulmonary cells in vitro. HGF was required for MSC CM enhancement of epithelial cell proliferation and inhibition of apoptosis. In contrast, MSC required COX-2 for CM to inhibit fibroblast proliferation. In a murine model, early administration of MSC protected against bleomycin induced lung fibrosis and correlated with reduced levels of the proinflammatory cytokine interleukin-1β, reduced levels of apoptosis, and significantly increased levels of HGF. These protective effects were in part mediated by MSC derived HGF as HGF knockdown MSC were unable to protect against fibrosis in vivo. These findings delineate the mechanisms of MSC protection in a preclinical model of fibrotic lung disease. SIGNIFICANCE The mechanisms used by mesenchymal stromal cells (MSCs) in mediating protective effects in chronic models of lung disease are not understood and remain to be elucidated. These findings from in vitro studies highlight an important role for the MSC-derived soluble factors hepatocyte growth factor (HGF) and prostaglandin E2 in promoting wound healing and inhibiting apoptosis. Furthermore, this study translates these findings demonstrating an important role for HGF in the protective effects mediated by MSC in vivo in the bleomycin model. These findings support a targeted approach to enhancing MSC therapy for fibrotic disease and highlight the importance of timing of MSC therapy.
Collapse
Affiliation(s)
- Emer F Cahill
- Institute of Immunology, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Helen Kennelly
- Institute of Immunology, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Fiona Carty
- Institute of Immunology, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Bernard P Mahon
- Institute of Immunology, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Karen English
- Institute of Immunology, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
28
|
Neotuberostemonine attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages. Int Immunopharmacol 2016; 36:158-164. [DOI: 10.1016/j.intimp.2016.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
|
29
|
Xu H, Bai D, Ruest LB, Feng JQ, Guo YW, Tian Y, Jing Y, He Y, Han XL. Expression analysis of α-smooth muscle actin and tenascin-C in the periodontal ligament under orthodontic loading or in vitro culture. Int J Oral Sci 2015; 7:232-41. [PMID: 26674425 PMCID: PMC5153592 DOI: 10.1038/ijos.2015.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 02/05/2023] Open
Abstract
α-smooth muscle actin (α-SMA) and tenascin-C are stress-induced phenotypic features of myofibroblasts. The expression levels of these two proteins closely correlate with the extracellular mechanical microenvironment. We investigated how the expression of α-SMA and tenascin-C was altered in the periodontal ligament (PDL) under orthodontic loading to indirectly reveal the intrinsic mechanical microenvironment in the PDL. In this study, we demonstrated the synergistic effects of transforming growth factor-β1 (TGF-β1) and mechanical tensile or compressive stress on myofibroblast differentiation from human periodontal ligament cells (hPDLCs). The hPDLCs under higher tensile or compressive stress significantly increased their levels of α-SMA and tenascin-C compared with those under lower tensile or compressive stress. A similar trend was observed in the tension and compression areas of the PDL under continuous light or heavy orthodontic load in rats. During the time-course analysis of expression, we observed that an increase in α-SMA levels was matched by an increase in tenascin-C levels in the PDL under orthodontic load in vivo. The time-dependent variation of α-SMA and tenascin-C expression in the PDL may indicate the time-dependent variation of intrinsic stress under constant extrinsic loading.
