1
|
LncPheDB: a genome-wide lncRNAs regulated phenotypes database in plants. ABIOTECH 2022; 3:169-177. [PMID: 36304839 PMCID: PMC9590470 DOI: 10.1007/s42994-022-00084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/01/2022]
Abstract
LncPheDB (https://www.lncphedb.com/) is a systematic resource of genome-wide long non-coding RNAs (lncRNAs)-phenotypes associations for multiple species. It was established to display the genome-wide lncRNA annotations, target genes prediction, variant-trait associations, gene-phenotype correlations, lncRNA-phenotype correlations, and the similar non-coding regions of the queried sequence in multiple species. LncPheDB sorted out a total of 203,391 lncRNA sequences, 2000 phenotypes, and 120,271 variants of nine species (Zea mays L., Gossypium barbadense L., Triticum aestivum L., Lycopersicon esculentum Mille, Oryza sativa L., Hordeum vulgare L., Sorghum bicolor L., Glycine max L., and Cucumis sativus L.). By exploring the relationship between lncRNAs and the genomic position of variants in genome-wide association analysis, a total of 68,862 lncRNAs were found to be related to the diversity of agronomic traits. More importantly, to facilitate the study of the functions of lncRNAs, we analyzed the possible target genes of lncRNAs, constructed a blast tool for performing similar fragmentation studies in all species, linked the pages of phenotypic studies related to lncRNAs that possess similar fragments and constructed their regulatory networks. In addition, LncPheDB also provides a user-friendly interface, a genome visualization platform, and multi-level and multi-modal convenient data search engine. We believe that LncPheDB plays a crucial role in mining lncRNA-related plant data. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00084-3.
Collapse
|
2
|
Reis RS, Poirier Y. Making sense of the natural antisense transcript puzzle. TRENDS IN PLANT SCIENCE 2021; 26:1104-1115. [PMID: 34303604 DOI: 10.1016/j.tplants.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
In plants, thousands of genes are associated with antisense transcription, which often produces noncoding RNAs. Although widespread, sense-antisense pairs have been implicated in a limited variety of functions in plants and are often thought to form extensive dsRNA stretches triggering gene silencing. In this opinion, we show that evidence does not support gene silencing as a major role for antisense transcription. In fact, it is more likely that antisense transcripts play diverse functions in gene regulation. We propose a general framework for the initial functional dissection of antisense transcripts, suggesting testable hypotheses relying on an experiment-based decision tree. By moving beyond the gene silencing paradigm, we argue that a broad and diverse role for natural antisense transcription will emerge.
Collapse
Affiliation(s)
- Rodrigo Siqueira Reis
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Biotic Stress-Induced Priming and De-Priming of Transcriptional Memory in Arabidopsis and Apple. EPIGENOMES 2019; 3:epigenomes3010003. [PMID: 34991272 PMCID: PMC8594670 DOI: 10.3390/epigenomes3010003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
Under natural growth conditions, plants experience various and repetitive biotic and abiotic stresses. Salicylic acid (SA) is a key phytohormone involved in the response to biotic challenges. Application of synthetic SA analogues can efficiently prime defense responses, and leads to improved pathogen resistance. Because SA analogues can result in long-term priming and memory, we identified genes for which expression was affected by the SA analogue and explored the role of DNA methylation in this memorization process. We show that treatments with an SA analogue can lead to long-term transcriptional memory of particular genes in Arabidopsis. We found that subsequent challenging of such plants with a bacterial elicitor reverted this transcriptional memory, bringing their expression back to the original pre-treatment level. We also made very similar observations in apple (Malus domestica), suggesting that this expression pattern is highly conserved in plants. Finally, we found a potential role for DNA methylation in the observed transcriptional memory behavior. We show that plants defective in DNA methylation pathways displayed a different memory behavior. Our work improves our understanding of the role of transcriptional memory in priming, and has important implication concerning the application of SA analogues in agricultural settings.
Collapse
|
4
|
Liu X, Li D, Zhang D, Yin D, Zhao Y, Ji C, Zhao X, Li X, He Q, Chen R, Hu S, Zhu L. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. THE NEW PHYTOLOGIST 2018; 218:774-788. [PMID: 29411384 DOI: 10.1111/nph.15023] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/25/2017] [Indexed: 05/20/2023]
Abstract
Natural antisense long noncoding RNAs (lncRNAs) are widespread in many organisms. However, their biological functions remain largely unknown, particularly in plants. We report the identification and characterization of an endogenous lncRNA, TWISTED LEAF (TL), which is transcribed from the opposite strand of the R2R3 MYB transcription factor gene locus, OsMYB60, in rice (Oryza sativa). TL and OsMYB60 were found to be coexpressed in many different tissues, and the expression level of TL was higher than that of OsMYB60. Downregulation of TL by RNA interference (RNAi) and overexpression of OsMYB60 resulted in twisted leaf blades in transgenic rice. The expression level of OsMYB60 was significantly increased in TL-RNAi transgenic plants. This suggests that TL may play a cis-regulatory role on OsMYB60 in leaf morphological development. We also determined that the antisense transcription suppressed the sense gene expression by mediating chromatin modifications. We further discovered that a C2H2 transcription factor, OsZFP7, is an OsMYB60 binding partner and involved in leaf development. Taken together, these findings reveal that the cis-natural antisense lncRNA plays a critical role in maintaining leaf blade flattening in rice. Our study uncovers a regulatory mechanism of lncRNA in plant leaf development.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Donglei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dedong Yin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengjun Ji
- Department of Ecology, Peking University, Beijing, 100871, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
The Antisense Transcriptome and the Human Brain. J Mol Neurosci 2015; 58:1-15. [PMID: 26697858 DOI: 10.1007/s12031-015-0694-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
The transcriptome of a cell is made up of a varied array of RNA species, including protein-coding RNAs, long non-coding RNAs, short non-coding RNAs, and circular RNAs. The cellular transcriptome is dynamic and can change depending on environmental factors, disease state and cellular context. The human brain has perhaps the most diverse transcriptome profile that is enriched for many species of RNA, including antisense transcripts. Antisense transcripts are produced when both the plus and minus strand of the DNA helix are transcribed at a particular locus. This results in an RNA transcript that has a partial or complete overlap with an intronic or exonic region of the sense transcript. While antisense transcription is known to occur at some level in most organisms, this review focuses specifically on antisense transcription in the brain and how regulation of genes by antisense transcripts can contribute to functional aspects of the healthy and diseased brain. First, we discuss different techniques that can be used in the identification and quantification of antisense transcripts. This is followed by examples of antisense transcription and modes of regulatory function that have been identified in the brain.
