1
|
Giudice J, Brauer DD, Zoltek M, Vázquez Maldonado AL, Kelly M, Schepartz A. Requirements for efficient endosomal escape by designed mini-proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588336. [PMID: 38617268 PMCID: PMC11014610 DOI: 10.1101/2024.04.05.588336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
ZF5.3 is a compact, rationally designed mini-protein that escapes efficiently from the endosomes of multiple cell types. Despite its small size (27 amino acids), ZF5.3 can be isolated intact from the cytosol of treated cells and guides multiple classes of proteins into the cytosol and/or nucleus. In the best cases, delivery efficiencies reach or exceed 50% to establish nuclear or cytosolic concentrations of 500 nM or higher. But other than the requirement for unfoldable cargo and an intact HOPS complex, there is little known about how ZF5.3 traverses the limiting endocytic membrane. Here we delineate the attributes of ZF5.3 that enable efficient endosomal escape. We confirm that ZF5.3 is stable at pH values between 5.5 and 7.5, with no evidence of unfolding even at temperatures as high as 95 °C. The high-resolution NMR structure of ZF5.3 at pH 5.5, also reported here, shows a canonical p zinc-finger fold with the penta-arg motif integrated seamlessly into the C-terminal α-helix. At lower pH, ZF5.3 unfolds cooperatively as judged by both circular dichroism and high-resolution NMR. Unfolding occurs upon protonation of a single Zn(II)-binding His side chain whose pKa corresponds almost exactly to that of the late endosomal lumen. pH-induced unfolding is essential for endosomal escape, as a ZF5.3 analog that remains folded at pH 4.5 fails to efficiently reach the cytosol, despite high overall uptake. Finally, using reconstituted liposomes, we identify a high-affinity interaction of ZF5.3 with a specific lipid-BMP-that is selectively enriched in the inner leaflet of late endosomal membranes. This interaction is 10-fold stronger at low pH than neutral pH, providing a molecular picture for why escape occurs preferentially and in a HOPS-dependent manner from late endosomal compartments. The requirements for programmed endosomal escape identified here should aid and inform the design of proteins, peptidomimetics, and other macromolecules that reach cytosolic or nuclear targets intact and at therapeutically relevant concentrations.
Collapse
Affiliation(s)
- Jonathan Giudice
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Madeline Zoltek
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720
| | | | - Mark Kelly
- School of Pharmacy, University of California-San Francisco, San Francisco, CA 94158
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
- Arc Institute, Palo Alto, CA
| |
Collapse
|
2
|
Abstract
The potential of miniproteins in the biological and chemical sciences is constantly increasing. Significant progress in the design methodologies has been achieved over the last 30 years. Early approaches based on propensities of individual amino acid residues to form individual secondary structures were subsequently improved by structural analyses using NMR spectroscopy and crystallography. Consequently, computational algorithms were developed, which are now highly successful in designing structures with accuracy often close to atomic range. Further perspectives include construction of miniproteins incorporating non-native secondary structures derived from sequences with units other than α-amino acids. Noteworthy, miniproteins with extended structures, which are now feasibly accessible, are excellent scaffolds for construction of functional molecules.
Collapse
|
3
|
Markwalter CE, Uralcan B, Pelczer I, Zarzhitsky S, Hecht MH, Prud'homme RK, Debenedetti PG. Stability of Protein Structure during Nanocarrier Encapsulation: Insights on Solvent Effects from Simulations and Spectroscopic Analysis. ACS NANO 2020; 14:16962-16972. [PMID: 33211493 DOI: 10.1021/acsnano.0c06056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The dosing of peptide and protein therapeutics is complicated by rapid clearance from the blood pool and poor cellular membrane permeability. Encapsulation into nanocarriers such as liposomes or polymersomes has long been explored to overcome these limitations, but manufacturing challenges have limited clinical translation by these approaches. Recently, inverse Flash NanoPrecipitation (iFNP) has been developed to produce highly loaded polymeric nanocarriers with the peptide or protein contained within a hydrophilic core, stabilized by a hydrophobic polymer shell. Encapsulation of proteins with higher-order structure requires understanding how processing may affect their conformational state. We demonstrate a combined experimental/simulation approach to characterize protein behavior during iFNP processing steps using the Trp-cage protein TC5b as a model. Explicit-solvent fully atomistic molecular dynamics simulations with enhanced sampling techniques are coupled with two-dimensional heteronuclear multiple-quantum coherence nuclear magnetic resonance spectroscopy (2D-HMQC NMR) and circular dichroism to determine the structure of TC5b during mixed-solvent exposure encountered in iFNP processing. The simulations involve atomistic models of mixed solvents and protein to capture the complexity of the hydrogen bonding and hydrophobic interactions between water, dimethylsulfoxide (DMSO), and the protein. The combined analyses reveal structural unfolding of the protein in 11 M DMSO but confirm complete refolding after release from the polymeric nanocarrier back into an aqueous phase. These results highlight the insights that simulations and NMR provide for the formulation of proteins in nanocarriers.
Collapse
Affiliation(s)
- Chester E Markwalter
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Betul Uralcan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - István Pelczer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Shlomo Zarzhitsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Gutte B, Klauser S. Design of catalytic polypeptides and proteins. Protein Eng Des Sel 2018; 31:457-470. [PMID: 31241746 DOI: 10.1093/protein/gzz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/13/2022] Open
Abstract
The first part of this review article lists examples of complete, empirical de novo design that made important contributions to the development of the field and initiated challenging projects. The second part of this article deals with computational design of novel enzymes in native protein scaffolds; active designs were refined through random and site-directed mutagenesis producing artificial enzymes with nearly native enzyme- like activities against a number of non-natural substrates. Combining aspects of de novo design and biological evolution of nature's enzymes has started and will accelerate the development of novel enzyme activities.