Collapse
Affiliation(s)
- Hui Xu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L-Bruno Ruest
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| | - Yong-Wen Guo
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang-Long Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University, Dallas, USA
| |
Collapse
|
30
|
Chen H, Xia Q, Feng X, Cao F, Yu H, Song Y, Ni X. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice. Mol Med Rep 2015; 13:697-704. [PMID: 26648454 PMCID: PMC4686060 DOI: 10.3892/mmr.2015.4622] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022] Open
Abstract
P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Qingqing Xia
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Xiaoqian Feng
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Fangyuan Cao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Hang Yu
- Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Yinli Song
- Department of Pathology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| | - Xiuqin Ni
- Department of Anatomy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
31
|
Elsherbiny NM, El-Sherbiny M, Said E. Amelioration of experimentally induced diabetic nephropathy and renal damage by nilotinib. J Physiol Biochem 2015; 71:635-48. [PMID: 26293752 DOI: 10.1007/s13105-015-0428-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is an ever growing world-wide health problem. The patient has to stick to a firm life-long therapeutic regimen, otherwise diabetic complications will develop. Diabetic nephropathy (DN) is one of the most common diabetic complications and it requires careful medical attendance. Nilotinib hydrochloride is a protein tyrosine kinase inhibitor reported to have numerous therapeutic efficacies besides being an anticancer. In the current study, single I.P. streptozotocin (50 mg/kg) injection was used to induce type I diabetes mellitus in male Sprague-Dawley rats. After 8 weeks, significant deterioration of renal function with urinary excretion of nephrin, podocalyxin, and albumin was observed. Daily oral administration of nilotinib (20 mg/kg) for 8 weeks significantly improved signs of DN on all investigated scales. On a biochemical scale, kidney functions, albuminuria, urinary nephrin, podocalyxin excretion, and host oxidant/antioxidant balance significantly improved. Kidney content of nitric oxide, expression of toll-like receptors 4 and NF-κB/p65 activity significantly declined as well. On a histopathological scale, α-smooth muscle actin and nestin expression significantly declined. Meanwhile, area of fibrosis significantly declined as seen with significant reduction in accumulation of extracellular matrix components and kidney content of collagen. Ultimately, such improvements were accompanied by significant restoration of normal kidney physiology and function. In conclusion, nilotinib can hinder progression of DN through various mechanisms. Reduction of oxidative stress, enhancement of host antioxidant defense system, reduction of inflammation, angiogenesis, tissue hypoxia, and pro-fibrogenic biomarker expression can be implicated in the beneficial therapeutic outcome observed with nilotinib therapy.
Collapse
Affiliation(s)
| | - Mohamed El-Sherbiny
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
32
|
Zheng L, Hui Q, Tang L, Zheng L, Jin Z, Yu B, Wang Z, Lin P, Yu W, Li H, Li X, Wang X. TAT-Mediated Acidic Fibroblast Growth Factor Delivery to the Dermis Improves Wound Healing of Deep Skin Tissue in Rat. PLoS One 2015; 10:e0135291. [PMID: 26271041 PMCID: PMC4536212 DOI: 10.1371/journal.pone.0135291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The definition of deep tissue injury was derived from multiple clinical cases as "A purple or maroon localized area of discolored intact skin or blood-filled blister due to damage of underlying soft tissue from pressure and/or shear". Acidic fibroblast growth factor (aFGF) significantly improves wound healing under diabetic conditions. However, to date, the therapeutic application of aFGF has been limited, due to its low delivery efficiency and short half-life. METHODOLOGY/PRINCIPAL FINDINGS Using an animal model of magnet-induced pressure ulcers, transactivator of transcription protein (TAT)-aFGF was evaluated for transdermal delivery and wound healing. Immunohistochemistry and Western blotting were also performed to determine the expression of transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), CD68, proliferating cell nuclear antigen (PCNA) and TGF-β-receptor II (TGF- βRII) in cultured human dermal fibroblasts. We found that that mice treated with TAT-aFGF had higher accumulation of aFGF in both dermis and subcutaneous tissues compared with mice treated with aFGF alone. In the remodeling phase, TAT-aFGF treatment decreased the expression of α-SMA to normal levels, thereby facilitating normal wound healing processes and abrogating hypertrophic scarring. In human dermal fibroblasts, TAT-aFGF reversed the suppressive effect of TNF-α on α-SMA expression and restored TGF-βRII and TGF-β1 expression. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that TAT-aFGF has a favorable therapeutic effect on the healing of subcutaneous deep tissue injury.