Collapse
|
6
|
Celton JM, Gaillard S, Bruneau M, Pelletier S, Aubourg S, Martin-Magniette ML, Navarro L, Laurens F, Renou JP. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control. THE NEW PHYTOLOGIST 2014; 203:287-99. [PMID: 24690119 DOI: 10.1111/nph.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/26/2014] [Indexed: 05/04/2023]
Abstract
Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants.
Collapse
Affiliation(s)
- Jean-Marc Celton
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, 49071, Beaucouzé, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Boopathi P, Subudhi AK, Garg S, Middha S, Acharya J, Pakalapati D, Saxena V, Aiyaz M, Chand B, Mugasimangalam RC, Kochar SK, Sirohi P, Kochar DK, Das A. Revealing natural antisense transcripts from Plasmodium vivax isolates: Evidence of genome regulation in complicated malaria. INFECTION GENETICS AND EVOLUTION 2013; 20:428-43. [DOI: 10.1016/j.meegid.2013.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023]
|
8
|
|
9
|
Ling KH, Hewitt CA, Beissbarth T, Hyde L, Cheah PS, Smyth GK, Tan SS, Hahn CN, Thomas T, Thomas PQ, Scott HS. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. ACTA ACUST UNITED AC 2010; 21:683-97. [PMID: 20693275 DOI: 10.1093/cercor/bhq141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Nrgn and Camk2n1 are highly expressed in the brain and play an important role in synaptic long-term potentiation via regulation of Ca(2+)/calmodulin-dependent protein kinase II. We have shown that the gene loci for these 2 proteins are actively transcribed in the adult cerebral cortex and feature multiple overlapping transcripts in both the sense and antisense orientations with alternative polyadenylation. These transcripts were upregulated in the adult compared with embryonic and P1.5 mouse cerebral cortices, and transcripts with different 3' untranslated region lengths showed differing expression profiles. In situ hybridization (ISH) analysis revealed spatiotemporal regulation of the Nrgn and Camk2n1 sense and natural antisense transcripts (NATs) throughout cerebral corticogenesis. In addition, we also demonstrated that the expression of these transcripts was organ-specific. Both Nrgn and Camk2n1 sense and NATs were also upregulated in differentiating P19 teratocarcinoma cells. RNA fluorescent ISH analysis confirmed the capability of these NATs to form double-stranded RNA aggregates with the sense transcripts in the cytoplasm of cells obtained from the brain. We propose that the differential regulation of multiple sense and novel overlapping NATs at the Nrgn and Camk2n1 loci will increase the diversity of posttranscriptional regulation, resulting in cell- and time-specific regulation of their gene products during cerebral corticogenesis and function.
Collapse
Affiliation(s)
- King-Hwa Ling
- Department of Molecular Pathology, The Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Coram TE, Settles ML, Chen X. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array. BMC Genomics 2009; 10:253. [PMID: 19480707 PMCID: PMC2694213 DOI: 10.1186/1471-2164-10-253] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 05/29/2009] [Indexed: 01/20/2023] Open
Abstract
Background Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT) expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense-antisense transcript pairs, analysis of the gene ontology terms showed a significant over-representation of transcripts involved in energy production. These included several representations of ATP synthase, photosystem proteins and RUBISCO, which indicated that photosynthesis is likely to be regulated by antisense transcripts. Conclusion This study demonstrated the novel use of an adapted labeling protocol and a 3'IVT GeneChip array for large-scale identification of antisense transcription in wheat. The results show that antisense transcription is relatively abundant in wheat, and may affect the expression of valuable agronomic phenotypes. Future work should select potentially interesting transcript pairs for further functional characterization to determine biological activity.
Collapse
Affiliation(s)
- Tristan E Coram
- Agricultural Research Service, U.S. Department of Agriculture, and Washington State University, Department of Plant Pathology, Pullman, WA 99164-6430, USA.
| | | | | |
Collapse
|
11
|
Li D, Yang C, Li X, Ji G, Zhu L. Sense and antisense OsDof12 transcripts in rice. BMC Mol Biol 2008; 9:80. [PMID: 18796165 PMCID: PMC2576344 DOI: 10.1186/1471-2199-9-80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/17/2008] [Indexed: 12/26/2022] Open
Abstract
Background Antisense transcription is a widespread phenomenon in plants and mammals. Our previous data on rice gene expression analysis by microarray indicated that the sense and antisense transcripts at the OsDof12 locus were co-expressed in leaves. In current study, we analyzed the expression patterns in detail and looked for the possible mechanism related to their expression patterns. Results OsDof12, being a single copy gene located on rice chromosome 3, encodes a predicted Dof protein of 440 amino acids with one intron of 945 bp. The antisense transcript, OsDofl2os, overlaps with both the exonic and intronic regions of OsDof12 and encodes a functionally unknown protein of 104 amino acids with no intron. The sense-antisense OsDof12 transcripts were co-expressed within the same tissues, and their expressions were not tissue-specific in general. At different developmental stages in rice, the OsDof12 and OsDof12os transcripts exhibited reciprocal expression patterns. Interestingly, the expression of both genes was significantly induced under drought treatment, and inhibited by dark treatment. In the ProOsDof12-GUS and ProOsDof12os-GUS transgenic rice plants, the expression profiles of GUS were consistent with those of the OsDof12 and OsDof12os transcripts, respectively. In addition, the analysis of cis-regulatory elements indicated that either of the two promoters contained 74 classes of cis-regulatory elements predicted, of which the two promoter regions shared 53 classes. Conclusion Based on the expression profiles of OsDof12 and OsDof12os, the expression patterns of GUS in the ProOsDof12-GUS and ProOsDof12os-GUS transgenic rice plants and the predicted common cis-regulatory elements shared by the two promoters, we suggest that the co-expression patterns of OsDof12 and OsDof12os might be attributed to the basically common nature of the two promoters.
