1
|
Piletsky SS, Baidyuk E, Piletska EV, Lezina L, Shevchenko K, Jones DJL, Cao TH, Singh R, Spivey AC, Aboagye EO, Piletsky SA, Barlev NA. Modulation of EGFR Activity by Molecularly Imprinted Polymer Nanoparticles Targeting Intracellular Epitopes. NANO LETTERS 2023; 23:9677-9682. [PMID: 37902816 PMCID: PMC10636853 DOI: 10.1021/acs.nanolett.3c01374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/15/2023] [Indexed: 10/31/2023]
Abstract
In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy.
Collapse
Affiliation(s)
- Stanislav S. Piletsky
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, United Kingdom
| | - Ekaterina Baidyuk
- L.A.
Orbeli Institute of Physiology NAS, Yerevan 0028, Republic of Armenia
- Institute
of Cytology, 197101 Saint-Petersburg, Russia
| | - Elena V. Piletska
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Larissa Lezina
- Department
of Cancer Studies, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | - Donald J. L. Jones
- Leicester
Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, United Kingdom
- Department
of Cardiovascular Sciences, University of
Leicester, Leicester LE1 7RH, United
Kingdom
- National
Institute for Health Research, Leicester Biomedical Research Centre,
Glenfield Hospital, Leicester LE1 7RH, United
Kingdom
| | - Thong H. Cao
- Department
of Cardiovascular Sciences, University of
Leicester, Leicester LE1 7RH, United
Kingdom
- National
Institute for Health Research, Leicester Biomedical Research Centre,
Glenfield Hospital, Leicester LE1 7RH, United
Kingdom
| | - Rajinder Singh
- Leicester
Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, United Kingdom
| | - Alan C. Spivey
- Department
of Chemistry, Imperial College London, Molecular Sciences Research Hub,
White City Campus, London W12 0BZ, United Kingdom
| | - Eric O. Aboagye
- Department
of Surgery and Cancer, Imperial College
London, Hammersmith Campus, Du Cane Road, London SW7 2BX, United
Kingdom
| | - Sergey A. Piletsky
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Nickolai A. Barlev
- Nazarbayev
University School of Medicine, 53 Kabanbay Batyr Ave, Nur-Sultan 010000, Republic
of Kazakhstan
- Sechenov
First Medical University, 119992 Moscow, Russia
| |
Collapse
|
2
|
Nacheva K, Kulkarni SS, Kassu M, Flanigan D, Monastyrskyi A, Iyamu ID, Doi K, Barber M, Namelikonda N, Tipton JD, Parvatkar P, Wang HG, Manetsch R. Going beyond Binary: Rapid Identification of Protein-Protein Interaction Modulators Using a Multifragment Kinetic Target-Guided Synthesis Approach. J Med Chem 2023; 66:5196-5207. [PMID: 37000900 PMCID: PMC10620989 DOI: 10.1021/acs.jmedchem.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 04/03/2023]
Abstract
Kinetic target-guided synthesis (KTGS) is a powerful screening approach that enables identification of small molecule modulators for biomolecules. While many KTGS variants have emerged, a majority of the examples suffer from limited throughput and a poor signal/noise ratio, hampering reliable hit detection. Herein, we present our optimized multifragment KTGS screening strategy that tackles these limitations. This approach utilizes selected reaction monitoring liquid chromatography tandem mass spectrometry for hit detection, enabling the incubation of 190 fragment combinations per screening well. Consequentially, our fragment library was expanded from 81 possible combinations to 1710, representing the largest KTGS screening library assembled to date. The expanded library was screened against Mcl-1, leading to the discovery of 24 inhibitors. This work unveils the true potential of KTGS with respect to the rapid and reliable identification of hits, further highlighting its utility as a complement to the existing repertoire of screening methods used in drug discovery.
Collapse
Affiliation(s)
- Katya Nacheva
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sameer S. Kulkarni
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Mintesinot Kassu
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - David Flanigan
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Sciences, Hillsborough Community College, Tampa, Florida 33619, United States
| | - Andrii Monastyrskyi
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Iredia D. Iyamu
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kenichiro Doi
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Megan Barber
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Niranjan Namelikonda
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jeremiah D. Tipton
- Proteomics
and Mass Spectrometry Core Facility, University
of South Florida, Tampa, Florida 33620, United States
| | - Prakash Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Hong-Gang Wang
- Department
of Pediatrics, Division of Pediatric Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Roman Manetsch
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center for
Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Zhong M, Lynch A, Muellers SN, Jehle S, Luo L, Hall DR, Iwase R, Carolan JP, Egbert M, Wakefield A, Streu K, Harvey CM, Ortet PC, Kozakov D, Vajda S, Allen KN, Whitty A. Interaction Energetics and Druggability of the Protein-Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2). Biochemistry 2020; 59:563-581. [PMID: 31851823 PMCID: PMC8177486 DOI: 10.1021/acs.biochem.9b00943] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.
Collapse
Affiliation(s)
| | | | | | | | | | - David R Hall
- Acpharis, Inc. , 160 North Mill Street , Holliston , Massachusetts 01746 , United States
| | | | | | | | | | | | | | | | - Dima Kozakov
- Department of Applied Mathematics , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Sandor Vajda
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Karen N Allen
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| | - Adrian Whitty
- Biomolecular Engineering Research Center , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
4
|
Canfarotta F, Lezina L, Guerreiro A, Czulak J, Petukhov A, Daks A, Smolinska-Kempisty K, Poma A, Piletsky S, Barlev NA. Specific Drug Delivery to Cancer Cells with Double-Imprinted Nanoparticles against Epidermal Growth Factor Receptor. NANO LETTERS 2018; 18:4641-4646. [PMID: 29969563 DOI: 10.1021/acs.nanolett.7b03206] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is over-expressed in many tumors, including almost half of triple-negative breast cancers. The latter belong to a very-aggressive and drug-resistant form of malignancy. Although humanized anti-EGFR antibodies can work efficiently against these cancers both as monotherapy and in combination with genotoxic drugs, instability and high production costs are some of their known drawbacks in clinical use. In addition, the development of antibodies to target membrane proteins is a very challenging task. Accordingly, the main focus of the present work is the design of supramolecular agents for the targeting of membrane proteins in cancer cells and, hence, more-specific drug delivery. These were produced using a novel double-imprinting approach based on the solid-phase method for preparation of molecularly imprinted polymer nanoparticles (nanoMIPs), which were loaded with doxorubicin and targeted toward a linear epitope of EGFR. Additionally, upon binding, doxorubicin-loaded anti-EGFR nanoMIPs elicited cytotoxicity and apoptosis only in those cells that over-expressed EGFR. Thus, this approach can provide a plausible alternative to conventional antibodies and sets up a new paradigm for the therapeutic application of this class of materials against clinically relevant targets. Furthermore, nanoMIPs can promote the development of cell imaging tools against difficult targets such as membrane proteins.
