1
|
Vetoshkina D, Borisova-Mubarakshina M. Reversible protein phosphorylation in higher plants: focus on state transitions. Biophys Rev 2023; 15:1079-1093. [PMID: 37974979 PMCID: PMC10643769 DOI: 10.1007/s12551-023-01116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.
Collapse
Affiliation(s)
- D.V. Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| | - M.M. Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| |
Collapse
|
2
|
Wang W, Dai Z, Li J, Ouyang J, Li T, Zeng B, Kang L, Jia K, Xi Z, Jia W. A Method for Assaying of Protein Kinase Activity In Vivo and Its Use in Studies of Signal Transduction in Strawberry Fruit Ripening. Int J Mol Sci 2021; 22:ijms221910495. [PMID: 34638834 PMCID: PMC8508642 DOI: 10.3390/ijms221910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Zhengrong Dai
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jie Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Tianyu Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Baozhen Zeng
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Li Kang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Kenan Jia
- College of International Education, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Zhiyuan Xi
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
- Correspondence:
| |
Collapse
|
3
|
Min X, Xu H, Huang F, Wei Y, Lin W, Zhang Z. GC-MS-based metabolite profiling of key differential metabolites between superior and inferior spikelets of rice during the grain filling stage. BMC PLANT BIOLOGY 2021; 21:439. [PMID: 34583646 PMCID: PMC8477532 DOI: 10.1186/s12870-021-03219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The asynchronous filling between superior spikelets (SS) and inferior spikelets (IS) in rice has become a research hotspot. The stagnant development and poor grain filling of IS limit yields and the formation of good quality rice. A large number of studies on this phenomenon have been carried out from the genome, transcriptome and proteome level, indicating that asynchronous filling of SS and IS filling is a complex, but orderly physiological and biochemical process involving changes of a large number of genes, protein expression and modification. However, the analysis of metabolomics differences between SS and IS is rarely reported currently. RESULTS This study utilized untargeted metabolomics and identified 162 metabolites in rice spikelets. Among them, 17 differential metabolites associated with unsynchronized grain filling between SS and IS, 27 metabolites were related to the stagnant development of IS and 35 metabolites related to the lower maximum grain-filling rate of IS compared with the SS. We found that soluble sugars were an important metabolite during grain filling for SS and IS. Absolute quantification was used to further analyze the dynamic changes of 4 types of soluble sugars (sucrose, fructose, glucose, and trehalose) between SS and IS. The results showed that sucrose and trehalose were closely associated with the dynamic characteristics of grain filling between SS and IS. The application of exogenous sugar showed that trehalose functioned as a key sugar signal during grain filling of IS. Trehalose regulated the expression of genes related to sucrose conversion and starch synthesis, thereby promoting the conversion of sucrose to starch. The difference in the spatiotemporal expression of TPS-2 and TPP-1 between SS and IS was an important reason that led to the asynchronous change in the trehalose content between SS and IS. CONCLUSIONS The results from this study are helpful for understanding the difference in grain filling between SS and IS at the metabolite level. In addition, the present results can also provide a theoretical basis for the next step of using metabolites to regulate the filling of IS.
Collapse
Affiliation(s)
- Xiumei Min
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hailong Xu
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fenglian Huang
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, 350018, China
| | - Wenxiong Lin
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhixing Zhang
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
4
|
Wang L, Ma M, Zhang Y, Wu Z, Guo L, Luo W, Wang L, Zhang Z, Zhang S. Characterization of the Genes Involved in Malic Acid Metabolism from Pear Fruit and Their Expression Profile after Postharvest 1-MCP/Ethrel Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8772-8782. [PMID: 30074786 DOI: 10.1021/acs.jafc.8b02598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, five genes involved in malic acid (MA) metabolism, including a cytosolic NAD-dependent malate dehydrogenase gene ( cyNAD-MDH), a cytosolic NADP-dependent malic enzyme gene ( cyNADP-ME), two vacuolar H+-ATPase genes ( vVAtp1 and vVAtp2), and one vacuolar inorganic pyrophosphatase gene ( vVPp), were characterized from pear fruit based on bioinformatic and experimental analysis. Their expression profile in "Housui" pear was tissue-specific, and their expression patterns during fruit development were diverse. During "Housui" pear storage, MA content decreased, which was associated with the downregulated transcripts of MA metabolism-related genes and cyNAD-MDH activity and higher cyNADP-ME activity. The response of MA metabolism to postharvest 1.5 μL L-1 1-MCP fumigation and 0.5 mL L-1 ethrel dipping was distinct: 1-MCP fumigation upregulated gene expression and cyNAD-MDH activity and suppressed cyNADP-ME activity, and thus maintained higher MA abundance when compared with those in the control; on the other hand, an opposite behavior was observed in ethrel-treated fruit.
