1
|
Analysis of Differentially Expressed Proteins in Mycobacterium avium-Infected Macrophages Comparing with Mycobacterium tuberculosis-Infected Macrophages. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5103803. [PMID: 28573139 PMCID: PMC5442340 DOI: 10.1155/2017/5103803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 11/18/2022]
Abstract
Mycobacterium avium (MA) belongs to the intracellular parasitic bacteria. To better understand how MA survives within macrophages and the different pathogenic mechanisms of MA and Mycobacterium tuberculosis (MTB), tandem mass tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis have been used to determine the proteins which are differentially expressed in MA-infected and MTB-infected macrophages. 369 proteins were found to be differentially expressed in MA-infected cells but not in MTB-infected cells. By using certain bioinformatics methods, we found the 369 proteins were involved in molecular function, biological process, and cellular component including binding, catalytic activity, metabolic process, cellular process, and cell part. In addition, some identified proteins were involved in multiple signaling pathways. These results suggest that MA probably survive within macrophages by affecting the expression of some crucial proteins.
Collapse
|
2
|
Large-scale tag/PCR-based gene expression profiling. World J Microbiol Biotechnol 2015; 30:2125-39. [PMID: 24659336 DOI: 10.1007/s11274-014-1641-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
An intriguing enigma in molecular biology is how genes within a single genome are differentially expressed in different cell types of a multicellular organism, or in response to different developmental or environmental queues in a single cell type. Quantification of transcript levels on a genome-wide scale, often termed transcript profiling, provides a powerful approach to identifying protein-coding and non-coding RNAs functionally relevant to a given biological process. Indeed, transcriptome analysis has been a key area of biological inquiry for decades and successfully produced discoveries in a multitude of processes and disease states, and in an increasingly large number of organisms. The evolution of technologies with increasing levels of informational content, ranging from hybridization-based technologies such as Northern blot analysis and microarrays to tag/polymerase chain reaction (PCR)- and sequence-based technologies including differential display and SAGE, along with the next-generation sequencing, has provided hope for revealing the molecular details of biological systems as they respond to change. This review is an overview of selected high throughput tag/PCR-based methods for genome-wide expression profiling amenable to high-throughput automated operation in any standard laboratory.
Collapse
|
3
|
Derrien M, Van Baarlen P, Hooiveld G, Norin E, Müller M, de Vos WM. Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. Front Microbiol 2011; 2:166. [PMID: 21904534 PMCID: PMC3153965 DOI: 10.3389/fmicb.2011.00166] [Citation(s) in RCA: 381] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/18/2011] [Indexed: 11/13/2022] Open
Abstract
Epithelial cells of the mammalian intestine are covered with a mucus layer that prevents direct contact with intestinal microbes but also constitutes a substrate for mucus-degrading bacteria. To study the effect of mucus degradation on the host response, germ-free mice were colonized with Akkermansia muciniphila. This anaerobic bacterium belonging to the Verrucomicrobia is specialized in the degradation of mucin, the glycoprotein present in mucus, and found in high numbers in the intestinal tract of human and other mammalian species. Efficient colonization of A. muciniphila was observed with highest numbers in the cecum, where most mucin is produced. In contrast, following colonization by Lactobacillus plantarum, a facultative anaerobe belonging to the Firmicutes that ferments carbohydrates, similar cell-numbers were found at all intestinal sites. Whereas A. muciniphila was located closely associated with the intestinal cells, L. plantarum was exclusively found in the lumen. The global transcriptional host response was determined in intestinal biopsies and revealed a consistent, site-specific, and unique modulation of about 750 genes in mice colonized by A. muciniphila and over 1500 genes after colonization by L. plantarum. Pathway reconstructions showed that colonization by A. muciniphila altered mucosal gene expression profiles toward increased expression of genes involved in immune responses and cell fate determination, while colonization by L. plantarum led to up-regulation of lipid metabolism. These indicate that the colonizers induce host responses that are specific per intestinal location. In conclusion, we propose that A. muciniphila modulates pathways involved in establishing homeostasis for basal metabolism and immune tolerance toward commensal microbiota.
