1
|
Wenzel CL, Holloway DM, Mattsson J. The Effects of Auxin Transport Inhibition on the Formation of Various Leaf and Vein Patterns. PLANTS (BASEL, SWITZERLAND) 2024; 13:2566. [PMID: 39339541 PMCID: PMC11434698 DOI: 10.3390/plants13182566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Polar auxin transport (PAT) is a known component controlling leaf complexity and venation patterns in some model plant species. Evidence indicates that PAT generates auxin converge points (CPs) that in turn lead to local leaf formation and internally into major vein formation. However, the role of PAT in more diverse leaf arrangements and vein patterns is largely unknown. We used the pharmacological inhibition of PAT in developing pinnate tomato, trifoliate clover, palmate lupin, and bipinnate carrot leaves and observed dosage-dependent reduction to simple leaves in these eudicots. Leaf venation patterns changed from craspedodromous (clover, carrot), semi-craspedodromous (tomato), and brochidodromous (lupin) to more parallel patterning with PAT inhibition. The visualization of auxin responses in transgenic tomato plants showed that discrete and separate CPs in control plants were replaced by diffuse convergence areas near the margin. These effects indicate that PAT plays a universal role in the formation of different leaf and vein patterns in eudicot species via a mechanism that depends on the generation as well as the separation of auxin CPs. Computer simulations indicate that variations in PAT can alter the number of CPs, corresponding leaf lobe formation, and the position of major leaf veins along the leaf margin in support of experimental results.
Collapse
Affiliation(s)
- Carol L Wenzel
- Biotechnology Department, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G 3H2, Canada
| | - David M Holloway
- Mathematics Department, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G 3H2, Canada
| | - Jim Mattsson
- Biology Department, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1G3, Canada
| |
Collapse
|
2
|
Jia J, Qu G, Jia P, Li D, Yao Y. The contest between artificial management and natural environment determines the adaptive strategies of leaf morphogenesis in Sabina chinensis. TREE PHYSIOLOGY 2024; 44:tpae060. [PMID: 38832722 DOI: 10.1093/treephys/tpae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Sabina chinensis is a typically heteromorphic leaf evergreen tree worldwide with both ornamental and ecological value. However, the shaping mechanism of heteromorphic leaves of S. chinensis and its adaptability to environment are important factors determining its morphology. The morphological change of S. chinensis under different habitats (tree around) and treatments (light, pruning and nutrients) was investigated. Our findings suggested that the prickle leaves proportion was associated with low light intensity and soil nutrient scarcity. Stems and leaves are pruned together to form clusters of large prickle leaves, while only pruning leaves often form alternately growing small prickle leaves and scale leaves, and the length of the prickle leaves is between 0.5 cm and 1 cm. The gene expression of prickle leaves is higher than that of scale leaves under adverse environmental conditions, and the gene expression correlations between small prickle leaf and scale leaf were the highest. Homologous and heterologous mutants of gene structure in prickle leaves were larger than those in scale leaves. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that phenylpropanone and flavonoid biosynthesis were common enrichment pathways, and that the enrichment genes were mainly related to metabolism, genetic information processing and organismal systems. Therefore, we concluded that the occurrence of the heteromorphic leaf phenomenon was related to the changes in photosynthesis, mechanical damage and nutrient supplementation. The organic matter in the S. chinensis prickle leaves was reduced under environmental stresses, and it will be allocated to the expression of prickle leaf or protective cuticles formation.
Collapse
Affiliation(s)
- Jing Jia
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
| | - Guojuan Qu
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
| | - Peng Jia
- National Marine Environmental Monitoring Center, Linghe Street 42, Shahekou district, Dalian 116023, China
| | - Dezhi Li
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
- Key Laboratory of Urbanization and Ecological Restoration of Shanghai, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), Cuiniao Road 20, Chongming district, Shanghai 202162, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Zhongshan Road 3633, Zhongbei district, Shanghai 200062, China
| | - Yifei Yao
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
| |
Collapse
|
3
|
Yu Q, Ge L, Ahmad S, Luo D, Li X. A perspective on the molecular mechanism in the control of organ internal (IN) asymmetry during petal development. HORTICULTURE RESEARCH 2022; 9:uhac202. [PMID: 36349080 PMCID: PMC9634759 DOI: 10.1093/hr/uhac202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Floral zygomorphy (monosymmetry) is a key innovation in flowering plants and is related to the coevolution of plants and their animal pollinators. The molecular basis underlying floral zygomorphy has been analysed, and two regulatory pathways have been identified: one determines the dorsoventral (DV) asymmetry along the floral plan, and the other controls organ internal (IN) asymmetry during petal development. While strides have been made to understand the molecular mechanism controlling DV asymmetry, which mainly involves an interplay between TCP and MYB transcription factors, the molecular pathway regulating IN asymmetry remains largely unknown. In this review, we discuss what is known about regulators and the molecular pathway regulating IN asymmetry. Our analysis revealed that the regulation of IN asymmetry occurs at the cellular, tissue, and organ genesis levels during petal development and that the regulatory mechanism is likely integrated into different developmental paths, such as floral and root nodule development. Although the molecular regulation of IN asymmetry is not be a linear path, a key hub for the regulatory network could be vascular patterning during petal organogenesis.
Collapse
Affiliation(s)
- Qianxia Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Sagheer Ahmad
- Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Da Luo
- Corresponding authors. E-mails: ;
| | - Xin Li
- Corresponding authors. E-mails: ;
| |
Collapse
|
4
|
Braun DM. Phloem Loading and Unloading of Sucrose: What a Long, Strange Trip from Source to Sink. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:553-584. [PMID: 35171647 DOI: 10.1146/annurev-arplant-070721-083240] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sucrose is transported from sources (mature leaves) to sinks (importing tissues such as roots, stems, fruits, and seeds) through the phloem tissues in veins. In many herbaceous crop species, sucrose must first be effluxed to the cell wall by a sugar transporter of the SWEET family prior to being taken up into phloem companion cells or sieve elements by a different sugar transporter, called SUT or SUC. The import of sucrose into these cells is termed apoplasmic phloem loading. In sinks, sucrose can similarly exit the phloem apoplasmically or, alternatively, symplasmically through plasmodesmata into connecting parenchyma storage cells. Recent advances describing the regulation and manipulation of sugar transporter expression and activities provide stimulating new insights into sucrose phloem loading in sources and unloading processes in sink tissues. Additionally, new breakthroughs have revealed distinct subpopulations of cells in leaves with different functions pertaining to phloem loading. These and other discoveries in sucrose transport are discussed.
Collapse
Affiliation(s)
- David M Braun
- Division of Plant Science and Technology, Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri-Columbia, Columbia, Missouri, USA;
| |
Collapse
|
5
|
Robil JM, Gao K, Neighbors CM, Boeding M, Carland FM, Bunyak F, McSteen P. grasviq: an image analysis framework for automatically quantifying vein number and morphology in grass leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:629-648. [PMID: 33914380 DOI: 10.1111/tpj.15299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Beyond facilitating transport and providing mechanical support to the leaf, veins have important roles in the performance and productivity of plants and the ecosystem. In recent decades, computational image analysis has accelerated the extraction and quantification of vein traits, benefiting fields of research from agriculture to climatology. However, most of the existing leaf vein image analysis programs have been developed for the reticulate venation found in dicots. Despite the agroeconomic importance of cereal grass crops, like Oryza sativa (rice) and Zea mays (maize), a dedicated image analysis program for the parallel venation found in monocots has yet to be developed. To address the need for an image-based vein phenotyping tool for model and agronomic grass species, we developed the grass vein image quantification (grasviq) framework. Designed specifically for parallel venation, this framework automatically segments and quantifies vein patterns from images of cleared leaf pieces using classical computer vision techniques. Using image data sets from maize inbred lines and auxin biosynthesis and transport mutants in maize, we demonstrate the utility of grasviq for quantifying important vein traits, including vein density, vein width and interveinal distance. Furthermore, we show that the framework can resolve quantitative differences and identify vein patterning defects, which is advantageous for genetic experiments and mutant screens. We report that grasviq can perform high-throughput vein quantification, with precision on a par with that of manual quantification. Therefore, we envision that grasviq will be adopted for vein phenomics in maize and other grass species.