Collapse
Affiliation(s)
- B Gutte
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | - S Klauser
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| |
Collapse
|
5
|
Uralcan B, Kim SB, Markwalter CE, Prud’homme RK, Debenedetti PG. A Computational Study of the Ionic Liquid-Induced Destabilization of the Miniprotein Trp-Cage. J Phys Chem B 2018; 122:5707-5715. [DOI: 10.1021/acs.jpcb.8b01722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Betul Uralcan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sang Beom Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Chester E. Markwalter
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Yu Y, Wang J, Shao Q, Shi J, Zhu W. The effects of organic solvents on the folding pathway and associated thermodynamics of proteins: a microscopic view. Sci Rep 2016; 6:19500. [PMID: 26775871 PMCID: PMC4726029 DOI: 10.1038/srep19500] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
Protein folding is subject to the effects of solvation environment. A variety of organic solvents are used as additives for in vitro refolding of denatured proteins. Examination of the solvent effects on protein folding could be of fundamental importance to understand the molecular interactions in determining protein structure. This article investigated the folding of α-helix and β-hairpin structures in water and the solutions of two representative refolding additives (methanol (MeOH) and 1-Ethyl-3-methylimidazolium chloride (EMIM-Cl) ionic liquid) using REMD simulations. For both α-helix and β-hairpin in MeOH/water solution or α-helix in EMIM-Cl/water solution, the transient structures along the folding pathway are consistent with the counterparts in water but the relative statistical weights are changed, leading to the decrease in the overall folding free energy barrier. Accordingly, MeOH promotes the folding of both α-helix and β-hairpin but EMIM-Cl ionic liquid only promotes the folding of α-helix, consistent with experimental observations. The present study reveals for the first time the trivial effects on folding route but significant effects on folding thermodynamics from MeOH and EMIM-Cl, explaining the function of protein refolding additives and testifying the validity of the folding mechanism revealed by in vitro protein folding study using refolding additives.
Collapse
Affiliation(s)
- Yuqi Yu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jiye Shi
- UCB Biopharma SPRL, Chemin du Foriest, Braine-l'Alleud, Belgium
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
7
|
Han W, Wan CK, Wu YD. PACE Force Field for Protein Simulations. 2. Folding Simulations of Peptides. J Chem Theory Comput 2015; 6:3390-402. [PMID: 26617093 DOI: 10.1021/ct100313a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present the application of our recently developed PACE force field to the folding of peptides. These peptides include α-helical (AK17 and Fs), β-sheet (GB1m2 and Trpzip2), and mixed helical/coil (Trp-cage) peptides. With replica exchange molecular dynamics (REMD), our force field can fold the five peptides into their native structures while maintaining their stabilities reasonably well. Our force field is also able to capture important thermodynamic features of the five peptides that have been observed in previous experimental and computational studies, such as different preferences for a helix-turn-helix topology for AK17 and Fs, the relative contribution of four hydrophobic side chains of GB1p to the stability of β-hairpin, and the distinct role of a hydrogen bond involving Trp-Hε and a D9/R16 salt bridge in stabilizing the Trp-cage native structure. Furthermore, multiple folding and unfolding events are observed in our microsecond-long normal MD simulations of AK17, Trpzip2, and Trp-cage. These simulations provide mechanistic information such as a "zip-out" pathway of the folding mechanism of Trpzip2 and the folding times of AK17 and Trp-cage, which are estimated to be about 51 ± 43 ns and 270 ± 110 ns, respectively. A 600 ns simulation of the peptides can be completed within one day. These features of our force field are potentially applicable to the study of thermodynamics and kinetics of real protein systems.
Collapse
Affiliation(s)
- Wei Han
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China, School of Chemical Biology and Biotechnology, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, and College of Chemistry, Peking University, Beijing, China
| | - Cheuk-Kin Wan
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China, School of Chemical Biology and Biotechnology, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, and College of Chemistry, Peking University, Beijing, China
| | - Yun-Dong Wu
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China, School of Chemical Biology and Biotechnology, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, and College of Chemistry, Peking University, Beijing, China
| |
Collapse
|
8
|
Lee IH, Kim SY, Lee J. A Folding Pathway Model of Mini-Protein BBA5. BIOMED RESEARCH INTERNATIONAL 2015; 2015:828095. [PMID: 26457304 PMCID: PMC4592707 DOI: 10.1155/2015/828095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/09/2015] [Indexed: 11/18/2022]
Abstract
We present the folding pathway model of mini-protein BBA5, a bundle of secondary structures, α-helix and β-hairpin, by using action-derived molecular dynamics (ADMD) simulations. From ten independent ADMD simulations, we extracted common features of the folding pathway of BBA5, from which we found that the early stage chain compaction was followed by the formation of C-terminal α-helix. The N-terminal β-hairpin was observed to form only after α-helix was stabilized. This result is in good agreement with the experimental observation that BBA5 mutants were moderately cooperative folders, and their C-terminal helical fragments were of higher secondary structure propensity while the N-terminal hairpin fragments were of a random coil spectrum. We found that the most flexible part of BBA5 is the N-terminal four residues. Although both are made of the identical ββα motif, the secondary structure formation sequence of BBA5 is found to be different from that of FSD-1. Finally, a description of the folding pathway in terms of principal component analysis is presented to characterize the folding dynamics in reduced dimensions. With only three principal components, we were able to describe 83.4% of the pathway.
Collapse
Affiliation(s)
- In-Ho Lee
- Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea
| | - Seung-Yeon Kim
- School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Jooyoung Lee
- Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
| |
Collapse
|
9
|
Kubelka GS, Kubelka J. Site-Specific Thermodynamic Stability and Unfolding of a de Novo Designed Protein Structural Motif Mapped by 13C Isotopically Edited IR Spectroscopy. J Am Chem Soc 2014; 136:6037-48. [DOI: 10.1021/ja500918k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ginka S. Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
10
|
Abstract
Fast-folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast-folding proteins has provided insight into the mechanisms, which allow some proteins to find their native conformation well <1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even 'slow' folding processes: fast folders are small; relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast-folding proteins and provides an overview of the major findings of fast-folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general, as well as some work that is left to do.
Collapse
|
11
|
Prigozhin MB, Gruebele M. Microsecond folding experiments and simulations: a match is made. Phys Chem Chem Phys 2013; 15:3372-88. [PMID: 23361200 PMCID: PMC3632410 DOI: 10.1039/c3cp43992e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For the past two decades, protein folding experiments have been speeding up from the second or millisecond time scale to the microsecond time scale, and full-atom simulations have been extended from the nanosecond to the microsecond and even millisecond time scale. Where the two meet, it is now possible to compare results directly, allowing force fields to be validated and refined, and allowing experimental data to be interpreted in atomistic detail. In this perspective we compare recent experiments and simulations on the microsecond time scale, pointing out the progress that has been made in determining native structures from physics-based simulations, refining experiments and simulations to provide more quantitative underlying mechanisms, and tackling the problems of multiple reaction coordinates, downhill folding, and complex underlying structure of unfolded or misfolded states.