Collapse
Affiliation(s)
- Dejun Li
- State Key Laboratory of Plant Genomics & National Plant Gene Research Center (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, PR China.
| | | | | | | | | |
Collapse
|
12
|
Rymarquis LA, Kastenmayer JP, Hüttenhofer AG, Green PJ. Diamonds in the rough: mRNA-like non-coding RNAs. TRENDS IN PLANT SCIENCE 2008; 13:329-34. [PMID: 18448381 DOI: 10.1016/j.tplants.2008.02.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 05/20/2023]
Abstract
Non-coding RNAs are increasingly being identified as crucial regulators of gene expression and other cellular functions in plants. Experimental and computational methods have revealed the existence of mRNA-like non-coding RNAs (mlncRNAs), a class of non-coding RNAs that, in plants, are associated with tissue-specific expression, development and the phosphate-starvation response. Although their mechanisms of action are largely unknown, one can speculate that mlncRNAs act through secondary structures or specific sequences that bind to proteins or metabolites, or that have catalytic activity. This review summarizes the computational methods developed to identify candidate mlncRNAs, and the current experimental evidence regarding the function of several known mlncRNAs.
Collapse
Affiliation(s)
- Linda A Rymarquis
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | | | | | | |
Collapse
|
13
|
Zubko E, Meyer P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1131-9. [PMID: 17944812 PMCID: PMC2253869 DOI: 10.1111/j.1365-313x.2007.03309.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 08/22/2007] [Indexed: 05/22/2023]
Abstract
The Sho gene from Petunia hybrida encodes an enzyme responsible for the synthesis of plant cytokinins. The 3' region of the Sho gene contains a promoter in the opposite orientation that produces a partially overlapping antisense transcript. Although Sho expression varies significantly in individual cell types, the sense and antisense transcript levels maintain a stable ratio in most tissue types. In reporter lines for the antisense promoter, we observed a change in antisense promoter activity in newly formed tissue that had been induced by prolonged culture on cytokinins or following decapitation. We interpret these data as a reflection of tissue-specific threshold levels for activation of the antisense transcript. In all tissue types tested, we detect a pool of antisense RNA of approximately 35 nt, which derives from the region where Sho sense and antisense transcripts overlap. We detect a second pool of putative dsRNA breakdown products of approximately 24 nt in all tissues tested, except roots, which are the main source of cytokinin synthesis. Our data suggest that antisense transcription can be activated in a tissue-specific manner to adjust local cytokinin synthesis via degradation of Sho dsRNA. We therefore propose that, in addition to cytokinin transport and inactivation, regulation of local cytokinin synthesis via antisense transcription represents yet another device for the complex control of local cytokinin levels in plants.
Collapse
Affiliation(s)
| | - Peter Meyer
- For correspondence (fax +44 113 3433144; e-mail )
| |
Collapse
|
14
|
Discovering multiple transcripts of human hepatocytes using massively parallel signature sequencing (MPSS). BMC Genomics 2007; 8:207. [PMID: 17601345 PMCID: PMC1929076 DOI: 10.1186/1471-2164-8-207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 07/02/2007] [Indexed: 11/15/2022] Open
Abstract
Background The liver is the largest human internal organ – it is composed of multiple cell types and plays a vital role in fulfilling the body's metabolic needs and maintaining homeostasis. Of these cell types the hepatocytes, which account for three-quarters of the liver's volume, perform its main functions. To discover the molecular basis of hepatocyte function, we employed Massively Parallel Signature Sequencing (MPSS) to determine the transcriptomic profile of adult human hepatocytes obtained by laser capture microdissection (LCM). Results 10,279 UniGene clusters, representing 7,475 known genes, were detected in human hepatocytes. In addition, 1,819 unique MPSS signatures matching the antisense strand of 1,605 non-redundant UniGene clusters (such as APOC1, APOC2, APOB and APOH) were highly expressed in hepatocytes. Conclusion Apart from a large number of protein-coding genes, some of the antisense transcripts expressed in hepatocytes could play important roles in transcriptional interference via a cis-/trans-regulation mechanism. Our result provided a comprehensively transcriptomic atlas of human hepatocytes using MPSS technique, which could be served as an available resource for an in-depth understanding of human liver biology and diseases.