Collapse
Affiliation(s)
- Long Zheng
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Qi Hui
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Lu Tang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Lulu Zheng
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Zi Jin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Bingjie Yu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Zhitao Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Peng Lin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Weidan Yu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Haiyan Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| |
Collapse
|
33
|
Guo J, Yao H, Lin X, Xu H, Dean D, Zhu Z, Liu G, Sime P. IL-13 induces YY1 through the AKT pathway in lung fibroblasts. PLoS One 2015; 10:e0119039. [PMID: 25775215 PMCID: PMC4361578 DOI: 10.1371/journal.pone.0119039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 01/20/2015] [Indexed: 01/18/2023] Open
Abstract
A key feature of lung fibrosis is the accumulation of myofibroblasts. Interleukin 13 (IL-13) is a pro-fibrotic mediator that directly and indirectly influences the activation of myofibroblasts. Transforming growth factor beta (TGF-β) promotes the differentiation of fibroblasts into myofibroblasts, and can be regulated by IL-13. However, IL-13’s downstream signaling pathways are not completely understood. We previously reported that the transcription factor Yin Yang 1 (YY1) is upregulated in fibroblasts treated with TGF-β and in the lungs of mice and patients with pulmonary fibrosis. Moreover, YY1 directly regulates collagen and alpha smooth muscle actin (α-SMA) expression in fibroblasts. However, it is not known if IL-13 regulates fibroblast activation through YY1 expression. We hypothesize that IL-13 up-regulates YY1 expression through regulation of AKT activation, leading to fibroblast activation. In this study we found that YY1 was upregulated by IL-13 in lung fibroblasts in a dose- and time-dependent manner, resulting in increased α-SMA. Conversely, knockdown of YY1 blocked IL-13-induced α-SMA expression in fibroblasts. Furthermore, AKT phosphorylation was increased in fibroblasts treated with IL-13, and AKT overexpression upregulated YY1, whereas blockade of AKT phosphorylation suppressed the induction of YY1 by IL-13 in vitro. In vivo YY1 was upregulated in fibrotic lungs from CC10-IL-13 transgenic mice compared to that from wild-type littermates, which was associated with increased AKT phosphorylation. Taken together, these findings demonstrate that IL-13 is a potent stimulator and activator of fibroblasts, at least in part, through AKT-mediated YY1 activation.
Collapse
Affiliation(s)
- Jia Guo
- Department of Medicine, University of Rochester Medical School, Rochester, New York, United States of America
- * E-mail:
| | - Hongwei Yao
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xin Lin
- Department of Pediatrics, University of Rochester; Rochester, New York, United States of America
| | - Haodong Xu
- Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - David Dean
- Department of Pediatrics, University of Rochester; Rochester, New York, United States of America
| | - Zhou Zhu
- Department of Allergy and Clinic Immunology, Yale University, New Haven, Connecticut, United States of America
| | - Gang Liu
- Department of medicine, Pulmonary and critical care, University of Alabama, Birmingham, Alabama, United States of America
| | - Patricia Sime
- Department of Medicine, University of Rochester Medical School, Rochester, New York, United States of America
- Department of Pediatrics, University of Rochester; Rochester, New York, United States of America
| |
Collapse
|
34
|
Inhibition of TGFβ type I receptor activity facilitates liver regeneration upon acute CCl4 intoxication in mice. Arch Toxicol 2015; 90:347-57. [DOI: 10.1007/s00204-014-1436-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/09/2014] [Indexed: 01/17/2023]
|
35
|
Jin Lim M, Ahn J, Youn Yi J, Kim MH, Son AR, Lee SLO, Lim DS, Soo Kim S, Ae Kang M, Han Y, Song JY. Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2. Exp Cell Res 2014; 326:125-35. [DOI: 10.1016/j.yexcr.2014.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 05/26/2014] [Accepted: 06/04/2014] [Indexed: 01/13/2023]
|
36
|
Xu H, Han X, Meng Y, Gao L, Guo Y, Jing Y, Bai D. Favorable effect of myofibroblasts on collagen synthesis and osteocalcin production in the periodontal ligament. Am J Orthod Dentofacial Orthop 2014; 145:469-79. [PMID: 24703285 DOI: 10.1016/j.ajodo.2013.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 12/01/2013] [Accepted: 12/01/2013] [Indexed: 02/05/2023]
Abstract
INTRODUCTION In this study, we aimed to explore the expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the periodontal ligament (PDL) under orthodontic loading, and to investigate the effect of myofibroblasts on collagen synthesis and osteocalcin production. METHODS The teeth in the right maxillae of the rats were orthodontically loaded while the contralateral teeth remained unloaded as controls. The total 30 rats were divided into 5 groups, with each group corresponding to a treatment duration (0, 3, 5, 7, or 14 days, respectively). The expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the tension area of the PDL over time were analyzed by immunochemistry staining. For the in-vitro study, the expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the myofibroblasts and human osteoblast-like cells (MG63) coculture and PDL cells-MG63 coculture systems were examined by Western blot and real-time polymerase chain reaction. RESULTS Enhanced expression of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the tension area of the PDL under orthodontic loading were observed in vivo, and increased expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin in the myofibroblasts-MG63 coculture system were observed compared with the controls. CONCLUSIONS Expressions of α-smooth muscle actin, collagen type I, collagen type III, and osteocalcin are up-regulated in the PDL under orthodontic tensile loading. Myofibroblasts have a more positive effect on collagen synthesis and osteocalcin expression than do PDL cells.