Collapse
Affiliation(s)
- M. B. Prigozhin
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| | - M. Gruebele
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
- Department of Physics, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| |
Collapse
|
12
|
Xie WJ, Gao YQ. Ion cooperativity and the effect of salts on polypeptide structure – a molecular dynamics study of BBA5 in salt solutions. Faraday Discuss 2013; 160:191-206; discussion 207-24. [DOI: 10.1039/c2fd20065a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Han W, Schulten K. Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains. J Chem Theory Comput 2012; 8:4413-4424. [PMID: 23204949 PMCID: PMC3507460 DOI: 10.1021/ct300696c] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PACE, a hybrid force field which couples united-atom protein models with coarse-grained (CG) solvent, has been further optimized, aiming to improve itse ciency for folding simulations. Backbone hydration parameters have been re-optimized based on hydration free energies of polyalanyl peptides through atomistic simulations. Also, atomistic partial charges from all-atom force fields were combined with PACE in order to provide a more realistic description of interactions between charged groups. Using replica exchange molecular dynamics (REMD), ab initio folding using the new PACE has been achieved for seven small proteins (16 - 23 residues) with different structural motifs. Experimental data about folded states, such as their stability at room temperature, melting point and NMR NOE constraints, were also well reproduced. Moreover, a systematic comparison of folding kinetics at room temperature has been made with experiments, through standard MD simulations, showing that the new PACE may speed up the actual folding kinetics 5-10 times. Together with the computational speedup benefited from coarse-graining, the force field provides opportunities to study folding mechanisms. In particular, we used the new PACE to fold a 73-residue protein, 3D, in multiple 10 - 30 μs simulations, to its native states (C(α) RMSD ~ 0.34 nm). Our results suggest the potential applicability of the new PACE for the study of folding and dynamics of proteins.
Collapse
Affiliation(s)
- Wei Han
- Beckman Institute, University of Illinois at Urbana-Champaign, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, USA
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
14
|
Shao Q, Fan Y, Yang L, Qin Gao Y. From protein denaturant to protectant: Comparative molecular dynamics study of alcohol/protein interactions. J Chem Phys 2012; 136:115101. [DOI: 10.1063/1.3692801] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Hwang S, Shao Q, Williams H, Hilty C, Gao YQ. Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins – A Combined Molecular Dynamics and NMR study. J Phys Chem B 2011; 115:6653-60. [DOI: 10.1021/jp111448a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soyoun Hwang
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Qiang Shao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, China
| | - Howard Williams
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christian Hilty
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Gao J, Zhang T, Zhang H, Shen S, Ruan J, Kurgan L. Accurate prediction of protein folding rates from sequence and sequence-derived residue flexibility and solvent accessibility. Proteins 2010; 78:2114-30. [PMID: 20455267 DOI: 10.1002/prot.22727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein folding rates vary by several orders of magnitude and they depend on the topology of the fold and the size and composition of the sequence. Although recent works show that the rates can be predicted from the sequence, allowing for high-throughput annotations, they consider only the sequence and its predicted secondary structure. We propose a novel sequence-based predictor, PFR-AF, which utilizes solvent accessibility and residue flexibility predicted from the sequence, to improve predictions and provide insights into the folding process. The predictor includes three linear regressions for proteins with two-state, multistate, and unknown (mixed-state) folding kinetics. PFR-AF on average outperforms current methods when tested on three datasets. The proposed approach provides high-quality predictions in the absence of similarity between the predicted and the training sequences. The PFR-AF's predictions are characterized by high (between 0.71 and 0.95, depending on the dataset) correlation and the lowest (between 0.75 and 0.9) mean absolute errors with respect to the experimental rates, as measured using out-of-sample tests. Our models reveal that for the two-state chains inclusion of solvent-exposed Ala may accelerate the folding, while increased content of Ile may reduce the folding speed. We also demonstrate that increased flexibility of coils facilitates faster folding and that proteins with larger content of solvent-exposed strands may fold at a slower pace. The increased flexibility of the solvent-exposed residues is shown to elongate folding, which also holds, with a lower correlation, for buried residues. Two case studies are included to support our findings.
Collapse
Affiliation(s)
- Jianzhao Gao
- College of Mathematics and LPMC, Nankai University, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Rogers JMG, Lippert LG, Gai F. Non-natural amino acid fluorophores for one- and two-step fluorescence resonance energy transfer applications. Anal Biochem 2010; 399:182-9. [PMID: 20036210 PMCID: PMC2830288 DOI: 10.1016/j.ab.2009.12.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 11/29/2022]
Abstract
Fluorescence resonance energy transfer (FRET) provides a powerful means to study protein conformational changes. However, the incorporation of an exogenous FRET pair into a protein could lead to undesirable structural perturbations of the native fold. One of the viable strategies to minimizing such perturbations is to use non-natural amino acid-based FRET pairs. Previously, we showed that p-cyanophenylalanine (Phe(CN)) and tryptophan (Trp) constitute such a FRET pair, useful for monitoring protein folding-unfolding transitions. Here we further show that 7-azatryptophan (7AW) and 5-hydroxytryptophan (5HW) can also serve as a FRET acceptor to Phe(CN), and the resultant FRET pairs offer certain advantages over Phe(CN)-Trp. For example, the fluorescence spectrum of 7AW is sufficiently separated from that of Phe(CN), making it straightforward to decompose the FRET spectrum into donor and acceptor contributions. Moreover, we show that Phe(CN), Trp, and 7AW can be used together to form a multi-FRET system, allowing more structural information to be extracted from a single FRET experiment. The applicability of these FRET systems is demonstrated in a series of studies where they are employed to monitor the urea-induced unfolding transitions of the villin headpiece subdomain (HP35), a designed betabetaalpha motif (BBA5), and the human Pin1 WW domain.
Collapse
Affiliation(s)
- Julie M. G. Rogers
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Lisa G. Lippert
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
18
|
Feng JA, Kao J, Marshall GR. A second look at mini-protein stability: analysis of FSD-1 using circular dichroism, differential scanning calorimetry, and simulations. Biophys J 2010; 97:2803-10. [PMID: 19917235 DOI: 10.1016/j.bpj.2009.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022] Open
Abstract
Mini-proteins that contain <50 amino acids often serve as model systems for studying protein folding because their small size makes long timescale simulations possible. However, not all mini-proteins are created equal. The stability and structure of FSD-1, a 28-residue mini-protein that adopted the betabetaalpha zinc-finger motif independent of zinc binding, was investigated using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The broad melting transition of FSD-1, similar to that of a helix-to-coil transition, was observed by using circular dichroism, differential scanning calorimetry, and replica-exchange molecular dynamics. The N-terminal beta-hairpin was found to be flexible. The FSD-1 apparent melting temperature of 41 degrees C may be a reflection of the melting of its alpha-helical segment instead of the entire protein. Thus, despite its attractiveness due to small size and purposefully designed helix, sheet, and turn structures, the status of FSD-1 as a model system for studying protein folding should be reconsidered.