Collapse
|
15
|
Küpper H, Seib LO, Sivaguru M, Hoekenga OA, Kochian LV. A method for cellular localization of gene expression via quantitative in situ hybridization in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:159-75. [PMID: 17397510 DOI: 10.1111/j.1365-313x.2007.03031.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A quantitative in situ hybridization technique (quantitative whole-mount in situ hybridization, QISH) for plants is described. It employs direct hybridization of fluorescently labelled gene-specific oligonucleotides in large tissue pieces combined with optical sectioning. It dramatically increases the throughput compared with conventional antibody- and microtome-based in situ mRNA hybridization methods, while simultaneously eliminating artefact-prone preparation steps that prevent reliable quantification in conventional methods. The key feature of this technique is the quantification of gene expression using housekeeping genes (cytosolic GAPDH and 18S RNA) as internal standards. This feature enables a correction of varying cytoplasm/vacuole ratios in different cell types, as well as tissue optical effects and non-specific signals. The quantitative nature of the technique allows for analysis of gene expression in response to different environmental conditions, as well as tissue- and age-dependent differences in gene expression patterns. In addition to testing tissue permeabilization, structural preservation, specificity, linearity and tissue optical effects, we verified the reliability of the technique with three Arabidopsis thaliana genes of known function and distribution. These were the rbcL gene for ribulose 1,5-bisphosphate carboxylase, the developmentally related gene SCARECROW (AtSCR) and PHOT-1, a photoreceptor kinase. As expected, rbcL mRNA was found in all photosynthetic cells, while SCR mRNA was detected mainly in bundle sheath cells and PHOT-1 was found predominantly in epidermal and cortical cells of the apical hook of light-grown seedlings. As an application example, QISH was used to measure transcript abundance for a zinc transporter from the ZIP family of transporters in the Zn/Cd hyperaccumulator model plant, Thlaspi caerulescens, and the related non-accumulator Thlaspi arvense. This showed that QISH can be used to compare differences in mRNA levels between cell types, plant growth conditions and plant species. Messenger RNA for the zinc transporter gene ZNT1 was abundant in photosynthetic cells, but not in the epidermal storage cells where metal hyperaccumulation in T. caerulescens occurs. This indicates that ZNT1 does not directly participate in metal hyperaccumulation within the leaf. Growing T. caerulescens with high zinc levels strongly reduced ZNT1 transcript abundance in the spongy mesophyll cells, but less in the other cell types. In T. arvense, ZNT1 mRNA levels were generally much lower, and were furthermore drastically reduced by growth at increased zinc levels, confirming earlier reports regarding ZNT1 regulation in these two Thlaspi species.
Collapse
Affiliation(s)
- Hendrik Küpper
- US Plant, Soil and Nutrition Laboratory, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Mammalian X inactivation, imprinting, and allelic exclusion are classic examples of monoallelic gene expression. Two emerging themes are thought to be critical for monoallelic expression: (1) noncoding, often antisense, transcription linked to differential chromatin marks on otherwise homologous alleles and (2) physical segregation of alleles to separate domains within the nucleus. Here, we highlight recent progress in identifying these phenomena as possible key regulatory mechanisms of monoallelic expression.
Collapse
Affiliation(s)
- Pok Kwan Yang
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
17
|
Yu P, Ma D, Xu M. Nested genes in the human genome. Genomics 2006; 86:414-22. [PMID: 16084061 DOI: 10.1016/j.ygeno.2005.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/05/2005] [Accepted: 06/15/2005] [Indexed: 12/01/2022]
Abstract
Here we studied one special type of gene, i.e., the nested gene, in the human genome. We collected 373 reliably annotated nested genes. Two-thirds of them were on the strand opposite that of their host gene. About 58% coding nested gene pairs were conserved in mouse and some were even maintained in chicken and fish, while nested pseudogenes were poorly conserved. Ka/Ks analysis revealed that nested genes were under strong selection, although they did not demonstrate greater conservation than other genes. With microarray data we observed that two partners of one nested pair seemed to be expressed reciprocally. A significant proportion of nested genes were tissue-specifically expressed. Gene ontology analysis demonstrated that quite a number of nested genes participated in cellular signal transduction. Based on these observations, we think that nested genes are a group of genes with important physiological functions.
Collapse
Affiliation(s)
- Peng Yu
- Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University, Beijing 100083, People's Republic of China.
| | | | | |
Collapse
|
18
|
Ding B, Itaya A, Zhong X. Viroid trafficking: a small RNA makes a big move. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:606-12. [PMID: 16181802 DOI: 10.1016/j.pbi.2005.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 09/09/2005] [Indexed: 05/04/2023]
Abstract
RNA trafficking has broad implications in the systemic spread of infectious agents, plant defense, and the systemic regulation of gene expression. The mechanisms that regulate trafficking remain poorly understood. The non-coding, infectious viroid RNAs are emerging as highly tractable model systems for the investigation of the basic mechanisms of RNA trafficking. Recent studies on viroids have led to new insights into the direct role of RNAs in intracellular and systemic trafficking, and to the identification of cellular proteins that might play a role in RNA trafficking. Here, we discuss these areas of progress, emphasizing on the unifying principles that control the trafficking of viroid, viral and endogenous RNAs.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, 207 Rightmire Hall, The Ohio State University, 1060 Carmack Road, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
19
|
Xiao YL, Smith SR, Ishmael N, Redman JC, Kumar N, Monaghan EL, Ayele M, Haas BJ, Wu HC, Town CD. Analysis of the cDNAs of hypothetical genes on Arabidopsis chromosome 2 reveals numerous transcript variants. PLANT PHYSIOLOGY 2005; 139:1323-37. [PMID: 16244158 PMCID: PMC1283769 DOI: 10.1104/pp.105.063479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/01/2005] [Accepted: 08/03/2005] [Indexed: 05/05/2023]
Abstract
In the fully sequenced Arabidopsis (Arabidopsis thaliana) genome, many gene models are annotated as "hypothetical protein," whose gene structures are predicted solely by computer algorithms with no support from either expressed sequence matches from Arabidopsis, or nucleic acid or protein homologs from other species. In order to confirm their existence and predicted gene structures, a high-throughput method of rapid amplification of cDNA ends (RACE) was used to obtain their cDNA sequences from 11 cDNA populations. Primers from all of the 797 hypothetical genes on chromosome 2 were designed, and, through 5' and 3' RACE, clones from 506 genes were sequenced and cDNA sequences from 399 target genes were recovered. The cDNA sequences were obtained by assembling their 5' and 3' RACE polymerase chain reaction products. These sequences revealed that (1) the structures of 151 hypothetical genes were different from their predictions; (2) 116 hypothetical genes had alternatively spliced transcripts and 187 genes displayed polyadenylation sites; and (3) there were transcripts arising from both strands, from the strand opposite to that of the prediction and possible dicistronic transcripts. Promoters from five randomly chosen hypothetical genes (At2g02540, At2g31270, At2g33640, At2g35550, and At2g36340) were cloned into report constructs, and their expressions are tissue or development stage specific. Our results indicate at least 50% of hypothetical genes on chromosome 2 are expressed in the cDNA populations with about 38% of the gene structures differing from their predictions. Thus, by using this targeted approach, high-throughput RACE, we revealed numerous transcripts including many uncharacterized variants from these hypothetical genes.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Arabidopsis/anatomy & histology