Collapse
Affiliation(s)
- Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Ke Gao
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Claire M Neighbors
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Michael Boeding
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Francine M Carland
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520, USA
| | - Filiz Bunyak
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
6
|
Bhatia N, Runions A, Tsiantis M. Leaf Shape Diversity: From Genetic Modules to Computational Models. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:325-356. [PMID: 34143649 DOI: 10.1146/annurev-arplant-080720-101613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant leaves display considerable variation in shape. Here, we introduce key aspects of leaf development, focusing on the morphogenetic basis of leaf shape diversity. We discuss the importance of the genetic control of the amount, duration, and direction of cellular growth for the emergence of leaf form. We highlight how the combined use of live imaging and computational frameworks can help conceptualize how regulated cellular growth is translated into different leaf shapes. In particular, we focus on the morphogenetic differences between simple and complex leaves and how carnivorous plants form three-dimensional insect traps. We discuss how evolution has shaped leaf diversity in the case of complex leaves, by tinkering with organ-wide growth and local growth repression, and in carnivorous plants, by modifying the relative growth of the lower and upper sides of the leaf primordium to create insect-digesting traps.
Collapse
Affiliation(s)
- Neha Bhatia
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
- Current affiliation: Department of Computer Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany;
| |
Collapse
|
7
|
Lavania D, Linh NM, Scarpella E. Of Cells, Strands, and Networks: Auxin and the Patterned Formation of the Vascular System. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039958. [PMID: 33431582 DOI: 10.1101/cshperspect.a039958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Throughout plant development, vascular cells continually form from within a population of seemingly equivalent cells. Vascular cells connect end to end to form continuous strands, and vascular strands connect at both or either end to form networks of exquisite complexity and mesmerizing beauty. Here we argue that experimental evidence gained over the past few decades implicates the plant hormone auxin-its production, transport, perception, and response-in all the steps that lead to the patterned formation of the plant vascular system, from the formation of vascular cells to their connection into vascular networks. We emphasize the organizing principles of the cell- and tissue-patterning process, rather than its molecular subtleties. In the picture that emerges, cells compete for an auxin-dependent, cell-polarizing signal; positive feedback between cell polarization and cell-to-cell movement of the polarizing signal leads to gradual selection of cell files; and selected cell files differentiate into vascular strands that drain the polarizing signal from the neighboring cells. Although the logic of the patterning process has become increasingly clear, the molecular details remain blurry; the future challenge will be to bring them into razor-sharp focus.
Collapse
Affiliation(s)
- Dhruv Lavania
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
8
|
Sakai K, Citerne S, Antelme S, Le Bris P, Daniel S, Bouder A, D'Orlando A, Cartwright A, Tellier F, Pateyron S, Delannoy E, Laudencia-Chingcuanco D, Mouille G, Palauqui JC, Vogel J, Sibout R. BdERECTA controls vasculature patterning and phloem-xylem organization in Brachypodium distachyon. BMC PLANT BIOLOGY 2021; 21:196. [PMID: 33892630 PMCID: PMC8067424 DOI: 10.1186/s12870-021-02970-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/07/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The vascular system of plants consists of two main tissue types, xylem and phloem. These tissues are organized into vascular bundles that are arranged into a complex network running through the plant that is essential for the viability of land plants. Despite their obvious importance, the genes involved in the organization of vascular tissues remain poorly understood in grasses. RESULTS We studied in detail the vascular network in stems from the model grass Brachypodium distachyon (Brachypodium) and identified a large set of genes differentially expressed in vascular bundles versus parenchyma tissues. To decipher the underlying molecular mechanisms of vascularization in grasses, we conducted a forward genetic screen for abnormal vasculature. We identified a mutation that severely affected the organization of vascular tissues. This mutant displayed defects in anastomosis of the vascular network and uncommon amphivasal vascular bundles. The causal mutation is a premature stop codon in ERECTA, a LRR receptor-like serine/threonine-protein kinase. Mutations in this gene are pleiotropic indicating that it serves multiple roles during plant development. This mutant also displayed changes in cell wall composition, gene expression and hormone homeostasis. CONCLUSION In summary, ERECTA has a pleiotropic role in Brachypodium. We propose a major role of ERECTA in vasculature anastomosis and vascular tissue organization in Brachypodium.
Collapse
Affiliation(s)
- Kaori Sakai
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Sébastien Antelme
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Philippe Le Bris
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | | | | | | | - Amy Cartwright
- United States Department of Energy Joint Genome Institute, Berkeley, California, 94598, USA
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | | - Gregory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Jean Christophe Palauqui
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - John Vogel
- United States Department of Energy Joint Genome Institute, Berkeley, California, 94598, USA
- University of California, Berkeley, CA, USA
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
- INRAE, UR BIA, F-44316, Nantes, France.
| |
Collapse
|
9
|
Li Y, Zheng Y, Ratkowsky DA, Wei H, Shi P. Application of an Ovate Leaf Shape Model to Evaluate Leaf Bilateral Asymmetry and Calculate Lamina Centroid Location. FRONTIERS IN PLANT SCIENCE 2021; 12:822907. [PMID: 35111188 PMCID: PMC8801803 DOI: 10.3389/fpls.2021.822907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 05/21/2023]
Abstract
Leaf shape is an important leaf trait, with ovate leaves common in many floras. Recently, a new leaf shape model (referred to as the MLRF equation) derived from temperature-dependent bacterial growth was proposed and demonstrated to be valid in describing leaf boundaries of many species with ovate leaf shape. The MLRF model's parameters can provide valuable information of leaf shape, including the ratio of lamina width to length and the lamina centroid location on the lamina length axis. However, the model wasn't tested on a large sample of a single species, thereby limiting its overall evaluation for describing leaf boundaries, for evaluating lamina bilateral asymmetry and for calculating lamina centroid location. In this study, we further test the model using data from two Lauraceae species, Cinnamomum camphora and Machilus leptophylla, with >290 leaves for each species. The equation was found to be credible for describing those shapes, with all adjusted root-mean-square errors (RMSE) smaller than 0.05, indicating that the mean absolute deviation is smaller than 5% of the radius of an assumed circle whose area equals lamina area. It was also found that the larger the extent of lamina asymmetry, the larger the adjusted RMSE, with approximately 50% of unexplained variation by the model accounted for by the lamina asymmetry, implying that this model can help to quantify the leaf bilateral asymmetry in future studies. In addition, there was a significant difference between the two species in their centroid ratio, i.e., the distance from leaf petiole to the point on the lamina length axis associated with leaf maximum width to the leaf maximum length. It was found that a higher centroid ratio does not necessarily lead to a greater investment of mass to leaf petiole relative to lamina, which might depend on the petiole pattern.
Collapse
Affiliation(s)
- Yirong Li
- Bamboo Research Institution, College of Science, Nanjing Forestry University, Nanjing, China
| | - Yiwen Zheng
- Bamboo Research Institution, College of Science, Nanjing Forestry University, Nanjing, China
| | - David A. Ratkowsky
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Hailin Wei
- Hunan Academy of Forestry, Changsha, China
- *Correspondence: Hailin Wei,
| | - Peijian Shi
- Bamboo Research Institution, College of Science, Nanjing Forestry University, Nanjing, China
- *Correspondence: Hailin Wei,
| |
Collapse
|
10
|
Wang H, Niu H, Li C, Shen G, Liu X, Weng Y, Wu T, Li Z. WUSCHEL-related homeobox1 (WOX1) regulates vein patterning and leaf size in Cucumis sativus. HORTICULTURE RESEARCH 2020; 7:182. [PMID: 33328463 PMCID: PMC7603520 DOI: 10.1038/s41438-020-00404-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/24/2023]
Abstract
In plants, WUSCHEL-related homeobox1 (WOX1) homologs promote lamina mediolateral outgrowth. However, the downstream components linking WOX1 and lamina development remain unclear. In this study, we revealed the roles of WOX1 in palmate leaf expansion in cucumber (Cucumis sativus). A cucumber mango fruit (mf) mutant, resulting from truncation of a WOX1-type protein (CsWOX1), displayed abnormal lamina growth and defects in the development of secondary and smaller veins. CsWOX1 was expressed in the middle mesophyll and leaf margins and rescued defects of the Arabidopsis wox1 prs double mutant. Transcriptomic analysis revealed that genes involved in auxin polar transport and auxin response were highly associated with leaf development. Analysis of the cucumber mf rl (round leaf) double mutant revealed that CsWOX1 functioned in vein development via PINOID (CsPID1)-controlled auxin transport. Overexpression of CsWOX1 in cucumber (CsWOX1-OE) affected vein patterning and produced 'butterfly-shaped' leaves. CsWOX1 physically interacted with CsTCP4a, which may account for the abnormal lamina development in the mf mutant line and the smaller leaves in the CsWOX1-OE plants. Our findings demonstrated that CsWOX1 regulates cucumber leaf vein development by modulating auxin polar transport; moreover, CsWOX1 regulates leaf size by controlling CIN-TCP genes.