Collapse
Affiliation(s)
- Hui Xu
- PhD candidate, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianglong Han
- Lecturer, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Meng
- Associate professor, Department of Orthodontics, Shenzhen Children's Hospital, Shenzhen, China
| | - Lei Gao
- Postgraduate student, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongwen Guo
- PhD candidate, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Jing
- PhD candidate, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- Professor and chair, State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Stumm CL, Halcsik E, Landgraf RG, Camara NOS, Sogayar MC, Jancar S. Lung remodeling in a mouse model of asthma involves a balance between TGF-β1 and BMP-7. PLoS One 2014; 9:e95959. [PMID: 24781156 PMCID: PMC4004563 DOI: 10.1371/journal.pone.0095959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022] Open
Abstract
A key event in chronic allergic asthma is the TGF-β-induced activation of fibroblasts into α-SMA-positive myofibroblasts which synthesize type-I collagen. In the present study we investigated the effect of the anti-fibrotic molecule BMP-7 in asthma. Balb/c mice were immunized i.p. with ovalbumin in alum and challenged every 2 days with ovalbumin aerosol (two or six challenges for acute and chronic protocols, respectively). The lung was evaluated for: α-SMA and type-I collagen by immunohistochemistry; BMP-7 and TGF- β1 gene expression by qRT-PCR; type-I collagen and Smads 2 and 3 by immunoblotting; mucus by PSA staining. Type-I collagen around bronchi, α-SMA, mucus secretion, TGF- β1 and BMP-7 gene expression were all increased in asthma. The TGF- β1/BMP-7 ratio was higher in the chronic group and correlated with higher levels of collagen. Fibroblasts isolated from asthmatic and healthy lungs produced type-I collagen upon stimulation with TGF- β1 via phosphorylation of Smad-2, Smad-3. Pre-treatment of the fibroblasts with BMP-7 reduced collagen production and Smads phosphorylation. Intranasal treatment of asthmatic mice with recombinant BMP-7 during the immunization protocol reduced lung inflammation and type I collagen deposition. These results suggest a protective role for BMP-7 in lung allergic inflammation, opposing the pro-fibrotic effects of TGF- β1.
Collapse
Affiliation(s)
| | - Erik Halcsik
- Department of Biochemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Niels Olsen Saraiva Camara
- Department of Immunology, University of Sao Paulo, Sao Paulo, SP, Brazil; Division of Nephrology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Sonia Jancar
- Department of Immunology, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
38
|
Taflinski L, Demir E, Kauczok J, Fuchs PC, Born M, Suschek CV, Opländer C. Blue light inhibits transforming growth factor-β1-induced myofibroblast differentiation of human dermal fibroblasts. Exp Dermatol 2014; 23:240-6. [DOI: 10.1111/exd.12353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Leonie Taflinski
- Department of Plastic and Reconstructive Surgery, Hand Surgery and Burn Center; Medical Faculty; RWTH Aachen University; Aachen Germany
| | - Erhan Demir
- Department of Plastic Surgery, Hand Surgery and Burn Center; Merheim Hospital Cologne; University of Witten/Herdecke; Witten Germany
| | - Jens Kauczok
- Department of Plastic Surgery, Hand Surgery and Burn Center; Merheim Hospital Cologne; University of Witten/Herdecke; Witten Germany
| | - Paul Christian Fuchs
- Department of Plastic Surgery, Hand Surgery and Burn Center; Merheim Hospital Cologne; University of Witten/Herdecke; Witten Germany
| | - Matthias Born
- Philips Technology GmbH; Innovative Technologies; Aachen Germany
| | - Christoph V. Suschek
- Department of Trauma and Hand Surgery; Medical Faculty of the Heinrich-Heine-University Düsseldorf; Düsseldorf Germany
| | - Christian Opländer
- Department of Trauma and Hand Surgery; Medical Faculty of the Heinrich-Heine-University Düsseldorf; Düsseldorf Germany
| |
Collapse
|
39
|
Lucini V, Ciracì R, Dugnani S, Pannacci M, Pisati F, Caronno A, Tirone G, Scaglione F. Antibiotics counteract the worsening of airway remodelling induced by infections in asthma. Int J Antimicrob Agents 2014; 43:442-50. [PMID: 24698123 DOI: 10.1016/j.ijantimicag.2014.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/03/2014] [Indexed: 11/20/2022]
Abstract
Asthma is associated with structural remodelling processes, including basement membrane thickening, increased vascularity and smooth muscle alterations. It is known that respiratory infections are associated with asthma exacerbation; infections can worsen asthma symptoms and influence susceptibility to asthma onset. How infections affect asthma is not fully elucidated. It is possible that the immune response, due to recurrent infections, leads to the pathogen's eradication but also increases bronchial inflammation, which induces airway remodelling in asthmatic subjects. We evaluated how infection affects lung remodelling and inflammatory responses and assessed the impact of antibiotic treatment in a murine model of asthma. Ovalbumin-sensitised BALB/c mice were divided into control, mild and chronic asthmatics. A subset of animals in each group was infected with Streptococcus pneumoniae and was treated with antibiotics. The results show an increase in key lung remodelling factors in mice with chronic asthma, particularly those infected with S. pneumoniae. Notably, antibiotic therapy attenuated these effects. These findings demonstrate for the first time that prompt antibiotic therapy may be useful to reduce lung remodelling progression in infected asthmatic subjects.