Collapse
Affiliation(s)
- Francesco Canfarotta
- MIP Diagnostics Ltd ., Fielding Johnson Building , Leicester , LE1 7RH United Kingdom
| | - Larissa Lezina
- Laboratory of Gene Expression and Regulation , Institute of Cytology , 194064 Saint Petersburg , Russia
| | - António Guerreiro
- MIP Diagnostics Ltd ., Fielding Johnson Building , Leicester , LE1 7RH United Kingdom
| | - Joanna Czulak
- MIP Diagnostics Ltd ., Fielding Johnson Building , Leicester , LE1 7RH United Kingdom
| | - Alexey Petukhov
- Laboratory of Gene Expression and Regulation , Institute of Cytology , 194064 Saint Petersburg , Russia
- Institute of Hematology , Almazov National Medical Research Centre , 197341 Saint Petersburg , Russia
| | - Alexandra Daks
- Laboratory of Gene Expression and Regulation , Institute of Cytology , 194064 Saint Petersburg , Russia
| | | | - Alessandro Poma
- Chemistry Department , University College London , London , WC1H 0AJ United Kingdom
| | | | - Nickolai A Barlev
- Laboratory of Gene Expression and Regulation , Institute of Cytology , 194064 Saint Petersburg , Russia
- Moscow Institute of Physics and Technology , Dolgoprudny , Moscow Oblast, 141700 Russia
| |
Collapse
|
5
|
Li J, Saruta K, Dumouchel JP, Magat JM, Thomas JL, Ajami D, Rebek M, Rebek J, Bigby TD. Small Molecule Mimetics of α-Helical Domain of IRAK2 Attenuate the Proinflammatory Effects of IL-33 in Asthma-like Mouse Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:4036-4043. [PMID: 29728508 PMCID: PMC5988972 DOI: 10.4049/jimmunol.1700693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/10/2018] [Indexed: 01/04/2023]
Abstract
IL-33 and its receptor ST2 play important roles in airway inflammation and contribute to asthma onset and exacerbation. The IL-33/ST2 signaling pathway recruits adapter protein myeloid differentiation primary response 88 (MyD88) to transduce intracellular signaling. MyD88 forms a complex with IL-R-associated kinases (IRAKs), IRAK4 and IRAK2, called the Myddosome (MyD88-IRAK4-IRAK2). The myddosome subsequently activates downstream NF-κB and MAPKs p38 and JNK. We established an asthma-like mouse model by intratracheal administration of IL-33. The IL-33 model has a very similar phenotype compared with the OVA-induced mouse asthma model. The importance of MyD88 in the IL-33/ST2 signaling transduction was demonstrated by the MyD88 knockout mice, which were protected from the IL-33-induced asthma. We synthesized small molecule mimetics of the α-helical domain of IRAK2 with drug-like characteristics based on the recent advances in the designing of α-helix compounds. The mimetics can competitively interfere in the protein-protein interaction between IRAK2 and IRAK4, leading to disruption of Myddosome formation. A series of small molecules were screened using an NF-κB promoter assay in vitro. The lead compound, 7004, was further studied in the IL-33-induced and OVA-induced asthma mouse models in vivo. Compound 7004 can inhibit the IL-33-induced NF-κB activity, disrupt Myddosome formation, and attenuate the proinflammatory effects in asthma-like models. Our data indicate that the Myddosome may represent a novel intracellular therapeutic target for diseases in which IL-33/ST2 plays important roles, such as asthma and other inflammatory diseases.
Collapse
Affiliation(s)
- Jinghong Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093;
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161; and
| | - Kunio Saruta
- The Scripps Research Institute, La Jolla, CA 92037
| | - Justin P Dumouchel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161; and
| | - Jenna M Magat
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161; and
| | - Joanna L Thomas
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161; and
| | | | - Mitra Rebek
- The Scripps Research Institute, La Jolla, CA 92037
| | - Julius Rebek
- The Scripps Research Institute, La Jolla, CA 92037
| | - Timothy D Bigby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161; and
| |
Collapse
|
6
|
Iqbal MS, Siddiqui AA, Banerjee C, Nag S, Mazumder S, De R, Saha SJ, Karri SK, Bandyopadhyay U. Detection of retromer assembly in Plasmodium falciparum by immunosensing coupled to Surface Plasmon Resonance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:722-730. [PMID: 29654975 DOI: 10.1016/j.bbapap.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Retromer complex plays a crucial role in intracellular protein trafficking and is conserved throughout the eukaryotes including malaria parasite, Plasmodium falciparum, where it is partially conserved. The assembly of retromer complex in RBC stages of malarial parasite is extremely difficult to explore because of its complicated physiology, small size, and intra-erythrocytic location. Nonetheless, understanding of retromer assembly may pave new ways for the development of novel antimalarials targeting parasite-specific protein trafficking pathways. Here, we investigated the assembly of retromer complex in P. falciparum, by an immunosensing method through highly sensitive Surface Plasmon Resonance (SPR) technique. After taking leads from the bioinformatics search and literature, different interacting proteins were identified and specific antibodies were raised against them. The sensor chip was prepared by covalently linking antibody specific to one component and the whole cell lysate was passed through it in order to trap the interacting complex. Antibodies raised against other interacting components were used to detect them in the trapped complex on the SPR chip. We were able to detect three different components in the retromer complex trapped by the immobilized antibody specific against a different component on a sensor chip. The assay was reproduced and validated in a different two-component CD74-MIF system in mammalian cells. We, thus, illustrate the assembly of retromer complex in P. falciparum through a bio-sensing approach that combines SPR with immunosensing requiring a very small amount of sample from the native source.
