1
|
Wenger ES, Schultz K, Marmorstein R, Christianson DW. Engineering substrate channeling in a bifunctional terpene synthase. Proc Natl Acad Sci U S A 2024; 121:e2408064121. [PMID: 39365814 PMCID: PMC11474042 DOI: 10.1073/pnas.2408064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024] Open
Abstract
Fusicoccadiene synthase from Phomopsis amygdala (PaFS) is a bifunctional terpene synthase. It contains a prenyltransferase (PT) domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate, and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are connected by a flexible 69-residue linker. The PT domain mediates oligomerization to form predominantly octamers, with cyclase domains randomly splayed out around the PT core. Surprisingly, despite the random positioning of cyclase domains, substrate channeling is operative in catalysis since most of the GGPP generated by the PT remains on the enzyme for cyclization. Here, we demonstrate that covalent linkage of the PT and cyclase domains is not required for GGPP channeling, although covalent linkage may improve channeling efficiency. Moreover, GGPP competition experiments with other diterpene cyclases indicate that the PaFS PT and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryoelectron microscopy structure of the 600-kD "linkerless" construct, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the PT octamer and exhibit fascinating quaternary structural flexibility. These results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the PT octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.
Collapse
Affiliation(s)
- Eliott S. Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| |
Collapse
|
2
|
Kumar A, Patekar S, Mohapatra S, Patel DK, Kiran NR, Jaiswal P, Nagegowda DA, Shasany AK. Isoprenyl diphosphate synthases of terpenoid biosynthesis in rose-scented geranium (Pelargonium graveolens). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108590. [PMID: 38574692 DOI: 10.1016/j.plaphy.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.
Collapse
Affiliation(s)
- Ajay Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Soumitra Patekar
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Soumyajit Mohapatra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Devendra Kumar Patel
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, 226015, India
| | - N R Kiran
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Priyanka Jaiswal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India.
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, 226001, India.
| |
Collapse
|
3
|
Wang Y, Zhang N, Yan J, Li C, Zeng N, Wang D, Li Z, Li B, An Y. The Property of a Key Amino Acid Determines the Function of Farnesyl Pyrophosphate Synthase in Sporobolomyces pararoseus NGR. Curr Issues Mol Biol 2024; 46:3108-3121. [PMID: 38666925 PMCID: PMC11048977 DOI: 10.3390/cimb46040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, farnesyl pyrophosphate synthase from Sporobolomyces pararoseus NGR (SpFPPS) was isolated and expressed by the prokaryotic expression system. The SpFPPS full-length genomic DNA and cDNA are 1566 bp and 1053 bp, respectively. This gene encodes a 350-amino acid protein with a predicted molecular mass of 40.33 kDa and a molecular weight of 58.03 kDa (40.33 kDa + 17.7 kDa), as detected by SDS-PAGE. The function of SpFPPS was identified by induction, purification, protein concentration and in vitro enzymatic activity experiments. Structural analysis showed that Y90 was essential for chain termination and changing the substrate scope. Site-directed mutation of Y90 to the smaller side-chain amino acids alanine (A) and lysine (K) showed in vitro that wt-SpFPPS catalyzed the condensation of the substrate DMAPP or geranyl diphosphate (GPP) with IPP at apparent saturation to synthesize FPP as the sole product and that the mutant protein SpFPPS-Y90A synthesized FPP and C20 geranylgeranyl diphosphate (GGPP), while SpFPPS-Y90K hydrolyzed the substrate GGPP. Our results showed that FPPS in S. pararoseus encodes the SpFPPS protein and that the amino acid substitution at Y90 changed the distribution of SpFPPS-catalyzed products. This provides a baseline for potentially regulating SpFPPS downstream products and improving the carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Yunjiao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Jianyu Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Chunwang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
| | - Dandan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Zijing Li
- Food Science College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yingfeng An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| |
Collapse
|
4
|
Eaton SA, Christianson DW. Structure-Based Engineering of a Sesquiterpene Cyclase to Generate an Alcohol Product: Conversion of epi-Isozizaene Synthase into α-Bisabolol Synthase. Biochemistry 2024; 63:797-805. [PMID: 38420671 PMCID: PMC10961106 DOI: 10.1021/acs.biochem.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The sesquiterpene cyclase epi-isozizaene synthase (EIZS) from Streptomyces coelicolor catalyzes the metal-dependent conversion of farnesyl diphosphate (FPP) into the complex tricyclic product epi-isozizaene. This remarkable transformation is governed by an active site contour that serves as a template for catalysis, directing the conformations of multiple carbocation intermediates leading to the final product. Mutagenesis of residues defining the active site contour remolds its three-dimensional shape and reprograms the cyclization cascade to generate alternative cyclization products. In some cases, mutagenesis enables alternative chemistry to quench carbocation intermediates, e.g., through hydroxylation. Here, we combine structural and biochemical data from previously characterized EIZS mutants to design and prepare F95S-F198S EIZS, which converts EIZS into an α-bisabolol synthase with moderate fidelity (65% at 18 °C, 74% at 4 °C). We report the complete biochemical characterization of this double mutant as well as the 1.47 Å resolution X-ray crystal structure of its complex with three Mg2+ ions, inorganic pyrophosphate, and the benzyltriethylammonium cation, which partially mimics a carbocation intermediate. Most notably, the two mutations together create an active site contour that stabilizes the bisabolyl carbocation intermediate and positions a water molecule for the hydroxylation reaction. Structural comparison with a naturally occurring α-bisabolol synthase reveals common active site features that direct α-bisabolol generation. In showing that EIZS can be redesigned to generate a sesquiterpene alcohol product instead of a sesquiterpene hydrocarbon product, we have expanded the potential of EIZS as a platform for the development of designer cyclases that could be utilized in synthetic biology applications.
Collapse
Affiliation(s)
- Samuel A. Eaton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
5
|
Gaynes MN, Ronnebaum TA, Schultz K, Faylo JL, Marmorstein R, Christianson DW. Structure of the prenyltransferase in bifunctional copalyl diphosphate synthase from Penicillium fellutanum reveals an open hexamer conformation. J Struct Biol 2024; 216:108060. [PMID: 38184156 PMCID: PMC10939776 DOI: 10.1016/j.jsb.2023.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Copalyl diphosphate synthase from Penicillium fellutanum (PfCPS) is an assembly-line terpene synthase that contains both prenyltransferase and class II cyclase activities. The prenyltransferase catalyzes processive chain elongation reactions using dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate to yield geranylgeranyl diphosphate, which is then utilized as a substrate by the class II cyclase domain to generate copalyl diphosphate. Here, we report the 2.81 Å-resolution cryo-EM structure of the hexameric prenyltransferase of full-length PfCPS, which is surrounded by randomly splayed-out class II cyclase domains connected by disordered polypeptide linkers. The hexamer can be described as a trimer of dimers; surprisingly, one of the three dimer-dimer interfaces is separated to yield an open hexamer conformation, thus breaking the D3 symmetry typically observed in crystal structures of other prenyltransferase hexamers such as wild-type human GGPP synthase (hGGPPS). Interestingly, however, an open hexamer conformation was previously observed in the crystal structure of D188Y hGGPPS, apparently facilitated by hexamer-hexamer packing in the crystal lattice. The cryo-EM structure of the PfCPS prenyltransferase hexamer is the first to reveal that an open conformation can be achieved even in the absence of a point mutation or interaction with another hexamer. Even though PfCPS octamers are not detected, we suggest that the open hexamer conformation represents an intermediate in the hexamer-octamer equilibrium for those prenyltransferases that do exhibit oligomeric heterogeneity.
Collapse
Affiliation(s)
- Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Trey A Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacque L Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| |
Collapse
|
6
|
Fang H, Zheng H, Yang Y, Hu Y, Wang Z, Xia Q, Guo P. Structural Insights into the Substrate Binding of Farnesyl Diphosphate Synthase FPPS1 from Silkworm, Bombyx mori. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1787-1796. [PMID: 38214248 DOI: 10.1021/acs.jafc.3c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Farnesyl diphosphate synthase (FPPS) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway. Herein, we report the crystal structure of a type-I Lepidopteran FPPS from Bombyx mori (BmFPPS1) at 2.80 Å resolution. BmFPPS1 adopts an α-helix structure with a deep cavity at the center of the overall structure. Computational simulations combined with biochemical analysis allowed us to define the binding mode of BmFPPS1 to its substrates. Structural comparison revealed that BmFPPS1 adopts a structural pattern similar to that of type-II FPPS but exhibits a distinct substrate-binding site. These findings provide a structural basis for understanding substrate preferences and designing FPPS inhibitors. Furthermore, the expression profiles and RNA interference of BmFPPSs indicated that they play critical roles in the JH biosynthesis and larval-pupal metamorphosis. These findings enhance our understanding of the structural features of type-I Lepidopteran FPPS while providing direct evidence for the physiological role of BmFPPSs in silkworm development.