- Arabidopsis/genetics
- Chromosomes, Plant/genetics
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- DNA, Complementary/genetics
- Genes, Plant/genetics
- Genes, Reporter/genetics
- Genome, Plant
- Open Reading Frames/genetics
- Promoter Regions, Genetic/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Yong-Li Xiao
- The Institute for Genomic Research, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stangeland B, Nestestog R, Grini PE, Skrbo N, Berg A, Salehian Z, Mandal A, Aalen RB. Molecular analysis of Arabidopsis endosperm and embryo promoter trap lines: reporter-gene expression can result from T-DNA insertions in antisense orientation, in introns and in intergenic regions, in addition to sense insertion at the 5' end of genes. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2495-505. [PMID: 16014362 DOI: 10.1093/jxb/eri242] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Random insertions of promoterless reporter genes in genomes are a common tool for identifying marker lines with tissue-specific expression patterns. Such lines are assumed to reflect the activity of endogenous promoters and should facilitate the cloning of genes expressed in the corresponding tissues. To identify genes active in seed organs, plant DNA flanking T-DNA insertions (T-DNAs) have been cloned in 16 Arabidopsis thaliana GUS-reporter lines. T-DNAs were found in proximal promoter regions, 5' UTR or intron with GUS in the same (sense) orientation as the tagged gene, but contrary to expectations also in inverted orientation in the 5' end of genes or in intergenic regions. RT-PCR, northern analysis, and data on expression patterns of tagged genes, compared with the expression pattern of the reporter lines, suggest that the expression pattern of a reporter gene will reflect the pattern of a tagged gene when inserted in sense orientation in the 5' UTR or intron. When inserted in the promoter region, the reporter-gene expression patterns may be restricted compared with the endogenous gene. Among the trapped genes, the previously described nitrate transporter gene AtNRT1.1, the cyclophilin gene ROC3, and the histone deacetylase gene AtHD2C were found. Reporter-gene expression when positioned in antisense orientation, for example, in the SLEEPY1 gene, is indicative of antisense expression of the tagged gene. For T-DNAs found in intergenic regions, it is suggested that the reporter gene is transcribed from cryptic promoters or promoters of as yet unannotated genes.
Collapse
Affiliation(s)
- Biljana Stangeland
- Plant Molecular Biology Laboratory, Department of Plant and Environmental Sciences, University of Life Sciences, PO Box 5003, N-1432 As, Norway
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK, Maiti R, Chan AP, Yu C, Farzad M, Wu D, White O, Town CD. Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 2005; 3:7. [PMID: 15784138 PMCID: PMC1082884 DOI: 10.1186/1741-7007-3-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 03/22/2005] [Indexed: 11/29/2022] Open
Abstract
Background Since the initial publication of its complete genome sequence, Arabidopsis thaliana has become more important than ever as a model for plant research. However, the initial genome annotation was submitted by multiple centers using inconsistent methods, making the data difficult to use for many applications. Results Over the course of three years, TIGR has completed its effort to standardize the structural and functional annotation of the Arabidopsis genome. Using both manual and automated methods, Arabidopsis gene structures were refined and gene products were renamed and assigned to Gene Ontology categories. We present an overview of the methods employed, tools developed, and protocols followed, summarizing the contents of each data release with special emphasis on our final annotation release (version 5). Conclusion Over the entire period, several thousand new genes and pseudogenes were added to the annotation. Approximately one third of the originally annotated gene models were significantly refined yielding improved gene structure annotations, and every protein-coding gene was manually inspected and classified using Gene Ontology terms.
Collapse
Affiliation(s)
- Brian J Haas
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Jennifer R Wortman
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Catherine M Ronning
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Linda I Hannick
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Roger K Smith
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Rama Maiti
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Agnes P Chan
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Chunhui Yu
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Maryam Farzad
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Dongying Wu
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Owen White
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| | - Christopher D Town
- The Institute for Genomic Research, 9172 Medical Center Drive, Rockville, Maryland, 20850, USA
| |
Collapse
|
22
|
Abstract
Completing the primary genomic sequence of Arabidopsis thaliana was a major milestone, being the first plant genome and only the third high-quality finished eukaryotic genome sequence. Understanding how the genome sequence comprehensively encodes developmental programs and environmental responses is the next major challenge for all plant genome projects. This requires fully characterizing the genes, the regulatory sequences, and their functions. We discuss several functional genomics approaches to decode the linear sequence of the reference plant Arabidopsis thaliana, including full-length cDNA collections, microarrays, natural variation, knockout collections, and comparative sequence analysis. Genomics provides the essential tools to speed the work of the traditional molecular geneticist and is now a scientific discipline in its own right.
Collapse
Affiliation(s)
- Justin O Borevitz
- Genomic Analysis Laboratory, Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
23
|
Suzuki M, Hayashizaki Y. Mouse-centric comparative transcriptomics of protein coding and non-coding RNAs. Bioessays 2004; 26:833-43. [PMID: 15273986 DOI: 10.1002/bies.20084] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The largest transcriptome reported so far comprises 60,770 mouse full-length cDNA clones, and is an effective reference data set for comparative transcriptomics. The number of mouse cDNAs identified greatly exceeds the number of genes predicted from the sequenced human and mouse genomes. This is largely because of extensive alternative splicing and the presence of many non-coding RNAs (ncRNAs), which are difficult to predict from genomic sequences. Notably, ncRNAs are a major component of the transcriptomes of higher organisms, and many sense-antisense pairs have been identified. The ncRNAs function in a range of regulatory mechanisms for gene expression and other biological processes. They might also have contributed to the increased functional diversification of genomes during evolution. In this review, we discuss aspects of the transcriptome of various organisms in relation to the mouse data, in order to shed light on the regulatory mechanisms and physiological significance of these abundant RNAs.