Collapse
Affiliation(s)
- Libin Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Min Ma
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Yanru Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Zhangfei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Lin Guo
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Weiqi Luo
- USDA, ARS, U.S. Horticultural Research Laboratory , 2001 S. Rock Road , Ft. Pierce , Florida 34945 , United States
| | - Li Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Zhen Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| |
Collapse
|
5
|
Betts MJ, Wichmann O, Utz M, Andre T, Petsalaki E, Minguez P, Parca L, Roth FP, Gavin AC, Bork P, Russell RB. Systematic identification of phosphorylation-mediated protein interaction switches. PLoS Comput Biol 2017; 13:e1005462. [PMID: 28346509 PMCID: PMC5386296 DOI: 10.1371/journal.pcbi.1005462] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
Proteomics techniques can identify thousands of phosphorylation sites in a single experiment, the majority of which are new and lack precise information about function or molecular mechanism. Here we present a fast method to predict potential phosphorylation switches by mapping phosphorylation sites to protein-protein interactions of known structure and analysing the properties of the protein interface. We predict 1024 sites that could potentially enable or disable particular interactions. We tested a selection of these switches and showed that phosphomimetic mutations indeed affect interactions. We estimate that there are likely thousands of phosphorylation mediated switches yet to be uncovered, even among existing phosphorylation datasets. The results suggest that phosphorylation sites on globular, as distinct from disordered, parts of the proteome frequently function as switches, which might be one of the ancient roles for kinase phosphorylation.
Collapse
Affiliation(s)
- Matthew J. Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Oliver Wichmann
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Mathias Utz
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Timon Andre
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Evangelia Petsalaki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
| | - Pablo Minguez
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Luca Parca
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Frederick P. Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, One Jimmy Fund Way, Boston, Massachusetts, United States
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Robert B. Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
6
|
Lillo C, Kataya ARA, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. PLANT, CELL & ENVIRONMENT 2014; 37:2631-48. [PMID: 24810976 DOI: 10.1111/pce.12364] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP-domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B' subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME-1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals.
Collapse
Affiliation(s)
- Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | | | | | | | | | | | | |
Collapse
|
7
|
Sun X, Zhu A, Liu S, Sheng L, Ma Q, Zhang L, Nishawy EME, Zeng Y, Xu J, Ma Z, Cheng Y, Deng X. Integration of metabolomics and subcellular organelle expression microarray to increase understanding the organic acid changes in post-harvest citrus fruit. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1038-1053. [PMID: 23758915 DOI: 10.1111/jipb.12083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Citric acid plays an important role in fresh fruit flavor and its adaptability to post-harvest storage conditions. In order to explore organic acid regulatory mechanisms in post-harvest citrus fruit, systematic biological analyses were conducted on stored Hirado Buntan Pummelo (HBP; Citrus grandis) fruits. High-performance capillary electrophoresis, subcellular organelle expression microarray, real-time quantitative reverse transcription polymerase chain reaction, gas chromatography mass spectrometry (GC-MS), and conventional physiological and biochemical analyses were undertaken. The results showed that the concentration of organic acids in HBP underwent a regular fluctuation. GC-MS-based metabolic profiling indicated that succinic acid, γ-aminobutyric acid (GABA), and glutamine contents increased, but 2-oxoglutaric acid content declined, which further confirmed that the GABA shunt may have some regulatory roles in organic acid catabolism processes. In addition, the concentration of organic acids was significantly correlated with senescence-related physiological processes, such as hydrogen peroxide content as well as superoxide dismutase and peroxidase activities, which showed that organic acids could be regarded as important parameters for measuring citrus fruit post-harvest senescence processes.
