1
|
Ma R, Salinas ND, Orr-Gonzalez S, Richardson B, Ouahes T, Torano H, Jenkins BJ, Dickey TH, Neal J, Duan J, Morrison RD, Gittis AG, Doritchamou JYA, Zaidi I, Lambert LE, Duffy PE, Tolia NH. Structure-guided design of VAR2CSA-based immunogens and a cocktail strategy for a placental malaria vaccine. PLoS Pathog 2024; 20:e1011879. [PMID: 38437239 PMCID: PMC10939253 DOI: 10.1371/journal.ppat.1011879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/14/2024] [Accepted: 11/29/2023] [Indexed: 03/06/2024] Open
Abstract
Placental accumulation of Plasmodium falciparum infected erythrocytes results in maternal anemia, low birth weight, and pregnancy loss. The parasite protein VAR2CSA facilitates the accumulation of infected erythrocytes in the placenta through interaction with the host receptor chondroitin sulfate A (CSA). Antibodies that prevent the VAR2CSA-CSA interaction correlate with protection from placental malaria, and VAR2CSA is a high-priority placental malaria vaccine antigen. Here, structure-guided design leveraging the full-length structures of VAR2CSA produced a stable immunogen that retains the critical conserved functional elements of VAR2CSA. The design expressed with a six-fold greater yield than the full-length protein and elicited antibodies that prevent adhesion of infected erythrocytes to CSA. The reduced size and adaptability of the designed immunogen enable efficient production of multiple variants of VAR2CSA for use in a cocktail vaccination strategy to increase the breadth of protection. These designs form strong foundations for the development of potent broadly protective placental malaria vaccines.
Collapse
Affiliation(s)
- Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nichole D Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sachy Orr-Gonzalez
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brandi Richardson
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tarik Ouahes
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Holly Torano
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bethany J Jenkins
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jillian Neal
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Junhui Duan
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert D Morrison
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Justin Y A Doritchamou
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Irfan Zaidi
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn E Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick E Duffy
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Doritchamou J, Nielsen MA, Chêne A, Viebig NK, Lambert LE, Sander AF, Semblat JP, Hundt S, Orr-Gonzalez S, Janitzek CM, Spiegel AJ, Clemmensen SB, Thomas ML, Nason MC, Snow-Smith M, Barnafo EK, Shiloach J, Chen BB, Nadakal S, Highsmith K, Ouahes T, Conteh S, Sharma A, Torano H, Butler B, Reiter K, Rausch KM, Scaria PV, Anderson C, Narum DL, Salanti A, Fried M, Theander TG, Gamain B, Duffy PE. Aotus nancymaae model predicts human immune response to the placental malaria vaccine candidate VAR2CSA. Lab Anim (NY) 2023; 52:315-323. [PMID: 37932470 PMCID: PMC10689237 DOI: 10.1038/s41684-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.
Collapse
Affiliation(s)
- Justin Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morten A Nielsen
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Arnaud Chêne
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Sophia Hundt
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Mikkel Janitzek
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alicia J Spiegel
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maryonne Snow-Smith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emma K Barnafo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Shiloach
- Biotechnology Unit, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Beth B Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven Nadakal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kendrick Highsmith
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ankur Sharma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly Torano
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Puthupparampil V Scaria
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ali Salanti
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thor G Theander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Benoit Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Gebresenbet RF, Kamaliddin C, Bekele ZM, Teferi M, Tegegne B, Yewhalaw D, Bayih AG, Pillai DR. Active case detection and treatment of malaria in pregnancy using LAMP technology (LAMPREG): a pragmatic randomised diagnostic outcomes trial-study protocol. BMJ Open 2022; 12:e058397. [PMID: 35851027 PMCID: PMC10410974 DOI: 10.1136/bmjopen-2021-058397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/28/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Malaria is one of the major public health problems in sub-Saharan Africa. It contributes significantly to maternal and fetal morbidity and mortality in affected countries. This study aims to evaluate the impact of enhanced case detection using molecular testing called loop-mediated isothermal amplification (LAMP) on birth outcomes in a prospective study design. METHODS AND ANALYSIS A pragmatic randomised diagnostic outcomes trial will be conducted in several health institutes in different Ethiopian regions. Women (n=2583) in their first and second trimesters of pregnancy will be included in the study and individually randomised to the standard of care or enhanced case detection arms, and followed until delivery. Enrolment will encompass the malaria peak transmission seasons. In the standard of care arm, a venous blood sample will be collected for malaria diagnosis only in symptomatic patients. In contrast, in the intervention arm, mothers will be tested by a commercially available Conformité Européene (CE)-approved LAMP malaria test, microscopy and rapid diagnostic test for malaria regardless of their symptoms at each antenatal care visit. The primary outcome of the study is to measure birth weight. ETHICS AND DISSEMINATION The study was approved by the following ethical research boards: Armauer Hansen Research Institute/ALERT Ethics Review Committee (FORM AF-10-015.1, Protocol number PO/05/20), the Ethiopia Ministry of Science and Higher Education National Research Ethics Review Committee (approval SRA/11.7/7115/20), the Ethiopia Food and Drug Administration (approval 02/25/33/I), UCalgary Conjoint Health Research Ethics Board (REB21-0234). The study results will be shared with the institutions and stakeholders such as the Ethiopia Ministry of Health, the Foundation for Innovative Diagnostics, WHO's Multilateral initiative on Malaria - Tropical Diseases Research (TDR-MIM), Roll Back Malaria and the Malaria in Pregnancy Consortium. The study results will also be published in peer-reviewed journals and presented at international conferences. TRIAL REGISTRATION NUMBER NCT03754322.