Collapse
Affiliation(s)
- Hu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huanhuan Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guoyan Shen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaofeng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Abstract
Abstract
Background
Organisms show an incredibly diverse array of body and organ shapes that are both unique to their taxon and important for adapting to their environment. Achieving these specific shapes involves coordinating the many processes that transform single cells into complex organs, and regulating their growth so that they can function within a fully-formed body.
Main text
Conceptually, body and organ shape can be separated in two categories, although in practice these categories need not be mutually exclusive. Body shape results from the extent to which organs, or parts of organs, grow relative to each other. The patterns of relative organ size are characterized using allometry. Organ shape, on the other hand, is defined as the geometric features of an organ’s component parts excluding its size. Characterization of organ shape is frequently described by the relative position of homologous features, known as landmarks, distributed throughout the organ. These descriptions fall into the domain of geometric morphometrics.
Conclusion
In this review, we discuss the methods of characterizing body and organ shape, the developmental programs thought to underlie each, highlight when and how the mechanisms regulating body and organ shape might overlap, and provide our perspective on future avenues of research.
Collapse
|
12
|
Devers EA, Brosnan CA, Sarazin A, Albertini D, Amsler AC, Brioudes F, Jullien PE, Lim P, Schott G, Voinnet O. Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference. NATURE PLANTS 2020; 6:789-799. [PMID: 32632272 DOI: 10.1038/s41477-020-0687-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/06/2020] [Indexed: 05/19/2023]
Abstract
In RNA interference (RNAi), the RNase III Dicer processes long double-stranded RNA (dsRNA) into short interfering RNA (siRNA), which, when loaded into ARGONAUTE (AGO) family proteins, execute gene silencing1. Remarkably, RNAi can act non-cell autonomously2,3: it is graft transmissible4-7, and plasmodesmata-associated proteins modulate its cell-to-cell spread8,9. Nonetheless, the molecular mechanisms involved remain ill defined, probably reflecting a disparity of experimental settings. Among other caveats, these almost invariably cause artificially enhanced movement via transitivity, whereby primary RNAi-target transcripts are converted into further dsRNA sources of secondary siRNA5,10,11. Whether siRNA mobility naturally requires transitivity and whether it entails the same or distinct signals for cell-to-cell versus long-distance movement remains unclear, as does the identity of the mobile signalling molecules themselves. Movement of long single-stranded RNA, dsRNA, free/AGO-bound secondary siRNA or primary siRNA have all been advocated12-15; however, an entity necessary and sufficient for all known manifestations of plant mobile RNAi remains to be ascertained. Here, we show that the same primary RNAi signal endows both vasculature-to-epidermis and long-distance silencing movement from three distinct RNAi sources. The mobile entities are AGO-free primary siRNA duplexes spreading length and sequence independently. However, their movement is accompanied by selective siRNA depletion reflecting the AGO repertoires of traversed cell types. Coupling movement with this AGO-mediated consumption process creates qualitatively distinct silencing territories, potentially enabling unlimited spatial gene regulation patterns well beyond those granted by mere gradients.
Collapse
Affiliation(s)
| | - Christopher A Brosnan
- Department of Biology, ETH Zürich, Zurich, Switzerland
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | | | | | | | | | - Pauline E Jullien
- Department of Biology, ETH Zürich, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Peiqi Lim
- Department of Biology, ETH Zürich, Zurich, Switzerland
- QIAGEN Singapore, Singapore, Singapore
| | | | | |
Collapse
|
13
|
Rowland SD, Zumstein K, Nakayama H, Cheng Z, Flores AM, Chitwood DH, Maloof JN, Sinha NR. Leaf shape is a predictor of fruit quality and cultivar performance in tomato. THE NEW PHYTOLOGIST 2020; 226:851-865. [PMID: 31880321 PMCID: PMC7187315 DOI: 10.1111/nph.16403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/14/2019] [Indexed: 05/04/2023]
Abstract
Commercial tomato (Solanum lycopersicum) is one of the most widely grown vegetable crops worldwide. Heirloom tomatoes retain extensive genetic diversity and a considerable range of fruit quality and leaf morphological traits. Here the role of leaf morphology was investigated for its impact on fruit quality. Heirloom cultivars were grown in field conditions, and BRIX by yield (BY) and other traits were measured over a 14-wk period. The complex relationships among these morphological and physiological traits were evaluated using partial least-squares path modeling, and a consensus model was developed. Photosynthesis contributed strongly to vegetative biomass and sugar content of fruits but had a negative impact on yield. Conversely leaf shape, specifically rounder leaves, had a strong positive impact on both fruit sugar content and yield. Cultivars such as Stupice and Glacier, with very round leaves, had the highest performance in both fruit sugar and yield. Our model accurately predicted BY for two commercial cultivars using leaf shape data as input. This study revealed the importance of leaf shape to fruit quality in tomato, with rounder leaves having significantly improved fruit quality. This correlation was maintained across a range of diverse genetic backgrounds and shows the importance of leaf morphology in tomato crop improvement.
Collapse
Affiliation(s)
| | | | - Hokuto Nakayama
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
- Gradute School of ScienceUniversity of TokyoHongo Bunkyo‐kuTokyo113‐0033Japan
| | - Zizhang Cheng
- College of ScienceSichuan Agriculture UniversityYaanSichuan Province625014China
| | - Amber M. Flores
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
| | - Daniel H. Chitwood
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
| | - Neelima R. Sinha
- Department of Plant BiologyUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
14
|
Yan S, Ning K, Wang Z, Liu X, Zhong Y, Ding L, Zi H, Cheng Z, Li X, Shan H, Lv Q, Luo L, Liu R, Yan L, Zhou Z, Lucas WJ, Zhang X. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biol 2020; 18:e3000671. [PMID: 32203514 PMCID: PMC7117775 DOI: 10.1371/journal.pbio.3000671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/02/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.
Collapse
Affiliation(s)
- Shuangshuang Yan
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kang Ning
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Yanting Zhong
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Lian Ding
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Hailing Zi
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Department of Plant Nutrition, the Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qingyang Lv
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Renyi Liu
- College of Horticulture, and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - William John Lucas
- Department of Plant Biology, University of California, Davis, California, United States of America
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Ding L, Zhao K, Zhang X, Song A, Su J, Hu Y, Zhao W, Jiang J, Chen F. Comprehensive characterization of a floral mutant reveals the mechanism of hooked petal morphogenesis in Chrysanthemum morifolium. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2325-2340. [PMID: 31050173 PMCID: PMC6835125 DOI: 10.1111/pbi.13143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 05/17/2023]
Abstract
The diversity of form of the chrysanthemum flower makes this species an ideal model for studying petal morphogenesis, but as yet, the molecular mechanisms underlying petal shape development remain largely unexplored. Here, a floral mutant, which arose as a bud sport in a plant of the variety 'Anastasia Dark Green', and formed straight, rather than hooked petals, was subjected to both comparative morphological analysis and transcriptome profiling. The hooked petals only became discernible during a late stage of flower development. At the late stage of 'Anastasia Dark Green', genes related to chloroplast, hormone metabolism, cell wall and microtubules were active, as were cell division-promoting factors. Auxin concentration was significantly reduced, and a positive regulator of cell expansion was down-regulated. Two types of critical candidates, boundary genes and adaxial-abaxial regulators, were identified from 7937 differentially expressed genes in pairwise comparisons, which were up-regulated at the late stage in 'Anastasia Dark Green' and another two hooked varieties. Ectopic expression of a candidate abaxial gene, CmYAB1, in chrysanthemum led to changes in petal curvature and inflorescence morphology. Our findings provide new insights into the regulatory networks underlying chrysanthemum petal morphogenesis.