Collapse
Affiliation(s)
- Valeria Lucini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Rocco Ciracì
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Silvana Dugnani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Marilou Pannacci
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Federica Pisati
- IFOM Foundation, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Alessia Caronno
- IFOM Foundation, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Giampaolo Tirone
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Francesco Scaglione
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy.
| |
Collapse
|
40
|
Jonczyk MS, Simon M, Kumar S, Fernandes VE, Sylvius N, Mallon AM, Denny P, Andrew PW. Genetic factors regulating lung vasculature and immune cell functions associate with resistance to pneumococcal infection. PLoS One 2014; 9:e89831. [PMID: 24594938 PMCID: PMC3940657 DOI: 10.1371/journal.pone.0089831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is an important human pathogen responsible for high mortality and morbidity worldwide. The susceptibility to pneumococcal infections is controlled by as yet unknown genetic factors. To elucidate these factors could help to develop new medical treatments and tools to identify those most at risk. In recent years genome wide association studies (GWAS) in mice and humans have proved successful in identification of causal genes involved in many complex diseases for example diabetes, systemic lupus or cholesterol metabolism. In this study a GWAS approach was used to map genetic loci associated with susceptibility to pneumococcal infection in 26 inbred mouse strains. As a result four candidate QTLs were identified on chromosomes 7, 13, 18 and 19. Interestingly, the QTL on chromosome 7 was located within S. pneumoniae resistance QTL (Spir1) identified previously in a linkage study of BALB/cOlaHsd and CBA/CaOlaHsd F2 intercrosses. We showed that only a limited number of genes encoded within the QTLs carried phenotype-associated polymorphisms (22 genes out of several hundred located within the QTLs). These candidate genes are known to regulate TGFβ signalling, smooth muscle and immune cells functions. Interestingly, our pulmonary histopathology and gene expression data demonstrated, lung vasculature plays an important role in resistance to pneumococcal infection. Therefore we concluded that the cumulative effect of these candidate genes on vasculature and immune cells functions as contributory factors in the observed differences in susceptibility to pneumococcal infection. We also propose that TGFβ-mediated regulation of fibroblast differentiation plays an important role in development of invasive pneumococcal disease. Gene expression data submitted to the NCBI Gene Expression Omnibus Accession No: GSE49533 SNP data submitted to NCBI dbSNP Short Genetic Variation http://www.ncbi.nlm.nih.gov/projects/SNP/snp_viewTable.cgi?handle=MUSPNEUMONIA.