Collapse
Affiliation(s)
- Jianwen A Feng
- Center for Computational Biology, Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA.
| | | | | |
Collapse
|
19
|
Kim E, Jang S, Pak Y. All-atom ab initio native structure prediction of a mixed fold (1FME): a comparison of structural and folding characteristics of various beta beta alpha miniproteins. J Chem Phys 2010; 131:195102. [PMID: 19929079 DOI: 10.1063/1.3266510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed an all-atom ab initio native structure prediction of 1FME, which is one of the computationally challenging mixed fold beta beta alpha miniproteins, by combining a novel conformational search algorithm (multiplexed Q-replica exchange molecular dynamics scheme) with a well-balanced all-atom force field employing a generalized Born implicit solvation model (param99MOD5/GBSA). The nativelike structure of 1FME was identified from the lowest free energy minimum state and in excellent agreement with the NMR structure. Based on the interpretation of the free energy landscape, the structural properties as well as the folding behaviors of 1FME were compared with other beta beta alpha miniproteins (1FSD, 1PSV, and BBA5) that we have previously studied with the same force field. Our simulation showed that the 28-residue beta beta alpha miniproteins (1FME, 1FSD, and 1PSV) share a common feature of the free energy topography and exhibit the three local minimum states on each computed free energy map, but the 23-residue miniprotein (BBA5) follows a downhill folding with a single minimum state. Also, the structure and stability changes resulting from the two point mutation (Gln1-->Glu1 and Ile7-->Tyr7) of 1FSD were investigated in details for direct comparison with the experiment. The comparison shows that upon mutation, the experimentally observed turn type switch from an irregular turn (1FSD) to type I(') turn (1FME) was well reproduced with the present simulation.
Collapse
Affiliation(s)
- Eunae Kim
- Department of Chemistry, Pusan National University, Busan 609-735, Korea
| | | | | |
Collapse
|
20
|
A statistical measure of association and a series expansion of chain conformations. Comput Biol Chem 2009; 33:357-60. [PMID: 19699687 DOI: 10.1016/j.compbiolchem.2009.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022]
Abstract
A simple, easily calculated, nonparametric statistic is described that can detect the presence of a functional relationship in bivariate data. Given a sample of data points (x,y), the statistic's value is nearly 1 if y is a linear function of x with little noise; it is greater than 1 if y is a nonlinear function of x; and it is close to 2 if x and y are uniformly and independently distributed. The statistic can be used to rapidly screen through large data sets to identify the most functionally related variable pairs. As an illustration, the statistic is used to detect relations between polypeptide conformational energy and functions of a series expansion for chain conformations.
Collapse
|
21
|
Durani S. Protein design with L- and D-alpha-amino acid structures as the alphabet. Acc Chem Res 2008; 41:1301-8. [PMID: 18642934 DOI: 10.1021/ar700265t] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Summarizing the implications of homochiral structures in interpeptide interactions, not only in the topology but also possibly in the physics of protein folding, this Account provides an overview of the concept of shape-specific protein design using D- and L-(alpha)amino acid structures as the alphabet. The molecular shapes accessible in de novo protein design are stereochemically defined. Indeed, the defining consideration for shape specificity in proteins to be alpha-helix/beta-sheet composites is the L configuration of the alpha-amino acid structures. The stereospecificity in shapes implies that protein shapes may be diversifiable stereochemically, that is, designable de novo, using D and L structures as the alphabet. Indeed, augmented with D enantiomers, Nature's alphabet will expand greatly in the diversity of polypeptide stereoisomers, for example, from 1(30) to 2(30)--that is, from one to ca. one billion--for a modestly sized 30-residue polypeptide. Furthermore, with each isomer having conformers stereospecific to its structure, molecular folds of specific shapes may be approachable sequentially when D and L structures are used as the alphabet. Illustrating the promise, 14-20-residue bracelet-, boat-, canoe-, and cup-shaped molecular folds were designed stereochemically or implemented as specific sequence plans in the D- and L-alpha-amino acid alphabet. In practical terms, canonical poly-L peptide folds were modified to the desired shapes via stereochemical mutations invoking enantiomer symmetries in the Ramachandran phi,psi space as the logic. For example, in designing the boat-shaped fold, the canonical beta-hairpin was reengineered in its flat planar structure via multiple coordinated L-to-D mutations in its position specific cross-strand neighbor residues, upturning its ends enclosing six side chains in a molecular cleft. While affirming the generality of the approach, the 20-residue molecular canoe and the 14-residue molecular cup are also presented as examples of the scope of functional design. The canoe, possessing alkali cation-specific catgrips in its main chain, and the cup, featuring an organic cation-specific aromatic triad in its side chains, do indeed display desired specificities in their ligand binding. Stereochemistry is, therefore, the crucial specifier of protein shapes and valuable as the tool for shape-specific protein design. Proteins in general, whether poly-L or mixed-D,L, require sequence effects of amino acid side chain structures for their stability, if not also for specifying them conformationally. The principles underlying these phenomena remain a puzzle, but studies invoking a stereochemical mutation approach to the problem have suggested that the poly-L structure may be crucial to the principles of sequential encoding of protein structures in amino acid side chains as the alphabet.
Collapse
Affiliation(s)
- Susheel Durani
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
22
|
Jang S, Kim E, Pak Y. All-atom level direct folding simulation of a betabetaalpha miniprotein. J Chem Phys 2008; 128:105102. [PMID: 18345926 DOI: 10.1063/1.2837655] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed ab initio folding simulation for a betabetaalpha peptide BBA5 (PDB code 1T8J) with a modified param99 force field using the generalized Born solvation model (param99MOD5/GBSA). For efficient conformational sampling, we extended a previously developed novel Q-replica exchange molecular dynamics (Q-REMD) into a multiplexed Q-REMD. Starting from a fully extended conformation, we were able to locate the nativelike structure in the global free minimum region at 280 K. The current approach, which combines the more balanced force field with the efficient sampling scheme, demonstrates a clear advantage in direct folding simulation at all-atom level.
Collapse
Affiliation(s)
- Soonmin Jang
- Department of Chemistry, Sejong University, Seoul, Korea
| | | | | |
Collapse
|
23
|
Robertson A, Luttmann E, Pande VS. Effects of long-range electrostatic forces on simulated protein folding kinetics. J Comput Chem 2008; 29:694-700. [PMID: 17849394 DOI: 10.1002/jcc.20828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular dynamics simulations are a useful tool for characterizing protein folding pathways. There are several methods of treating electrostatic forces in these simulations with varying degrees of physical fidelity and computational efficiency. In this article, we compare the reaction field (RF) algorithm, particle-mesh Ewald (PME), and tapered cutoffs with increasing cutoff radii to address the impact of the electrostatics method employed on the folding kinetics. We quantitatively compare different methods by a correlation of quantitative measures of protein folding kinetics. The results of these comparisons show that for protein folding kinetics, the RF algorithm can quantitatively reproduce the kinetics of the more costly PME algorithm. These results not only assist the selection of appropriate algorithms for future simulations, but also give insight on the role that long-range electrostatic forces have in protein folding.