Collapse
Affiliation(s)
- Huan Fang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Haogang Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ying Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Gaynes MN, Christianson DW. Methods for the preparation and analysis of a bifunctional class II diterpene synthase, copalyl diphosphate synthase from Penicillium fellutanum. Methods Enzymol 2024; 699:1-23. [PMID: 38942500 PMCID: PMC11213978 DOI: 10.1016/bs.mie.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes comprise the largest class of natural products and are used in applications spanning the areas of medicine, cosmetics, fuels, flavorings, and more. Copalyl diphosphate synthase from the Penicillium genus is the first bifunctional terpene synthase identified to have both prenyltransferase and class II cyclase activities within the same polypeptide chain. Prior studies of bifunctional terpene synthases reveal that these systems achieve greater catalytic efficiency by channeling geranylgeranyl diphosphate between the prenyltransferase and cyclase domains. A molecular-level understanding of substrate transit phenomena in these systems is highly desirable, but a long disordered polypeptide segment connecting the prenyltranferase and cyclase domains thwarts the crystallization of full-length enzymes. Accordingly, these systems are excellent candidates for structural analysis using cryo-electron microscopy (cryo-EM). Notably, these systems form hexameric or octameric oligomers, so the quaternary structure of the full-length enzyme may influence substrate transit between catalytic domains. Here, we describe methods for the preparation of bifunctional hexameric copalyl diphosphate synthase from Penicillium fellutanum (PfCPS). We also outline approaches for the preparation of cryo-EM grids, data collection, and data processing to yield two-dimensional and three-dimensional reconstructions.
Collapse
Affiliation(s)
- Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Wenger ES, Christianson DW. Methods for the preparation and analysis of the diterpene cyclase fusicoccadiene synthase. Methods Enzymol 2023; 699:89-119. [PMID: 38942517 PMCID: PMC11213977 DOI: 10.1016/bs.mie.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Eliott S Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
10
|
Eaton SA, Christianson DW. Reprogramming the Cyclization Cascade of epi-Isozizaene Synthase to Generate Alternative Terpene Products. Biochemistry 2023; 62:2301-2313. [PMID: 37449555 PMCID: PMC10527993 DOI: 10.1021/acs.biochem.3c00247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The class I sesquiterpene cyclase epi-isozizaene synthase from Streptomyces coelicolor (EIZS) catalyzes the transformation of linear farnesyl diphosphate (FPP) into the tricyclic hydrocarbon epi-isozizaene in the biosynthesis of albaflavenone antibiotics. The active site cavity of EIZS is largely framed by four aromatic residues - F95, F96, F198, and W203 - that form a product-shaped contour, serving as a template to chaperone conformations of the flexible substrate and multiple carbocation intermediates leading to epi-isozizaene. Remolding the active site contour by mutagenesis can redirect the cyclization cascade away from epi-isozizaene biosynthesis to generate alternative sesquiterpene products. Here, we present the biochemical and structural characterization of four EIZS mutants in which aromatic residues have been substituted with polar residues (F95S, F96H, F198S, and F198T) to generate alternative cyclization products. Most notably, F95S EIZS generates a mixture of monocyclic sesquiterpene precursors of bisabolane, a D2 diesel fuel substitute. X-ray crystal structures of the characterized mutants reveal subtle changes in the active site contour showing how each aromatic residue influences the chemistry of a different carbocation intermediate in the cyclization cascade. We advance that EIZS may serve as a robust platform for the development of designer cyclases for the generation of high-value sesquiterpene products ranging from pharmaceuticals to biofuels in synthetic biology approaches.
Collapse
Affiliation(s)
- Samuel A. Eaton
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
11
|
Verdaguer IB, Crispim M, Hernández A, Katzin AM. The Biomedical Importance of the Missing Pathway for Farnesol and Geranylgeraniol Salvage. Molecules 2022; 27:molecules27248691. [PMID: 36557825 PMCID: PMC9782597 DOI: 10.3390/molecules27248691] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Isoprenoids are the output of the polymerization of five-carbon, branched isoprenic chains derived from isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). Isoprene units are consecutively condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively), necessary for the biosynthesis of several metabolites. Polyprenyl transferases and synthases use polyprenyl pyrophosphates as their natural substrates; however, it is known that free polyprenols, such as farnesol (FOH), and geranylgeraniol (GGOH) can be incorporated into prenylated proteins, ubiquinone, cholesterol, and dolichols. Furthermore, FOH and GGOH have been shown to block the effects of isoprenoid biosynthesis inhibitors such as fosmidomycin, bisphosphonates, or statins in several organisms. This phenomenon is the consequence of a short pathway, which was observed for the first time more than 25 years ago: the polyprenol salvage pathway, which works via the phosphorylation of FOH and GGOH. Biochemical studies in bacteria, animals, and plants suggest that this pathway can be carried out by two enzymes: a polyprenol kinase and a polyprenyl-phosphate kinase. However, to date, only a few genes have been unequivocally identified to encode these enzymes in photosynthetic organisms. Nevertheless, pieces of evidence for the importance of this pathway abound in studies related to infectious diseases, cancer, dyslipidemias, and nutrition, and to the mitigation of the secondary effects of several drugs. Furthermore, nowadays it is known that both FOH and GGOH can be incorporated via dietary sources that produce various biological effects. This review presents, in a simplified but comprehensive manner, the most important data on the FOH and GGOH salvage pathway, stressing its biomedical importance The main objective of this review is to bring to light the need to discover and characterize the kinases associated with the isoprenoid salvage pathway in animals and pathogens.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Agustín Hernández
- Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, Av. Lineu Prestes 1374, São Paulo 05508-000, Brazil
- Correspondence: ; Tel.: +55-11-3091-7330; Fax: +55-11-3091-7417
| |
Collapse
|
12
|
Faylo JL, van Eeuwen T, Gupta K, Murakami K, Christianson DW. Transient Prenyltransferase-Cyclase Association in Fusicoccadiene Synthase, an Assembly-Line Terpene Synthase. Biochemistry 2022; 61:2417-2430. [PMID: 36227241 PMCID: PMC9648990 DOI: 10.1021/acs.biochem.2c00509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fusicoccadiene synthase from the fungus Phomopsis amygdali (PaFS) is an assembly-line terpene synthase that catalyzes the first two steps in the biosynthesis of Fusiccocin A, a diterpene glycoside. The C-terminal prenyltransferase domain of PaFS catalyzes the condensation of one molecule of C5 dimethylallyl diphosphate and three molecules of C5 isopentenyl diphosphate to form C20 geranylgeranyl diphosphate, which then transits to the cyclase domain for cyclization to form fusicoccadiene. Previous structural studies of PaFS using electron microscopy (EM) revealed a central octameric prenyltransferase core with eight cyclase domains tethered in random distal positions through flexible 70-residue linkers. However, proximal prenyltransferase-cyclase configurations could be captured by covalent cross-linking and observed by cryo-EM and mass spectrometry. Here, we use cryo-EM to show that proximally configured prenyltransferase-cyclase complexes are observable even in the absence of covalent cross-linking; moreover, such complexes can involve multiple cyclase domains. A conserved basic patch on the prenyltransferase domain comprises the primary touchpoint with the cyclase domain. These results support a model for transient prenyltransferase-cyclase association in which the cyclase domains of PaFS are in facile equilibrium between proximal associated and random distal positions relative to the central prenyltransferase octamer. The results of biophysical measurements using small-angle X-ray scattering, analytical ultracentrifugation, dynamic light scattering, and size-exclusion chromatography in-line with multi-angle light scattering are consistent with this model. This model accordingly provides a framework for understanding substrate transit between the prenyltransferase and cyclase domains as well as the cooperativity observed for geranylgeranyl diphosphate cyclization.