Collapse
Affiliation(s)
- Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xue Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yueheng Hu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Wenqian Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of Agriculture and Rural AffairsCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
16
|
Kawai K, Okada N. Leaf vascular architecture in temperate dicotyledons: correlations and link to functional traits. PLANTA 2019; 251:17. [PMID: 31776668 DOI: 10.1007/s00425-019-03295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Using 227 dicotyledonous species in temperate region, we found the relationships among densities of different-order veins, creating diversity of leaf vascular architectures. Dicotyledonous angiosperms commonly possess a hierarchical leaf vascular system, wherein veins of different orders have different functions. Minor vein spacing determines leaf hydraulic efficiency, whereas the major veins provide mechanical support. However, there is limited information on the coordination between these vein orders across species, limiting our understanding of how diversity in vein architecture is arrayed. We aimed to examine the (1) relationships between vein densities at two spatial scales (lower- vs. higher-order veins and among minor veins) and (2) relationships of vein densities with plant functional traits. We studied ten traits related to vein densities and three functional traits (leaf dry mass per area [LMA], leaf longevity [LL], and adult plant height [Hadult]) for 227 phylogenetically diverse plant species that occur in temperate regions and examined the vein-vein and vein-functional traits relationships across species. The densities of lower- and higher-order veins were positively correlated across species. The minor vein density was positively correlated with the densities of both areoles and free-ending veins, and vascular networks with higher minor vein density tended to have a lower ratio of free-ending veins to areoles across species. Neither densities of lower- nor higher-order veins were related to LMA and LL. On the other hand, the densities of veins and areoles tended to be positively correlated with Hadult. These results suggest that densities of different-order veins are developmentally coordinated across dicotyledonous angiosperms and form the independent axis in resource use strategies based on the leaf economics spectrum.
Collapse
Affiliation(s)
- Kiyosada Kawai
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-Ku, Kyoto, 606-8502, Japan.
- Center for Ecological Research, Kyoto University, 509-3 Hirano 2-Chome, Otsu, Shiga, 520-2113, Japan.
| | - Naoki Okada
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Skyo-Ku, 606-8501, Japan
| |
Collapse
|
17
|
Guo W, Zhang X, Peng Q, Luo D, Jiao K, Su S. Love on wings, a Dof family protein regulates floral vasculature in Vigna radiata. BMC PLANT BIOLOGY 2019; 19:495. [PMID: 31726995 PMCID: PMC6854777 DOI: 10.1186/s12870-019-2099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/24/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND The interaction among plants and their pollinators has been a major factor which enriched floral traits known as pollination syndromes and promoted the diversification of flowering plants. One of the bee-pollination syndromes in Faboideae with keel blossoms is the formation of a landing platform by wing and keel petals. However, the molecular mechanisms of elaborating a keel blossom remain unclear. RESULTS By performing large scale mutagenesis, we isolated and characterized a mutant in Vigna radiata, love on wings (low), which shows developmental defects in petal asymmetry and vasculature, leading to a failure in landing platform formation. We cloned the locus through map-based cloning together with RNA-sequencing (RNA-seq) analysis. We found that LOW encoded a nucleus-localized Dof-like protein and was expressed in the flower provascular and vascular tissues. A single copy of LOW was detected in legumes, in contrast with other taxa where there seems to be at least 2 copies. Thirty one Dof proteins have been identified from the V. radiata's genome, which can be further divided into four Major Cluster of Orthologous Groups (MCOGs). We also showed that ectopic expression of LOW in Arabidopsis driven by its native promoter caused changes in petal vasculature pattern. CONCLUSIONS To summarize, our study isolated a legume Dof-like factor LOW from V. radiata, which affects vasculature development in this species and this change can, in turn, impact petal development and overall morphology of keel blossom.
Collapse
Affiliation(s)
- Wuxiu Guo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Xue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Qincheng Peng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Da Luo
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Haizhu district, Guangzhou, 510275 Guangdong China
| | - Keyuan Jiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632 Guangdong China
| | - Shihao Su
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 Japan
| |
Collapse
|
18
|
Li B. Long time behavior of the solution to a parabolic–elliptic system. COMPUTERS & MATHEMATICS WITH APPLICATIONS 2019; 78:3345-3362. [DOI: 10.1016/j.camwa.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Abstract
Leaf surface area (A) and leaf shape have been demonstrated to be closely correlated with photosynthetic rates. The scaling relationship between leaf biomass (both dry weight and fresh weight) and A has been widely studied. However, few studies have focused on the scaling relationship between leaf shape and A. Here, using more than 3600 leaves from 12 Rosaceae species, we examined the relationships of the leaf-shape indices including the left to right side leaf surface area ratio (AR), the ratio of leaf perimeter to leaf surface area (RPA), and the ratio of leaf width to length (RWL) versus A. We also tested whether there is a scaling relationship between leaf dry weight and A, and between PRA and A. There was no significant correlation between AR and A for each of the 12 species. Leaf area was also found to be independent of RWL because leaf width remained proportional to leaf length across the 12 species. However, there was a negative correlation between RPA and A. The scaling relationship between RPA and A held for each species, and the estimated scaling exponent of RPA versus A approached −1/2; the scaling relationship between leaf dry weight and A also held for each species, and 11 out of the 12 estimated scaling exponents of leaf dry weight versus A were greater than unity. Our results indicated that leaf surface area has a strong scaling relationship with leaf perimeter and also with leaf dry weight but has no relationship with leaf symmetry or RWL. Additionally, our results showed that leaf dry weight per unit area, which is usually associated with the photosynthetic capacity of plants, increases with an increasing A because the scaling exponent of leaf dry weight versus A is greater than unity. This suggests that a large leaf surface area requires more dry mass input to support the physical structure of the leaf.
Collapse
|
20
|
A Priori Estimates for a Nonlinear System with Some Essential Symmetrical Structures. Symmetry (Basel) 2019. [DOI: 10.3390/sym11070852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, we are concerned with a nonlinear system containing some essential symmetrical structures (e.g., cross-diffusion) in the two-dimensional setting, which is proposed to model the biological transport networks. We first provide an a priori blow-up criterion of strong solution of the corresponding Cauchy problem. Based on this, we also establish a priori upper bounds to strong solution for all positive times.
Collapse
|
21
|
Kumar D, Kellogg EA. Getting closer: vein density in C 4 leaves. THE NEW PHYTOLOGIST 2019; 221:1260-1267. [PMID: 30368826 DOI: 10.1111/nph.15491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 05/28/2023]
Abstract
Contents Summary 1260 I. Introduction 1260 II. Molecular and genetic mechanisms of C4 leaf venation 1262 III. Conclusions and future perspectives 1266 Acknowledgements 1266 References 1266 SUMMARY: C4 grasses are major contributors to the world's food supply. Their highly efficient method of carbon fixation is a unique adaptation that combines close vein spacing and distinct photosynthetic cell types. Despite its importance, the molecular genetic basis of C4 leaf development is still poorly understood. Here we summarize current knowledge of leaf venation and review recent progress in understanding molecular and genetic regulation of vascular patterning events in C4 plants. Evidence points to the interplay of auxin, brassinosteroids, SHORTROOT/SCARECROW and INDETERMINATE DOMAIN transcription factors. Identification and functional characterization of candidate regulators acting early in vascular development will be essential for further progress in understanding the precise regulation of these processes.
Collapse
Affiliation(s)
- Dhinesh Kumar
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | |
Collapse
|
22
|
Abstract
Plant leaves are differentiated organs that arise sequentially from a population of pluripotent stem cells at the shoot apical meristem (SAM). There is substantial diversity in leaf shape, much of which depends on the size and arrangement of outgrowths at the leaf margin. These outgrowths are generated by a patterning mechanism similar to the phyllotactic processes producing organs at the SAM, which involves the transcription factors CUP-SHAPED COTYLEDON and the phytohormone auxin. In the leaf, this patterning mechanism creates sequential protrusions and indentations along the margin. The size, shape, and distribution of these protrusions also depend on the overall growth of the leaf lamina. Globally, growth is regulated by a complex genetic network controlling the distribution of cell proliferation and the timing of differentiation. Evolutionary changes in margin form arise from changes in two different classes of homeobox genes that modify the outcome of marginal patterning in diverse ways, and are under intense investigation.