Collapse
Affiliation(s)
- Muriel Derrien
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | | | | | | | | | | |
Collapse
|
4
|
Interactions between host and oral commensal microorganisms are key events in health and disease status. Can J Infect Dis 2011; 13:47-51. [PMID: 18159373 DOI: 10.1155/2002/580476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Accepted: 10/25/2001] [Indexed: 11/17/2022] Open
Abstract
The oral cavity has sometimes been described as a mirror that reflects a person's health. Systemic disease such as diabetes or vitamin deficiency may be seen as alterations in the oral mucosa. A variety of external factors cause changes in the oral mucosa, thus altering mucosal structure and function, and promoting oral pathologies (most frequently bacterial, fungal and viral infections). Little is known, however, about immune surveillance mechanisms that involve the oral mucosa.There is no direct contact between specific immune cells in the basal epithelium and microorganisms in the upper layers of the oral mucosa. The author's hypothesis is that the protective immunity is conveyed through epithelial cells. The present brief review assesses the oral mucosa's role as the main defense in the interactions between the host and the oral microbial community. A unique model was used to investigate these interactions as the cause of oral disease and to develop new treatments that exploit our knowledge of the host-microorganism relationship.
Collapse
|
5
|
Tuberculosis immunity: opportunities from studies with cattle. Clin Dev Immunol 2010; 2011:768542. [PMID: 21197095 PMCID: PMC3004413 DOI: 10.1155/2011/768542] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 10/11/2010] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis and M. bovis share >99% genetic identity and induce similar host responses and disease profiles upon infection. There is a rich history of codiscovery in the development of control measures applicable to both human and bovine tuberculosis (TB) including skin-testing procedures, M. bovis BCG vaccination, and interferon-γ release assays. The calf TB infection model offers several opportunities to further our understanding of TB immunopathogenesis. Recent observations include correlation of central memory immune responses with TB vaccine efficacy, association of SIRPα+ cells in ESAT-6:CFP10-elicited multinucleate giant cell formation, early γδ T cell responses to TB, antimycobacterial activity of memory CD4+ T cells via granulysin production, association of specific antibody with antigen burden, and suppression of innate immune gene expression in infected animals. Partnerships teaming researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in man and animals.
Collapse
|
6
|
Zhang W, Li F, Nie L. Integrating multiple 'omics' analysis for microbial biology: application and methodologies. MICROBIOLOGY-SGM 2009; 156:287-301. [PMID: 19910409 DOI: 10.1099/mic.0.034793-0] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in various 'omics' technologies enable quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, and thus allow determination of their variation between different biological states on a genomic scale. Several popular 'omics' platforms that have been used in microbial systems biology include transcriptomics, which measures mRNA transcript levels; proteomics, which quantifies protein abundance; metabolomics, which determines abundance of small cellular metabolites; interactomics, which resolves the whole set of molecular interactions in cells; and fluxomics, which establishes dynamic changes of molecules within a cell over time. However, no single 'omics' analysis can fully unravel the complexities of fundamental microbial biology. Therefore, integration of multiple layers of information, the multi-'omics' approach, is required to acquire a precise picture of living micro-organisms. In spite of this being a challenging task, some attempts have been made recently to integrate heterogeneous 'omics' datasets in various microbial systems and the results have demonstrated that the multi-'omics' approach is a powerful tool for understanding the functional principles and dynamics of total cellular systems. This article reviews some basic concepts of various experimental 'omics' approaches, recent application of the integrated 'omics' for exploring metabolic and regulatory mechanisms in microbes, and advances in computational and statistical methodologies associated with integrated 'omics' analyses. Online databases and bioinformatic infrastructure available for integrated 'omics' analyses are also briefly discussed.