Collapse
Affiliation(s)
- Magda S. Jonczyk
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Michelle Simon
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Saumya Kumar
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Vitor E. Fernandes
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Nicolas Sylvius
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Paul Denny
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Peter W. Andrew
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Hata S, Okamura K, Hatta M, Ishikawa H, Yamazaki J. Proteolytic and non-proteolytic activation of keratinocyte-derived latent TGF-β1 induces fibroblast differentiation in a wound-healing model using rat skin. J Pharmacol Sci 2014; 124:230-43. [PMID: 24492413 DOI: 10.1254/jphs.13209fp] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) reportedly causes the differentiation of fibroblasts to myofibroblasts during wound healing. We investigated the mechanism underlying the activation of latent TGF-β1 released by keratinocytes in efforts to identify promising pharmacological approaches for the prevention of hypertrophic scar formation. A three-dimensional collagen gel matrix culture was prepared using rat keratinocytes and dermal fibroblasts. Stratified keratinocytes promoted the TGF receptor-dependent increase in α-smooth muscle actin (α-SMA) immunostaining and mRNA levels in fibroblasts. Latent TGF-β1 was found to be localized suprabasally and secreted. α-SMA expression was inhibited by an anti-αv-integrin antibody and a matrix metalloproteinase (MMP) inhibitor, GM6001. In a two-dimensional fibroblast culture, α-SMA expression depended on the production of endogenous TGF-β1 and required αv-integrin or MMP for the response to recombinant latent TGF-β1. In keratinocyte-conditioned medium, MMP-dependent latent TGF-β1 secretion was detected. Applying this medium to the fibroblast culture enhanced α-SMA production. This effect was decreased by GM6001, the anti-αv-integrin antibody, or the preabsorption of latent TGF-β1. These results indicate that keratinocytes secrete latent TGF-β1, which is liberated to fibroblasts over distance and is activated to produce α-SMA with the aid of a positive-feedback loop. MMP inhibition was effective for targeting both keratinocytes and fibroblasts in this model.
Collapse
Affiliation(s)
- Shozaburo Hata
- Department of Oral Growth & Development, Fukuoka Dental College, Japan
| | | | | | | | | |
Collapse
|
42
|
Novel mechanism of regulation of fibrosis in kidney tumor with tuberous sclerosis. Mol Cancer 2013; 12:49. [PMID: 23705901 PMCID: PMC3681649 DOI: 10.1186/1476-4598-12-49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/22/2013] [Indexed: 01/19/2023] Open
Abstract
Background Deficiency in tuberin results in activation the mTOR pathway and leads to accumulation of cell matrix proteins. The mechanisms by which tuberin regulates fibrosis in kidney angiomyolipomas (AMLs) of tuberous sclerosis patients are not fully known. Method In the present study, we investigated the potential role of tuberin/mTOR pathway in the regulation of cell fibrosis in AML cells and kidney tumor tissue from tuberous sclerosis complex (TSC) patients. Results AML cells treated with rapamycin shows a significant decrease in mRNA and protein expression as well as in promoter transcriptional activity of alpha-smooth muscle actin (α-SMA) compared to untreated cells. In addition, cells treated with rapamycin significantly decreased the protein expression of the transcription factor YY1. Rapamycin treatment also results in the redistribution of YY1 from the nucleus to cytoplasm in AML cells. Moreover, cells treated with rapamycin resulted in a significant reduce of binding of YY1 to the αSMA promoter element in nuclear extracts of AML cells. Kidney angiomyolipoma tissues from TSC patients showed lower levels of tuberin and higher levels of phospho-p70S6K that resulted in higher levels of mRNA and protein of αSMA expression compared to control kidney tissues. In addition, most of the α-SMA staining was identified in the smooth muscle cells of AML tissues. YY1 was also significantly increased in tumor tissue of AMLs compared to control kidney tissue suggesting that YY1 plays a major role in the regulation of αSMA. Conclusions These data comprise the first report to provide one mechanism whereby rapamycin might inhibit the cell fibrosis in kidney tumor of TSC patients.
Collapse
|
43
|
Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol (1985) 2013; 114:834-43. [PMID: 23305987 DOI: 10.1152/japplphysiol.00950.2012] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma.
Collapse
Affiliation(s)
- Diana C Doeing
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
44
|
Abstract
Contractile myofibroblasts are responsible for the irreversible alterations of the lung parenchyma that hallmark pulmonary fibrosis. In response to lung injury, a variety of different precursor cells can become activated to develop myofibroblast features, most notably formation of stress fibers and expression of α-smooth muscle actin. Starting as an acute and beneficial repair process, myofibroblast secretion of collagen and contraction frequently becomes excessive and persists. The result is accumulation of stiff scar tissue that obstructs and ultimately destroys lung function. In addition to being a consequence of myofibroblast activities, the stiffened tissue is also a major promoter of the myofibroblast. The mechanical properties of scarred lung and fibrotic foci promote myofibroblast contraction and differentiation. One essential element in this detrimental feed-forward loop is the mechanical activation of the profibrotic growth factor transforming growth factor-β1 from stores in the extracellular matrix. Interfering with myofibroblast contraction and integrin-mediated force transmission to latent transforming growth factor-β1 and matrix proteins are here presented as possible therapeutic strategies to halt fibrosis.