Collapse
Affiliation(s)
- Xiaohua Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Engelsberger WR, Schulze WX. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:978-95. [PMID: 22060019 PMCID: PMC3380553 DOI: 10.1111/j.1365-313x.2011.04848.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/03/2011] [Indexed: 05/04/2023]
Abstract
Nitrogen is an essential macronutrient for plant growth and development. Inorganic nitrogen and its assimilation products control various metabolic, physiological and developmental processes. Although the transcriptional responses induced by nitrogen have been extensively studied in the past, our work here focused on the discovery of candidate proteins for regulatory events that are complementary to transcriptional changes. Most signaling pathways involve modulation of protein abundance and/or activity by protein phosphorylation. Therefore, we analyzed the dynamic changes in protein phosphorylation in membrane and soluble proteins from plants exposed to rapid changes in nutrient availability over a time course of 30 min. Plants were starved of nitrogen and subsequently resupplied with nitrogen in the form of nitrate or ammonium. Proteins with maximum change in their phosphorylation level at up to 5 min after nitrogen resupply (fast responses) included GPI-anchored proteins, receptor kinases and transcription factors, while proteins with maximum change in their phosphorylation level after 10 min of nitrogen resupply (late responses) included proteins involved in protein synthesis and degradation, as well as proteins with functions in central metabolism and hormone metabolism. Resupply of nitrogen in the form of nitrate or ammonium resulted in distinct phosphorylation patterns, mainly of proteins with signaling functions, transcription factors and transporters.
Collapse
Affiliation(s)
| | - Waltraud X Schulze
- Max Planck Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1, 14476 Golm, Germany
| |
Collapse
|
9
|
Matre P, Meyer C, Lillo C. Diversity in subcellular targeting of the PP2A B'eta subfamily members. PLANTA 2009; 230:935-45. [PMID: 19672620 DOI: 10.1007/s00425-009-0998-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 07/22/2009] [Indexed: 05/20/2023]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine-specific phosphatase comprising a catalytic subunit (C), a scaffolding subunit (A), and a regulatory subunit (B). The B subunits are believed to be responsible for substrate specificity and localization of the PP2A complex. In plants, three families of B subunits exist, i.e. B (B55), B', and B''. Here, we report differential subcellular targeting within the Arabidopsis B'eta subfamily, which consists of the close homologs B'eta, B'theta, B'gamma and B'zeta. Phenotypes of corresponding knockouts were observed, and particularly revealed delayed flowering for the B'eta knockout. The B' subunits were linked to fluorescent tags and transiently expressed in various tissues of onion, tobacco and Arabidopsis. B'eta and B'gamma targeted the cytosol and nucleus. B'zeta localized to the cytoplasm and partly co-localized with mitochondrial markers when the N-terminus was free. Provided its C-terminus was free, the B'theta subunit targeted peroxisomes. The importance of the C-terminal end for peroxisomal targeting was further confirmed by truncation of the C-terminus. The results revealed that the closely related B' subunits are targeting different organelles in plants, and exemplify the usage of the peptide serine-serine-leucine as a PTS1 peroxisomal signaling peptide.
Collapse
Affiliation(s)
- Polina Matre
- Faculty of Science and Technology, University of Stavanger, Centre for Organelle Research, 4036 Stavanger, Norway
| | | | | |
Collapse
|
10
|
Abstract
In higher plants, light is crucial for regulation of nitrate uptake, translocation and assimilation into organic compounds. Part of this metabolism is tightly coupled to photosynthesis because the enzymes involved, nitrite reductase and glutamate synthase, are localized to the chloroplasts and receive reducing power from photosynthetic electron transport. However, important enzymes in nitrate acquisition and reduction are localized to cellular compartments other than chloroplasts and are also up-regulated by light, i.e. transporters in cell and organellar membranes and nitrate reductase in the cytosol. This review describes the different light-dependent signalling cascades regulating nitrate metabolism at the transcriptional as well as post-transcriptional level, and how reactions in different compartments of the cell are co-ordinated. Essential players in this network are phytochrome and HY5 (long hypocotyls 5)/HYH (HY5 homologue)-dependent signalling pathways, the energy-related AMPK (AMP-activated protein kinase) protein kinase homologue SNRK1 (sucrose non-fermenting kinase 1-related kinase), chloroplastic thioredoxins and the prokaryotically originated PII protein. A complex light-dependent network of regulation emerges, which appears to be necessary for optimal nitrogen assimilation and for avoiding the accumulation of toxic intermediates and side products, such as nitrite and reactive oxygen compounds.