Collapse
Affiliation(s)
- Mohd Shameel Iqbal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suresh Kumar Karri
- Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
7
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
8
|
Celentano V, Diana D, Di Salvo C, De Rosa L, Romanelli A, Fattorusso R, D'Andrea LD. 1,2,3-Triazole Bridge as Conformational Constrain in β-Hairpin Peptides: Analysis of Hydrogen-Bonded Positions. Chemistry 2016; 22:5534-7. [DOI: 10.1002/chem.201600154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- V. Celentano
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| | - D. Diana
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| | - C. Di Salvo
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
- National University of Ireland; Galway (Ireland)
| | - L. De Rosa
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| | - A. Romanelli
- Dipartimento di Farmacia; Università di Napoli “Federico II”; Via Mezzocannone 16 80134 Napoli (Italy)
| | - R. Fattorusso
- Dipartimento di Scienze Ambientali, Biologiche e Farmaceutiche; Seconda Università di Napoli; Via Vivaldi 46 81100 Caserta, Napoli (Italy)
| | - L. D. D'Andrea
- Istituto di Biostrutture e Bioimmagini CNR; Via Mezzocannone 16 80134 Napoli (Italy)
| |
Collapse
|
9
|
Pramanik KC, Fofaria NM, Gupta P, Ranjan A, Kim SH, Srivastava SK. Inhibition of β-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear β-catenin/TCF-1 complex: critical role of STAT-3. Oncotarget 2016; 6:11561-74. [PMID: 25869100 PMCID: PMC4484476 DOI: 10.18632/oncotarget.3427] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/13/2023] Open
Abstract
Aberrant activation of β-catenin/TCF signaling is related to the invasiveness of pancreatic cancer. In the present study, we evaluated the effect of capsaicin on β-catenin/TCF signaling. In a concentration and time-dependent study, we observed that capsaicin treatment inhibits the activation of dishevelled (Dsh) protein DvI-1 in L3.6PL, PanC-1 and MiaPaCa-2 pancreatic cancer cells. Capsaicin treatment induced GSK-3β by inhibiting its phosphorylation and further activated APC and Axin multicomplex, leading to the proteasomal degradation of β-catenin. Expression of TCF-1 and β-catenin-responsive proteins, c-Myc and cyclin D1 also decreased in response to capsaicin treatment. Pre-treatment of cells with MG-132 blocked capsaicin-mediated proteasomal degradation of β-catenin. To establish the involvement of β-catenin in capsaicin-induced apoptosis, cells were treated with LiCl or SB415286, inhibitors of GSK-3β. Our results reveal that capsaicin treatment suppressed LiCl or SB415286-mediated activation of β-catenin signaling. Our results further showed that capsaicin blocked nuclear translocation of β-catenin, TCF-1 and p-STAT-3 (Tyr705). The immunoprecipitation results indicated that capsaicin treatment reduced the interaction of β-catenin and TCF-1 in the nucleus. Moreover, capsaicin treatment significantly decreased the phosphorylation of STAT-3 at Tyr705. Interestingly, STAT-3 over expression or STAT-3 activation by IL-6, significantly increased the levels of β-catenin and attenuated the effects of capsaicin in inhibiting β-catenin signaling. Finally, capsaicin mediated inhibition of orthotopic tumor growth was associated with inhibition of β-catenin/TCF-1 signaling. Taken together, our results suggest that capsaicin-induced apoptosis in pancreatic cancer cells was associated with inhibition of β-catenin signaling due to the dissociation of β-catenin/TCF-1 complex and the process was orchestrated by STAT-3.
Collapse
Affiliation(s)
- Kartick C Pramanik
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Dongdaemun-ku, Seoul 131-701, South Korea
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.,Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Dongdaemun-ku, Seoul 131-701, South Korea
| |
Collapse
|
10
|
Moon H, Lee WS, Oh M, Lee H, Lee JH, Im W, Lim HS. Design, solid-phase synthesis, and evaluation of a phenyl-piperazine-triazine scaffold as α-helix mimetics. ACS COMBINATORIAL SCIENCE 2014; 16:695-701. [PMID: 25336412 DOI: 10.1021/co500114f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α-Helices play a critical role in mediating many protein-protein interactions (PPIs) as recognition motifs. Therefore, there is a considerable interest in developing small molecules that can mimic helical peptide segments to modulate α-helix-mediated PPIs. Due to the relatively low aqueous solubility and synthetic difficulty of most current α-helix mimetic small molecules, one important goal in this area is to develop small molecules with favorable physicochemical properties and ease of synthesis. Here we designed phenyl-piperazine-triazine-based α-helix mimetics that possess improved water solubility and excellent synthetic accessibility. We developed a facile solid-phase synthetic route that allows for rapid creation of a large, diverse combinatorial library of α-helix mimetics. Further, we identified a selective inhibitor of the Mcl-1/BH3 interaction by screening a focused library of phenyl-piperazine-triazines, demonstrating that the scaffold is able to serve as functional mimetics of α-helical peptides. We believe that our phenyl-piperazine-triazine-based α-helix mimetics, along with the facile and divergent solid-phase synthetic method, have great potential as powerful tools for discovering potent inhibitors of given α-helix-mediated PPIs.
Collapse
Affiliation(s)
- Heejo Moon
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Woo Sirl Lee
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Misook Oh
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
- Department
of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46032, United States
| | - Huisun Lee
- Department
of Molecular Biosciences and Centre for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Ji Hoon Lee
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Wonpil Im
- Department
of Molecular Biosciences and Centre for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Hyun-Suk Lim
- Department
of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
- Department
of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46032, United States
| |
Collapse
|
11
|
Jakobi S, Nguyen TXP, Debaene F, Metz A, Sanglier-Cianférani S, Reuter K, Klebe G. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme. Proteins 2014; 82:2713-32. [DOI: 10.1002/prot.24637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/24/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Stephan Jakobi
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Tran Xuan Phong Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - François Debaene
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg; CNRS UMR7178; 25 rue Becquerel 67087 Strasbourg France
| | - Alexander Metz
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC-DSA, Université de Strasbourg; CNRS UMR7178; 25 rue Becquerel 67087 Strasbourg France
| | - Klaus Reuter
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg; Marbacher Weg 6 D-35032 Marburg Germany
| |
Collapse
|
12
|
Aeluri M, Chamakuri S, Dasari B, Guduru SKR, Jimmidi R, Jogula S, Arya P. Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies. Chem Rev 2014; 114:4640-94. [DOI: 10.1021/cr4004049] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Madhu Aeluri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Chamakuri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Bhanudas Dasari
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Shiva Krishna Reddy Guduru
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Ravikumar Jimmidi
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Jogula
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Prabhat Arya
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| |
Collapse
|
13
|
Vargas C, Radziwill G, Krause G, Diehl A, Keller S, Kamdem N, Czekelius C, Kreuchwig A, Schmieder P, Doyle D, Moelling K, Hagen V, Schade M, Oschkinat H. Small-molecule inhibitors of AF6 PDZ-mediated protein-protein interactions. ChemMedChem 2014; 9:1458-62. [PMID: 24668962 DOI: 10.1002/cmdc.201300553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/13/2014] [Indexed: 10/25/2022]
Abstract
PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling.