Collapse
Affiliation(s)
- Masanori Suzuki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Kanagawa, Japan
| | | |
Collapse
|
24
|
Chen J, Sun M, Kent WJ, Huang X, Xie H, Wang W, Zhou G, Shi RZ, Rowley JD. Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res 2004; 32:4812-20. [PMID: 15356298 PMCID: PMC519112 DOI: 10.1093/nar/gkh818] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 08/23/2004] [Accepted: 08/23/2004] [Indexed: 01/21/2023] Open
Abstract
The major challenge to identifying natural sense- antisense (SA) transcripts from public databases is how to determine the correct orientation for an expressed sequence, especially an expressed sequence tag sequence. In this study, we established a set of very stringent criteria to identify the correct orientation of each human transcript. We used these orientation-reliable transcripts to create 26 741 transcription clusters in the human genome. Our analysis shows that 22% (5880) of the human transcription clusters form SA pairs, higher than any previous estimates. Our orientation-specific RT-PCR results along with the comparison of experimental data from previous studies confirm that our SA data set is reliable. This study not only demonstrates that our criteria for the prediction of SA transcripts are efficient, but also provides additional convincing data to support the view that antisense transcription is quite pervasive in the human genome. In-depth analyses show that SA transcripts have some significant differences compared with other types of transcripts, with regard to chromosomal distribution and Gene Ontology-annotated categories of physiological roles, functions and spatial localizations of gene products.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of Medicine, University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Meyers BC, Vu TH, Tej SS, Ghazal H, Matvienko M, Agrawal V, Ning J, Haudenschild CD. Analysis of the transcriptional complexity of Arabidopsis thaliana by massively parallel signature sequencing. Nat Biotechnol 2004; 22:1006-11. [PMID: 15247925 DOI: 10.1038/nbt992] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 05/13/2004] [Indexed: 11/09/2022]
Abstract
Large-scale sequencing of short mRNA-derived tags can establish the qualitative and quantitative characteristics of a complex transcriptome. We sequenced 12,304,362 tags from five diverse libraries of Arabidopsis thaliana using massively parallel signature sequencing (MPSS). A total of 48,572 distinct signatures, each representing a different transcript, were expressed at significant levels. These signatures were compared to the annotation of the A. thaliana genomic sequence; in the five libraries, this comparison yielded between 17,353 and 18,361 genes with sense expression, and between 5,487 and 8,729 genes with antisense expression. An additional 6,691 MPSS signatures mapped to unannotated regions of the genome. Expression was demonstrated for 1,168 genes for which expression data were previously unknown. Alternative polyadenylation was observed for more than 25% of A. thaliana genes transcribed in these libraries. The MPSS expression data suggest that the A. thaliana transcriptome is complex and contains many as-yet uncharacterized variants of normal coding transcripts.
Collapse
Affiliation(s)
- Blake C Meyers
- Delaware Biotechnology Institute, 15 Innovation Way, University of Delaware, Newark, Delaware 19714, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yano Y, Saito R, Yoshida N, Yoshiki A, Wynshaw-Boris A, Tomita M, Hirotsune S. A new role for expressed pseudogenes as ncRNA: regulation of mRNA stability of its homologous coding gene. J Mol Med (Berl) 2004; 82:414-22. [PMID: 15148580 DOI: 10.1007/s00109-004-0550-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Accepted: 03/15/2004] [Indexed: 10/26/2022]
Abstract
We have earlier generated a mutant mouse in a course of making a transgenic line that exhibited interesting heterozygote phenotypes, which exhibited failure to thrive, severe bone deformities, and polycystic kidneys. This mutant mouse provided a clue to uncover a unique role of expressed pseudogenes. In this mutant the transgene was integrated into the vicinity of the expressing pseudogene of Makorin1 called Makorin1-p1. This insertion reduced transcription of the Makorin1-p1, resulting in destabilization of the Makorin1 mRNA in trans via a cis-acting RNA decay element within the 5' region of Makorin1 that is homologous between Makorin1 and Makorin1-p1. These findings demonstrate a novel and specific regulatory role of an expressed pseudogene as well as functional significance for noncoding RNAs. Next, we developed an original algorithm to determine how many pseudogenes are expressed. Based on our examination 2-3% of human processed pseudogenes are expressed using the most strict criteria. Interestingly, the mouse has a much smaller proportion of expressed pseudogenes (0.5-1%). Pseudogenes are functionally less constrained, and have accumulated more mutations than translated genes. If they have some functions in gene regulation, this property would allow more rapid functional diversification than protein-coding genes. In addition, some genetic phenomena that exhibit incomplete penetrance might be attributed to "mutation" or "variation" of pseudogenes.
Collapse
Affiliation(s)
- Yoshihisa Yano
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, 545-8585 Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Osato N, Yamada H, Satoh K, Ooka H, Yamamoto M, Suzuki K, Kawai J, Carninci P, Ohtomo Y, Murakami K, Matsubara K, Kikuchi S, Hayashizaki Y. Antisense transcripts with rice full-length cDNAs. Genome Biol 2003; 5:R5. [PMID: 14709177 PMCID: PMC395737 DOI: 10.1186/gb-2003-5-1-r5] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 10/22/2003] [Accepted: 11/07/2003] [Indexed: 11/29/2022] Open
Abstract
In this study, 687 sense-antisense transcript pairs from 32,127 full-length rice cDNA sequences were identified by aligning the cDNA sequences with rice genome sequences. The large number of pairs suggests that gene regulation by antisense transcripts occurs in plants and not only in animals. Background Natural antisense transcripts control gene expression through post-transcriptional gene silencing by annealing to the complementary sequence of the sense transcript. Because many genome and mRNA sequences have become available recently, genome-wide searches for sense-antisense transcripts have been reported, but few plant sense-antisense transcript pairs have been studied. The Rice Full-Length cDNA Sequencing Project has enabled computational searching of a large number of plant sense-antisense transcript pairs. Results We identified sense-antisense transcript pairs from 32,127 full-length rice cDNA sequences produced by this project and public rice mRNA sequences by aligning the cDNA sequences with rice genome sequences. We discovered 687 bidirectional transcript pairs in rice, including sense-antisense transcript pairs. Both sense and antisense strands of 342 pairs (50%) showed homology to at least one expressed sequence tag other than that of the pair. Microarray analysis showed 82 pairs (32%) out of 258 pairs on the microarray were more highly expressed than the median expression intensity of 21,938 rice transcriptional units. Both sense and antisense strands of 594 pairs (86%) had coding potential. Conclusions The large number of plant sense-antisense transcript pairs suggests that gene regulation by antisense transcripts occurs in plants and not only in animals. On the basis of our results, experiments should be carried out to analyze the function of plant antisense transcripts.