Collapse
|
11
|
Nabetani T, Miyazaki K, Tabuse Y, Tsugita A. Analysis of acidic peptides with a matrix-assisted laser desorption/ionization mass spectrometry using positive and negative ion modes with additive monoammonium phosphate. Proteomics 2006; 6:4456-65. [PMID: 16897684 DOI: 10.1002/pmic.200500916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acidic PTMs such as phosphorylation and sulfonation of proteins are known to play important roles in many cellular processes including signal transductions and protein-protein interactions. In MS, the acidic modified peptides, that have negative charge, are observable in negative ion mode rather than in positive ion mode. Moreover, addition of ammonium salt into MALDI matrix solution improves the relative intensity of ionization of the phosphorylated peptide to unmodified one. We demonstrate that a combination of the negative ion mode and addition of ammonium salt is more effective in the ionization of the acidic modified peptides. We applied this method to 2-DE separated proteins of Caenorhabditis elegans. As a result, 42 spots were identified as modified proteins, of which 34 proteins were nonoverlapping unique proteins. Furthermore, our study revealed that pI shifts of the DIM-1 and MLC-1 proteins in the 2-DE gel were attributed to the presence of the acidic modifications. The negative ion mode together with the addition of ammonium salt provides us a useful method to detect the phosphorylation and/or sulfonation of protein in a simple manner.
Collapse
Affiliation(s)
- Takuji Nabetani
- Proteomics Research Laboratory, Tokyo Rikakikai Co., Ltd., Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
12
|
Glinski M, Weckwerth W. The role of mass spectrometry in plant systems biology. MASS SPECTROMETRY REVIEWS 2006; 25:173-214. [PMID: 16284938 DOI: 10.1002/mas.20063] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Large-scale analyses of proteins and metabolites are intimately bound to advancements in MS technologies. The aim of these non-targeted "omic" technologies is to extend our understanding beyond the analysis of only parts of the system. Here, metabolomics and proteomics emerged in parallel with the development of novel mass analyzers and hyphenated techniques such as gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS) and multidimensional liquid chromatography coupled to mass spectrometry (LC-MS). The analysis of (i) proteins (ii) phosphoproteins, and (iii) metabolites is discussed in the context of plant physiology and environment and with a focus on novel method developments. Recently published studies measuring dynamic (quantitative) behavior at these levels are summarized; for these works, the completely sequenced plants Arabidopsis thaliana and Oryza sativa (rice) have been the primary models of choice. Particular emphasis is given to key physiological processes such as metabolism, development, stress, and defense. Moreover, attempts to combine spatial, tissue-specific resolution with systematic profiling are described. Finally, we summarize the initial steps to characterize the molecular plant phenotype as a corollary of environment and genotype.
Collapse
Affiliation(s)
- Mirko Glinski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
13
|
Glinski M, Weckwerth W. Differential Multisite Phosphorylation of the Trehalose-6-phosphate Synthase Gene Family in Arabidopsis thaliana. Mol Cell Proteomics 2005; 4:1614-25. [PMID: 16030010 DOI: 10.1074/mcp.m500134-mcp200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multisite protein phosphorylation plays a fundamental role in metabolic regulation. To detect and quantify in vitro kinase phosphorylation activities, we developed a highly selective LC-MS/MS-based method using high resolution multiple reaction monitoring on a triple quadrupole mass spectrometer. This method eliminates the need for stable isotope labeling and enables multiparallel kinase target assays. Using these assays, we made the first observation of in vitro phosphorylation of different trehalose-6-phosphate synthase (TPS) isozymes. TPSs possess putative Ca2+-independent, sucrose non-fermenting 1-related protein kinase 1 (SnRK1) phosphorylation sites. Sixteen synthetic peptides from six different Arabidopsis thaliana TPS isozymes containing the SnRK1 consensus recognition motif were phosphorylated simultaneously in vitro, and their phosphorylation dynamics were determined. We achieved absolute quantification of TPS peptide phosphorylation by tuning the mass spectrometer to the corresponding synthetic standard phosphopeptides. The selectivity of the mass spectrometer in the multiple reaction monitoring mode compensates for the low ionization efficiency of phosphopeptides in the presence of a complex matrix. Results are in close agreement with recent in vivo studies of TPS phosphorylation and regulation and reveal significant differences in the phosphorylation levels of different TPS members within the TPS gene family ranging over 3 orders of magnitude. Substituting EGTA for CaCl2 in the reaction mixture reduced the formation of some of the phospho-TPS peptides drastically, indicating that Ca2+-dependent kinases are active in the presence of Ca2+-independent SnRKs. This agrees with the proposed overlap of the consensus motifs of these kinases and enables delineation between Ca2+-independent and Ca2+-dependent phosphorylation. Results demonstrate that multiparallel kinase target assays are sensitive enough to provide evidence for differential multisite phosphorylation of homologous TPS proteins and their highly conserved putative phosphorylation sites.