Collapse
Affiliation(s)
- Jacque L. Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Trevor van Eeuwen
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
13
|
Srivastava Y, Tripathi S, Mishra B, Sangwan NS. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis. PLANTA 2022; 256:4. [PMID: 35648276 DOI: 10.1007/s00425-022-03912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content. Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.
Collapse
Affiliation(s)
- Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | | | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, 123031, India.
| |
Collapse
|
14
|
Okada M, Rajaram K, Swift RP, Mixon A, Maschek JA, Prigge ST, Sigala PA. Critical role for isoprenoids in apicoplast biogenesis by malaria parasites. eLife 2022; 11:73208. [PMID: 35257658 PMCID: PMC8959605 DOI: 10.7554/elife.73208] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Isopentenyl pyrophosphate (IPP) is an essential metabolic output of the apicoplast organelle in Plasmodium falciparum malaria parasites and is required for prenylation-dependent vesicular trafficking and other cellular processes. We have elucidated a critical and previously uncharacterized role for IPP in apicoplast biogenesis. Inhibiting IPP synthesis blocks apicoplast elongation and inheritance by daughter merozoites, and apicoplast biogenesis is rescued by exogenous IPP and polyprenols. Knockout of the only known isoprenoid-dependent apicoplast pathway, tRNA prenylation by MiaA, has no effect on blood-stage parasites and thus cannot explain apicoplast reliance on IPP. However, we have localized an annotated polyprenyl synthase (PPS) to the apicoplast. PPS knockdown is lethal to parasites, rescued by IPP and long- (C50) but not short-chain (≤C20) prenyl alcohols, and blocks apicoplast biogenesis, thus explaining apicoplast dependence on isoprenoid synthesis. We hypothesize that PPS synthesizes long-chain polyprenols critical for apicoplast membrane fluidity and biogenesis. This work critically expands the paradigm for isoprenoid utilization in malaria parasites and identifies a novel essential branch of apicoplast metabolism suitable for therapeutic targeting.
Collapse
Affiliation(s)
- Megan Okada
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Amanda Mixon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - John Alan Maschek
- Metabolomics Core, University of Utah, Salt Lake City, United States
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
15
|
Min Lao Y, Miao Lin Y, Sheng Wang X, Juan Xu X, Jin H. An improved method for sensitive quantification of isoprenoid diphosphates in the astaxanthin-accumulating Haematococcus pluvialis. Food Chem 2021; 375:131911. [PMID: 34959143 DOI: 10.1016/j.foodchem.2021.131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022]
Abstract
A sensitive method has been established to simultaneously determine the concentrations of isopentenyl pyrophosphate (IPP), geranyl diphosphate (GPP), farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) in H. pluvialis under different environments. This method increased the extraction efficiency of isoprenoid diphosphates through releasing isoprenoid diphosphates using Tissue Lyser. This is the first report on the efficient extraction method of metabolites in H. pluvialis cells, being suitable for all algae and plants with thick cell wall. The concentrations of isoprenoid diphosphates were measured on poroshell EC-C18 column by UHPLC-MS/MS with the LODs of 0.015, 0.027, 0.022 and 0.076 pmol for DMAPP, GPP, FPP and GGPP, respectively. It is the most sensitive method for the determination of isoprenoid diphosphates in any sample to date. Using this method, the profile of isoprenoid diphosphates was analyzed and cisoid isomers of FPP and GGPP, (Z, Z)-FPP and (Z, Z, Z-GGPP) were found firstly in H. pluvialis.
Collapse
Affiliation(s)
- Yong Min Lao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yu Miao Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Sheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | | | - Hui Jin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
16
|
Li C, Huang W, Zhou T, Zhao Q, Huang P, Qi P, Huang S, Huang S, Keyhani NO, Huang Z. Mutation of a prenyltransferase results in accumulation of subglutinols and destruxins and enhanced virulence in the insect pathogen, Metarhizium anisopliae. Environ Microbiol 2021; 24:1362-1379. [PMID: 34863012 DOI: 10.1111/1462-2920.15859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
The insect pathogenic fungus, Metarhizium anisopliae is a commercialized microbial agent used in biological control efforts targeting a diverse range of agricultural and other insect pests. The second step in the synthesis of a group of M. anisopliae α-pyrone diterpenoids (termed subglutinols) involves the activity of a prenyltransferase family geranylgeranyl diphosphate synthase (product of the subD/MaGGPPS5 gene). Here, we show that targeted gene disruption of MaGGPPS5 results in earlier conidial germination and faster greater vegetative growth compared to the wild type (WT) parent and complemented strains. In addition, insect bioassays revealed that the ΔMaGGPPS5 mutant strain displayed significantly increased virulence, with a ~50% decrease in the mean lethal time (LT50 , from 6 to 3 days) to kill (50% of) target insects, and an ~15-40-fold decrease in the mean lethal dose (LC50 ). Metabolite profiling indicated increased accumulation in the ΔMaGGPPS5 mutant of select subglutinols (A, B and C) and destruxins (A, A2, B and B2), the latter a set of fungal secondary metabolites that act as insect toxins, with a concomitant loss of production of subglutinol 'analogue 45'. These data suggest that the increased virulence phenotype seen for the ΔMaGGPPS5 strain can, at least in part, be attributed to a combination of faster growth and increased insect toxin production, linking the production of two different secondary metabolite pathways, and represent a novel approach for the screening of isolates with enhanced virulence via modulation of terpenoid secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Chengzhou Li
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Wenyou Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Tingting Zhou
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Qian Zhao
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Peiquan Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| | - Ping Qi
- Guangzhou Institute for Food Inspection, Guangzhou, China
| | - Song Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China.,Guangzhou Institute for Food Inspection, Guangzhou, China
| | - Shuaishuai Huang
- Biotechnology Research Center, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Road, Gainesville, FL, 32611, USA
| | - Zhen Huang
- College of Plant Protection, South China Agricultural University, Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, China
| |
Collapse
|
17
|
Pezenti LF, Levy SM, de Souza RF, Sosa-Gómez DR, da Rosa R. Testes morphology and the identification of transcripts of the hormonal pathways of the velvetbean caterpillar Anticarsia gemmatalis Hübner, 1818 (Lepidoptera: Erebidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101111. [PMID: 34571334 DOI: 10.1016/j.asd.2021.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Anticarsia gemmatalis is one of the main defoliating pests of soybeans in Brazil. In the current study, we characterized the histomorphology of the testes and the spermatogenesis process in A. gemmatalis. We also identified transcripts involved in the biosynthesis, metabolism, and signaling of juvenile and ecdysteroid hormones, in order to provide information about potential mechanisms of regulation of hormonal pathways in this species. Our analyses revealed that the A. gemmatalis larvae have a pair of kidney-shaped testicles. These are divided into four testicular follicles, where there are germ cell cysts at different stages of development. In the pupal stage, the testicles are fused, so adults have a single spherical testis, with a variable number of follicles. The A. gemmatalis has centripetal spermatogenesis and exhibits spermatic dimorphism. We identified 31 transcripts that encode proteins involved in juvenile hormone and ecdysteroid pathways, such as mevalonate kinase, CYP14A1, ecdysone receptor, among others. Our results on the morphology of the testes and spermatogenesis process, as well as identification of the genes involved in hormonal pathways in A. gemmatalis, provide important data for understanding the biology of this agricultural pest, which can be used as a basis for further research in other economically important lepidopterans.