Collapse
|
45
|
Shi Y, Dong Y, Duan Y, Jiang X, Chen C, Deng L. Substrate stiffness influences TGF-β1-induced differentiation of bronchial fibroblasts into myofibroblasts in airway remodeling. Mol Med Rep 2012; 7:419-24. [PMID: 23229284 DOI: 10.3892/mmr.2012.1213] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/13/2012] [Indexed: 11/06/2022] Open
Abstract
Chronic inflammation and remodeling of the bronchial wall are basic hallmarks of asthma. During the process of bronchial wall remodeling, inflammatory factors, such as transforming growth factor-β1 (TGF-β1), are known to induce the differentiation of fibroblasts into myofibroblasts, which leads to excessive synthesis and secretion of extracellular matrix (ECM) proteins, thus thickening and stiffening the basement membrane. However, it has not been thoroughly studied whether or not substrate stiffening affects the TGF-β1‑induced myofibroblast differentiation. In the present study, the influence of substrate stiffness on the process of bronchial fibroblast differentiation into myofibroblasts in the presence of TGF-β1 was investigated. To address this question, we synthesized polydimethylsiloxane (PDMS) substrates with varying degrees of stiffness (Young's modulus of 1, 10 and 50 kPa, respectively). We cultured bronchial fibroblasts on the substrates of varying stiffness in media containing TGF-β1 (10 ng/ml) to stimulate the differentiation of fibroblasts into myofibroblasts. Myofibroblast differentiation was examined using semi-quantitative RT-PCR for the expression of α-smooth muscle actin (α-SMA) mRNA and collagen I mRNA, the enzyme-linked immunosorbent assay method was used to assess the expression of collagen I protein and western blotting to assess the expression of α-SMA protein. The optical magnetic twisting cytometry (OMTC) method was used for the changing of cell mechanical properties. Our findings suggest that when fibroblasts were incubated with TGF-β1 (10 ng/ml) on substrate of varying stiffness, the differentiation of fibroblasts into myofibroblasts was enhanced by increasing substrate stiffness. Compared with those cultured on substrate with Young's modulus of 1 kPa, the mRNA and protein expression of collagen I and α-SMA of fibroblasts cultured on substrates with Young's modulus of 10 and 50 kPa were increased. Furthermore, with the increase of substrate stiffness, the cell stiffness and contractility were also increased, which also indicated further aggravation of asthma. This finding may help better understand the underlying mechanisms of hyperplasia of myofibroblasts in asthma, which has a marked significance in the therapy of asthma.
Collapse
Affiliation(s)
- Yanling Shi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P.R. China
| | | | | | | | | | | |
Collapse
|
46
|
Chang FC, Chou YH, Chen YT, Lin SL. Novel insights into pericyte-myofibroblast transition and therapeutic targets in renal fibrosis. J Formos Med Assoc 2012; 111:589-98. [PMID: 23217594 DOI: 10.1016/j.jfma.2012.09.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/03/2012] [Accepted: 09/10/2012] [Indexed: 12/31/2022] Open
Abstract
Renal fibrosis is a disease affecting millions worldwide and is a harbinger of progressive renal failure. Understanding the mechanisms of renal fibrosis is important for discovering new therapies that are required to prevent loss of renal function. Recently, we identified pericytes that line the kidney microvasculature as the precursor cells of the scar-producing myofibroblasts during kidney injury. Kidney pericytes are extensively branched cells embedded within the capillary basement membrane and stabilize the capillary network through tissue inhibitor of metalloproteinase 3 and angiogenic growth factors. Pericytes detach from endothelial cells and migrate into the interstitial space where they undergo a transition into myofibroblasts after injury. Activation of endothelium, pericyte-myofibroblast transition, and recruitment of inflammatory macrophages lead to capillary rarefaction and fibrosis. Targeting endothelium-pericyte crosstalk by inhibiting vascular endothelial cell growth factor receptors and platelet-derived growth factor receptors in response to injury have been identified as new therapeutic interventions. Furthermore, targeting macrophage activation has also been proven as a novel and safe therapeutic approach for pericyte-myofibroblast transition. However, we are still far from understanding the interaction between pericytes and other cellular elements in normal physiology and during kidney fibrosis. Further studies will be required to translate into more specific therapeutic approaches.