Collapse
Affiliation(s)
- Alex Robertson
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
24
|
Understanding the roles of amino acid residues in tertiary structure formation of chignolin by using molecular dynamics simulation. Proteins 2008; 73:621-31. [DOI: 10.1002/prot.22100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Rhee YM, Pande VS. Solvent viscosity dependence of the protein folding dynamics. J Phys Chem B 2008; 112:6221-7. [PMID: 18229911 DOI: 10.1021/jp076301d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvent viscosity has been frequently adopted as an adjustable parameter in various computational studies (e.g., protein folding simulations) with implicit solvent models. A common approach is to use low viscosities to expedite simulations. While using viscosities lower than that of aqueous is unphysical, such treatment is based on observations that the viscosity affects the kinetics (rates) in a well-defined manner as described by Kramers' theory. Here, we investigate the effect of viscosity on the detailed dynamics (mechanism) of protein folding. On the basis of a simple mathematical model, we first show that viscosity may indeed affect the dynamics in a complex way. By applying the model to the folding of a small protein, we demonstrate that the detailed dynamics is affected rather pronouncedly especially at unphysically low viscosities, cautioning against using such viscosities. In this regard, our model may also serve as a diagnostic tool for validating low-viscosity simulations. It is also suggested that the viscosity dependence can be further exploited to gain information about the protein folding mechanism.
Collapse
Affiliation(s)
- Young Min Rhee
- Department of Chemistry, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
26
|
Kim E, Jang S, Pak Y. Consistent free energy landscapes and thermodynamic properties of small proteins based on a single all-atom force field employing an implicit solvation. J Chem Phys 2008; 127:145104. [PMID: 17935448 DOI: 10.1063/1.2775450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have attempted to improve the PARAM99 force field in conjunction with the generalized Born (GB) solvation model with a surface area correction for more consistent protein folding simulations. For this purpose, using an extended alphabeta training set of five well-studied molecules with various folds (alpha, beta, and betabetaalpha), a previously modified version of PARAM99/GBSA is further refined, such that all native states of the five training species correspond to their lowest free energy minimum states. The resulting modified force field (PARAM99MOD5/GBSA) clearly produces reasonably acceptable conformational free energy surfaces of the training set with correct identifications of their native states in the free energy minimum states. Moreover, due to its well-balanced nature, this new force field is expected to describe secondary structure propensities of diverse folds in a more consistent manner. Remarkably, temperature dependent behaviors simulated with the current force field are in good agreement with the experiment. This agreement is a significant improvement over the existing standard all-atom force fields. In addition, fundamentally important thermodynamic quantities, such as folding enthalpy (DeltaH) and entropy (DeltaS), agree reasonably well with the experimental data.
Collapse
Affiliation(s)
- Eunae Kim
- Department of Chemistry, Pusan National University, Busan 609-735, Korea
| | | | | |
Collapse
|
27
|
Zimmermann O, Hansmann UH. Understanding protein folding: small proteins in silico. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1784:252-8. [PMID: 18036571 PMCID: PMC2244683 DOI: 10.1016/j.bbapap.2007.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 10/26/2007] [Indexed: 10/24/2022]
Abstract
Recent improvements in methodology and increased computer power now allow atomistic computer simulations of protein folding. We briefly review several advanced Monte Carlo algorithms that have contributed to this development. Details of folding simulations of three designed mini proteins are shown. Adding global translations and rotations has allowed us to handle multiple chains and to simulate the aggregation of six beta-amyloid fragments. In a different line of research we have developed several algorithms to predict local features from sequence. In an outlook we sketch how such biasing could extend the application spectrum of Monte Carlo simulations to structure prediction of larger proteins.
Collapse
Affiliation(s)
- Olav Zimmermann
- John von Neumann Institut für Computing, Research Centre Jülich, 52425 Jülich, Germany
| | - Ulrich H.E. Hansmann
- John von Neumann Institut für Computing, Research Centre Jülich, 52425 Jülich, Germany
- Department of Physics, Michigan Technological University, Houghton, MI 49931, U.S.A
| |
Collapse
|
28
|
Maglio O, Nastri F, Martin de Rosales RT, Faiella M, Pavone V, DeGrado WF, Lombardi A. Diiron-containing metalloproteins: Developing functional models. CR CHIM 2007. [DOI: 10.1016/j.crci.2007.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Jang S, Kim E, Pak Y. Direct folding simulation of alpha-helices and beta-hairpins based on a single all-atom force field with an implicit solvation model. Proteins 2007; 66:53-60. [PMID: 17063490 DOI: 10.1002/prot.21173] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recently, we have shown that a modified energy model based on the param99 force field with the generalized Born (GB) solvation model produces reliable free energy landscapes of mini-proteins with a betabetaalpha motif (BBA5, 1FSD, and 1PSV), with the native structures of the mini-proteins located in their lowest free energy minimum states. One of the main features in the modified energy model is a significant improvement for more balanced treatments of alpha and beta strands in proteins. In this study, using the replica exchange molecular dynamics (REMD) simulation method with this new force field, we have carried out extensive ab initio folding studies of several well-known peptides with alpha or beta strands (C-peptide, EK-peptide, le0q, and gbl). Starting from fully extended conformations as the initial conditions, all of the native-like structures of the target peptides were successfully identified by REMD, with reasonable representations of free energy surfaces. The present simulation results with the modified energy model are consistent with experiments, demonstrating an extended applicability of the energy model to folding studies of a variety of alpha-helices, beta-strands, and alpha/beta proteins.
Collapse
Affiliation(s)
- Soonmin Jang
- Department of Applied Chemistry, Sejong University, Seoul 143-747, Korea
| | | | | |
Collapse
|
30
|
|
31
|
Wen EZ, Luo R. Interplay of secondary structures and side-chain contacts in the denatured state of BBA1. J Chem Phys 2006; 121:2412-21. [PMID: 15260796 DOI: 10.1063/1.1768151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The denatured state of a miniprotein BBA1 is studied under the native condition with the AMBER/Poisson-Boltzmann energy model and with the self-guided enhanced sampling technique. Forty independent trajectories are collected to sample the highly diversified denatured structures. Our simulation data show that the denatured BBA1 contains high percentage of native helix and native turn, but low percentage of native hairpin. Conditional population analysis indicates that the native helix formation and the native hairpin formation are not cooperative in the denatured state. Side-chain analysis shows that the native hydrophobic contacts are more preferred than the non-native hydrophobic contacts in the denatured BBA1. In contrast, the salt-bridge contacts are more or less nonspecific even if their populations are higher than those of hydrophobic contacts. Analysis of the trajectories shows that the native helix mostly initiates near the N terminus and propagates to the C terminus, and mostly forms from 3(10)-helix/turn to alpha helix. The same analysis shows that the native turn is important but not necessary in its formation in the denatured BBA1. In addition, the formations of the two strands in the native hairpin are rather asymmetric, demonstrating the likely influence of the protein environment. Energetic analysis shows that the native helix formation is largely driven by electrostatic interactions in denatured BBA1. Further, the native helix formation is associated with the breakup of non-native salt-bridge contacts and the accumulation of native salt-bridge contacts. However, the native hydrophobic contacts only show a small increase upon the native helix formation while the non-native hydrophobic contacts stay essentially the same, different from the evolution of hydrophobic contacts observed in an isolated helix folding.