Collapse
Affiliation(s)
- Larissa Forim Pezenti
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil; Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Sheila Michele Levy
- Laboratório de Insetos, Departamento de Histologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Daniel Ricardo Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária/Centro Nacional de Pesquisa de Soja (Embrapa Soja), Londrina, Paraná, Brazil.
| | - Renata da Rosa
- Laboratório de Citogenética Animal, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
18
|
Faylo JL, Ronnebaum TA, Christianson DW. Assembly-Line Catalysis in Bifunctional Terpene Synthases. Acc Chem Res 2021; 54:3780-3791. [PMID: 34254507 DOI: 10.1021/acs.accounts.1c00296] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The magnificent chemodiversity of more than 95 000 terpenoid natural products identified to date largely originates from catalysis by two types of terpene synthases, prenyltransferases and cyclases. Prenyltransferases utilize 5-carbon building blocks in processive chain elongation reactions to generate linear C5n isoprenoid diphosphates (n ≥ 2), which in turn serve as substrates for terpene cyclases that convert these linear precursors into structurally complex hydrocarbon products containing multiple rings and stereocenters. Terpene cyclization reactions are the most complex organic transformations found in nature in that more than half of the substrate carbon atoms undergo changes in chemical bonding during a multistep reaction sequence proceeding through several carbocation intermediates. Two general classes of cyclases are established on the basis of the chemistry of initial carbocation formation, and structural studies from our laboratory and others show that three fundamental protein folds designated α, β, and γ govern this chemistry. Catalysis by a class I cyclase occurs in an α domain, where a trinuclear metal cluster activates the substrate diphosphate leaving group to generate an allylic cation. Catalysis by a class II cyclase occurs in a β domain or at the interface of β and γ domains, where an aspartic acid protonates the terminal π bond of the substrate to yield a tertiary carbocation. Crystal structures reveal domain architectures of α, αβ, αβγ, βγ, and β.In some terpene synthases, these domains are combined to yield bifunctional enzymes that catalyze successive biosynthetic steps in assembly line fashion. Structurally characterized examples include bacterial geosmin synthase, an αα domain enzyme that catalyzes a class I cyclization reaction of C15 farnesyl diphosphate in one active site and a transannulation-fragmentation reaction in the other to yield C12 geosmin and C3 acetone products. In comparison, plant abietadiene synthase is an αβγ domain enzyme in which C20 geranylgeranyl diphosphate undergoes tandem class II-class I cyclization reactions to yield the tricyclic product. Recent structural studies from our laboratory show that bifunctional fungal cyclases form oligomeric complexes for assembly line catalysis. Bifunctional (+)-copalyl diphosphate synthase adopts (αβγ)6 architecture in which the α domain generates geranylgeranyl diphosphate, which then undergoes class II cyclization in the βγ domains to yield the bicyclic product. Bifunctional fusicoccadiene synthase adopts (αα)6 or (αα)8 architecture in which one α domain generates geranylgeranyl diphosphate, which then undergoes class I cyclization in the other α domain to yield the tricyclic product. The prenyltransferase α domain mediates oligomerization in these systems. Attached by flexible polypeptide linkers, cyclase domains splay out from oligomeric prenyltransferase cores.In this Account, we review structure-function relationships for these bifunctional terpene synthases, with a focus on the oligomeric systems studied in our laboratory. The observation of substrate channeling for fusicoccadiene synthase suggests a model for dynamic cluster channeling in catalysis by oligomeric assembly line terpenoid synthases. Resulting efficiencies in carbon management suggest that such systems could be particularly attractive for use in synthetic biology approaches to generate high-value terpenoid natural products.
Collapse
Affiliation(s)
- Jacque L. Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Trey A. Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Guo J, Cai YS, Cheng F, Yang C, Zhang W, Yu W, Yan J, Deng Z, Hong K. Genome Mining Reveals a Multiproduct Sesterterpenoid Biosynthetic Gene Cluster in Aspergillus ustus. Org Lett 2021; 23:1525-1529. [PMID: 33480256 DOI: 10.1021/acs.orglett.0c03996] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome mining of Aspergillus ustus 094102 enabled the discovery of a multiproduct bifunctional terpene synthase (BTS), AuAS. Heterologous expression of AuAS led to the discovery of five new sesterterpenes, and coexpression of the upstream CYP450 monooxygenase (AuAP450) generated four new sesterterpene alcohols. Additionally, aspergilol A showed cytotoxic activities against MCF-7, MDA-MB231, and HepG2 cancer cells (IC50 21.20-48.76 μM), and aspergilol B exhibited a cytotoxic effect on MCF-7 cells (IC50 27.41 μM).
Collapse
Affiliation(s)
- Jingjing Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - You-Sheng Cai
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Fangcai Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Chenjie Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Wenqi Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Wulin Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Jingjing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| |
Collapse
|
20
|
Darragh K, Orteu A, Black D, Byers KJRP, Szczerbowski D, Warren IA, Rastas P, Pinharanda A, Davey JW, Fernanda Garza S, Abondano Almeida D, Merrill RM, McMillan WO, Schulz S, Jiggins CD. A novel terpene synthase controls differences in anti-aphrodisiac pheromone production between closely related Heliconius butterflies. PLoS Biol 2021; 19:e3001022. [PMID: 33465061 PMCID: PMC7815096 DOI: 10.1371/journal.pbio.3001022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-β-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-β-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-β-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-β-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins. Plants and insects often use the same compounds for chemical communication, but little is known about the convergent evolution of such chemical signals. This study identifies a novel terpene synthase involved in production of an anti-aphrodisiac pheromone by the butterfly Heliconius melpomene. This enzyme is unrelated to other insect terpene synthases, providing evidence that the ability to synthesise terpenes has arisen multiple times independently within the insects.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
- * E-mail:
| | - Anna Orteu
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Daniella Black
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Kelsey J. R. P. Byers
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
| | - Daiane Szczerbowski
- Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ian A. Warren
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Pinharanda
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John W. Davey
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Richard M. Merrill
- Smithsonian Tropical Research Institute, Panamá, Panamá
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Stefan Schulz
- Institute of Organic Chemistry, Department of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- Smithsonian Tropical Research Institute, Panamá, Panamá
| |
Collapse
|
21
|
Abdelmagid WM, Mahmoodi N, Tanner ME. A guanidinium-based inhibitor of a type I isopentenyl diphosphate isomerase. Bioorg Med Chem Lett 2020; 30:127577. [PMID: 32979487 DOI: 10.1016/j.bmcl.2020.127577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022]
Abstract
An inhibitor bearing a phosphinylphosphonate group appended to a guanidinium functionality was designed to inhibit enzymes that generate carbocations from dimethylallyl diphosphate. When tested against human farnesyl diphosphate synthase the inhibitor bound with high micromolar affinity and did not bind more tightly than an isosteric inhibitor lacking the guanidinium functionality. When tested against the Type I isopentenyl diphosphate:dimethylallyl diphosphate isomerase from Escherichia coli, the inhibitor bound with a Ki value of 120 nM, which was 400 times greater than its isosteric counterpart. This strategy of inhibition was much more effective with an enzyme that generates a carbocation that is not stabilized by both resonance and ion pairing, presumably because there is more evolutionary pressure on the enzyme to stabilize the cation.
Collapse
Affiliation(s)
- Walid M Abdelmagid
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Niusha Mahmoodi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
22
|
Ren S, de Kok NAW, Gu Y, Yan W, Sun Q, Chen Y, He J, Tian L, Andringa RLH, Zhu X, Tang M, Qi S, Xu H, Ren H, Fu X, Minnaard AJ, Yang S, Zhang W, Li W, Wei Y, Driessen AJM, Cheng W. Structural and Functional Insights into an Archaeal Lipid Synthase. Cell Rep 2020; 33:108294. [PMID: 33086053 DOI: 10.1016/j.celrep.2020.108294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023] Open
Abstract
The UbiA superfamily of intramembrane prenyltransferases catalyzes an isoprenyl transfer reaction in the biosynthesis of lipophilic compounds involved in cellular physiological processes. Digeranylgeranylglyceryl phosphate (DGGGP) synthase (DGGGPase) generates unique membrane core lipids for the formation of the ether bond between the glycerol moiety and the alkyl chains in archaea and has been confirmed to be a member of the UbiA superfamily. Here, the crystal structure is reported to exhibit nine transmembrane helices along with a large lateral opening covered by a cytosolic cap domain and a unique substrate-binding central cavity. Notably, the lipid-bound states of this enzyme demonstrate that the putative substrate-binding pocket is occupied by the lipidic molecules used for crystallization, indicating the binding mode of hydrophobic substrates. Collectively, these structural and functional studies provide not only an understanding of lipid biosynthesis by substrate-specific lipid-modifying enzymes but also insights into the mechanisms of lipid membrane remodeling and adaptation.
Collapse
Affiliation(s)
- Sixue Ren
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Yijun Gu
- National Facility for Protein Science Shanghai, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute (Zhangjiang Lab), Zhangheng Road 239, Shanghai 201203, China
| | - Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yunying Chen
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jun He
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lejin Tian
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruben L H Andringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Xiaofeng Zhu
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mei Tang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Heng Xu
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xianghui Fu
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Shengyong Yang
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wanjiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, the Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang 832002, China
| | - Weimin Li
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Quan Z, Dickschat JS. On the mechanism of ophiobolin F synthase and the absolute configuration of its product by isotopic labelling experiments. Org Biomol Chem 2020; 18:6072-6076. [PMID: 32725018 DOI: 10.1039/d0ob01470b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An ophiobolin F synthase homolog was discovered from Aspergillus calidoustus CBS121601. The cyclisation mechanism of this terpene synthase was investigated by extensive isotopic labelling experiments and the absolute configuration of its product ophiobolin F was elucidated by enantioselective deuteration.