Collapse
Affiliation(s)
| | - Adam Runions
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mainak Das Gupta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
23
|
The arrangement of lateral veins along the midvein of leaves is not related to leaf phyllotaxis. Sci Rep 2018; 8:16417. [PMID: 30401940 PMCID: PMC6219558 DOI: 10.1038/s41598-018-34772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Positions of leaves along a stem usually adhere to a genetically determined, species-specific pattern known as a leaf phyllotaxis. We investigated whether the arrangement of lateral secondary veins along primary midveins adhered to a species-specific pattern that resembled an alternate or opposite phyllotaxis. We analyzed the venation of temperate dicotyledonous species from different taxonomic groups and chose 18 woody and 12 herbaceous species that have reticulated leaf venation. The arrangement of the lateral veins was neither alternate nor opposite for any of the species. Lateral vein arrangements were instead mixtures of symmetric and asymmetric patterns. Our results show that lateral vein arrangements are related neither to stem-level leaf phyllotaxis (alternate vs. opposite) nor to life form (woody vs. herbaceous). Our results are therefore generally consistent with the canalization hypothesis that the locations of lateral veins are not completely specified genetically prior to leaf formation.
Collapse
|
24
|
Prabhakaran Mariyamma N, Clarke KJ, Yu H, Wilton EE, Van Dyk J, Hou H, Schultz EA. Members of the Arabidopsis FORKED1-LIKE gene family act to localize PIN1 in developing veins. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4773-4790. [PMID: 29982821 PMCID: PMC6137986 DOI: 10.1093/jxb/ery248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The reticulate leaf vein pattern typical of angiosperms is proposed to have been a driving force for their evolutionary success. Vein pattern is established through auxin canalization via the auxin efflux protein PINFORMED1 (PIN1). During formation of vein loops, PIN1 cellular localization is increasingly restricted to either the basal side of cells in the lower domain or to the apical side in the upper domain. We previously identified the gene FORKED1 (FKD1) to be required for PIN1 asymmetric localization and for the formation of closed vein loops. FKD1 encodes a plant-specific protein with a domain of unknown function (DUF828) and a Pleckstrin-like homology domain. The Arabidopsis genome encodes eight similar proteins, which we term the FORKED1-LIKE (FL) gene family. Five FL family members localize primarily to the trans-Golgi network or the Golgi, and several co-localize with FKD1-green flourescent protein (GFP) and RABA1c, suggesting action in the secretory pathway. While single FL gene family mutations do not result in vein pattern defects, triple mutants with mutations in FKD1, FL2, and FL3 result in a more symmetric PIN1 localization and a highly disconnected vein pattern. Our data suggest that FL genes act redundantly with FKD1 in the secretory pathway to establish appropriate PIN1 localization in provascular tissue.
Collapse
Affiliation(s)
| | - Kurtis J Clarke
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Houlin Yu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Emily E Wilton
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Jordan Van Dyk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Hongwei Hou
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | |
Collapse
|
25
|
Linh NM, Verna C, Scarpella E. Coordination of cell polarity and the patterning of leaf vein networks. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:116-124. [PMID: 29278780 DOI: 10.1016/j.pbi.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
During development, the behavior of cells in tissues is coordinated along specific orientations or directions by coordinating the polar localization of components in those cells. The coordination of such cell polarity is perhaps nowhere more spectacular than in developing leaves, where the polarity of hundreds of cells is coordinated in the leaf epidermis and inner tissue to pattern vein networks. Available evidence suggests that the spectacular coordination of cell polarity that patterns vein networks is controlled by auxin transport and levels, and by genes that have been implicated in the polar localization of auxin transporters.
Collapse
Affiliation(s)
- Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Feldman AB, Leung H, Baraoidan M, Elmido-Mabilangan A, Canicosa I, Quick WP, Sheehy J, Murchie EH. Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number. FRONTIERS IN PLANT SCIENCE 2017; 8:1883. [PMID: 29163607 PMCID: PMC5672787 DOI: 10.3389/fpls.2017.01883] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/17/2017] [Indexed: 05/07/2023]
Abstract
Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area) has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa). A previous high throughput screen identified five mutant rice lines (cv. IR64) with increased vein densities and associated narrower leaf widths (Feldman et al., 2014). Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number) is a trait that may confer increased photosynthetic efficiency without increased transpiration.
Collapse
Affiliation(s)
| | - Hei Leung
- Plant Breeding, Genetics and Biotechnology, The International Rice Research Institute, Los Baños, Philippines
| | - Marietta Baraoidan
- Plant Breeding, Genetics and Biotechnology, The International Rice Research Institute, Los Baños, Philippines
| | | | - Irma Canicosa
- The C4 Rice Center, The International Rice Research Institute, Los Baños, Philippines
| | - William P. Quick
- The C4 Rice Center, The International Rice Research Institute, Los Baños, Philippines
- Department of Animal Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - John Sheehy
- The C4 Rice Center, The International Rice Research Institute, Los Baños, Philippines
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
27
|
Runions A, Tsiantis M, Prusinkiewicz P. A common developmental program can produce diverse leaf shapes. THE NEW PHYTOLOGIST 2017; 216:401-418. [PMID: 28248421 PMCID: PMC5638099 DOI: 10.1111/nph.14449] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/06/2016] [Indexed: 05/02/2023]
Abstract
Eudicot leaves have astoundingly diverse shapes. The central problem addressed in this paper is the developmental origin of this diversity. To investigate this problem, we propose a computational model of leaf development that generalizes the largely conserved molecular program for the reference plants Arabidopsis thaliana, Cardamine hirsuta and Solanum lycopersicum. The model characterizes leaf development as a product of three interwoven processes: the patterning of serrations, lobes and/or leaflets on the leaf margin; the patterning of the vascular system; and the growth of the leaf blade spanning the main veins. The veins play a significant morphogenetic role as a local determinant of growth directions. We show that small variations of this model can produce diverse leaf shapes, from simple to lobed to compound. It is thus plausible that diverse shapes of eudicot leaves result from small variations of a common developmental program.
Collapse
Affiliation(s)
- Adam Runions
- University of Calgary2500 University Dr NWCalgaryAlbertaT2N 1N4Canada
- Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | - Miltos Tsiantis
- Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Köln50829Germany
| | | |
Collapse
|
28
|
Adaptive variation in vein placement underpins diversity in a major Neotropical plant radiation. Oecologia 2017; 185:375-386. [PMID: 28914360 PMCID: PMC5656702 DOI: 10.1007/s00442-017-3956-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 09/03/2017] [Indexed: 11/04/2022]
Abstract
Vein placement has been hypothesised to control leaf hydraulic properties, but the ecophysiological significance of variation in vein placement in the angiosperms has remained poorly understood. The highly diverse Neotropical Bromeliaceae offers an excellent system for exploring understudied relationships between leaf vein placement, physiological functions, and species ecology. To test key hypotheses regarding the links between vein placement, functional type divergences, and ecological diversity in the Bromeliaceae, I characterised the ratio of interveinal distance (IVD) to vein-epidermis distance (VED) in 376 species, representing all major functional types and 10% of the species diversity in the family, as well as bioclimatic properties and key leaf traits for subsets of species. There were significant differences in vein placement parameters in species of contrasting functional type, habitat association, and bioclimatic distribution. In many C3 tank-epiphytes, a greater ratio between interveinal distance and the depth of veins within the mesophyll reflects optimisation for resource foraging in shady, humid habitats. In succulent terrestrials, overinvestment in veins probably facilitates rapid recharge of water storage tissue, as well as restricting water loss. These results highlight how divergences in vein placement relate to distinctive ecophysiological strategies between and within bromeliad functional types, and provide timely insights into how structural–functional innovation has impacted the evolution of ecological diversity in a major radiation of tropical herbaceous angiosperms.
Collapse
|
29
|
Mathan J, Bhattacharya J, Ranjan A. Enhancing crop yield by optimizing plant developmental features. Development 2017; 143:3283-94. [PMID: 27624833 DOI: 10.1242/dev.134072] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of plant features and traits, such as overall plant architecture, leaf structure and morphological features, vascular architecture and flowering time are important determinants of photosynthetic efficiency and hence the overall performance of crop plants. The optimization of such developmental traits thus has great potential to increase biomass and crop yield. Here, we provide a comprehensive review of these developmental traits in crop plants, summarizing their genetic regulation and highlighting the potential of manipulating these traits for crop improvement. We also briefly review the effects of domestication on the developmental features of crop plants. Finally, we discuss the potential of functional genomics-based approaches to optimize plant developmental traits to increase yield.