Collapse
Affiliation(s)
- Edward Z Wen
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA
| | | |
Collapse
|
32
|
Abstract
Using parallel tempering simulations with high statistics, we investigate the folding and thermodynamic properties of three small proteins with distinct native folds: the all-helical 1RIJ, the all-sheet beta3s, and BBA5, which has a mixed helix-sheet fold. In all three cases, simulations with our energy function find the native structures as global minima in free energy at experimentally relevant temperatures. However, the folding process strongly differs for the three molecules, indicating that the folding mechanism is correlated with the form of the native structure.
Collapse
Affiliation(s)
- Sandipan Mohanty
- John von Neumann Institut für Computing, Forschungszentrum Jülich, Jülich, Germany
| | | |
Collapse
|
33
|
Affiliation(s)
- Valerie Daggett
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195-7610, USA
| |
Collapse
|
34
|
Hogan K, Peluso S, Gould S, Parsons I, Ryan D, Wu L, Visiers I. Mapping the binding site of melanocortin 4 receptor agonists: a hydrophobic pocket formed by I3.28(125), I3.32(129), and I7.42(291) is critical for receptor activation. J Med Chem 2006; 49:911-22. [PMID: 16451057 DOI: 10.1021/jm050780s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melanocortin 4 receptor is involved in the control of the feeding behavior and energy homeostasis. It is regulated by internal agonist (alpha-MSH) and antagonists (Agouti). Peptide agonists bind in a beta-turn conformation that organizes the characteristic message sequence (His-L/DPhe-Arg-Trp) in an optimal arrangement for binding and activation of the receptor. Our goal is to determine the most likely binding modes of peptide and small molecule agonists to use this information to guide our structure-based drug design efforts. Previous studies have identified some residues that are likely to be involved in peptide agonist binding, giving an initial estimate of the main contacts between peptides and receptor. However, a more detailed description of the orientation of the peptide in a beta-turn conformation in the binding site, as well as of the small molecule agonists, and it is commonalities with the peptide agonist binding modes is necessary to serve as the basis for structure-based drug design. In the current study we combine site-directed mutagenesis with molecular modeling studies to determine the most likely binding mode of peptide and small molecule agonists, and we found that Y6.58(268), Y7.38(287), I3.28(125), I3.32(129), and I7.42(291) also line the binding site and are likely to have direct contacts with the MC4R agonists. Of particular interest are residues I3.28(125), I3.32(129), and I7.42(291), which form a hydrophobic pocket where I7.42(291), on top of the NPXXY motif, is likely to act as a new rotamer switch implicated in the activation of the receptor.
Collapse
MESH Headings
- Binding Sites
- Cyclic AMP/biosynthesis
- Humans
- Hydrophobic and Hydrophilic Interactions
- Ligands
- Melanocyte-Stimulating Hormones/chemistry
- Melanocyte-Stimulating Hormones/pharmacology
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation
- Nuclear Magnetic Resonance, Biomolecular
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Protein Structure, Secondary
- Radioligand Assay
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
Collapse
Affiliation(s)
- Kristine Hogan
- Department of Molecular and Cellular Pharmacology, Millennium Pharmaceuticals, Cambridge, MA 02446, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Jang S, Kim E, Pak Y. Free energy surfaces of miniproteins with a ββα motif: Replica exchange molecular dynamics simulation with an implicit solvation model. Proteins 2005; 62:663-71. [PMID: 16329109 DOI: 10.1002/prot.20771] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designed miniproteins with a betabetaalpha motif, such as BBA5, 1FSD, and 1PSV can serve as a benchmark set to test the validity of all-atom force fields with computer simulation, because they contain all the basic structural elements in protein folding. Unfortunately, it was found that the standard all-atom force fields with the generalized Born (GB) implicit solvation model tend to produce distorted free energy surfaces for the betabetaalpha proteins, not only because energetically those proteins need to be described by more balanced weights of the alpha- and beta-strands, but also because the GB implicit solvation model suffers from overestimated salt bridge effects. In an attempt to resolve these problems, we have modified one of the standard all-atom force fields in conjunction with the GB model, such that each native state of the betabetaalpha proteins is in its free energy minimum state with reasonable energy barriers separating local minima. With this modified energy model, the free energy contour map in each protein was constructed from the replica exchange molecular dynamics REMD simulation. The resulting free energy surfaces are significantly improved in comparison with previous simulation results and consistent with general views on small protein folding behaviors with realistic topology and energetics of all three proteins.
Collapse
Affiliation(s)
- Soonmin Jang
- Department of Chemistry, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
37
|
Ali MH, Taylor CM, Grigoryan G, Allen KN, Imperiali B, Keating AE. Design of a heterospecific, tetrameric, 21-residue miniprotein with mixed alpha/beta structure. Structure 2005; 13:225-34. [PMID: 15698566 DOI: 10.1016/j.str.2004.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/05/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
The study of short, autonomously folding peptides, or "miniproteins," is important for advancing our understanding of protein stability and folding specificity. Although many examples of synthetic alpha-helical structures are known, relatively few mixed alpha/beta structures have been successfully designed. Only one mixed-secondary structure oligomer, an alpha/beta homotetramer, has been reported thus far. In this report, we use structural analysis and computational design to convert this homotetramer into the smallest known alpha/beta-heterotetramer. Computational screening of many possible sequence/structure combinations led efficiently to the design of short, 21-residue peptides that fold cooperatively and autonomously into a specific complex in solution. A 1.95 A crystal structure reveals how steric complementarity and charge patterning encode heterospecificity. The first- and second-generation heterotetrameric miniproteins described here will be useful as simple models for the analysis of protein-protein interaction specificity and as structural platforms for the further elaboration of folding and function.