Collapse
Affiliation(s)
- Mirko Glinski
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
14
|
Stupak J, Liu H, Wang Z, Brix BJ, Fliegel L, Li L. Nanoliter Sample Handling Combined with Microspot MALDI−MS for Detection of Gel-Separated Phosphoproteins. J Proteome Res 2005; 4:515-22. [PMID: 15822929 DOI: 10.1021/pr049789t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a microspot matrix-assisted laser desorption ionization (MALDI) mass spectrometric approach to analyze gel-separated phosphoproteins. This method involves in-gel digestion of phosphoproteins after gel separation, followed by open tubular capillary (OTC) immobilized metal-ion affinity chromatography (IMAC) to capture the phosphopeptides with markedly reduced interferences from nonphosphorylated peptides. Nanoliter-volume of ammonium phosphate is used to elute the phosphopeptides captured on the capillary tube. After mixing with a small volume of matrix solution in the capillary, the effluent is deposited in a microspot on a sample plate for MALDI-MS analysis. It is also shown that, with peptide esterification after in-gel digestion of a phosphoprotein, negative ion detection in MALDI gives a distinct advantage over the positive ion mode of operation for phosphopeptide analysis, even without IMAC enrichment. However, the OTC-IMAC technique is demonstrated to be superior to the approach of negative ion detection of esterified in-gel digests without IMAC. OTC-IMAC is found to be sufficiently selective to capture phosphopeptides from in-gel digest of a gel band containing predominately one protein and the combination of peptide esterification and IMAC enrichment does not provide any real advantage. Using a standard phosphoprotein alpha-casein as a model system, we demonstrate that this OTC-IMAC method can detect a number of phosphopeptides after in-gel digestion with mid-fmol protein sample loading. An example of real world applications of this method is illustrated in the characterization of a fusion protein, His182, expressed in E. coli.
Collapse
Affiliation(s)
- Jacek Stupak
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | |
Collapse
|
15
|
Smith A, Guerinot ML. Primary metabolism and nutrient assimilation: achieving a balanced diet. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:205-207. [PMID: 12753968 DOI: 10.1016/s1369-5266(03)00044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
16
|
Pauly B, Stiening B, Schade M, Alexandrova O, Zoubek R, David CN, Böttger A. Molecular cloning and cellular distribution of two 14-3-3 isoforms from Hydra: 14-3-3 proteins respond to starvation and bind to phosphorylated targets. Exp Cell Res 2003; 285:15-26. [PMID: 12681283 DOI: 10.1016/s0014-4827(02)00051-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the simple metazoan Hydra a clear link between food supply and cell survival has been established. Whilst in plants 14-3-3 proteins are found to be involved in signalling cascades that regulate metabolism, in animals they have been shown to participate in cell survival pathways. In order to explore the possibility that 14-3-3 proteins in Hydra could be involved in regulating metabolism under different conditions of food supply, we have cloned two isoforms of 14-3-3 proteins. We show here that 14-3-3 proteins bind to phosphorylated targets in Hydra and form homo- and heterodimers in vitro. 14-3-3 proteins are localised in the cytoplasm of all cells and also in the nuclei of some epithelial cells. This nuclear localisation becomes more prominent during starvation. Moreover, 14-3-3 protein is present in large amounts in food granules and from this we conclude that it performs functions which are associated with metabolism and food storage in Hydra.