Collapse
Affiliation(s)
- Carolyn Vargas
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin (Germany); Current address: Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jadhav SV, Bandyopadhyay A, Gopi HN. Protein secondary structure mimetics: crystal conformations of α/γ4-hybrid peptide12-helices with proteinogenic side chains and their analogy with α- and β-peptide helices. Org Biomol Chem 2013; 11:509-14. [DOI: 10.1039/c2ob26805a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Zhuang C, Miao Z, Zhu L, Dong G, Guo Z, Wang S, Zhang Y, Wu Y, Yao J, Sheng C, Zhang W. Discovery, synthesis, and biological evaluation of orally active pyrrolidone derivatives as novel inhibitors of p53-MDM2 protein-protein interaction. J Med Chem 2012; 55:9630-42. [PMID: 23046248 DOI: 10.1021/jm300969t] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The p53-MDM2 interaction has been proved to be a valuable target to develop effective antitumor agents. Novel p53-MDM2 inhibitors bearing pyrrolidone scaffolds were successfully identified by structure-based design. The nanomolar inhibitor 5 possessed good p53-MDM2 inhibitory activity (K(i) = 780 nM) due to its hydrophobic and hydrogen bonding interactions with MDM2. Further hit optimization led to the discovery of a number of highly potent pyrrolidone derivatives with improved p53-MDM2 inhibitory activity and in vitro antiproliferative potency. Compounds 41 (K(i) = 260.0 nM) and 60a (K(i) = 150.0 nM) showed good and selective activity against tumor cells with deleted p53. In addition, these two compounds also effectively inhibited the tumor growth in the A549 xenograft model. Interestingly, compound 41 was proved to be a potent MDM2/MDMX dual inhibitor. The novel pyrrolidone p53-MDM2 inhibitors represent promising lead structures for the development of novel antitumor agents.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guo Z, Zhuang C, Zhu L, Zhang Y, Yao J, Dong G, Wang S, Liu Y, Chen H, Sheng C, Miao Z, Zhang W. Structure-activity relationship and antitumor activity of thio-benzodiazepines as p53-MDM2 protein-protein interaction inhibitors. Eur J Med Chem 2012; 56:10-6. [PMID: 22940704 DOI: 10.1016/j.ejmech.2012.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 11/17/2022]
Abstract
In order to discuss the structure-activity relationship (SAR) of the thio-benzodiazepine compounds which showed excellent activity against p53-MDM2 protein-protein interaction, we designed and synthesized twenty compounds with electrophilic and nucleophilic groups on the benzene ring. Among them, compounds 8i (K(i) = 91 nM) and 8n (K(i) = 89 nM) showed better binding activity than that of the reference drug Nutlin-3a (K(i) = 121 nM). In addition, in vitro antitumor activity against Saos-2, U-2 OS, A549 and NCI-H1299 cell-lines were assayed by the MTT method. Especially, compounds 8i and 8n possessed excellent biological activity and good selectivity comparable to Nutlin-3a, which were promising candidates for further evaluation.
Collapse
Affiliation(s)
- Zizhao Guo
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kwon HS, Kim DR, Yang EG, Park YK, Ahn HC, Min SJ, Ahn DR. Inhibition of VEGF transcription through blockade of the hypoxia inducible factor-1α–p300 interaction by a small molecule. Bioorg Med Chem Lett 2012; 22:5249-52. [DOI: 10.1016/j.bmcl.2012.06.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022]
|
18
|
Grimme D, González-ruiz D, Gohlke* H. Computational Strategies and Challenges for Targeting Protein–Protein Interactions with Small Molecules. PHYSICO-CHEMICAL AND COMPUTATIONAL APPROACHES TO DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735377-00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Pinto Gomes C, Metz A, Bats JW, Gohlke H, Göbel MW. Modular Solid-Phase Synthesis of Teroxazoles as a Class of α-Helix Mimetics. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Tsou LK, Jain RK, Hamilton AD. Protein surface recognition by porphyrin-based receptors. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein surface recognition is largely unexplored owing to the large solvent exposed surface and lack of proper molecular scaffolds to match the binding residues. This review describes the design, synthesis, and fluorescence binding studies of functionalized porphyrins aimed at targeting surface residues of proteins through complementary recognition. The pattern of lysine residues surrounding the heme-edge of horse heart cytochrome c has been targeted by tetraphenylporphyrin and tetrabiphenylporphyrin receptors that bind with nano- and sub-nanomolar affinity. Other designed porphyrin-based receptors also recognize potassium channel as a target. The strategies for protein surface recognition offer a new use for porphyrins as molecular scaffolds.
Collapse
Affiliation(s)
- Lun K. Tsou
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Rishi K. Jain
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
21
|
Jeon YH, Lee JY, Kim S. Chemical modulators working at pharmacological interface of target proteins. Bioorg Med Chem 2011; 20:1893-901. [PMID: 22227462 DOI: 10.1016/j.bmc.2011.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/30/2011] [Accepted: 12/08/2011] [Indexed: 01/23/2023]
Abstract
For last few decades, the active site cleft and substrate-binding site of enzymes as well as ligand-binding site of the receptors have served as the main pharmacological space for drug discovery. However, rapid accumulation of proteome and protein network analysis data has opened a new therapeutic space that is the interface between the interacting proteins. Due to the complexity of the interaction modes and the numbers of the participating components, it is still challenging to identify the chemicals that can accurately control the protein-protein interactions at desire. Nonetheless, the number of chemical drugs and candidates working at the interface of the interacting proteins are rapidly increasing. This review addresses the current case studies and state-of-the-arts in the development of small chemical modulators controlling the interactions of the proteins that have pathological implications in various human diseases such as cancer, immune disorders, neurodegenerative and infectious diseases.
Collapse
Affiliation(s)
- Young Ho Jeon
- Korea University College of Pharmacy Sejong-ro, Jochiwon, Yeonggi-gun, Chungnam 339-700, Republic of Korea
| | | | | |
Collapse
|
22
|
Abstract
p53 is a potent tumor suppressor with a crucial role in preventing uncontrolled cell proliferation and is therefore frequently deleted or mutated in cancer. For tumors with wild-type p53, its function can be overcome by overactive cellular antagonists, such as the ubiquitin ligase murine double minute clone 2 (MDM2). Restoring p53 activity by inhibiting MDM2 in such cancers can eradicate tumors. Consequently, the MDM2-p53 interaction has been extensively targeted for inhibition by small molecules. In recent years, MDM2-like protein (MDMX), another key downregulator of p53, has gained increasing importance as an additional target for drug development, in order to provide a complementary approach to MDM2 inhibition. In this review, we describe how detailed structural knowledge of the MDM2-p53 interface and, more recently, of the MDMX-p53 interaction have helped advance the development of inhibitors against the two targets. We present a summary of the functional biochemistry of MDM2, MDMX and p53 as well as their interactions and examine recent progress in the development of inhibitors of MDM2 and MDMX.