Collapse
Affiliation(s)
- Mayssam H Ali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ali MH, Peisach E, Allen KN, Imperiali B. X-ray structure analysis of a designed oligomeric miniprotein reveals a discrete quaternary architecture. Proc Natl Acad Sci U S A 2004; 101:12183-8. [PMID: 15302930 PMCID: PMC514454 DOI: 10.1073/pnas.0401245101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The x-ray crystal structure of an oligomeric miniprotein has been determined to a 1.2-A resolution by means of multiwavelength anomalous diffraction phasing with selenomethionine analogs that retain the biophysical characteristics of the native peptide. Peptide 1, comprising alpha and beta secondary structure elements with only 21 aa per monomer, associates as a discrete tetramer. The peptide adopts a previously uncharacterized quaternary structure in which alpha and beta components interact to form a tightly packed and well defined hydrophobic core. The structure provides insight into the origins of the unusual thermal stability of the oligomer. The miniprotein shares many characteristics of larger proteins, including cooperative folding, lack of 1-anilino-8-naphthalene sulfonate binding, and limited deuterium exchange, and possesses a buried surface area typical of native proteins.
Collapse
Affiliation(s)
- Mayssam H Ali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
39
|
Rhee YM, Sorin EJ, Jayachandran G, Lindahl E, Pande VS. Simulations of the role of water in the protein-folding mechanism. Proc Natl Acad Sci U S A 2004; 101:6456-61. [PMID: 15090647 PMCID: PMC404066 DOI: 10.1073/pnas.0307898101] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are many unresolved questions regarding the role of water in protein folding. Does water merely induce hydrophobic forces, or does the discrete nature of water play a structural role in folding? Are the nonadditive aspects of water important in determining the folding mechanism? To help to address these questions, we have performed simulations of the folding of a model protein (BBA5) in explicit solvent. Starting 10,000 independent trajectories from a fully unfolded conformation, we have observed numerous folding events, making this work a comprehensive study of the kinetics of protein folding starting from the unfolded state and reaching the folded state and with an explicit solvation model and experimentally validated rates. Indeed, both the raw TIP3P folding rate (4.5 +/- 2.5 micros) and the diffusion-constant corrected rate (7.5 +/- 4.2 micros) are in strong agreement with the experimentally observed rate of 7.5 +/- 3.5 micros. To address the role of water in folding, the mechanism is compared with that predicted from implicit solvation simulations. An examination of solvent density near hydrophobic groups during folding suggests that in the case of BBA5, there are water-induced effects not captured by implicit solvation models, including signs of a "concurrent mechanism" of core collapse and desolvation.
Collapse
Affiliation(s)
- Young Min Rhee
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
40
|
Zagrovic B, Pande VS. Structural correspondence between the alpha-helix and the random-flight chain resolves how unfolded proteins can have native-like properties. Nat Struct Mol Biol 2003; 10:955-61. [PMID: 14555998 DOI: 10.1038/nsb995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 08/26/2003] [Indexed: 11/09/2022]
Abstract
Recently, we have proposed that, on average, the structure of the unfolded state of small, mostly alpha-helical proteins may be similar to the native structure (the 'mean-structure' hypothesis). After examining thousands of simulations of both the folded and the unfolded states of five polypeptides in atomistic detail at room temperature, we report here a result that seems at odds with the mean-structure hypothesis. Specifically, the average inter-residue distances in the collapsed unfolded structures agree well with the statistics of the ideal random-flight chain with link length of 3.8 A (the length of one amino acid). A possible resolution of this apparent contradiction is offered by the observation that the inter-residue distances in a typical alpha-helix over short stretches are close to the average distances in an ideal random-flight chain.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Biophysics Program and Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
41
|
Pande VS. Meeting halfway on the bridge between protein folding theory and experiment. Proc Natl Acad Sci U S A 2003; 100:3555-6. [PMID: 12657736 PMCID: PMC152957 DOI: 10.1073/pnas.0830965100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vijay S Pande
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Abstract
Simulating protein folding thermodynamics starting purely from a protein sequence is a grand challenge of computational biology. Here, we present an algorithm to calculate a canonical distribution from molecular dynamics simulation of protein folding. This algorithm is based on the replica exchange method where the kinetic trapping problem is overcome by exchanging noninteracting replicas simulated at different temperatures. Our algorithm uses multiplexed-replicas with a number of independent molecular dynamics runs at each temperature. Exchanges of configurations between these multiplexed-replicas are also tried, rendering the algorithm applicable to large-scale distributed computing (i.e., highly heterogeneous parallel computers with processors having different computational power). We demonstrate the enhanced sampling of this algorithm by simulating the folding thermodynamics of a 23 amino acid miniprotein. We show that better convergence is achieved compared to constant temperature molecular dynamics simulation, with an efficient scaling to large number of computer processors. Indeed, this enhanced sampling results in (to our knowledge) the first example of a replica exchange algorithm that samples a folded structure starting from a completely unfolded state.
Collapse
Affiliation(s)
- Young Min Rhee
- Department of Chemistry, Stanford University, Stanford California 94305-5080, USA
| | | |
Collapse
|
43
|
Snow CD, Nguyen H, Pande VS, Gruebele M. Absolute comparison of simulated and experimental protein-folding dynamics. Nature 2002; 420:102-6. [PMID: 12422224 DOI: 10.1038/nature01160] [Citation(s) in RCA: 483] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Accepted: 09/23/2002] [Indexed: 11/09/2022]
Abstract
Protein folding is difficult to simulate with classical molecular dynamics. Secondary structure motifs such as alpha-helices and beta-hairpins can form in 0.1-10 micros (ref. 1), whereas small proteins have been shown to fold completely in tens of microseconds. The longest folding simulation to date is a single 1- micro s simulation of the villin headpiece; however, such single runs may miss many features of the folding process as it is a heterogeneous reaction involving an ensemble of transition states. Here, we have used a distributed computing implementation to produce tens of thousands of 5-20-ns trajectories (700 micros) to simulate mutants of the designed mini-protein BBA5. The fast relaxation dynamics these predict were compared with the results of laser temperature-jump experiments. Our computational predictions are in excellent agreement with the experimentally determined mean folding times and equilibrium constants. The rapid folding of BBA5 is due to the swift formation of secondary structure. The convergence of experimentally and computationally accessible timescales will allow the comparison of absolute quantities characterizing in vitro and in silico (computed) protein folding.