Collapse
Affiliation(s)
- Barbara Pauly
- Zoological Institute, Ludwig-Maximilians-University Munich, D-80333 14, Munich, Luisenstrasse, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Köcher T, Allmaier G, Wilm M. Nanoelectrospray-based detection and sequencing of substoichiometric amounts of phosphopeptides in complex mixtures. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:131-137. [PMID: 12577279 DOI: 10.1002/jms.422] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel immobilized metal affinity chromatography (IMAC)-based protocol was successfully used for sample preparation prior to nanoelectrospray-based sequencing of phosphopeptides. In a first step, phosphorylated peptides are detected in an unseparated peptide mixture using precursor ion scanning in the negative ion mode on a triple-quadrupole mass spectrometer. Then the phosphorylated peptides are enriched by passing the sample over an IMAC column and sequenced in the positive ion mode. The IMAC-based enrichment allows the sequencing of phosphorylated peptides even if other, much more abundant, peptides are present at the same m/z value in the original mixture. Using this two-step approach, we are able to combine the simplicity, sensitivity and specificity of precursor ion scanning-based detection of phosphopeptides using the nanoelectrospray ion source with the ability to sequence phosphorylated peptides even if they are present in substoichiometric amounts.
Collapse
Affiliation(s)
- Thomas Köcher
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Inokuchi R, Kuma KI, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. PHYSIOLOGIA PLANTARUM 2002; 116:1-11. [PMID: 12207656 DOI: 10.1034/j.1399-3054.2002.1160101.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
An important biochemical feature of autotrophs, land plants and algae, is their incorporation of inorganic nitrogen, nitrate and ammonium, into the carbon skeleton. Nitrate and ammonium are converted into glutamine and glutamate to produce organic nitrogen compounds, for example proteins and nucleic acids. Ammonium is not only a preferred nitrogen source but also a key metabolite, situated at the junction between carbon metabolism and nitrogen assimilation, because nitrogen compounds can choose an alternative pathway according to the stages of their growth and environmental conditions. The enzymes involved in the reactions are nitrate reductase (EC 1.6.6.1-2), nitrite reductase (EC 1.7.7.1), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.1.13-14, 1.4.7.1), glutamate dehydrogenase (EC 1.4.1.2-4), aspartate aminotransferase (EC 2.6.1.1), asparagine synthase (EC 6.3.5.4), and phosphoenolpyruvate carboxylase (EC 4.1.1.31). Many of these enzymes exist in multiple forms in different subcellular compartments within different organs and tissues, and play sometimes overlapping and sometimes distinctive roles. Here, we summarize the biochemical characteristics and the physiological roles of these enzymes. We also analyse the molecular evolution of glutamine synthetase, glutamate synthase and glutamate dehydrogenase, and discuss the evolutionary relationships of these three enzymes.
Collapse
Affiliation(s)
- Ritsuko Inokuchi
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
19
|
Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. PHYSIOLOGIA PLANTARUM 2002; 114:259-270. [PMID: 11903973 DOI: 10.1034/j.1399-3054.2002.1140212.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As in many other fleshy fruits, the predominant organic acids in ripe peach (Prunus persica (L.) Batsch) fruit are malic and citric acids. The accumulation of these metabolites in fruit flesh is regulated during fruit development. Six peach fruit-related genes implicated in organic acid metabolism (mitochondrial citrate synthase; cytosolic NAD-dependent malate dehydrogenase, and cytosolic NADP-dependent isocitrate dehydrogenase) and storage (vacuolar proton translocating pumps: one vacuolar H+-ATPase, and two vacuolar H+-pyrophosphatases) were cloned. Five of these peach genes were homologous to genes isolated from fruit in other fleshy fruit species. Phylogenetic and expression analyses suggested the existence of a particular vacuolar pyrophosphatase highly expressed in fruit. The sixth gene was the first cytosolic NAD-dependent malate dehydrogenase gene isolated from fruit. Gene expression was studied during the fruit development of two peach cultivars, a normal-acid (Fantasia) and a low-acid (Jalousia) cultivar. The overall expression patterns of the organic acid-related genes appeared strikingly similar for the two cultivars. The genes involved in organic acid metabolism showed a stronger expression in ripening fruit than during the earlier phases of development, but their expression patterns were not necessarily correlated with the changes in organic acid contents. The tonoplast proton pumps showed a biphasic expression pattern more consistent with the patterns of organic acid accumulation, and the tonoplast pyrophosphatases were more highly expressed in the fruit of the low-acid cultivar during the second rapid growth phase of the fruit.