Collapse
|
23
|
Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA. Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. BMC STRUCTURAL BIOLOGY 2011; 11:24. [PMID: 21569443 PMCID: PMC3116463 DOI: 10.1186/1472-6807-11-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/12/2011] [Indexed: 02/04/2023]
Abstract
Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Adriana Isvoran
- MTi, Inserm U973 - University Paris Diderot, 35 rue Helene Brion, Bat, Lamarck, 75013 Paris, France
| | | | | | | | | |
Collapse
|
24
|
Ehlers I, Maity P, Aubé J, König B. Modular Synthesis of Triazole-Containing Triaryl α-Helix Mimetics. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Wodak SJ, Vlasblom J, Pu S. High-throughput analyses and curation of protein interactions in yeast. Methods Mol Biol 2011; 759:381-406. [PMID: 21863499 DOI: 10.1007/978-1-61779-173-4_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The yeast Saccharomyces cerevisiae is the model organism in which protein interactions have been most extensively analyzed. The vast majority of these interactions have been characterized by a variety of sophisticated high-throughput techniques probing different aspects of protein association. This chapter summarizes the major techniques, highlights their complementary nature, discusses the data they produce, and highlights some of the biases from which they suffer. A main focus is the key role played by computational methods for processing, analyzing, and validating the large body of noisy data produced by the experimental procedures. It also describes how computational methods are used to extend the coverage and reliability of protein interaction data by integrating information from heterogeneous sources and reviews the current status of literature-curated data on yeast protein interactions stored in specialized databases.
Collapse
Affiliation(s)
- Shoshana J Wodak
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, ON, Canada.
| | | | | |
Collapse
|
26
|
Abstract
Phenylpyridal- and phenyldipyridal-based scaffolds have been designed and synthesized as novel helical peptide mimetics. The synthesis required optimisation and selective alkylation in producing 2,6-functionalized 3-hydroxypyridine derivatives for a convergent scheme. The pyridine analogues were coupled by a series of Suzuki/Stille types cross-coupling reactions. A series of biaryl and ter-aryl substituted heterocycles were produced. The synthetic approach was concise and high yielding allowing large variability at the wanted side-chain attachment points. A number of compounds were synthesised to show the versatility of the strategy.
Collapse
Affiliation(s)
- Gregory T Bourne
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
27
|
Torvinen M, Neitola R, Sansone F, Baldini L, Ungaro R, Casnati A, Vainiotalo P, Kalenius E. Glucosylthioureidocalix[4]arenes: Synthesis, conformations and gas phase recognition of amino acids. Org Biomol Chem 2010; 8:906-15. [DOI: 10.1039/b916268b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Burkhard K, Smith S, Deshmukh R, MacKerell AD, Shapiro P. Development of extracellular signal-regulated kinase inhibitors. Curr Top Med Chem 2009; 9:678-89. [PMID: 19689374 DOI: 10.2174/156802609789044416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of the extracellular signal-regulated kinase (ERK) signaling pathway has been implicated in mediating a diverse array of cellular functions including cell differentiation, proliferation, and inflammatory responses. In this review, we will discuss approaches to identify inhibitors of ERK proteins through targeting ATP-dependent and ATP-independent mechanisms. Given the diversity of ERK substrates and the importance of ERK signaling in normal cell functions, emphasis will be placed on the methods for identifying small molecular weight compounds that are substrate selective through ATP-independent interactions and potentially relevant to inflammatory processes. The approach for selective targeting of ERK substrates takes advantage of the basic understanding of unique ERK docking domains that are thought to interact with specific amino acid sequences on substrate proteins. Computer aided drug design (CADD) can facilitate the high throughput screening of millions of compounds with the potential for selective interactions with ERK docking domains and disruption of substrate interactions. As such, the CADD approach significantly reduces the number of compounds that will be evaluated in subsequent biological assays and greatly increases the hit rate of biologically active compounds. The potentially active compounds are evaluated for ERK protein binding using spectroscopic and structural biology methods. Compounds that show ERK interactions are then tested for their ability to inhibit substrate interactions and phosphorylation as well as ERK-dependent functions in whole organism or cell-based assays. Finally, the relevance of substrate-selective ERK inhibitors in the context of inflammatory disease will be discussed.
Collapse
Affiliation(s)
- Kimberly Burkhard
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The ribonuclease inhibitor (RI) is a cytosolic protein and a potent inhibitor of bovine pancreatic ribonuclease (RNase A). Amphibian homologues and variants of RNase A that evade RI are cytotoxic. Here, we employ RNA interference along with amphibian and mammalian ribonucleases to demonstrate that RI protects cells against exogenous ribonucleases. These data indicate an imperative for the molecular evolution of RI and suggest a means of enhancing the cytotoxicity of mammalian ribonucleases.
Collapse
Affiliation(s)
- Kimberly A Dickson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
30
|
Wodak SJ, Pu S, Vlasblom J, Seéraphin B. Challenges and Rewards of Interaction Proteomics. Mol Cell Proteomics 2009; 8:3-18. [DOI: 10.1074/mcp.r800014-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Díaz-Mejía JJ, Babu M, Emili A. Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev 2008; 33:66-97. [PMID: 19054114 PMCID: PMC2704936 DOI: 10.1111/j.1574-6976.2008.00141.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The bacterial cell-envelope consists of a complex arrangement of lipids, proteins and carbohydrates that serves as the interface between a microorganism and its environment or, with pathogens, a human host. Escherichia coli has long been investigated as a leading model system to elucidate the fundamental mechanisms underlying microbial cell-envelope biology. This includes extensive descriptions of the molecular identities, biochemical activities and evolutionary trajectories of integral transmembrane proteins, many of which play critical roles in infectious disease and antibiotic resistance. Strikingly, however, only half of the c. 1200 putative cell-envelope-related proteins of E. coli currently have experimentally attributed functions, indicating an opportunity for discovery. In this review, we summarize the state of the art of computational and proteomic approaches for determining the components of the E. coli cell-envelope proteome, as well as exploring the physical and functional interactions that underlie its biogenesis and functionality. We also provide a comprehensive comparative benchmarking analysis on the performance of different bioinformatic and proteomic methods commonly used to determine the subcellular localization of bacterial proteins.