Collapse
Affiliation(s)
- Christopher D Snow
- Biophysics Program and Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
44
|
Zagrovic B, Snow CD, Khaliq S, Shirts MR, Pande VS. Native-like mean structure in the unfolded ensemble of small proteins. J Mol Biol 2002; 323:153-64. [PMID: 12368107 DOI: 10.1016/s0022-2836(02)00888-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nature of the unfolded state plays a great role in our understanding of proteins. However, accurately studying the unfolded state with computer simulation is difficult, due to its complexity and the great deal of sampling required. Using a supercluster of over 10,000 processors we have performed close to 800 micros of molecular dynamics simulation in atomistic detail of the folded and unfolded states of three polypeptides from a range of structural classes: the all-alpha villin headpiece molecule, the beta hairpin tryptophan zipper, and a designed alpha-beta zinc finger mimic. A comparison between the folded and the unfolded ensembles reveals that, even though virtually none of the individual members of the unfolded ensemble exhibits native-like features, the mean unfolded structure (averaged over the entire unfolded ensemble) has a native-like geometry. This suggests several novel implications for protein folding and structure prediction as well as new interpretations for experiments which find structure in ensemble-averaged measurements.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Biophysics Program, Stanford University, Stanford, CA 94305-5080, USA
| | | | | | | | | |
Collapse
|
45
|
Summa CM, Rosenblatt MM, Hong JK, Lear JD, DeGrado WF. Computational de novo design, and characterization of an A(2)B(2) diiron protein. J Mol Biol 2002; 321:923-38. [PMID: 12206771 DOI: 10.1016/s0022-2836(02)00589-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diiron proteins are found throughout nature and have a diverse range of functions; proteins in this class include methane monooxygenase, ribonucleotide reductase, Delta(9)-acyl carrier protein desaturase, rubrerythrin, hemerythrin, and the ferritins. Although each of these proteins has a very different overall fold, in every case the diiron active site is situated within a four-helix bundle. Additionally, nearly all of these proteins have a conserved Glu-Xxx-Xxx-His motif on two of the four helices with the Glu and His residues ligating the iron atoms. Intriguingly, subtle differences in the active site can result in a wide variety of functions. To probe the structural basis for this diversity, we designed an A(2)B(2) heterotetrameric four-helix bundle with an active site similar to those found in the naturally occurring diiron proteins. A novel computational approach was developed for the design, which considers the energy of not only the desired fold but also alternatively folded structures. Circular dichroism spectroscopy, analytical ultracentrifugation, and thermal unfolding studies indicate that the A and B peptides specifically associate to form an A(2)B(2) heterotetramer. Further, the protein binds Zn(II) and Co(II) in the expected manner and shows ferroxidase activity under single turnover conditions.
Collapse
Affiliation(s)
- Christopher M Summa
- Department of Biochemistry and Biophysics, School of Medicine, The University of Pennsylvania, 1010 Stellar-Chance Bldg, 421 Curie Blvd, Philadelphia 19104-6059, USA
| | | | | | | | | |
Collapse
|
46
|
Nomura A, Sugiura Y. Contribution of individual zinc ligands to metal binding and peptide folding of zinc finger peptides. Inorg Chem 2002; 41:3693-8. [PMID: 12099873 DOI: 10.1021/ic025557p] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Little is known about the contribution of individual zinc-ligating amino acid residues for coupling between zinc binding and protein folding in zinc finger domains. To understand such roles of each zinc ligand, four zinc finger mutant peptides corresponding to the second zinc finger domain of Sp1 were synthesized. In the mutant peptides, glycine was substituted for one of four zinc ligands. Their metal binding and folding properties were spectroscopically characterized and compared to those of the native zinc finger peptide. In particular, the electronic charge-transfer and d-d bands of the Co(II)-substituted peptide complexes were used to examine the metal coordination number and geometry. Fluorescence emission studies revealed that the mutant peptides are capable of binding zinc despite removing one ligand. Circular dichroism results clearly showed the induction of an alpha-helix by zinc binding. In addition, the structures of certain mutant zinc finger peptides were simulated by molecular dynamics calculation. The information indicates that His23 and the hydrophobic core formed between the alpha-helix and the beta-sheet play an essential role in alpha-helix induction. This report demonstrates that each ligand does not contribute equally to alpha-helix formation and coordination geometry in the zinc finger peptide.
Collapse
Affiliation(s)
- Akiko Nomura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
47
|
McDonnell KA, Imperiali B. Oligomeric beta(beta)(alpha) miniprotein motifs: pivotal role of single hinge residue in determining the oligomeric state. J Am Chem Soc 2002; 124:428-33. [PMID: 11792213 DOI: 10.1021/ja016991d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of a single glycine hinge residue in the structure of BBAT1, a beta(beta)(alpha) peptide that forms a discrete homotrimeric structure in solution, was evaluated with 11 new peptide sequences which differ only in the identity of the residue at the hinge position. The integrity of the structure and oligomeric state of the peptides was evaluated by using a combination of analytical ultracentrifugation and circular dichroism spectroscopy. Initially, it was discovered that the glycine hinge adopts backbone dihedral angles favored in D-amino acids and that incorporation of D-alanine at the hinge position stabilizes the trimer species. Subsequently, the effect of the side chains of different D-amino acids at the hinge position was evaluated. While incorporation of polar amino acids led to a destabilization of the oligomeric form of the peptide, only peptides including D-Ser or D-Asp at the hinge position were able to achieve a discrete trimer species. Incorporation of hydrophobic amino acids D-Leu and D-Phe led to oligomerization beyond a trimer to a tetrameric form. The dramatic differences among the thermodynamic stabilities and oligomeric states of these peptides illustrates the pivotal role of the hinge residue in the oligomerization of the beta(beta)(alpha) peptides.
Collapse
Affiliation(s)
- Kevin A McDonnell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
48
|
Ferrara P, Apostolakis J, Caflisch A. Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 2002; 46:24-33. [PMID: 11746700 DOI: 10.1002/prot.10001] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A solvation term based on the solvent accessible surface area (SASA) is combined with the CHARMM polar hydrogen force field for the efficient simulation of peptides and small proteins in aqueous solution. Only two atomic solvation parameters are used: one is negative for favoring the direct solvation of polar groups and the other positive for taking into account the hydrophobic effect on apolar groups. To approximate the water screening effects on the intrasolute electrostatic interactions, a distance-dependent dielectric function is used and ionic side chains are neutralized. The use of an analytical approximation of the SASA renders the model extremely efficient (i.e., only about 50% slower than in vacuo simulations). The limitations and range of applicability of the SASA model are assessed by simulations of proteins and structured peptides. For the latter, the present study and results reported elsewhere show that with the SASA model it is possible to sample a significant amount of folding/unfolding transitions, which permit the study of the thermodynamics and kinetics of folding at an atomic level of detail.
Collapse
Affiliation(s)
- Philippe Ferrara
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
49
|
Affiliation(s)
- L Baltzer
- Department of Chemistry, Linköping University, 581 83 Linköping, Sweden.
| | | | | |
Collapse
|
50
|
Affiliation(s)
- J Venkatraman
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|