Collapse
Affiliation(s)
- Fan-Chi Chang
- Renal Division, Department of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
47
|
Zhou Y, Lee JY, Lee CM, Cho WK, Kang MJ, Koff JL, Yoon PO, Chae J, Park HO, Elias JA, Lee CG. Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-β-induced pulmonary fibrosis. J Biol Chem 2012; 287:41991-2000. [PMID: 23086930 DOI: 10.1074/jbc.m112.356824] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dysregulated amphiregulin (AR) expression and EGR receptor (EGFR) activation have been described in animal models of pulmonary fibrosis and in patients with idiopathic pulmonary fibrosis. However, the exact role of AR in the pathogenesis of pulmonary fibrosis has not been clearly defined. Here, we show that a potent profibrogenic cytokine TGF-β1 significantly induced the expression of AR in lung fibroblasts in vitro and in murine lungs in vivo. AR stimulated NIH3T3 fibroblast cell proliferation in a dose-dependent manner. Silencing of AR expression by siRNA or chemical inhibition of EGFR signaling, utilizing AG1478 and gefitinib, significantly reduced the ability of TGF-β1 to stimulate fibroblast proliferation and expression of α-smooth muscle actin, collagen, and other extracellular matrix-associated genes. TGF-β1-stimulated activation of Akt, ERK, and Smad signaling was also significantly inhibited by these interventions. Consistent with these in vitro findings, AR expression was impressively increased in the lungs of TGF-β1 transgenic mice, and either siRNA silencing of AR or chemical inhibition of EGFR signaling significantly reduced TGF-β1-stimulated collagen accumulation in the lung. These studies showed a novel regulatory role for AR in the pathogenesis of TGF-β1-induced pulmonary fibrosis. In addition, these studies suggest that AR, or AR-activated EGFR signaling, is a potential therapeutic target for idiopathic pulmonary fibrosis associated with TGF-β1 activation.
Collapse
Affiliation(s)
- Yang Zhou
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Anti-inflammatory and immunomodulatory effects of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats. Life Sci 2012; 91:369-376. [DOI: 10.1016/j.lfs.2012.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 11/19/2022]
|
49
|
Chen YT, Chang FC, Wu CF, Chou YH, Hsu HL, Chiang WC, Shen J, Chen YM, Wu KD, Tsai TJ, Duffield JS, Lin SL. Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 2011; 80:1170-81. [DOI: 10.1038/ki.2011.208] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Schneider DJ, Wu M, Le TT, Cho SH, Brenner MB, Blackburn MR, Agarwal SK. Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-β production and epithelial to mesenchymal transition. FASEB J 2011; 26:503-12. [PMID: 21990376 DOI: 10.1096/fj.11-186098] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary fibrosis, characterized by excess deposition of extracellular matrix by myofibroblasts, is a serious component of chronic lung diseases. Cadherin-11 (CDH11) is increased in wound healing and fibrotic skin. We hypothesized that CDH11 is increased in pulmonary fibrosis and contributes its development. CDH11 expression was assessed in lung tissue from idiopathic pulmonary fibrosis patients. The role of CDH11 in lung fibrosis was determined using the bleomycin model of pulmonary fibrosis, and in vitro analyses were performed on A549 cells during the process of epithelial to mesenchymal transition (EMT). Immunohistochemical studies demonstrated CDH11 expression on fibroblasts, epithelial cells, and alveolar macrophages of patients with pulmonary fibrosis and mice given bleomycin. Interestingly, CDH11-deficient mice had decreased fibrotic endpoints in the bleomycin model of pulmonary fibrosis compared to wild-type mice. Furthermore, anti-CDH11-neutralizing monoclonal antibodies successfully treated established pulmonary fibrosis induced by bleomycin. TGF-β levels were reduced in bronchoalveolar lavage (BAL) fluid, BAL cells, and primary alveolar macrophages from CDH11-deficient mice. Mechanistic studies demonstrated that TGF-β up-regulated CDH11 expression on A549 cells, and inhibition of CDH11 expression using siRNA reduced TGF-β-induced EMT. Together, these results identify CDH11 as a novel therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Daniel J Schneider
- Department of Biochemistry and Molecular Biology, Pediatric Research Center, University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|