Collapse
Affiliation(s)
- Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Juhi Bhattacharya
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
30
|
Chitwood DH, Otoni WC. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade. Gigascience 2017; 6:1-13. [PMID: 28369351 PMCID: PMC5437945 DOI: 10.1093/gigascience/giw008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/23/2016] [Indexed: 01/15/2023] Open
Abstract
Background Leaf shape among Passiflora species is spectacularly diverse. Underlying this diversity in leaf shape are profound changes in the patterning of the primary vasculature and laminar outgrowth. Each of these aspects of leaf morphology-vasculature and blade-provides different insights into leaf patterning. Results Here, we morphometrically analyze >3300 leaves from 40 different Passiflora species collected sequentially across the vine. Each leaf is measured in two different ways: using 1) 15 homologous Procrustes-adjusted landmarks of the vasculature, sinuses, and lobes; and 2) Elliptical Fourier Descriptors (EFDs), which quantify the outline of the leaf. The ability of landmarks, EFDs, and both datasets together are compared to determine their relative ability to predict species and node position within the vine. Pairwise correlation of x and y landmark coordinates and EFD harmonic coefficients reveals close associations between traits and insights into the relationship between vasculature and blade patterning. Conclusions Landmarks, more reflective of the vasculature, and EFDs, more reflective of the blade contour, describe both similar and distinct features of leaf morphology. Landmarks and EFDs vary in ability to predict species identity and node position in the vine and exhibit a correlational structure (both within landmark or EFD traits and between the two data types) revealing constraints between vascular and blade patterning underlying natural variation in leaf morphology among Passiflora species.
Collapse
Affiliation(s)
| | - Wagner C Otoni
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| |
Collapse
|
31
|
Males J. Hydraulics link leaf shape and environmental niche in terrestrial bromeliads. Biotropica 2017. [DOI: 10.1111/btp.12475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jamie Males
- Department of Plant Sciences; University of Cambridge; Downing Street Cambridge CB2 3EA UK
| |
Collapse
|
32
|
Scarpeci TE, Frea VS, Zanor MI, Valle EM. Overexpression of AtERF019 delays plant growth and senescence, and improves drought tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:673-685. [PMID: 28204526 DOI: 10.1093/jxb/erw429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The transcription factor superfamily, APETALA2/ethylene response factor, is involved in plant growth and development, as well as in environmental stress responses. Here, an uncharacterized gene of this family, AtERF019, was studied in Arabidopsis thaliana under abiotic stress situations. Arabidopsis plants overexpressing AtERF019 showed a delay in flowering time of 7 days and a delay in senescence of 2 weeks when comparison with wild type plants. These plants also showed increased tolerance to water deficiency that could be explained by a lower transpiration rate, owing to their smaller stomata aperture and lower cuticle and cell wall permeability. Furthermore, using a bottom-up proteomic approach, proteins produced in response to stress, namely branched-chain-amino-acid aminotransferase 3 (BCAT3) and the zinc finger transcription factor oxidative stress 2, were only identified in plants overexpressing AtERF019. Additionally, a BCAT3 mutant was more sensitive to water-deficit stress than wild type plants. Predicted gene targets of AtERF019 were oxidative stress 2 and genes related to cell wall metabolism. These data suggest that AtERF019 could play a primary role in plant growth and development that causes an increased tolerance to water deprivation, so strengthening their chances of reproductive success.
Collapse
Affiliation(s)
- Telma E Scarpeci
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| | - Vanesa S Frea
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| | - María I Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| | - Estela M Valle
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Predio CCT, Rosario, Argentina
| |
Collapse
|
33
|
Vuolo F, Mentink RA, Hajheidari M, Bailey CD, Filatov DA, Tsiantis M. Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity. Genes Dev 2016; 30:2370-2375. [PMID: 27852629 PMCID: PMC5131777 DOI: 10.1101/gad.290684.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/25/2016] [Indexed: 12/02/2022]
Abstract
In this study, Vuolo et al. investigate the mechanisms underlying the genetic basis for morphological diversity in leaf shape. They show that evolution of an enhancer element in the homeobox gene REDUCED COMPLEXITY (RCO) altered leaf shape by changing gene expression from the distal leaf blade to its base. Here we investigate mechanisms underlying the diversification of biological forms using crucifer leaf shape as an example. We show that evolution of an enhancer element in the homeobox gene REDUCED COMPLEXITY (RCO) altered leaf shape by changing gene expression from the distal leaf blade to its base. A single amino acid substitution evolved together with this regulatory change, which reduced RCO protein stability, preventing pleiotropic effects caused by its altered gene expression. We detected hallmarks of positive selection in these evolved regulatory and coding sequence variants and showed that modulating RCO activity can improve plant physiological performance. Therefore, interplay between enhancer and coding sequence evolution created a potentially adaptive path for morphological evolution.
Collapse
Affiliation(s)
- Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Remco A Mentink
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Mohsen Hajheidari
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
34
|
Lu N, Miao H. Clustering Tree-Structured Data on Manifold. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2016; 38:1956-1968. [PMID: 26660696 PMCID: PMC5027669 DOI: 10.1109/tpami.2015.2505282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tree-structured data usually contain both topological and geometrical information, and are necessarily considered on manifold instead of euclidean space for appropriate data parameterization and analysis. In this study, we propose a novel tree-structured data parameterization, called Topology-Attribute matrix (T-A matrix), so the data clustering task can be conducted on matrix manifold. We incorporate the structure constraints embedded in data into the non-negative matrix factorization method to determine meta-trees from the T-A matrix, and the signature vector of each single tree can then be extracted by meta-tree decomposition. The meta-tree space turns out to be a cone space, in which we explore the distance metric and implement the clustering algorithm based on the concepts like Fréchet mean. Finally, the T-A matrix based clustering (TAMBAC) framework is evaluated and compared using both simulated data and real retinal images to illustrate its efficiency and accuracy.
Collapse
Affiliation(s)
- Na Lu
- State Key Laboratory for Manufacturing Systems Engineering, Systems Engineering Institute, Xi’an Jiaotong University, Xi’an, Shaanxi,China, 710049.
| | - Hongyu Miao
- Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston, , Houston, TX, USA, 77030.
| |
Collapse
|
35
|
Alston ME, Barber R. Leaf venation, as a resistor, to optimize a switchable IR absorber. Sci Rep 2016; 6:31611. [PMID: 27554786 PMCID: PMC5009624 DOI: 10.1038/srep31611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/20/2016] [Indexed: 11/17/2022] Open
Abstract
Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature's vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber.
Collapse
Affiliation(s)
| | - R. Barber
- Science and Technology Facilities Council, Daresbury, UK
| |
Collapse
|
36
|
Topological Phenotypes Constitute a New Dimension in the Phenotypic Space of Leaf Venation Networks. PLoS Comput Biol 2015; 11:e1004680. [PMID: 26700471 PMCID: PMC4699199 DOI: 10.1371/journal.pcbi.1004680] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022] Open
Abstract
The leaves of angiosperms contain highly complex venation networks consisting of recursively nested, hierarchically organized loops. We describe a new phenotypic trait of reticulate vascular networks based on the topology of the nested loops. This phenotypic trait encodes information orthogonal to widely used geometric phenotypic traits, and thus constitutes a new dimension in the leaf venation phenotypic space. We apply our metric to a database of 186 leaves and leaflets representing 137 species, predominantly from the Burseraceae family, revealing diverse topological network traits even within this single family. We show that topological information significantly improves identification of leaves from fragments by calculating a “leaf venation fingerprint” from topology and geometry. Further, we present a phenomenological model suggesting that the topological traits can be explained by noise effects unique to specimen during development of each leaf which leave their imprint on the final network. This work opens the path to new quantitative identification techniques for leaves which go beyond simple geometric traits such as vein density and is directly applicable to other planar or sub-planar networks such as blood vessels in the brain. Planar reticular networks are ubiquitous in nature and engineering, formed for instance by the arterial vasculature in the mammalian neocortex, urban street grids or the vascular network of plant leaves. We use a topological metric to characterize the way loops are nested in such networks and analyze a large database of 186 leaves and leaflets, revealing for the first time that the nesting of the networks’ cycles constitutes a distinct phenotypic trait orthogonal to previously used geometric features. Furthermore, we demonstrate that the information contained in the leaf topology can significantly improve specimen identification from fragments, and provide an empirical growth model that can explain much of the observed data. Our work can improve understanding of the functional significance of the various leaf vein architectures and their correlation with the environment. It can pave the way for similar analyses in diverse areas of research involving reticulate networks.