Collapse
Affiliation(s)
- Christelle Etienne
- Unité de Recherches sur les Espèces Fruitières et la Vigne, Institut National de la Recherche Agronomique, Centre de Bordeaux, BP 81, F-33883 Villenave d'Ornon, Cedex, France Unité de Physiologie Végétale, UMR PBV, Institut National de la Recherche Agronomique, Centre de Bordeaux, BP 81, F-33883 Villenave d'Ornon, Cedex, France
| | | | | | | | | | | |
Collapse
|
20
|
Molecular Control of Nitrate Reductase and Other Enzymes Involved in Nitrate Assimilation. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/0-306-48138-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
21
|
Bunney TD, van Walraven HS, de Boer AH. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci U S A 2001; 98:4249-54. [PMID: 11274449 PMCID: PMC31211 DOI: 10.1073/pnas.061437498] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2000] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F(1) beta-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CF(o)F(1) activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply.
Collapse
Affiliation(s)
- T D Bunney
- Department of Developmental Genetics, Vrije Universiteit, Faculty of Biology, BioCentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
22
|
Sehnke PC, Ferl RJ. Plant 14-3-3s: omnipotent metabolic phosphopartners? SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:pe1. [PMID: 11752616 DOI: 10.1126/stke.2000.56.pe1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The accurate regulation of metabolism is crucial to the existence all organisms. The inappropriate activation of metabolic enzymes can waste precious energy; likewise, the failure to activate metabolic enzymes can disrupt homeostasis and lead to suboptimal cellular (and organismic) responses. Plants use several means to control their metabolic proteins, including a two-step process of protein phosphorylation and subsequent binding by phosphospecific binding proteins termed 14-3-3 proteins. Sehnke and Ferl discuss how 14-3-3 proteins regulate the activity of nitrate reductase and the H(+)-ATPase pump in plants, and compare the functions of 14-3-3 proteins in plants and animals.
Collapse
Affiliation(s)
- P C Sehnke
- Program in Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
23
|
Finnemann J, Schjoerring JK. Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:171-81. [PMID: 11069692 DOI: 10.1046/j.1365-313x.2000.00863.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Regulation of the cytosolic isozyme of glutamine synthetase (GS(1); EC 6.3.1.2) was studied in leaves of Brassica napus L. Expression and immunodetection studies showed that GS(1) was the only active GS isozyme in senescing leaves. By use of [gamma-(32)P]ATP followed by immunodetection, it was shown that GS(1) is a phospho-protein. GS(1) is regulated post-translationally by reversible phosphorylation catalysed by protein kinases and microcystin-sensitive serine/threonine protein phosphatases. Dephosphorylated GS(1) is much more susceptible to degradation than the phosphorylated form. The phosphorylation status of GS(1) changes during light/dark transitions and depends in vitro on the ATP/AMP ratio. Phosphorylated GS(1) interacts with 14-3-3 proteins as verified by two different methods: a His-tag 14-3-3 protein column affinity method combined with immunodetection, and a far-Western method with overlay of 14-3-3-GFP. The degree of interaction with 14-3-3-proteins could be modified in vitro by decreasing or increasing the phosphorylation status of GS(1). Thus, the results demonstrate that 14-3-3 protein is an activator molecule of cytosolic GS and provide the first evidence of a protein involved in the activation of plant cytosolic GS. The role of post-translational regulation of cytosolic GS and interactions between phosphorylated cytosolic GS and 14-3-3 proteins in senescing leaves is discussed in relation to nitrogen remobilization.