Collapse
Affiliation(s)
- Juan Javier Díaz-Mejía
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
32
|
Butini S, Gabellieri E, Huleatt PB, Campiani G, Franceschini S, Brindisi M, Ros S, Coccone SS, Fiorini I, Novellino E, Giorgi G, Gemma S. An Efficient Approach to Chiral C8/C9-Piperazino-Substituted 1,4-Benzodiazepin-2-ones as Peptidomimetic Scaffolds. J Org Chem 2008; 73:8458-68. [DOI: 10.1021/jo8015456] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Emanuele Gabellieri
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Paul Brady Huleatt
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Silvia Franceschini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sindu Ros
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Salvatore Sanna Coccone
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Isabella Fiorini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Gianluca Giorgi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Banchi di Sotto 55, 53100 Siena, Italy, Dipartimento Farmaco Chimico Tecnologico (DFCT), University of Siena, via Aldo Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica (DCF&T), University of Napoli Federico II, via D. Montesano 49, 80131 Napoli, Italy, and Dipartimento di Chimica (DC), University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
33
|
PATGIRI ANUPAM, JOCHIM ANDREAL, ARORA PARAMJITS. A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 2008; 41:1289-300. [PMID: 18630933 PMCID: PMC7189275 DOI: 10.1021/ar700264k] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-helices constitute the largest class of protein secondary structures and play a major role in mediating protein-protein interactions. Development of stable mimics of short alpha-helices would be invaluable for inhibition of protein-protein interactions. This Account describes our efforts in developing a general approach for constraining short peptides in alpha-helical conformations by a main-chain hydrogen bond surrogate (HBS) strategy. The HBS alpha-helices feature a carbon-carbon bond derived from a ring-closing metathesis reaction in place of an N-terminal intramolecular hydrogen bond between the peptide i and i + 4 residues. Our approach is centered on the helix-coil transition theory in peptides, which suggests that the energetically demanding organization of three consecutive amino acids into the helical orientation inherently limits the stability of short alpha-helices. The HBS method affords preorganized alpha-turns to overcome this intrinsic nucleation barrier and initiate helix formation. The HBS approach is an attractive strategy for generation of ligands for protein receptors because placement of the cross-link on the inside of the helix does not block solvent-exposed molecular recognition surfaces of the molecule. Our metathesis-based synthetic strategy utilizes standard Fmoc solid phase peptide synthesis methodology, resins, and reagents and provides HBS helices in sufficient amounts for subsequent biophysical and biological analyses. Extensive conformational analysis of HBS alpha-helices with 2D NMR, circular dichroism spectroscopies and X-ray crystallography confirms the alpha-helical structure in these compounds. The crystal structure indicates that all i and i + 4 C=O and NH hydrogen-bonding partners fall within distances and angles expected for a fully hydrogen-bonded alpha-helix. The backbone conformation of HBS alpha-helix in the crystal structure superimposes with an rms difference of 0.75 A onto the backbone conformation of a model alpha-helix. Significantly, the backbone torsion angles for the HBS helix residues fall within the range expected for a canonical alpha-helix. Thermal and chemical denaturation studies suggest that the HBS approach provides exceptionally stable alpha-helices from a variety of short sequences, which retain their helical conformation in aqueous buffers at exceptionally high temperatures. The high degree of thermal stability observed for HBS helices is consistent with the theoretical predictions for a nucleated helix. The HBS approach was devised to afford internally constrained helices so that the molecular recognition surface of the helix and its protein binding properties are not compromised by the constraining moiety. Notably, our preliminary studies illustrate that HBS helices can target their expected protein receptors with high affinity.
Collapse
Affiliation(s)
- ANUPAM PATGIRI
- Department of Chemistry, New York University, New York, New York 10003
| | - ANDREA L. JOCHIM
- Department of Chemistry, New York University, New York, New York 10003
| | - PARAMJIT S. ARORA
- Department of Chemistry, New York University, New York, New York 10003
| |
Collapse
|
34
|
Lou H, Gao Y, Zhai M, Qi Y, Chen L, Lv H, Yu J, Li Y. A novel peptide from alpha5 helix of Asterina pectinifera cyclin B conjugated to HIV-Tat(49-57) with cytotoxic and apoptotic effects against human cancer cells. Bioorg Med Chem Lett 2008; 18:4633-7. [PMID: 18656352 DOI: 10.1016/j.bmcl.2008.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/30/2008] [Accepted: 07/07/2008] [Indexed: 11/30/2022]
Abstract
A series of novel peptides from various motifs of Asterina pectinifera cyclin B and their derivatives conjugated to HIV-Tat(49-57) were designed and synthesized. Their bioactivities on two human cancer cell lines were determined. Among them, Tat-a5 (KAQIRAMECNILGRKKRRQRRR) exhibited significant cytotoxic effects on cancer cell lines EC-9706 and HCT-116. Tat-a5 could arrest cancer cells at G(2)/M phase and make them apoptotic. Our results suggested that Tat-a5 could be a novel leading peptide with anticancer activity.
Collapse
Affiliation(s)
- Huiping Lou
- Department of Bioengineering, Zhengzhou University, Science Road 100, Zhengzhou 450001, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Maity P, König B. Synthesis and Structure of 1,4-Dipiperazino Benzenes: Chiral Terphenyl-type Peptide Helix Mimetics. Org Lett 2008; 10:1473-6. [DOI: 10.1021/ol8002749] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Prantik Maity
- Institut für Organische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
36
|
Rajagopal S, Meyer SC, Goldman A, Zhou M, Ghosh I. A minimalist approach toward protein recognition by epitope transfer from functionally evolved beta-sheet surfaces. J Am Chem Soc 2007; 128:14356-63. [PMID: 17076509 DOI: 10.1021/ja064885b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New approaches for identifying small molecules that specifically target protein surfaces as opposed to active site clefts are of much current interest. Toward this goal, we describe a three-step methodology: in step one, we target a protein of interest by directed evolution of a small beta-sheet scaffold; in step two, we identify residues on the scaffold that are implicated in binding; and in step three, we transfer the chemical information from the beta-sheet to a small molecule mimic. As a case study, we targeted the proteolytic enzyme thrombin, involved in blood coagulation, utilizing a library of beta-sheet epitopes displayed on phage that were previously selected for conservation of structure. We found that the thrombin-binding, beta-sheet displaying mini-proteins retained their structure and stability while inhibiting thrombin at low micromolar inhibition constants. A conserved dityrosine recognition motif separated by 9.2 A was found to be common among the mini-protein inhibitors and was further verified by alanine scanning. A molecule containing two tyrosine residues separated by a linker that matched the spacing on the beta-sheet scaffold inhibited thrombin, whereas a similar dityrosine molecule separated by a shorter 6 A linker could not. Moreover, kinetic analysis revealed that both the mini-protein as well as its minimalist mimic with only two functional residues exhibited noncompetitive inhibition of thrombin. Thus, this reductionist approach affords a simple methodology for transferring information from structured protein scaffolds to yield small molecule leads for targeting protein surfaces with novel mechanisms of action.
Collapse
Affiliation(s)
- Srivats Rajagopal
- Department of Chemistry, University of Arizona, P. O. Box 210041, 1306 East University Boulevard, Tucson, Arizona 85721-0041, USA
| | | | | | | | | |
Collapse
|
37
|
Allosteric Inhibition of the Protein-Protein Interaction between the Leukemia-Associated Proteins Runx1 and CBFβ. ACTA ACUST UNITED AC 2007; 14:1186-97. [DOI: 10.1016/j.chembiol.2007.09.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 11/20/2022]
|
38
|
Jin L, Zhang Z, Wang Y, Wei M, Xu Q. A novel small molecule inhibitor targeted at Bcl-2. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2007; 50:624-9. [PMID: 17879060 DOI: 10.1007/s11427-007-0079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 06/05/2007] [Indexed: 10/22/2022]
Abstract
Recently, the heterocyclic compound 8-oxo-3-thiomorpholino-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) was synthesized and shown to induce apoptosis in both (H22) hematoma and (MCF-7) adenocarcinoma cells. The IC(50) values of S1 against the two cell lines were 0.17 and 0.09 micromol/L, respectively. Furthermore, the apoptosis-inducing activity of this compound was highlighted both in vivo and in vitro. Subsequent experiments identified Bcl-2 as the primary target of S1, as a significant reduction in Bcl-2 protein levels was observed in H22 cells following a two-hour treatment with 10 micromol/L S1. While rapid depolarization of mitochondrial membranes led immediately to caspase 9 activation, no changes were identified in either caspase 8 levels or levels in Bcl-2 mRNA. These data were consistent with the results of circular dichroism (CD) spectra analysis, revealing that S1 inactivated the Bcl-2 protein by destroying its critical alpha helices. Taken together, these results suggest the potential of S1 in the development of new therapeutic agents.