Collapse
MESH Headings
- DNA, Antisense/chemistry
- DNA, Antisense/classification
- DNA, Antisense/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/classification
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/classification
- DNA, Plant/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Plant/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Oryza/genetics
- RNA Interference/physiology
- RNA, Antisense/classification
- RNA, Antisense/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/classification
- RNA, Messenger/genetics
- RNA, Plant/chemistry
- RNA, Plant/classification
- RNA, Plant/genetics
- Sequence Homology, Nucleic Acid
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Naoki Osato
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Science Center (GSC), RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan 230-0045
| | - Hitomi Yamada
- Department of Molecular Biology, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan 305-8602
| | - Kouji Satoh
- Department of Molecular Biology, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan 305-8602
| | - Hisako Ooka
- Department of Molecular Biology, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan 305-8602
| | - Makoto Yamamoto
- Hitachi Software Engineering Company Ltd, Naka-ku, Yokohama, Kanagawa, Japan 231-0015
| | - Kohji Suzuki
- Hitachi Software Engineering Company Ltd, Naka-ku, Yokohama, Kanagawa, Japan 231-0015
| | - Jun Kawai
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Science Center (GSC), RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan 230-0045
- Genome Science Laboratory, RIKEN Wako Main Campus, Wako, Saitama, Japan 351-0198
| | - Piero Carninci
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Science Center (GSC), RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan 230-0045
- Genome Science Laboratory, RIKEN Wako Main Campus, Wako, Saitama, Japan 351-0198
| | - Yasuhiro Ohtomo
- Laboratory of Genome Sequencing and Analysis Group, Foundation of Advancement of International Science (FAIS), Tsukuba, Ibaraki, Japan 305-0062
| | - Kazuo Murakami
- Laboratory of Genome Sequencing and Analysis Group, Foundation of Advancement of International Science (FAIS), Tsukuba, Ibaraki, Japan 305-0062
| | - Kenichi Matsubara
- Laboratory of Genome Sequencing and Analysis Group, Foundation of Advancement of International Science (FAIS), Tsukuba, Ibaraki, Japan 305-0062
| | - Shoshi Kikuchi
- Department of Molecular Biology, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Ibaraki, Japan 305-8602
| | - Yoshihide Hayashizaki
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Science Center (GSC), RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan 230-0045
- Genome Science Laboratory, RIKEN Wako Main Campus, Wako, Saitama, Japan 351-0198
| |
Collapse
|
28
|
Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. PLANT PHYSIOLOGY 2003; 133:1397-406. [PMID: 14551330 PMCID: PMC281634 DOI: 10.1104/pp.103.028019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 07/14/2003] [Accepted: 08/09/2003] [Indexed: 05/18/2023]
Abstract
Serial analysis of gene expression was used to profile transcript levels in Arabidopsis roots and assess their responses to 2,4,6-trinitrotoluene (TNT) exposure. SAGE libraries representing control and TNT-exposed seedling root transcripts were constructed, and each was sequenced to a depth of roughly 32,000 tags. More than 19,000 unique tags were identified overall. The second most highly induced tag (27-fold increase) represented a glutathione S-transferase. Cytochrome P450 enzymes, as well as an ABC transporter and a probable nitroreductase, were highly induced by TNT exposure. Analyses also revealed an oxidative stress response upon TNT exposure. Although some increases were anticipated in light of current models for xenobiotic metabolism in plants, evidence for unsuspected conjugation pathways was also noted. Identifying transcriptome-level responses to TNT exposure will better define the metabolic pathways plants use to detoxify this xenobiotic compound, which should help improve phytoremediation strategies directed at TNT and other nitroaromatic compounds.
Collapse
Affiliation(s)
- Drew R Ekman
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
29
|
Gibbings JG, Cook BP, Dufault MR, Madden SL, Khuri S, Turnbull CJ, Dunwell JM. Global transcript analysis of rice leaf and seed using SAGE technology. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:271-85. [PMID: 17163904 DOI: 10.1046/j.1467-7652.2003.00026.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have compiled two comprehensive gene expression profiles from mature leaf and immature seed tissue of rice (Oryza sativa ssp. japonica cultivar Nipponbare) using Serial Analysis of Gene Expression (SAGE) technology. Analysis revealed a total of 50 519 SAGE tags, corresponding to 15 131 unique transcripts. Of these, the large majority (approximately 70%) occur only once in both libraries. Unexpectedly, the most abundant transcript (approximately 3% of the total) in the leaf library was derived from a type 3 metallothionein gene. The overall frequency profiles of the abundant tag species from both tissues differ greatly and reveal seed tissue as exhibiting a non-typical pattern of gene expression characterized by an over abundance of a small number of transcripts coding for storage proteins. A high proportion ( approximately 80%) of the abundant tags (> or = 9) matched entries in our reference rice EST database, with many fewer matches for low abundant tags. Singleton transcripts that are common to both tissues were collated to generate a summary of low abundant transcripts that are expressed constitutively in rice tissues. Finally and most surprisingly, a significant number of tags were found to code for antisense transcripts, a finding that suggests a novel mechanism of gene regulation, and may have implications for the use of antisense constructs in transgenic technology.