Collapse
Affiliation(s)
- Zhiyang Quan
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | |
Collapse
|
24
|
Ghosh S, Marsh ENG. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. J Biol Chem 2020; 295:11513-11528. [PMID: 32546482 PMCID: PMC7450102 DOI: 10.1074/jbc.rev120.012784] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Viperin plays an important and multifaceted role in the innate immune response to viral infection. Viperin is also notable as one of very few radical SAM-dependent enzymes present in higher animals; however, the enzyme appears broadly conserved across all kingdoms of life, which suggests that it represents an ancient defense mechanism against viral infections. Although viperin was discovered some 20 years ago, only recently was the enzyme's structure determined and its catalytic activity elucidated. The enzyme converts CTP to 3'-deoxy-3',4'-didehydro-CTP, which functions as novel chain-terminating antiviral nucleotide when misincorporated by viral RNA-dependent RNA polymerases. Moreover, in higher animals, viperin interacts with numerous other host and viral proteins, and it is apparent that this complex network of interactions constitutes another important aspect of the protein's antiviral activity. An emerging theme is that viperin appears to facilitate ubiquitin-dependent proteasomal degradation of some of the proteins it interacts with. Viperin-targeted protein degradation contributes to the antiviral response either by down-regulating various metabolic pathways important for viral replication or by directly targeting viral proteins for degradation. Here, we review recent advances in our understanding of the structure and catalytic activity of viperin, together with studies investigating the interactions between viperin and its target proteins. These studies have provided detailed insights into the biochemical processes underpinning this unusual enzyme's wide-ranging antiviral activity. We also highlight recent intriguing reports that implicate a broader role for viperin in regulating nonpathological cellular processes, including thermogenesis and protein secretion.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Maheshwari S, Kim YS, Aripirala S, Murphy M, Amzel LM, Gabelli SB. Identifying Structural Determinants of Product Specificity in Leishmania major Farnesyl Diphosphate Synthase. Biochemistry 2020; 59:2751-2759. [PMID: 32584028 PMCID: PMC8049779 DOI: 10.1021/acs.biochem.0c00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Farnesyl diphosphate synthase (FPPS) is an isoprenoid chain elongation enzyme that catalyzes the sequential condensation of dimethylallyl diphosphate (C5) with isopentenyl diphosphate (IPP; C5) and the resulting geranyl diphosphate (GPP; C10) with another molecule of IPP, eventually producing farnesyl diphosphate (FPP; C15), which is a precursor for the biosynthesis of a vast majority of isoprenoids. Previous studies of FPPS have highlighted the importance of the structure around the hydrophobic chain elongation path in determining product specificity. To investigate what structural features define the final chain length of the product in FPPS from Leishmania major, we designed and expressed six mutants of LmFPPS by replacing small amino acids around the binding pocket with bulky residues. Using enzymatic assays, binding kinetics, and crystallographic studies, we analyzed the effects of these mutations on the activity and product specificity of FPPS. Our results revealed that replacement of Thr-164 with tryptophan and phenylalanine completely abolished the activity of FPPS. Intriguingly, the T164Y substitution displayed dual product specificity and produced a mixture GPP and FPP as final products, with an activity for FPP synthesis that was lower than that of the wild-type enzyme. These data indicate that Thr-164 is a potential regulator of product specificity.
Collapse
Affiliation(s)
- Sweta Maheshwari
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Seon Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Srinivas Aripirala
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - L. Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
26
|
Kamran HM, Hussain SB, Junzhong S, Xiang L, Chen LQ. Identification and Molecular Characterization of Geranyl Diphosphate Synthase (GPPS) Genes in Wintersweet Flower. PLANTS 2020; 9:plants9050666. [PMID: 32456337 PMCID: PMC7284688 DOI: 10.3390/plants9050666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023]
Abstract
Geranyl diphosphate synthase (GPPS) is a plastid localized enzyme that catalyzes the biosynthesis of Geranyl diphosphate (GPP), which is a universal precursor of monoterpenes. Wintersweet (Chimonanthus praecox L.), a famous deciduous flowering shrub with a strong floral scent character, could have GPPS-like homologs that are involved in monoterpenes biosynthesis, but it remains unclear. In the present study, five full-length GPPS and geranylgeranyl diphosphate synthases (GGPPS) genes were identified in the wintersweet transcriptome database. The isolated cDNAs showed high protein sequence similarity with the other plants GPPS and GGPPS. The phylogenetic analysis further classified these cDNAs into four distinct clades, representing heterodimeric GPPS small subunits (SSU1 and SSU2), homodimeric GPPS, and GGPPS. Analysis of temporal expression revealed that all genes have the highest transcript level at the full-open flower stage. From tissue-specific expression analysis, CpGPPS.SSU1 and CpGGPPS1 were predominantly expressed in petal and flower, whereas CpGPPS.SSU2, GPPS, and GGPPS2 showed a constitutive expression. Additionally, the subcellular localization assay identified the chloroplast localization of SSUs and GGPPSs proteins, and the yeast two-hybrid assay showed that both CpGPPS.SSU1 and CpGPPS.SSU2 can interact with the GGPPS proteins. Taken together, these preliminary results suggest that the heterodimeric GPPS can regulate floral scent biosynthesis in wintersweet flower.
Collapse
Affiliation(s)
- Hafiz Muhammad Kamran
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (H.M.K.); (S.B.H.); (S.J.)
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (H.M.K.); (S.B.H.); (S.J.)
| | - Shang Junzhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (H.M.K.); (S.B.H.); (S.J.)
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; (H.M.K.); (S.B.H.); (S.J.)
- Correspondence: (L.X.); (L.-Q.C.); Tel.: +86-13554486169 (L.X.); +86-13099925286 (L.-Q.C.)
| | - Long-Qing Chen
- Southwest Engineering Research Center for Landscape Architecture (State Forestry and Grassland Administration), Southwest Forestry University, Kunming 650224, China
- Correspondence: (L.X.); (L.-Q.C.); Tel.: +86-13554486169 (L.X.); +86-13099925286 (L.-Q.C.)