Collapse
Affiliation(s)
- Weiwen Zhang
- Center for Ecogenomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287-6501, USA
| | - Feng Li
- Division of Biometrics II, Office of Biometrics/OTS/CDER/FDA, Silver Spring, MD 20993-0002, USA
| | - Lei Nie
- Division of Biometrics IV, Office of Biometrics/OTS/CDER/FDA, Silver Spring, MD 20993-0002, USA
| |
Collapse
|
7
|
Meade KG, Gormley E, O'Farrelly C, Park SD, Costello E, Keane J, Zhao Y, MacHugh DE. Antigen stimulation of peripheral blood mononuclear cells from Mycobacterium bovis infected cattle yields evidence for a novel gene expression program. BMC Genomics 2008; 9:447. [PMID: 18823559 PMCID: PMC2569068 DOI: 10.1186/1471-2164-9-447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/29/2008] [Indexed: 12/22/2022] Open
Abstract
Background Bovine tuberculosis (BTB) caused by Mycobacterium bovis continues to cause substantial losses to global agriculture and has significant repercussions for human health. The advent of high throughput genomics has facilitated large scale gene expression analyses that present a novel opportunity for revealing the molecular mechanisms underlying mycobacterial infection. Using this approach, we have previously shown that innate immune genes in peripheral blood mononuclear cells (PBMC) from BTB-infected animals are repressed in vivo in the absence of exogenous antigen stimulation. In the present study, we hypothesized that the PBMC from BTB-infected cattle would display a distinct gene expression program resulting from exposure to M. bovis. A functional genomics approach was used to examine the immune response of BTB-infected (n = 6) and healthy control (n = 6) cattle to stimulation with bovine tuberculin (purified protein derivative – PPD-b) in vitro. PBMC were harvested before, and at 3 h and 12 h post in vitro stimulation with bovine tuberculin. Gene expression changes were catalogued within each group using a reference hybridization design and a targeted immunospecific cDNA microarray platform (BOTL-5) with 4,800 spot features representing 1,391 genes. Results 250 gene spot features were significantly differentially expressed in BTB-infected animals at 3 h post-stimulation contrasting with only 88 gene spot features in the non-infected control animals (P ≤ 0.05). At 12 h post-stimulation, 56 and 80 gene spot features were differentially expressed in both groups respectively. The results provided evidence of a proinflammatory gene expression profile in PBMC from BTB-infected animals in response to antigen stimulation. Furthermore, a common panel of eighteen genes, including transcription factors were significantly expressed in opposite directions in both groups. Real-time quantitative reverse transcription PCR (qRT-PCR) demonstrated that many innate immune genes, including components of the TLR pathway and cytokines were differentially expressed in BTB-infected (n = 8) versus control animals (n = 8) after stimulation with bovine tuberculin. Conclusion The PBMC from BTB-infected animals exhibit different transcriptional profiles compared with PBMC from healthy control animals in response to M. bovis antigen stimulation, providing evidence of a novel gene expression program due to M. bovis exposure.
Collapse
Affiliation(s)
- Kieran G Meade
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Handfield M, Baker HV, Lamont RJ. Beyond good and evil in the oral cavity: insights into host-microbe relationships derived from transcriptional profiling of gingival cells. J Dent Res 2008; 87:203-23. [PMID: 18296603 DOI: 10.1177/154405910808700302] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In many instances, the encounter between host and microbial cells, through a long-standing evolutionary association, can be a balanced interaction whereby both cell types co-exist and inflict a minimal degree of harm on each other. In the oral cavity, despite the presence of large numbers of diverse organisms, health is the most frequent status. Disease will ensue only when the host-microbe balance is disrupted on a cellular and molecular level. With the advent of microarrays, it is now possible to monitor the responses of host cells to bacterial challenge on a global scale. However, microarray data are known to be inherently noisy, which is caused in part by their great sensitivity. Hence, we will address several important general considerations required to maximize the significance of microarray analysis in depicting relevant host-microbe interactions faithfully. Several advantages and limitations of microarray analysis that may have a direct impact on the significance of array data are highlighted and discussed. Further, this review revisits and contextualizes recent transcriptional profiles that were originally generated for the specific study of intricate cellular interactions between gingival cells and 4 important plaque micro-organisms. To our knowledge, this is the first report that systematically investigates the cellular responses of a cell line to challenge by 4 different micro-organisms. Of particular relevance to the oral cavity, the model bacteria span the entire spectrum of documented pathogenic potential, from commensal to opportunistic to overtly pathogenic. These studies provide a molecular basis for the complex and dynamic interaction between the oral microflora and its host, which may lead, ultimately, to the development of novel, rational, and practical therapeutic, prophylactic, and diagnostic applications.