Collapse
|
37
|
Johnson SM, Cummins I, Lim FL, Slabas AR, Knight MR. Transcriptomic analysis comparing stay-green and senescent Sorghum bicolor lines identifies a role for proline biosynthesis in the stay-green trait. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7061-73. [PMID: 26320239 PMCID: PMC4765785 DOI: 10.1093/jxb/erv405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sorghum bicolor is an important cereal crop grown on the arid and semi-arid regions of >98 different countries. These regions are such that this crop is often subjected to low water conditions, which can compromise yields. Stay-green sorghum plants are able to retain green leaf area for longer under drought conditions and as such have higher yields than their senescent counterparts. However, the molecular and physiological basis of this drought tolerance is yet to be fully understood. Here, a transcriptomic approach was used to compare gene expression between stay-green (B35) and senescent (R16) sorghum varieties. Ontological analysis of the differentially expressed transcripts identified an enrichment of genes involved with the 'response to osmotic stress' Gene Ontology (GO) category. In particular, delta1-pyrroline-5-carboxylate synthase 2 (P5CS2) was highly expressed in the stay-green line compared with the senescent line, and this high expression was correlated with higher proline levels. Comparisons of the differentially expressed genes with those that lie in known stay-green qualitative trait loci (QTLs) revealed that P5CS2 lies within the Stg1 QTL. Polymorphisms in known cis-elements were identified in the putative promoter region of P5CS2 and these could be responsible for the differences in the expression of this gene. This study provides greater insight into the stay-green trait in sorghum. This will be greatly beneficial not only to improve our understanding of drought tolerance mechanisms in sorghum, but also to facilitate the improvement of future sorghum cultivars by marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Stephanie M Johnson
- Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Ian Cummins
- Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Fei Ling Lim
- Unilever, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, UK
| | - Antoni R Slabas
- Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Marc R Knight
- Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
38
|
Price CA, Weitz JS. Costs and benefits of reticulate leaf venation. BMC PLANT BIOLOGY 2014; 14:234. [PMID: 25234042 PMCID: PMC4177576 DOI: 10.1186/s12870-014-0234-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/27/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Recent theoretical and empirical work has identified redundancy as one of the benefits of the reticulate form in the evolution of leaf vein networks. However, we know little about the costs of redundancy or how those costs depend on vein network geometry or topology. Here, we examined both costs and benefits to redundancy in 339 individual reticulate leaf networks comprising over 3.5 million vein segments. We compared levels of costs and benefits within reticulate networks to those within analogous networks without loops known as Maximum Spanning Trees (MSTs). RESULTS We show that network robustness to varying degrees of simulated damage is positively correlated with structural indices of redundancy. We further show that leaf vein networks are topologically, geometrically and functionally more redundant than are MSTs. However, increased redundancy comes with minor costs in terms of increases in material allocation or decreases in conductance. We also show that full networks do not markedly decrease the distance to non-vein tissue in comparison to MSTs. CONCLUSIONS These results suggest the evolutionary transition to the reticulate type of networks found in modern Angiosperm flora involved a relatively minor increase in material and conductance costs with significant benefits in terms of network redundancy.
Collapse
Affiliation(s)
- Charles A Price
- />School of Plant Biology, University of Western Australia, Crawley, Perth 6009 Australia
| | - Joshua S Weitz
- />School of Biology, Georgia Institute of Technology, Atlanta, GA 30332 USA
- />School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
39
|
Rodrigo G, Zwart MP, Elena SF. Onset of virus systemic infection in plants is determined by speed of cell-to-cell movement and number of primary infection foci. J R Soc Interface 2014; 11:20140555. [PMID: 24966241 PMCID: PMC4233706 DOI: 10.1098/rsif.2014.0555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/04/2014] [Indexed: 11/12/2022] Open
Abstract
The cornerstone of today's plant virology consists of deciphering the molecular and mechanistic basis of host-pathogen interactions. Among these interactions, the onset of systemic infection is a fundamental variable in studying both within- and between-host infection dynamics, with implications in epidemiology. Here, we developed a mechanistic model using probabilistic and spatio-temporal concepts to explain dynamic signatures of virus systemic infection. The model dealt with the inherent characteristic of plant viruses to use two different and sequential stages for their within-host propagation: cell-to-cell movement from the initial infected cell and systemic spread by reaching the vascular system. We identified the speed of cell-to-cell movement and the number of primary infection foci in the inoculated leaf as the key factors governing this dynamic process. Our results allowed us to quantitatively understand the timing of the onset of systemic infection, describing this global process as a consequence of local spread of viral populations. Finally, we considered the significance of our predictions for the evolution of plant RNA viruses.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Institute of Systems and Synthetic Biology, CNRS-Université d'Évry Val d'Essonne-Genopole, Évry 91030, France Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia 46022, Spain The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
40
|
Rothwell GW, Wyatt SE, Tomescu AMF. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm. AMERICAN JOURNAL OF BOTANY 2014; 101:899-913. [PMID: 24879296 DOI: 10.3732/ajb.1300451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Paleontology yields essential evidence for inferring not only the pattern of evolution, but also the genetic basis of evolution within an ontogenetic framework. Plant fossils provide evidence for the pattern of plant evolution in the form of transformational series of structure through time. Developmentally diagnostic structural features that serve as "fingerprints" of regulatory genetic pathways also are preserved by plant fossils, and here we provide examples of how those fingerprints can be used to infer the mechanisms by which plant form and development have evolved. When coupled with an understanding of variations and systematic distributions of specific regulatory genetic pathways, this approach provides an avenue for testing evolutionary hypotheses at the organismal level that is analogous to employing bioinformatics to explore genetics at the genomic level. The positions where specific genes, gene families, and developmental regulatory mechanisms first appear in phylogenies are correlated with the positions where fossils with the corresponding structures occur on the tree, thereby yielding testable hypotheses that extend our understanding of the role of developmental changes in the evolution of the body plans of vascular plant sporophytes. As a result, we now have new and powerful methodologies for characterizing major evolutionary changes in morphology, anatomy, and physiology that have resulted from combinations of genetic regulatory changes and that have produced the synapomorphies by which we recognize major clades of plants.
Collapse
Affiliation(s)
- Gar W Rothwell
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 USA Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701 USA
| | - Sarah E Wyatt
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701 USA Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701 USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, California 95521 USA
| |
Collapse
|
41
|
Feldman AB, Murchie EH, Leung H, Baraoidan M, Coe R, Yu SM, Lo SF, Quick WP. Increasing leaf vein density by mutagenesis: laying the foundations for C4 rice. PLoS One 2014; 9:e94947. [PMID: 24760084 PMCID: PMC3997395 DOI: 10.1371/journal.pone.0094947] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 11/24/2022] Open
Abstract
A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.