| |
Collapse
|
27
|
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110457. [PMID: 32234216 DOI: 10.1016/j.plantsci.2020.110457] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/28/2023]
Abstract
Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
28
|
Adal AM, Mahmoud SS. Short-chain isoprenyl diphosphate synthases of lavender (Lavandula). PLANT MOLECULAR BIOLOGY 2020; 102:517-535. [PMID: 31927660 DOI: 10.1007/s11103-020-00962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE We reported the functional characterization of cDNAs encoding short-chain isoprenyl diphosphate synthases that control the partitioning of precursors for lavender terpenoids. Lavender essential oil is composed of regular and irregular monoterpenes, which are derived from linear precursors geranyl diphosphate (GPP) and lavandulyl diphosphate (LPP), respectively. Although this plant strongly expresses genes responsible for the biosynthesis of both monoterpene classes, it is unclear why regular monoterpenes dominate the oil. Here, we cloned and characterized Lavandula x intermedia cDNAs encoding geranyl diphosphate synthase (LiGPPS), geranylgeranyl diphosphate synthase (LiGGPPS) and farnesyl diphosphate synthase (LiFPPS). LiGPPS was heteromeric protein, consisting of a large subunit (LiGPPS.LSU) and a small subunit for which two different cDNAs (LiGPPS.SSU1 and LiGPPS.SSU2) were detected. Neither recombinant LiGPPS subunits was active by itself. However, when co-expressed in E. coli LiGPPS.LSU and LiGPPS.SSU1 formed an active heteromeric GPPS, while LiGPPS.LSU and LiGPPS.SSU2 did not form an active protein. Recombinant LiGGPPS, LiFPPS and LPP synthase (LPPS) proteins were active individually. Further, LiGPPS.SSU1 modified the activity of LiGGPPS (to produce GPP) in bacterial cells co-expressing both proteins. Given this, and previous evidence indicating that GPPS.SSU can modify the activity of GGPPS to GPPS in vitro and in plants, we hypothesized that LiGPPS.SSU1 modifies the activity of L. x intermedia LPP synthase (LiLPPS), thus accounting for the relatively low abundance of LPP-derived irregular monoterpenes in this plant. However, LiGPPS.SSU1 did not affect the activity of LiLPPS. These results, coupled to the observation that LiLPPS transcripts are more abundant than those of GPPS subunits in L. x intermedia flowers, suggest that regulatory mechanisms other than transcriptional control of LPPS regulate precursor partitioning in lavender flowers.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Soheil S Mahmoud
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
29
|
Singla P, Bhardwaj RD. Enzyme promiscuity – A light on the “darker” side of enzyme specificity. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1696779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Prabhjot Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
30
|
Abdelmagid WM, Adak T, Freeman JO, Tanner ME. Studies with Guanidinium- and Amidinium-Based Inhibitors Suggest Minimal Stabilization of Allylic Carbocation Intermediates by Dehydrosqualene and Squalene Synthases. Biochemistry 2018; 57:5591-5601. [PMID: 30179505 DOI: 10.1021/acs.biochem.8b00731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydrosqualene and squalene synthases catalyze the redox neutral and the reductive, head-to-head dimerization of farnesyl diphosphate, respectively. In each case, the reaction is thought to proceed via an initial dissociation of farnesyl diphosphate to form an allylic carbocation-pyrophosphate ion pair. This work describes the synthesis and testing of inhibitors in which a guanidinium or amidinium moiety is flanked by a phosphonylphosphinate group and a hydrocarbon tail. These functional groups bear a planar, delocalized, positive charge and therefore should act as excellent mimics of an allylic carbocation. An inhibitor bearing a neutral urea moiety was also prepared as a control. The positively charged inhibitors acted as competitive inhibitors against Staphylococcus aureus dehydrosqualene synthase with Ki values in the low micromolar range. Surprisingly, the neutral urea inhibitor was the most potent of the three. Similar trends were seen with the first half reaction of human squalene synthase. One interpretation of these results is that the active sites of these enzymes do not directly stabilize the allylic carbocation via electrostatic or π-cation interactions. Instead, it is likely that the enzymes use tight binding to the pyrophosphate and lipid moieties to promote catalysis and that electrostatic stabilization of the carbocation is provided by the bound pyrophosphate product. An alternate possibility is that these inhibitors cannot bind to the "ionization FPP-binding site" of the enzyme and only bind to the "nonionizing FPP-binding site". In either case, all reported attempts to generate potent inhibitors with cationic FPP analogues have been unsuccessful to date.
Collapse
Affiliation(s)
- Walid M Abdelmagid
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Taniya Adak
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Jon O Freeman
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Martin E Tanner
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
31
|
Petrova TE, Boyko KM, Nikolaeva AY, Stekhanova TN, Gruzdev EV, Mardanov AV, Stroilov VS, Littlechild JA, Popov VO, Bezsudnova EY. Structural characterization of geranylgeranyl pyrophosphate synthase GACE1337 from the hyperthermophilic archaeon Geoglobus acetivorans. Extremophiles 2018; 22:877-888. [PMID: 30062607 DOI: 10.1007/s00792-018-1044-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/20/2018] [Indexed: 01/23/2023]
Abstract
A novel type 1 geranylgeranyl pyrophosphate synthase GACE1337 has been identified within the genome of a newly identified hyperthermophilic archaeon Geoglobus acetivorans. The enzyme has been cloned and over-expressed in Escherichia coli. The recombinant enzyme has been biochemically and structurally characterized. It is able to catalyze the synthesis of geranylgeranyl pyrophosphate as a major product and of farnesyl pyrophosphate in smaller amounts, as measured by gas chromatography-mass spectrometry at an elevated temperature of 60 °C. Its ability to produce two products is consistent with the fact that GACE1337 is the only short-chain isoprenyl diphosphate synthase in G. acetivorans. Attempts to crystallize the enzyme were successful only at 37 °C. The three-dimensional structure of GACE1337 was determined by X-ray diffraction to 2.5 Å resolution. A comparison of its structure with those of related enzymes revealed that the Geoglobus enzyme has the features of both type I and type III geranylgeranyl pyrophosphate synthases, which allow it to regulate the product length. The active enzyme is a dimer and has three aromatic amino acids, two Phe, and a Tyr, located in the hydrophobic cleft between the two subunits. It is proposed that these bulky residues play a major role in the synthetic reaction by controlling the product elongation.
Collapse
Affiliation(s)
- Tatiana E Petrova
- Institute of Mathematical Problems of Biology, RAS, Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Professor Vitkevich St., Pushchino, 142290, Russian Federation.
| | - Konstantin M Boyko
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation.,NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr, 1, Moscow, 123182, Russian Federation
| | - Alena Yu Nikolaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Tatiana N Stekhanova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Eugeny V Gruzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Andrey V Mardanov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Viktor S Stroilov
- N. D. Zelinsky Institute of Organic Chemistry (ZIOC RAS), Leninsky Prospekt, 47, Moscow, 119991, Russian Federation
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Vladimir O Popov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation.,NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr, 1, Moscow, 123182, Russian Federation
| | - Ekaterina Yu Bezsudnova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| |
Collapse
|
32
|
Cossé MM, Barta ML, Fisher DJ, Oesterlin LK, Niragire B, Perrinet S, Millot GA, Hefty PS, Subtil A. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth. Front Cell Infect Microbiol 2018; 8:145. [PMID: 29868501 PMCID: PMC5962693 DOI: 10.3389/fcimb.2018.00145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Invasion of epithelial cells by the obligate intracellular bacterium Chlamydia trachomatis results in its enclosure inside a membrane-bound compartment termed an inclusion. The bacterium quickly begins manipulating interactions between host intracellular trafficking and the inclusion interface, diverging from the endocytic pathway and escaping lysosomal fusion. We have identified a previously uncharacterized protein, CT622, unique to the Chlamydiaceae, in the absence of which most bacteria failed to establish a successful infection. CT622 is abundant in the infectious form of the bacteria, in which it associates with CT635, a putative novel chaperone protein. We show that CT622 is translocated into the host cytoplasm via type three secretion throughout the developmental cycle of the bacteria. Two separate domains of roughly equal size have been identified within CT622 and a 1.9 Å crystal structure of the C-terminal domain has been determined. Genetic disruption of ct622 expression resulted in a strong bacterial growth defect, which was due to deficiencies in proliferation and in the generation of infectious bacteria. Our results converge to identify CT622 as a secreted protein that plays multiple and crucial roles in the initiation and support of the C. trachomatis growth cycle. They reveal that genetic disruption of a single effector can deeply affect bacterial fitness.
Collapse
Affiliation(s)
- Mathilde M Cossé
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, IL, United States
| | - Lena K Oesterlin
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR 144, Molecular Mechanisms of Intracellular Transport, Paris, France
| | - Béatrice Niragire
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| | - Stéphanie Perrinet
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| | - Gaël A Millot
- Institut Pasteur-Bioinformatics and Biostatistics Hub-C3BI, USR3756 IP Centre National de la Recherche Scientifique, Paris, France
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
33
|
Schwarz PN, Roller L, Kulik A, Wohlleben W, Stegmann E. Engineering metabolic pathways in Amycolatopsis japonicum for the optimization of the precursor supply for heterologous brasilicardin congeners production. Synth Syst Biotechnol 2018; 3:56-63. [PMID: 29911199 PMCID: PMC5884276 DOI: 10.1016/j.synbio.2017.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023] Open
Abstract
The isoprenoid brasilicardin A is a promising immunosuppressant compound with a unique mode of action, high potency and reduced toxicity compared to today's standard drugs. However, production of brasilicardin has been hampered since the producer strain Nocardia terpenica IFM0406 synthesizes brasilicardin in only low amounts and is a biosafety level 2 organism. Previously, we were able to heterologously express the brasilicardin gene cluster in the nocardioform actinomycete Amycolatopsis japonicum. Four brasilicardin congeners, intermediates of the BraA biosynthesis, were produced. Since chemical synthesis of the brasilicardin core structure has remained elusive we intended to produce high amounts of the brasilicardin backbone for semi synthesis and derivatization. Therefore, we used a metabolic engineering approach to increase heterologous production of brasilicardin in A. japonicum. Simultaneous heterologous expression of genes encoding the MVA pathway and expression of diterpenoid specific prenyltransferases were used to increase the provision of the isoprenoid precursor isopentenyl diphosphate (IPP) and to channel the precursor into the direction of diterpenoid biosynthesis. Both approaches contributed to an elevated heterologous production of the brasilicardin backbone, which can now be used as a starting point for semi synthesis of new brasilicardin congeners with better properties.