Collapse
Affiliation(s)
- M Handfield
- Department of Oral Biology, College of Dentistry, Box 100424 JHMHSC, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | |
Collapse
|
9
|
Voltan S, Castagliuolo I, Elli M, Longo S, Brun P, D'Incà R, Porzionato A, Macchi V, Palù G, Sturniolo GC, Morelli L, Martines D. Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1138-48. [PMID: 17634514 PMCID: PMC2043298 DOI: 10.1128/cvi.00079-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The colonic microbiota is a major modulator of the mucosal immune system; therefore, its manipulation through supplementation with probiotics may significantly affect the host's immune responses. Since different probiotics seem to exert various effects in vivo, we tested the relevance of the autoaggregation phenotype on the intestinal persistence of lactobacilli and their ability to modulate the host's innate immune responses. After 14 days of diet supplementation, the aggregating strain Lactobacillus crispatus M247 but not aggregation-deficient isogenic mutant MU5 was recovered from the feces and colonic mucosa of mice. This observation was confirmed by strain-specific PCR amplification and by Lactobacillus-specific denaturing gradient gel electrophoresis analysis. Indeed, L. crispatus M247 increased Toll-like receptor 2 (TLR2) mRNA levels, while it reduced TLR4 mRNA and protein levels in the colonic mucosa, whereas MU5 was ineffective. In colonic epithelial cells (CMT-93 cells) L. crispatus M247 but not MU5 induced time-dependent extracellular signal-regulated kinase-1 (ERK1) tyrosine phosphorylation and TLR modulation, which were abolished in the presence of PD98059 (an ERK1 inhibitor). To assess the functional relevance of probiotic-induced TLR modulation, we determined the consequences of L. crispatus preexposure on TLR4 (lipopolysaccharide [LPS]) and TLR2 [Pam3Cys-Ser-(Lys)4] ligand-mediated effects in intestinal epithelial cells. Preexposure to L. crispatus M247 blunted LPS-induced interleukin-6 (IL-6) release and inhibition of CMT-93 migration over a wound edge, whereas it enhanced TLR2-mediated IL-10 up-regulation. In summary, the aggregation phenotype is required for L. crispatus persistence in the colon and for modulation of TLR2/TLR4 expression through an ERK-dependent pathway. We speculate that the aggregation phenotype in L. crispatus M247 is required to temper epithelial cell responsiveness to bacterial endotoxins, which thus affects the evolution of intestinal inflammatory processes.
Collapse
Affiliation(s)
- Sandra Voltan
- University of Padua, Department of Histology, Microbiology, and Medical Biotechnologies, Via A. Gabelli 63, Padua 35121, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vos JB, Datson NA, Rabe KF, Hiemstra PS. Exploring host-pathogen interactions at the epithelial surface: application of transcriptomics in lung biology. Am J Physiol Lung Cell Mol Physiol 2007; 292:L367-77. [PMID: 17041013 DOI: 10.1152/ajplung.00242.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial surface of the airways is the largest barrier-forming interface between the human body and the outside world. It is now well recognized that, at this strategic position, airway epithelial cells play an eminent role in host defense by recognizing and responding to microbial exposure. Conversely, inhaled microorganisms also respond to contact with epithelial cells. Our understanding of this cross talk is limited, requiring sophisticated experimental approaches to analyze these complex interactions. High-throughput technologies, such as DNA microarray analysis and serial analysis of gene expression (SAGE), have been developed to screen for gene expression levels at large scale within single experiments. Since their introduction, these hypothesis-generating technologies have been widely used in diverse areas such as oncology and brain research. Successful application of these genomics-based technologies has also revealed novel insights in host-pathogen interactions in both the host and pathogen. This review aims to provide an overview of the SAGE and microarray technology illustrated by their application in the analysis of host-pathogen interactions. In particular, the interactions between epithelial cells in the human lungs and clinically relevant microorganisms are the central focus of this review.