Collapse
Affiliation(s)
- J Finnemann
- Plant Nutrition Laboratory, Department of Agricultural Sciences, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | |
Collapse
|
24
|
Cotelle V, Meek SE, Provan F, Milne FC, Morrice N, MacKintosh C. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J 2000; 19:2869-76. [PMID: 10856232 PMCID: PMC203364 DOI: 10.1093/emboj/19.12.2869] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite 14-3-3 proteins being implicated in the control of the eukaryotic cell cycle, metabolism, cell signalling and survival, little is known about the global regulation or functions of the phosphorylation-dependent binding of 14-3-3s to diverse target proteins. We identified Arabidopsis cytosolic proteins that bound 14-3-3s in competition with a 14-3-3-binding phosphopeptide, including nitrate reductase, glyceraldehyde- 3-phosphate dehydrogenase, a calcium-dependent protein kinase, sucrose-phosphate synthase (SPS) and glutamyl-tRNA synthetase. Remarkably, in cells starved of sugars or fed with non-metabolizable glucose analogues, all 14-3-3 binding was lost and the target proteins were selectively cleaved into proteolytic fragments. 14-3-3 binding reappeared after several hours of re-feeding with sugars. Starvation-induced degradation was blocked by 5-amino imidazole-4-carboxamide riboside (which is converted to an AMP-mimetic) or the protease inhibitor MG132 (Cbz-leu-leu-leucinal). Extracts of sugar-starved (but not sugar-fed) Arabidopsis cells contained an ATP-independent, MG132-sensitive, neutral protease that cleaved Arabidopsis SPS, and the mammalian 14-3-3-regulated transcription factor, FKHR. Cleavage of SPS and phosphorylated FKHR in vitro was blocked by binding to 14-3-3s. The finding that 14-3-3s participate in a nutrient-sensing pathway controlling cleavage of many targets may underlie the effects of these proteins on plant development.
Collapse
Affiliation(s)
- V Cotelle
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Sugars have important signaling functions throughout all stages of the plant's life cycle. This review presents our current understanding of the different mechanisms of sugar sensing and sugar-induced signal transduction, including the experimental approaches used. In plants separate sensing systems are present for hexose and sucrose. Hexokinase-dependent and -independent hexose sensing systems can further be distinguished. There has been progress in understanding the signal transduction cascade by analyzing the function of the SNF1 kinase complex and the regulatory PRL1 protein. The role of sugar signaling in seed development and in seed germination is discussed, especially with respect to the various mechanisms by which sugar signaling controls gene expression. Finally, recent literature on interacting signal transduction cascades is discussed, with particular emphasis on the ethylene and ABA signal transduction pathways.
Collapse
Affiliation(s)
- Sjef Smeekens
- Department of Molecular Plant Physiology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands; e-mail:
| |
Collapse
|
26
|
Sveshnikova N, Soll J, Schleiff E. Toc34 is a preprotein receptor regulated by GTP and phosphorylation. Proc Natl Acad Sci U S A 2000; 97:4973-8. [PMID: 10781107 PMCID: PMC18342 DOI: 10.1073/pnas.080491597] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1999] [Indexed: 11/18/2022] Open
Abstract
Most proteins present in chloroplasts are synthesized in the cytosol and are posttranslationally translocated into the organelle. A multicomponent translocation machinery located in both the outer and the inner envelope of chloroplasts was identified, but the mode of action of many subunits remains unclear. Here, we describe the regulation of an early step of translocation occurring at the outer envelope. The outer envelope translocon subunit Toc34 can be phosphorylated, and GTP binding is regulated by phosphorylation. In vitro, Toc34 acts as a receptor for proteins containing a chloroplast-targeting signal. Interaction of Toc34 with the transit peptide is highly regulated and depends on GTP binding to Toc34 and on phosphorylation of the transit peptide of the preprotein.
Collapse
Affiliation(s)
- N Sveshnikova
- Botanisches Institut, Universität Kiel, 24118 Kiel, Germany
| | | | | |
Collapse
|
27
|
Abstract
Recent research shows that signals derived from nitrate are involved in triggering widespread changes in gene expression, resulting in a reprogramming of nitrogen and carbon metabolism to facilitate the uptake and assimilation of nitrate, and to initiate accompanying changes in carbon metabolism. These nitrate-derived signals interact with signals generated further downstream in nitrogen metabolism, and in carbon metabolism. Signals derived from internal and external nitrate also adjust root growth and architecture to the physiological state of the plant, and the distribution of nitrate in the environment.
Collapse
Affiliation(s)
- M Stitt
- Botanisches Institut, In Neuenheimer Feld 360, 69120, Heidelberg, Germany.
| |
Collapse
|