Collapse
Key Words
- 3HBA, 3-hydroxy-benzoate
- Aact, acetoacetyl CoA thiolase
- BraA, brasilicardin A
- BraB, brasilicardin B
- BraC, brasilicardin C
- BraC-agl, brasilicardin C aglycon
- BraD, brasilicardin D
- BraD-agl, brasilicardin D aglycon
- DMAPP, dimethylallyl diphosphate
- FPP, farnesyl diphosphate
- Fpps, farnesyl diphosphate synthase
- GGPP, geranylgeranyl diphosphate
- GPP, geranyl diphosphate
- Ggpps, geranylgeranyl diphosphate synthase
- GlcNAc, N-acetylglucosamine
- Gpps, geranyl diphosphate synthase
- IPP, isopentenyl diphosphate
- Idi, isopentenyl diphosphate synthase
- Isoprenoids
- MEP, Methylerythritol 4-phosphate
- MVA, mevalonate
- Mevalonate pathway
- Norcardia terpenica IFM0406
- Prenyltransferases
Collapse
Affiliation(s)
- Paul N Schwarz
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Luisa Roller
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Kulik
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Evi Stegmann
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls University Tübingen, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Reddy VA, Wang Q, Dhar N, Kumar N, Venkatesh PN, Rajan C, Panicker D, Sridhar V, Mao HZ, Sarojam R. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU). PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1105-1119. [PMID: 28160379 PMCID: PMC5552485 DOI: 10.1111/pbi.12701] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/15/2017] [Accepted: 01/27/2017] [Indexed: 05/13/2023]
Abstract
Many aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it. Analysis of MsMYB-RNAi transgenic lines showed increased levels of monoterpenes, and MsMYB-overexpressing lines exhibited decreased levels of monoterpenes. These results suggest that MsMYB is a novel negative regulator of monoterpene biosynthesis. Ectopic expression of MsMYB, in sweet basil and tobacco, perturbed sesquiterpene- and diterpene-derived metabolite production. In addition, we found that MsMYB binds to cis-elements of MsGPPS.LSU and suppresses its expression. Phylogenetic analysis placed MsMYB in subgroup 7 of R2R3-MYBs whose members govern phenylpropanoid pathway and are regulated by miR858. Analysis of transgenic lines showed that MsMYB is more specific to terpene biosynthesis as it did not affect metabolites derived from phenylpropanoid pathway. Further, our results indicate that MsMYB is probably not regulated by miR858, like other members of subgroup 7.
Collapse
Affiliation(s)
- Vaishnavi Amarr Reddy
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qian Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Niha Dhar
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nadimuthu Kumar
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | | | - Chakravarthy Rajan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Deepa Panicker
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Vishweshwaran Sridhar
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Hui-Zhu Mao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
35
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
36
|
The type II isopentenyl Diphosphate:Dimethylallyl diphosphate isomerase (IDI-2): A model for acid/base chemistry in flavoenzyme catalysis. Arch Biochem Biophys 2017; 632:47-58. [PMID: 28577910 DOI: 10.1016/j.abb.2017.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 11/21/2022]
Abstract
The chemical versatility of the flavin coenzyme is nearly unparalleled in enzyme catalysis. An interesting illustration of this versatility can be found in the reaction catalyzed by the type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) - an enzyme that interconverts the two essential isoprene units (isopentenyl pyrophosphate and dimethylallyl pyrophosphate) that are needed to initiate the biosynthesis of all isoprenoids. Over the past decade, a variety of biochemical, spectroscopic, structural and mechanistic studies of IDI-2 have provided mounting evidence that the flavin coenzyme of IDI-2 acts in a most unusual manner - as an acid/base catalyst to mediate a 1,3-proton addition/elimination reaction. While not entirely without precedent, IDI-2 is by far the most extensively studied flavoenzyme that employs flavin-mediated acid/base catalysis. Thus, IDI-2 serves as an important mechanistic model for understanding this often overlooked, but potentially widespread reactivity of flavin coenzymes. This review details the most pertinent studies that have contributed to the development of mechanistic proposals for this highly unusual flavoenzyme, and discusses future experiments that may be able to clarify remaining uncertainties in the chemical mechanism of IDI-2.
Collapse
|
37
|
Bian G, Han Y, Hou A, Yuan Y, Liu X, Deng Z, Liu T. Releasing the potential power of terpene synthases by a robust precursor supply platform. Metab Eng 2017; 42:1-8. [PMID: 28438645 DOI: 10.1016/j.ymben.2017.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 12/15/2022]
Abstract
Terpenoids represent the largest family of natural products. Their structural diversity is largely due to variable skeletons generated by terpene synthases. However, terpene skeletons found in nature are much more than those generated from known terpene synthases. Most promiscuous terpene synthases (i.e. those that can generate more than one product) have not been comprehensively characterised. Here, we first demonstrated that the promiscuous terpene synthases can produce more variable terpenoids in vivo by converting precursor polyisoprenoid diphosphates of different lengths (C10, C15, C20, C25). To release the synthetic potential of these enzymes, we integrated the engineered MVA pathway, combinatorial biosynthesis, and point mutagenesis to depict the comprehensive product profiles. In total, eight new terpenoids were characterised by NMR and three new skeletons were revealed. This work highlights the key role of metabolic engineering for natural product discovery.
Collapse
Affiliation(s)
- Guangkai Bian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | - Yichao Han
- J1 Biotech Co., Ltd., Wuhan 430075, PR China
| | - Anwei Hou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | - Yujie Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | - Xinhua Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, PR China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, PR China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, PR China.
| |
Collapse
|
38
|
Eichler J, Guan Z. Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:589-599. [PMID: 28330764 DOI: 10.1016/j.bbalip.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/28/2022]
Abstract
N-glycosylation, a post-translational modification whereby glycans are covalently linked to select Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be distinguished on the basis of their length, degree of saturation and by other traits. As is true for many facets of their biology, Archaea, best known in their capacity as extremophiles, present unique approaches for synthesizing phosphodolichols. At the same time, general insight into the assembly and processing of glycan-bearing phosphodolichols has come from studies of the archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol biology are addressed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
39
|
Hou Q, Wang K, Xu F, Zhang W, Ji K, Liu Y. QM/MM studies of the type II isopentenyl diphosphate–dimethylallyl diphosphate isomerase demonstrate a novel role for the flavin coenzyme. RSC Adv 2017. [DOI: 10.1039/c6ra26397f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP).
Collapse
Affiliation(s)
- Qianqian Hou
- Shandong Non-Metallic Materials Institute
- Jinan
- China
| | - Kang Wang
- Shandong Non-Metallic Materials Institute
- Jinan
- China
| | - Feng Xu
- Shandong Non-Metallic Materials Institute
- Jinan
- China
| | | | - Kejian Ji
- Shandong Non-Metallic Materials Institute
- Jinan
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| |
Collapse
|
40
|
Yang Y, Ke N, Liu S, Li W. Methods for Structural and Functional Analyses of Intramembrane Prenyltransferases in the UbiA Superfamily. Methods Enzymol 2016; 584:309-347. [PMID: 28065269 DOI: 10.1016/bs.mie.2016.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The UbiA superfamily is a group of intramembrane prenyltransferases that generate lipophilic compounds essential in biological membranes. These compounds, which include various quinones, hemes, chlorophylls, and vitamin E, participate in electron transport and function as antioxidants, as well as acting as structural lipids of microbial cell walls and membranes. Prenyltransferases producing these compounds are involved in important physiological processes and human diseases. These UbiA superfamily members differ significantly in their enzymatic activities and substrate selectivities. This chapter describes examples of methods that can be used to group these intramembrane enzymes, analyze their activity, and screen and crystallize homolog proteins for structure determination. Recent structures of two archaeal homologs are compared with structures of soluble prenyltransferases to show distinct mechanisms used by the UbiA superfamily to control enzymatic activity in membranes.