Collapse
Affiliation(s)
- Aryo B. Feldman
- School of Biosciences, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Erik H. Murchie
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, United Kingdom
- * E-mail:
| | - Hei Leung
- Plant Breeding, Genetics and Biotechnology, the International Rice Research Institute, Los Baños, Philippines
| | - Marietta Baraoidan
- Plant Breeding, Genetics and Biotechnology, the International Rice Research Institute, Los Baños, Philippines
| | - Robert Coe
- The C4 Rice Center, the International Rice Research Institute, Los Baños, Philippines
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - William P. Quick
- The C4 Rice Center, the International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
42
|
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. FRONTIERS IN PLANT SCIENCE 2014; 5:470. [PMID: 25278948 PMCID: PMC4165286 DOI: 10.3389/fpls.2014.00470] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Collapse
Affiliation(s)
| | | | | | - Felice Cervone
- *Correspondence: Felice Cervone, Department of Biology and Biotechnology “Charles Darwin”, Sapienza–University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy e-mail:
| |
Collapse
|
43
|
Fukushima K, Hasebe M. Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 2013; 52:1-18. [PMID: 24281766 DOI: 10.1002/dvg.22728] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023]
Abstract
Leaves of flowering plants are diverse in shape. Part of this morphological diversity can be attributed to differences in spatiotemporal regulation of polarity in the upper (adaxial) and lower (abaxial) sides of developing leaves. In a leaf primordium, antagonistic interactions between polarity determinants specify the adaxial and abaxial domains in a mutually exclusive manner. The patterning of those domains is critical for leaf morphogenesis. In this review, we first summarize the gene networks regulating adaxial-abaxial polarity in conventional bifacial leaves and then discuss how patterning is modified in different leaf type categories.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Basic Biology, School of Life Science, Graduate University for Advance Studies (SOKENDAI), Okazaki, 444-8585, Japan; National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | |
Collapse
|
44
|
Remizowa MV, Rudall PJ, Choob VV, Sokoloff DD. Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level. ANNALS OF BOTANY 2013; 112:1553-66. [PMID: 23172413 PMCID: PMC3828938 DOI: 10.1093/aob/mcs246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/01/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND Understanding and modelling early events of floral meristem patterning and floral development requires consideration of positional information regarding the organs surrounding the floral meristem, such as the flower-subtending bracts (FSBs) and floral prophylls (bracteoles). In common with models of regulation of floral patterning, the simplest models of phyllotaxy consider only unbranched uniaxial systems. Racemose inflorescences and thyrses offer a useful model system for investigating morphogenetic interactions between organs belonging to different axes. SCOPE This review considers (1) racemose inflorescences of early-divergent and lilioid monocots and their possible relationship with other inflorescence types, (2) hypotheses on the morphogenetic significance of phyllomes surrounding developing flowers, (3) patterns of FSB reduction and (4) vascular patterns in the primary inflorescence axis and lateral pedicels. CONCLUSIONS Racemose (partial) inflorescences represent the plesiomorphic condition in monocots. The presence or absence of a terminal flower or flower-like structure is labile among early-divergent monocots. In some Alismatales, a few-flowered racemose inflorescence can be entirely transformed into a terminal 'flower'. The presence or absence and position of additional phyllomes on the lateral pedicels represent important taxonomic markers and key features in regulation of flower patterning. Racemose inflorescences with a single floral prophyll are closely related to thyrses. Floral patterning is either unidirectional or simultaneous in species that lack a floral prophyll or possess a single adaxial floral prophyll and usually spiral in the outer perianth whorl in species with a transversely oriented floral prophyll. Inhibitory fields of surrounding phyllomes are relevant but insufficient to explain these patterns; other important factors are meristem space economy and/or the inhibitory activity of the primary inflorescence axis. Two patterns of FSB reduction exist in basal monocots: (1) complete FSB suppression (cryptic flower-subtending bract) and (2) formation of a 'hybrid' organ by overlap of the developmental programmes of the FSB and the first abaxial organ formed on the floral pedicel. FSB reduction affects patterns of interaction between the conductive systems of the flower and the primary inflorescence axis.
Collapse
Affiliation(s)
| | | | - Vladimir V. Choob
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry D. Sokoloff
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
45
|
Sawchuk MG, Scarpella E. Polarity, continuity, and alignment in plant vascular strands. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:824-834. [PMID: 23773763 DOI: 10.1111/jipb.12086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Plant vascular cells are joined end to end along uninterrupted lines to connect shoot organs with roots; vascular strands are thus polar, continuous, and internally aligned. What controls the formation of vascular strands with these properties? The "auxin canalization hypothesis"-based on positive feedback between auxin flow through a cell and the cell's capacity for auxin transport-predicts the selection of continuous files of cells that transport auxin polarly, thus accounting for the polarity and continuity of vascular strands. By contrast, polar, continuous auxin transport-though required-is insufficient to promote internal alignment of vascular strands, implicating additional factors. The auxin canalization hypothesis was derived from the response of mature tissue to auxin application but is consistent with molecular and cellular events in embryo axis formation and shoot organ development. Objections to the hypothesis have been raised based on vascular organizations in callus tissue and shoot organs but seem unsupported by available evidence. Other objections call instead for further research; yet the inductive and orienting influence of auxin on continuous vascular differentiation remains unique.
Collapse
Affiliation(s)
- Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton Alberta, Canada, T6G 2E9
| | | |
Collapse
|
46
|
Di Giacomo E, Iannelli MA, Frugis G. TALE and Shape: How to Make a Leaf Different. PLANTS 2013; 2:317-42. [PMID: 27137378 PMCID: PMC4844364 DOI: 10.3390/plants2020317] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 11/25/2022]
Abstract
The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.
Collapse
Affiliation(s)
- Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria, UOS Roma, Consiglio Nazionale delle Ricerche, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria, UOS Roma, Consiglio Nazionale delle Ricerche, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria, UOS Roma, Consiglio Nazionale delle Ricerche, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| |
Collapse
|
47
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Computational approach to seasonal changes of living leaves. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:619385. [PMID: 23533545 PMCID: PMC3596921 DOI: 10.1155/2013/619385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/17/2013] [Indexed: 11/20/2022]
Abstract
This paper proposes a computational approach to seasonal changes of living leaves by combining the geometric deformations and textural color changes. The geometric model of a leaf is generated by triangulating the scanned image of a leaf using an optimized mesh. The triangular mesh of the leaf is deformed by the improved mass-spring model, while the deformation is controlled by setting different mass values for the vertices on the leaf model. In order to adaptively control the deformation of different regions in the leaf, the mass values of vertices are set to be in proportion to the pixels' intensities of the corresponding user-specified grayscale mask map. The geometric deformations as well as the textural color changes of a leaf are used to simulate the seasonal changing process of leaves based on Markov chain model with different environmental parameters including temperature, humidness, and time. Experimental results show that the method successfully simulates the seasonal changes of leaves.
Collapse
|
49
|
Demason DA, Chetty V, Barkawi LS, Liu X, Cohen JD. Unifoliata-Afila interactions in pea leaf morphogenesis. AMERICAN JOURNAL OF BOTANY 2013; 100:478-95. [PMID: 23400494 DOI: 10.3732/ajb.1200611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UNLABELLED PREMISE OF THE STUDY Processes of leaf morphogenesis provide the basis for the great diversity of leaf form among higher plants. The common garden pea (Pisum sativum) offers a developmental model system for understanding how gene and hormone interactions impart a large array of mutant leaf phenotypes. • METHODS To understand the role of auxin in AF and UNI gene function and their interaction, we compared the range of leaf phenotypes on afila (af) and unifoliata (uni) double mutants, examined the effects of these mutations on auxin levels, auxin transport, auxin response via DR5::GUS, and expression of auxin-regulated genes. • KEY RESULTS The adult leaves of af uni double mutants have leaflets and tendrils and typically possess two lateral pinna pairs and a terminal leaflet. The af mutants have higher auxin content, stronger auxin response, and higher expression of auxin responsive genes than wildtype. The uni mutant has reduced auxin content and transport, whereas the uni-tac mutant has higher auxin content and transport and reduced auxin response compared to wildtype. • CONCLUSIONS Auxin concentration and response differences characterize the antagonistic relationship between AF and UNI in pea leaf development. The mechanism involves modulation of auxin mediated by one or both genes; UNI is expressed in and promotes high auxin levels, and AF suppresses auxin levels.
Collapse
Affiliation(s)
- Darleen A Demason
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Leaves are the most important organs for plants. Without leaves, plants cannot capture light energy or synthesize organic compounds via photosynthesis. Without leaves, plants would be unable perceive diverse environmental conditions, particularly those relating to light quality/quantity. Without leaves, plants would not be able to flower because all floral organs are modified leaves. Arabidopsis thaliana is a good model system for analyzing mechanisms of eudicotyledonous, simple-leaf development. The first section of this review provides a brief history of studies on development in Arabidopsis leaves. This history largely coincides with a general history of advancement in understanding of the genetic mechanisms operating during simple-leaf development in angiosperms. In the second section, I outline events in Arabidopsis leaf development, with emphasis on genetic controls. Current knowledge of six important components in these developmental events is summarized in detail, followed by concluding remarks and perspectives.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|