Collapse
Affiliation(s)
- J George Gibbings
- BioCentre, School of Plant Sciences, The University of Reading, Reading RG6 6AS, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Kiyosawa H, Yamanaka I, Osato N, Kondo S, Hayashizaki Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res 2003; 13:1324-34. [PMID: 12819130 PMCID: PMC403655 DOI: 10.1101/gr.982903] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used the FANTOM2 mouse cDNA set (60,770 clones), public mRNA data, and mouse genome sequence data to identify 2481 pairs of sense-antisense transcripts and 899 further pairs of nonantisense bidirectional transcription based upon genomic mapping. The analysis greatly expands the number of known examples of sense-antisense transcript and nonantisense bidirectional transcription pairs in mammals. The FANTOM2 cDNA set appears to contain substantially large numbers of noncoding transcripts suitable for antisense transcript analysis. The average proportion of loci encoding sense-antisense transcript and nonantisense bidirectional transcription pairs on autosomes was 15.1 and 5.4%, respectively. Those on the X chromosome were 6.3 and 4.2%, respectively. Sense-antisense transcript pairs, rather than nonantisense bidirectional transcription pairs, may be less prevalent on the X chromosome, possibly due to X chromosome inactivation. Sense and antisense transcripts tended to be isolated from the same libraries, where nonantisense bidirectional transcription pairs were not apparently coregulated. The existence of large numbers of natural antisense transcripts implies that the regulation of gene expression by antisense transcripts is more common that previously recognized. The viewer showing mapping patterns of sense-antisense transcript pairs and nonantisense bidirectional transcription pairs on the genome and other related statistical data is available on our Web site.
Collapse
Affiliation(s)
- Hidenori Kiyosawa
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
31
|
Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R, Nemzer S, Pinner E, Walach S, Bernstein J, Savitsky K, Rotman G. Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 2003; 21:379-86. [PMID: 12640466 DOI: 10.1038/nbt808] [Citation(s) in RCA: 454] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2002] [Accepted: 01/07/2003] [Indexed: 01/24/2023]
Abstract
An increasing number of eukaryotic genes are being found to have naturally occurring antisense transcripts. Here we study the extent of antisense transcription in the human genome by analyzing the public databases of expressed sequences using a set of computational tools designed to identify sense-antisense transcriptional units on opposite DNA strands of the same genomic locus. The resulting data set of 2,667 sense-antisense pairs was evaluated by microarrays containing strand-specific oligonucleotide probes derived from the region of overlap. Verification of specific cases by northern blot analysis with strand-specific riboprobes proved transcription from both DNA strands. We conclude that > or =60% of this data set, or approximately 1,600 predicted sense-antisense transcriptional units, are transcribed from both DNA strands. This indicates that the occurrence of antisense transcription, usually regarded as infrequent, is a very common phenomenon in the human genome. Therefore, antisense modulation of gene expression in human cells may be a common regulatory mechanism.
Collapse
Affiliation(s)
- Rodrigo Yelin
- Compugen Ltd., 72 Pinchas Rosen St., Tel Aviv 69512, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Steven Rodermel
- Department of Genetics, Development and Cell Biology, 353 Bessey Hall, Iowa State University, Ames, IA 50014, Tel: 515 294-8890, fax: 294-1337,
| |
Collapse
|
33
|
Abstract
Non-coding RNA (ncRNA) genes produce functional RNA molecules rather than encoding proteins. However, almost all means of gene identification assume that genes encode proteins, so even in the era of complete genome sequences, ncRNA genes have been effectively invisible. Recently, several different systematic screens have identified a surprisingly large number of new ncRNA genes. Non-coding RNAs seem to be particularly abundant in roles that require highly specific nucleic acid recognition without complex catalysis, such as in directing post-transcriptional regulation of gene expression or in guiding RNA modifications.
Collapse
Affiliation(s)
- S R Eddy
- Howard Hughes Medical Institute and Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
34
|
MacIntosh GC, Wilkerson C, Green PJ. Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. PLANT PHYSIOLOGY 2001; 127:765-776. [PMID: 11706161 DOI: 10.1104/pp.010501] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sequencing of the Arabidopsis genome has led to the identification of thousands of new putative genes based on the predicted proteins they encode. Genes encoding tRNAs, ribosomal RNAs, and small nucleolar RNAs have also been annotated; however, a potentially important class of genes has largely escaped previous annotation efforts. These genes correspond to RNAs that lack significant open reading frames and encode RNA as their final product. Accumulating evidence indicates that such "non-coding RNAs" (ncRNAs) can play critical roles in a wide range of cellular processes, including chromosomal silencing, transcriptional regulation, developmental control, and responses to stress. Approximately 15 putative Arabidopsis ncRNAs have been reported in the literature or have been annotated. Although several have homologs in other plant species, all appear to be plant specific, with the exception of signal recognition particle RNA. Conversely, none of the ncRNAs reported from yeast or animal systems have homologs in Arabidopsis or other plants. To identify additional genes that are likely to encode ncRNAs, we used computational tools to filter protein-coding genes from genes corresponding to 20,000 expressed sequence tag clones. Using this strategy, we identified 19 clones with characteristics of ncRNAs, nine putative peptide-coding RNAs with open reading frames smaller than 100 amino acids, and 11 that could not be differentiated between the two categories. Again, none of these clones had homologs outside the plant kingdom, suggesting that most Arabidopsis ncRNAs are likely plant specific. These data indicate that ncRNAs represent a significant and underdeveloped aspect of Arabidopsis genomics that deserves further study.
Collapse
MESH Headings
- Algorithms
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/physiology
- Cloning, Molecular
- Cytokinins/physiology
- Databases, Nucleic Acid
- Expressed Sequence Tags
- Gene Expression Regulation, Plant
- Gene Silencing
- Internet
- Molecular Sequence Data
- Open Reading Frames
- Phosphates/physiology
- RNA, Plant/analysis
- RNA, Plant/genetics
- RNA, Plant/physiology
- RNA, Untranslated/genetics
- RNA, Untranslated/physiology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/physiology
- Sequence Analysis, Protein
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- G C MacIntosh
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|