Collapse
Affiliation(s)
- Joost B Vos
- Department of Pulmonology, Leiden Amsterdam Center for Drug Research, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
11
|
Royaee AR, Hammamieh R, Mendis C, Das R, Jett M, H Yang DC. Induction of immunomodulator transcriptional responses by cholera toxin. Mol Immunol 2006; 43:1020-8. [PMID: 16023726 DOI: 10.1016/j.molimm.2005.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Indexed: 10/25/2022]
Abstract
Cholera toxin (CT) is the causative agent of cholera, binds to GM1 glycosphingolipids, induces the production of cellular cAMP and is also a very powerful mucosal adjuvant. Although the mechanism of the CT induction of cAMP production is well understood, molecular mechanisms of the adjuvanticity of cholera toxin are yet to be delineated. Here, we examined the interaction of CT with human lymphocytes and monocytes by analyzing the host transcriptional profiles using cDNA arrays. The time courses of the transcriptional activations and repressions of affected genes in lymphocytes and monocytes in response to cholera toxin were determined. CT induced the expression of IL-8 and MIP-1 early in the CT exposure. VEGF, TIMP1, HIF-1alpha, MMP11, hek 8, MCP1, IL-6, GCP 2, urokinase plasminogen activator, and TNF-alpha receptor were upregulated after 4h CT treatment. These genes showed increased expression for 48 h. MRP-14, MRP-8A increased expression after 16 h CT treatment. RT-PCR and real-time PCR using cDNA specific primers confirmed the CT induction and repression of selected genes. The results suggest that immunomodulatory genes were among the genes that were affected the most by CT, and induction of these genes may contribute to the CT adjuvanticity.
Collapse
Affiliation(s)
- Atabak R Royaee
- Department of Chemistry, Georgetown University, 654 Reiss Science Bldg, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zilbauer M, Dorrell N, Boughan PK, Harris A, Wren BW, Klein NJ, Bajaj-Elliott M. Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 2005; 73:7281-9. [PMID: 16239524 PMCID: PMC1273837 DOI: 10.1128/iai.73.11.7281-7289.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Campylobacter jejuni is the most prevalent cause of bacterial diarrhea worldwide. Despite the serious health problems caused by this bacterium, human innate immune responses to C. jejuni infection remain poorly defined. Human beta-defensins, a family of epithelial antimicrobial peptides, are a major component of host innate defense at the gastrointestinal mucosal surface. In this study, the effect of two different C. jejuni wild-type strains on human intestinal epithelial innate responses was investigated. Up-regulation of beta-defensin gene and peptide expression during infection was observed and recombinant beta-defensins were shown to have a direct bactericidal effect against C. jejuni through disruption of cell wall integrity. Further studies using an isogenic capsule-deficient mutant showed that, surprisingly, the absence of the bacterial polysaccharide capsule did not change the innate immune responses induced by C. jejuni or the ability of C. jejuni to survive exposure to recombinant beta-defensins. This study suggests a major role for this family of antimicrobial peptides in the innate immune defense against this human pathogen.
Collapse
Affiliation(s)
- Matthias Zilbauer
- Department of Infectious Diseases and Microbiology, Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Royaee AR, Jong L, Mendis C, Das R, Jett M, Yang DCH. Cholera toxin induced novel genes in human lymphocytes and monocytes. Mol Immunol 2005; 43:1267-74. [PMID: 16102829 DOI: 10.1016/j.molimm.2005.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Cholera toxin (CT) is well known as an inducer of the accumulation of cellular cAMP through the ADP-ribosylation of the Gs protein by CT. CT is also one of the most powerful mucosal adjuvants. However, the molecular mechanisms of the CT adjuvanticity are not well understood. Here, the transcriptional responses of cultured human lymphocytes and monocytes in response to CT were analyzed using differential display-PCR. The full complement of cellular mRNA was examined by high resolution polyarylamide gel electrophoresis and sequence analyses of the PCR products of 240 primer sets. Over 100 genes with altered expression were initially identified. The expressions of 65 of these genes were further analyzed and confirmed using custom glass cDNA arrays, RT-PCR and real-time PCR. Immunomodulatory genes such as CD2, HIF1, CXCL2, L-plastin, LILR and IFI30 were affected by CT. In addition, 14 novel genes with previously unknown functions were found to be CT induced. These CT induced gene expression alterations provide more insight in the mechanisms of CT actions. The CT induced gene expressions alterations could contribute to the CT adjuvanticity.