Collapse
Affiliation(s)
- LiJi Jin
- School of Environmental & Biological Science & Technology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | |
Collapse
|
39
|
Abstract
The synthesis of several amphiphilic, nonpeptidic scaffolds that mimic the presentation of i, i + 3 or i + 4, and i + 7 residues of a peptide alpha-helix is described. The approach uses a pyridazine core, and the synthesis involves only a few steps and minimizes the number of C-C bond-forming reactions. The versatility of the synthesis makes it suitable for the preparation of small libraries of low molecular weight alpha-helix mimetics that could be targeted to certain protein/protein interactions.
Collapse
Affiliation(s)
- Alessandro Volonterio
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute MB-26, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
40
|
Nakajima W, Tanaka N. Synergistic induction of apoptosis by p53-inducible Bcl-2 family proteins Noxa and Puma. J NIPPON MED SCH 2007; 74:148-57. [PMID: 17507791 DOI: 10.1272/jnms.74.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One critical tumor-suppressive function of p53 is the induction of apoptosis in oncogene-expressing cells. In this context, p53-inducible genes encoding the BH3-only proteins of the Bcl-2 family, Noxa and Puma, were identified. Gene knockout studies revealed that both Noxa and Puma are involved in apoptosis induction in oncogene-expressing cells. BH3-only proteins induce apoptosis, and activate the downstream apoptosis effectors Bax and Bak. In this study, we found that Noxa and Puma synergistically activate Bax and Bak, and induce apoptosis. Although Noxa activates Bak by inactivating Mcl-1 and Bcl-X(L), gene knockdown studies revealed that neither Mcl-1 nor Bcl-X(L) is involved in this synergism. Moreover, Puma, but not Noxa, directly activated Bax in the absence of Bak, and Noxa enhanced Puma-mediated Bax activation in Bak-deficient cells. These results suggest the existence of a novel regulatory pathway for Noxa-mediated apoptosis. Although we detected synergistic induction of apoptosis by Noxa and Bim, a tumor suppressive transcriptional factor FoxO3-inducible protein, no such synergism was observed for other pairs of BH3-only proteins, Bim and Bid, or Bim and Puma. From these results, it can be considered that p53 carefully controls apoptosis by allowing two molecules to share full ability to induce apoptosis.
Collapse
Affiliation(s)
- Wataru Nakajima
- Department of Molecular Oncology, Institute of Gerontology, Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | | |
Collapse
|
41
|
Abstract
Many essential cellular processes such as signal transduction, transport, cellular motion and most regulatory mechanisms are mediated by protein-protein interactions. In recent years, new experimental techniques have been developed to discover the protein-protein interaction networks of several organisms. However, the accuracy and coverage of these techniques have proven to be limited, and computational approaches remain essential both to assist in the design and validation of experimental studies and for the prediction of interaction partners and detailed structures of protein complexes. Here, we provide a critical overview of existing structure-independent and structure-based computational methods. Although these techniques have significantly advanced in the past few years, we find that most of them are still in their infancy. We also provide an overview of experimental techniques for the detection of protein-protein interactions. Although the developments are promising, false positive and false negative results are common, and reliable detection is possible only by taking a consensus of different experimental approaches. The shortcomings of experimental techniques affect both the further development and the fair evaluation of computational prediction methods. For an adequate comparative evaluation of prediction and high-throughput experimental methods, an appropriately large benchmark set of biophysically characterized protein complexes would be needed, but is sorely lacking.
Collapse
Affiliation(s)
- András Szilágyi
- Center of Excellence in Bioinformatics, University at Buffalo, State University of New York, 901 Washington St, Buffalo, NY 14203, USA
| | | | | | | |
Collapse
|
42
|
Kim IC, Hamilton AD. Diphenylindane-based proteomimetics reproduce the projection of the i, i+3, i+4, and i+7 residues on an alpha-helix. Org Lett 2007; 8:1751-4. [PMID: 16623542 DOI: 10.1021/ol052956q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] The design of a nonpeptidic scaffold based on 4,7-diphenyl-1,6-disubstituted indanes mimicking i, i+3, i+4, and i+7 residues of an alpha-helix has been described, and its synthesis has been accomplished. This strategy makes general approaches possible to helix mimetic scaffolds that could be targeted to different proteins by changing the nature of the substituents.
Collapse
Affiliation(s)
- In Chul Kim
- Department of Chemistry, Yale University, P.O. Box 20810, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
43
|
Abstract
Proteins in nature fold into native conformations in which combinations of peripherally projected aliphatic, aromatic and ionic functionalities direct a wide range of properties. Alpha-helices, one of the most common protein secondary structures, serve as important recognition regions on protein surfaces for numerous protein-protein, protein-DNA and protein-RNA interactions. These interactions are characterized by conserved structural features within the alpha-helical domain. Rational design of structural mimetics of these domains with synthetic small molecules has proven an effective means to modulate such protein functions. In this tutorial review we discuss strategies that utilize synthetic small-molecule antagonists to selectively target essential protein-protein interactions involved in certain diseases. We also evaluate some of the protein-protein interactions that have been or are potential targets for alpha-helix mimetics.