Collapse
Affiliation(s)
- Y Yang
- Washington University School of Medicine, St. Louis, MO, United States
| | - N Ke
- New England Biolabs, Ipswich, MA, United States
| | - S Liu
- Washington University School of Medicine, St. Louis, MO, United States
| | - W Li
- Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
41
|
Yan ZF, Lin P, Tian FH, Kook M, Yi TH, Li CT. Molecular characteristics and extracellular expression analysis of farnesyl pyrophosphate synthetase gene in Inonotus obliquus. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0348-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Basak A, Chakrabarty K, Ghosh A, Das GK. DFT study on the mechanism of 1,3-hydrogen disposition in Isopentenyl pyrophosphate catalyzed by Isopentenyl pyrophosphate: Dimethylallyl pyrophosphate isomerase. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biosynthesis of polyterpenoid and related molecules are largely accomplished via mevalonate pathway. One of the vital steps in this pathway is the inter-conversion of two intermediates isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) catalyzed by IPP:DMAPP isomerase (IDI). The crystal structure of the enzyme, bound to the substrate analogues and inhibitors, revealed possible mechanism of this inter-conversion; however, none of them could affirm the true nature of the transition state through which the process is taking place. Our DFT study on the pathway of this isomerization reaction at the active site of the enzyme suggests a favorable concerted mechanism that occurs through a single transition structure without generating any carbocation intermediate. In this mechanism, the Cys-67 residue acts as proton donor whereas Glu-116 acts as proton acceptor. The mechanism also reveals the active involvement of other two components present at the active site. A crystallographic water molecule (Wat508) and Glu-87 assist to reprotonate the conjugate base of cysteine residue through a proton shuttle mechanism while forming the transition structure of the isomerization reaction.
Collapse
Affiliation(s)
- Atanu Basak
- Department of Chemistry, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | - Kuheli Chakrabarty
- Department of Chemistry, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | - Animesh Ghosh
- Department of Chemistry, Visva-Bharati, Santiniketan-731235, West Bengal, India
| | - Gourab Kanti Das
- Department of Chemistry, Visva-Bharati, Santiniketan-731235, West Bengal, India
| |
Collapse
|
43
|
Rodriguez JB, Falcone BN, Szajnman SH. Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Expert Opin Drug Discov 2016; 11:307-20. [DOI: 10.1517/17460441.2016.1143814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
|
45
|
Liu M, Lu S. Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering. FRONTIERS IN PLANT SCIENCE 2016; 7:1898. [PMID: 28018418 PMCID: PMC5159609 DOI: 10.3389/fpls.2016.01898] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/30/2016] [Indexed: 05/04/2023]
Abstract
Plastoquinone (PQ) and ubiquinone (UQ) are two important prenylquinones, functioning as electron transporters in the electron transport chain of oxygenic photosynthesis and the aerobic respiratory chain, respectively, and play indispensable roles in plant growth and development through participating in the biosynthesis and metabolism of important chemical compounds, acting as antioxidants, being involved in plant response to stress, and regulating gene expression and cell signal transduction. UQ, particularly UQ10, has also been widely used in people's life. It is effective in treating cardiovascular diseases, chronic gingivitis and periodontitis, and shows favorable impact on cancer treatment and human reproductive health. PQ and UQ are made up of an active benzoquinone ring attached to a polyisoprenoid side chain. Biosynthesis of PQ and UQ is very complicated with more than thirty five enzymes involved. Their synthetic pathways can be generally divided into two stages. The first stage leads to the biosynthesis of precursors of benzene quinone ring and prenyl side chain. The benzene quinone ring for UQ is synthesized from tyrosine or phenylalanine, whereas the ring for PQ is derived from tyrosine. The prenyl side chains of PQ and UQ are derived from glyceraldehyde 3-phosphate and pyruvate through the 2-C-methyl-D-erythritol 4-phosphate pathway and/or acetyl-CoA and acetoacetyl-CoA through the mevalonate pathway. The second stage includes the condensation of ring and side chain and subsequent modification. Homogentisate solanesyltransferase, 4-hydroxybenzoate polyprenyl diphosphate transferase and a series of benzene quinone ring modification enzymes are involved in this stage. PQ exists in plants, while UQ widely presents in plants, animals and microbes. Many enzymes and their encoding genes involved in PQ and UQ biosynthesis have been intensively studied recently. Metabolic engineering of UQ10 in plants, such as rice and tobacco, has also been tested. In this review, we summarize and discuss recent research progresses in the biosynthetic pathways of PQ and UQ and enzymes and their encoding genes involved in side chain elongation and in the second stage of PQ and UQ biosynthesis. Physiological functions of PQ and UQ played in plants as well as the practical application and metabolic engineering of PQ and UQ are also included.
Collapse
|
46
|
Liu Z, Zhou J, Wu R, Xu J. Mechanism of Assembling Isoprenoid Building Blocks 1. Elucidation of the Structural Motifs for Substrate Binding in Geranyl Pyrophosphate Synthase. J Chem Theory Comput 2015; 10:5057-67. [PMID: 26584386 DOI: 10.1021/ct500607n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenes (isoprenoids) represent the most functionally and structurally diverse group of natural products. Terpenes are assembled from two building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP or DPP), by prenyltransferases (PTSs). Geranyl pyrophosphate synthase (GPPS) is the enzyme that assembles DPP and IPP in the first step of chain elongation during isoprenoid biosynthesis. The mechanism by which GPPS assembles the terpene precursor remains unknown; elucidating this mechanism will help in development of new technology to generate novel natural product-like scaffolds. With classic and QM/MM MD simulations, an "open-closed" conformation change of the catalytic pocket was observed in the GPPS active site at its large subunit (LSU), and a critical salt bridge between Asp91(in loop 1) and Lys239(in loop 2) was identified. The salt bridge is responsible for opening or closing the catalytic pocket. Meanwhile, the small subunit (SSU) regulates the size and shape of the hydrophobic pocket to flexibly host substrates with different shapes and sizes (DPP/GPP/FPP, C5/C10/C15). Further QM/MM MD simulations were carried out to explore the binding modes for the different substrates catalyzed by GPPS. Our simulations suggest that the key residues (Asp91, Lys239, and Gln156) are good candidates for site-directed mutagenesis and may help in protein engineering.
Collapse
Affiliation(s)
- Zhihong Liu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| | - Jingwei Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| | - Ruibo Wu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| |
Collapse
|
47
|
Rivera-Perez C, Nyati P, Noriega FG. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 64:44-50. [PMID: 26188328 PMCID: PMC4558305 DOI: 10.1016/j.ibmb.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/09/2015] [Accepted: 07/09/2015] [Indexed: 05/09/2023]
Abstract
Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg(2+) ions lead to the production of FPP, while the presence of Co(2+) ions lead to geranyl diphosphate (GPP) production. In the presence of Mg(2+) the AaFPPS affinity for allylic substrates is GPP > DMAPP > IPP. These results suggest that AaFPPS displays "catalytic promiscuity", changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways.
Collapse
Affiliation(s)
| | - Pratik Nyati
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
48
|
Zhou J, Wang X, Kuang M, Wang L, Luo HB, Mo Y, Wu R. Protonation-Triggered Carbon-Chain Elongation in Geranyl Pyrophosphate Synthase (GPPS). ACS Catal 2015. [DOI: 10.1021/acscatal.5b00947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaoming Wang
- Program in Public Health, College of Healthy Sciences, University of California—Irvine, Irvine, California 92697,United States
| | - Ming Kuang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Laiyou Wang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
49
|
Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM. Biosynthesis of essential oils in aromatic plants: A review. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1057841] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Srivastava PL, Daramwar PP, Krithika R, Pandreka A, Shankar SS, Thulasiram HV. Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album. Sci Rep 2015; 5:10095. [PMID: 25976282 PMCID: PMC4432371 DOI: 10.1038/srep10095] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022] Open
Abstract
Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.
Collapse
Affiliation(s)
- Prabhakar Lal Srivastava
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Pankaj P Daramwar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Ramakrishnan Krithika
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Avinash Pandreka
- 1] Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008 [2] CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi. 110007
| | - S Shiva Shankar
- Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008
| | - Hirekodathakallu V Thulasiram
- 1] Chemical Biology Unit, Division of Organic Chemistry, CSIR- National Chemical Laboratory, Dr. Homi Bhabha Road, Pune. 411008 [2] CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi. 110007
| |
Collapse
|