Collapse
Affiliation(s)
- Atabak R Royaee
- Department of Chemistry, Georgetown University, 37th & 654 Reiss Science Bldg, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
14
|
Handfield M, Mans JJ, Zheng G, Lopez MC, Mao S, Progulske-Fox A, Narasimhan G, Baker HV, Lamont RJ. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions. Cell Microbiol 2005; 7:811-23. [PMID: 15888084 DOI: 10.1111/j.1462-5822.2005.00513.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcriptional profiling, bioinformatics, statistical and ontology tools were used to uncover and dissect genes and pathways of human gingival epithelial cells that are modulated upon interaction with the periodontal pathogens Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Consistent with their biological and clinical differences, the common core transcriptional response of epithelial cells to both organisms was very limited, and organism-specific responses predominated. A large number of differentially regulated genes linked to the P53 apoptotic network were found with both organisms, which was consistent with the pro-apoptotic phenotype observed with A. actinomycetemcomitans and anti-apoptotic phenotype of P. gingivalis. Furthermore, with A. actinomycetemcomitans, the induction of apoptosis did not appear to be Fas- or TNF(alpha)-mediated. Linkage of specific bacterial components to host pathways and networks provided additional insight into the pathogenic process. Comparison of the transcriptional responses of epithelial cells challenged with parental P. gingivalis or with a mutant of P. gingivalis deficient in production of major fimbriae, which are required for optimal invasion, showed major expression differences that reverberated throughout the host cell transcriptome. In contrast, gene ORF859 in A. actinomycetemcomitans, which may play a role in intracellular homeostasis, had a more subtle effect on the transcriptome. These studies help unravel the complex and dynamic interactions between host epithelial cells and endogenous bacteria that can cause opportunistic infections.
Collapse
Affiliation(s)
- Martin Handfield
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
High throughput and automation of nucleic acid analysis are required in order to exploit the information that has been accumulated from the Human Genome Project. Microfabricated analytical systems enable parallel sample processing, reduced analysis-times, low consumption of sample and reagents, portability, integration of various analytical procedures and automation. This review article discusses miniaturized analytical systems for nucleic acid amplification, separation by capillary electrophoresis, sequencing and hybridization. Microarrays are also covered as a new analytical tool for global analysis of gene expression. Thus. instead of studying the expression of a single gene or a few genes at a time we can now obtain the expression profiles of thousands of genes in a single experiment.
Collapse
Affiliation(s)
- Pierre J Obeid
- Department of Chemistry, University of Patras, Patras, Greece
| | | |
Collapse
|
16
|
Cebra JJ, Jiang HQ, Boiko N, Tlaskalova-Hogenova H. The Role of Mucosal Microbiota in the Development, Maintenance, and Pathologies of the Mucosal Immune System. Mucosal Immunol 2005. [PMCID: PMC7150267 DOI: 10.1016/b978-012491543-5/50022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Ning W, Li CJ, Kaminski N, Feghali-Bostwick CA, Alber SM, Di YP, Otterbein SL, Song R, Hayashi S, Zhou Z, Pinsky DJ, Watkins SC, Pilewski JM, Sciurba FC, Peters DG, Hogg JC, Choi AMK. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 2004; 101:14895-900. [PMID: 15469929 PMCID: PMC522001 DOI: 10.1073/pnas.0401168101] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Indexed: 11/18/2022] Open
Abstract
To better understand the molecular basis of chronic obstructive pulmonary disease (COPD), we used serial analysis of gene expression (SAGE) and microarray analysis to compare the gene expression patterns of lung tissues from COPD and control smokers. A total of 59,343 tags corresponding to 26,502 transcripts were sequenced in SAGE analyses. A total of 327 genes were differentially expressed (1.5-fold up- or down-regulated). Microarray analysis using the same RNA source detected 261 transcripts that were differentially expressed to a significant degree between GOLD-2 and GOLD-0 smokers. We confirmed the altered expression of a select number of genes by using real-time quantitative RT-PCR. These genes encode for transcription factors (EGR1 and FOS), growth factors or related proteins (CTGF, CYR61, CX3CL1, TGFB1, and PDGFRA), and extracellular matrix protein (COL1A1). Immunofluorescence studies on the same lung specimens localized the expression of Egr-1, CTGF, and Cyr61 to alveolar epithelial cells, airway epithelial cells, and stromal and inflammatory cells of GOLD-2 smokers. Cigarette smoke extract induced Egr-1 protein expression and increased Egr-1 DNA-binding activity in human lung fibroblast cells. Cytomix (tumor necrosis factor alpha, IL-1beta, and IFN-gamma) treatment showed that the activity of matrix metalloproteinase-2 (MMP-2) was increased in lung fibroblasts from EGR1 control (+/+) mice but not detected in that of EGR1 null (-/-) mice, whereas MMP-9 was regulated by EGR1 in a reverse manner. Our study represents the first comprehensive analysis of gene expression on GOLD-2 versus GOLD-0 smokers and reveals previously unreported candidate genes that may serve as potential molecular targets in COPD.