Collapse
Affiliation(s)
- Jessica M Davis
- Department of Chemistry, Fairfield University, Fairfield, CT 06824, USA.
| | | | | |
Collapse
|
44
|
Tsantrizos YS, Ferland JM, McClory A, Poirier M, Farina V, Yee NK, Wang XJ, Haddad N, Wei X, Xu J, Zhang L. Olefin ring-closing metathesis as a powerful tool in drug discovery and development – potent macrocyclic inhibitors of the hepatitis C virus NS3 protease. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2006.09.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, Willis SN, Scott CL, Day CL, Cory S, Adams JM, Roberts AW, Huang DC. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 2006; 10:389-99. [PMID: 17097561 PMCID: PMC2953559 DOI: 10.1016/j.ccr.2006.08.027] [Citation(s) in RCA: 1018] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 06/28/2006] [Accepted: 08/24/2006] [Indexed: 10/23/2022]
Abstract
Since apoptosis is impaired in malignant cells overexpressing prosurvival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Of seven putative BH3 mimetics tested, only ABT-737 triggered Bax/Bak-mediated apoptosis. Despite its high affinity for Bcl-2, Bcl-x(L), and Bcl-w, many cell types proved refractory to ABT-737. We show that this resistance reflects ABT-737's inability to target another prosurvival relative, Mcl-1. Downregulation of Mcl-1 by several strategies conferred sensitivity to ABT-737. Furthermore, enforced Mcl-1 expression in a mouse lymphoma model conferred resistance. In contrast, cells overexpressing Bcl-2 remained highly sensitive to ABT-737. Hence, ABT-737 should prove efficacious in tumors with low Mcl-1 levels, or when combined with agents that inactivate Mcl-1, even to treat those tumors that overexpress Bcl-2.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biphenyl Compounds/metabolism
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myeloid Cell Leukemia Sequence 1 Protein
- Neoplasm Proteins/metabolism
- Nitrophenols/metabolism
- Nitrophenols/pharmacology
- Nitrophenols/therapeutic use
- Piperazines/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/chemistry
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA Interference
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sulfonamides/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- bcl-2 Homologous Antagonist-Killer Protein/genetics
- bcl-2 Homologous Antagonist-Killer Protein/metabolism
- bcl-2-Associated X Protein/chemistry
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Mark F. van Delft
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew H. Wei
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Kylie D. Mason
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Lin Chen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Peter E. Czabotar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Simon N. Willis
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Catherine L. Day
- Biochemistry Department, University of Otago, Dunedin 9001, New Zealand
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Jerry M. Adams
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Andrew W. Roberts
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
- Correspondence: David Huang, Ph - +61 3 9345 2555, Fax: +61 3 9347 0852, E-mail:
| |
Collapse
|
46
|
Yin H, Hamilton AD. Strategies for targeting protein-protein interactions with synthetic agents. Angew Chem Int Ed Engl 2006; 44:4130-63. [PMID: 15954154 DOI: 10.1002/anie.200461786] [Citation(s) in RCA: 380] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of small-molecule modulators of protein-protein interactions is a formidable goal, albeit one that possesses significant potential for the discovery of novel therapeutics. Despite the daunting challenges, a variety of examples exists for the inhibition of two large protein partners with low-molecular-weight ligands. This review discusses the strategies for targeting protein-protein interactions and the state of the art in the rational design of molecules that mimic the structures and functions of their natural targets.
Collapse
Affiliation(s)
- Hang Yin
- Yale University, New Haven, CT, USA
| | | |
Collapse
|
47
|
Hardcastle IR, Ahmed SU, Atkins H, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Källblad P, Kemp SJ, Kitching MS, Newell DR, Norbedo S, Northen JS, Reid RJ, Saravanan K, Willems HMG, Lunec J. Small-Molecule Inhibitors of the MDM2-p53 Protein−Protein Interaction Based on an Isoindolinone Scaffold. J Med Chem 2006; 49:6209-21. [PMID: 17034127 DOI: 10.1021/jm0601194] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
From a set of weakly potent lead compounds, using in silico screening and small library synthesis, a series of 2-alkyl-3-aryl-3-alkoxyisoindolinones has been identified as inhibitors of the MDM2-p53 interaction. Two of the most potent compounds, 2-benzyl-3-(4-chlorophenyl)-3-(3-hydroxypropoxy)-2,3-dihydroisoindol-1-one (76; IC(50) = 15.9 +/- 0.8 microM) and 3-(4-chlorophenyl)-3-(4-hydroxy-3,5-dimethoxybenzyloxy)-2-propyl-2,3-dihydroisoindol-1-one (79; IC(50) = 5.3 +/- 0.9 microM), induced p53-dependent gene transcription, in a dose-dependent manner, in the MDM2 amplified, SJSA human sarcoma cell line.
Collapse
Affiliation(s)
- Ian R Hardcastle
- Northern Institute for Cancer Research, School of Natural Sciences--Chemistry, Bedson Building, University of Newcastle upon Tyne, Newcastle, NE1 7RU, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Canela N, Orzáez M, Fucho R, Mateo F, Gutierrez R, Pineda-Lucena A, Bachs O, Pérez-Payá E. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A. J Biol Chem 2006; 281:35942-53. [PMID: 17001081 DOI: 10.1074/jbc.m603511200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.
Collapse
Affiliation(s)
- Núria Canela
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, University of Barcelona, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kahsai AW, Zhu S, Wardrop DJ, Lane WS, Fenteany G. Quinocarmycin Analog DX-52-1 Inhibits Cell Migration and Targets Radixin, Disrupting Interactions of Radixin with Actin and CD44. ACTA ACUST UNITED AC 2006; 13:973-83. [PMID: 16984887 DOI: 10.1016/j.chembiol.2006.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 07/13/2006] [Accepted: 07/20/2006] [Indexed: 12/25/2022]
Abstract
In the course of screening for new small-molecule modulators of cell motility, we discovered that quinocarmycin (also known as quinocarcin) analog DX-52-1 is an inhibitor of epithelial cell migration. While it has been assumed that the main target of DX-52-1 is DNA, we identified and confirmed radixin as the relevant molecular target of DX-52-1 in the cell. Radixin is a member of the ezrin/radixin/moesin family of membrane-actin cytoskeleton linker proteins that also participate in signal transduction pathways. DX-52-1 binds specifically and covalently to the C-terminal region of radixin, which contains the domain that interacts with actin filaments. Overexpression of radixin in cells abrogates their sensitivity to DX-52-1's antimigratory activity. Small interfering RNA-mediated silencing of radixin expression reduces the rate of cell migration. Finally, we found that DX-52-1 disrupts radixin's ability to interact with both actin and the cell adhesion molecule CD44.
Collapse
Affiliation(s)
- Alem W Kahsai
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | |
Collapse
|
50
|
Bonacci TM, Mathews JL, Yuan C, Lehmann DM, Malik S, Wu D, Font JL, Bidlack JM, Smrcka AV. Differential Targeting of G -Subunit Signaling with Small Molecules. Science 2006; 312:443-6. [PMID: 16627746 DOI: 10.1126/science.1120378] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G protein betagamma subunits have potential as a target for therapeutic treatment of a number of diseases. We performed virtual docking of a small-molecule library to a site on Gbetagamma subunits that mediates protein interactions. We hypothesized that differential targeting of this surface could allow for selective modulation of Gbetagamma subunit functions. Several compounds bound to Gbetagamma subunits with affinities from 0.1 to 60 muM and selectively modulated functional Gbetagamma-protein-protein interactions in vitro, chemotactic peptide signaling pathways in HL-60 leukocytes, and opioid receptor-dependent analgesia in vivo. These data demonstrate an approach for modulation of G protein-coupled receptor signaling that may represent an important therapeutic strategy.
Collapse
Affiliation(s)
- Tabetha M Bonacci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|