Collapse
Affiliation(s)
- Wen Ning
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang JP, Rought SE, Corbeil J, Guiney DG. Gene expression profiling detects patterns of human macrophage responses following Mycobacterium tuberculosis infection. ACTA ACUST UNITED AC 2004; 39:163-72. [PMID: 14625100 DOI: 10.1016/s0928-8244(03)00223-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-density oligonucleotide microarrays allow simultaneous monitoring of the expression of a large number of cellular genes. Microarrays were used to screen the global human monocyte-derived macrophage transcriptional response to infection with the intracellular pathogen Mycobacterium tuberculosis. The microarray detected reproducible patterns of regulated gene expression. Analysis of the expression data showed induction of cytokines and chemokines, ribosomal proteins, and the interferon-response gene Stat1. Several changes were validated by quantitative reverse transcription polymerase chain reaction and immunoblot assays. Augmentation of the respiratory burst and preservation of the response to interferon-gamma were also demonstrated. These data supplement existing knowledge on macrophage responses to tuberculosis infection.
Collapse
Affiliation(s)
- Jennifer P Wang
- University of California, San Diego, Department of Medicine 0640, 9500 Gilman Drive, La Jolla, CA 92093-0640, USA
| | | | | | | |
Collapse
|
19
|
Bai G, Shaner G. Management and resistance in wheat and barley to fusarium head blight. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:135-61. [PMID: 15283663 DOI: 10.1146/annurev.phyto.42.040803.140340] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat and barley worldwide. Resistant cultivars could reduce damage from FHB. Chinese wheat cultivar Sumai 3 and its derivatives represent the greatest degree of resistance to FHB known. A major quantitative trait locus (QTL) on chromosome 3BS and other minor QTL for FHB resistance have been identified in these cultivars and used in wheat-breeding programs worldwide. Many breeding lines with the 3BS resistance QTL and improved agronomic traits have been developed. In barley, only limited sources of FHB resistance are available, especially in six-rowed barley, and none of them contains a DON level low enough to meet the safety requirement of the brewing industry. Several QTL have been identified for lower FHB severity, DON content, and kernel discoloration and used to enhance FHB resistance in barley. Marker-assisted selection for FHB resistance QTL on 3BS of wheat and on 2H of barley is in progress.
Collapse
Affiliation(s)
- Guihua Bai
- United States Department of Agriculture, Agriculture Research Service, Plant Science and Entomology Research Unit, Kansas State University, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|
20
|
Tabak LA. New directions in dentistry--the role of the National Institute of Dental and Craniofacial Research. J Periodontol 2003; 74:65. [PMID: 12593598 DOI: 10.1902/jop.2003.74.1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- L A Tabak
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Abstract
In this review, recent advances in DNA microarray technology and their applications are examined. The many varieties of DNA microarray or DNA chip devices and systems are described along with their methods for fabrication and their use. This includes both high-density microarrays for high-throughput screening applications and lower-density microarrays for various diagnostic applications. The methods for microarray fabrication that are reviewed include various inkjet and microjet deposition or spotting technologies and processes, in situ or on-chip photolithographic oligonucleotide synthesis processes, and electronic DNA probe addressing processes. The DNA microarray hybridization applications reviewed include the important areas of gene expression analysis and genotyping for point mutations, single nucleotide polymorphisms (SNPs), and short tandem repeats (STRs). In addition to the many molecular biological and genomic research uses, this review covers applications of microarray devices and systems for pharmacogenomic research and drug discovery, infectious and genetic disease and cancer diagnostics, and forensic and genetic identification purposes. Additionally, microarray technology being developed and applied to new areas of proteomic and cellular analysis are reviewed.
Collapse
Affiliation(s)
- Michael J Heller
- Department of Bioengineering/Electronic, University of California, San Diego, La Jolla 92093, USA.
| |
Collapse
|
22
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2001. [PMCID: PMC2447222 DOI: 10.1002/cfg.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|