Collapse
Affiliation(s)
| | - Claire Kamaliddin
- Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Microbiology, Immunology and Infectious Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | | | - Mekonnen Teferi
- Clinical Trials Unit, Armauer Hansen Research Institute, Addis Ababa, Oromia, Ethiopia
| | - Banchamlak Tegegne
- Medical Parasitology, Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, Jimma University College of Public Health and Medical Sciences, Jimma, Ethiopia
| | | | - Dylan R Pillai
- Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Microbiology, Immunology and Infectious Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Maier AG, Doerig C. “The sexy side of parasites” – how parasites influence host sex and how the sex of the host impacts parasites. Mol Biochem Parasitol 2022; 248:111462. [DOI: 10.1016/j.molbiopara.2022.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
|
5
|
Renn JP, Doritchamou JYA, Tentokam BCN, Morrison RD, Cowles MV, Burkhardt M, Ma R, Tolia NH, Fried M, Duffy PE. Allelic variants of full-length VAR2CSA, the placental malaria vaccine candidate, differ in antigenicity and receptor binding affinity. Commun Biol 2021; 4:1309. [PMID: 34799664 PMCID: PMC8604988 DOI: 10.1038/s42003-021-02787-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (IE) sequester in the placenta via surface protein VAR2CSA, which binds chondroitin sulfate A (CSA) expressed on the syncytiotrophoblast surface, causing placental malaria (PM) and severe adverse outcomes in mothers and their offspring. VAR2CSA belongs to the PfEMP1 variant surface antigen family; PfEMP1 proteins mediate IE adhesion and facilitate parasite immunoevasion through antigenic variation. Here we produced deglycosylated (native-like) and glycosylated versions of seven recombinant full-length VAR2CSA ectodomains and compared them for antigenicity and adhesiveness. All VAR2CSA recombinants bound CSA with nanomolar affinity, and plasma from Malian pregnant women demonstrated antigen-specific reactivity that increased with gravidity and trimester. However, allelic and glycosylation variants differed in their affinity to CSA and their serum reactivities. Deglycosylated proteins (native-like) showed higher CSA affinity than glycosylated proteins for all variants except NF54. Further, the gravidity-related increase in serum VAR2CSA reactivity (correlates with acquisition of protective immunity) was absent with the deglycosylated form of atypical M200101 VAR2CSA with an extended C-terminal region. Our findings indicate significant inter-allelic differences in adhesion and seroreactivity that may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design. Full-length VAR2CSA is a potential placental malaria vaccine candidate and in this study, Renn et al. compare antigenicity and receptor binding affinity of different allelic variants in blood samples from pregnant women. Their data show that inter-allelic differences may contribute to the heterogeneity of clinical presentations, which could have implications for vaccine design.
Collapse
Affiliation(s)
- Jonathan P Renn
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y A Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bergeline C Nguemwo Tentokam
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew V Cowles
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martin Burkhardt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rui Ma
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Gill J, Chakraborti S, Bharti P, Sharma A. Structural insights into global mutations in the ligand-binding domain of VAR2CSA and its implications on placental malaria vaccine. Int J Infect Dis 2021; 112:35-39. [PMID: 34450283 DOI: 10.1016/j.ijid.2021.08.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Placental malaria is a public health burden particularly in Africa as it causes severe symptoms and results in stillbirths or maternal deaths. Plasmodium falciparum protein VAR2CSA drives placental malaria (PM) in pregnant women by adhering to chondroitin sulfate A (CSA) on the placenta. VAR2CSA is a primary vaccine candidate for PM with two vaccines based on it already under clinical trials. The first cryo-EM three-dimensional structure of Pf CSA-VAR2CSA complex revealed crucial interacting residues considered to be highly conserved across P. falciparum strains. In the current study, we have conducted a global sequence analysis of 1,114 VAR2CSA field isolate sequences from more than nine countries across three continents revealing numerous mutations in CSA-binding residues. Further, structural mapping has revealed significant polymorphisms on the ligand binding surfaces. The variants from this limited set of 1,114 sequences highlight the concerns that are vital in current considerations for development of vaccines based on VAR2CSA for placental malaria.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India.
| | | | - Praveen Bharti
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Ma R, Lian T, Huang R, Renn JP, Petersen JD, Zimmerberg J, Duffy PE, Tolia NH. Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA. Nat Microbiol 2021; 6:380-391. [PMID: 33452495 PMCID: PMC7914210 DOI: 10.1038/s41564-020-00858-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
Plasmodium falciparum VAR2CSA binds to chondroitin sulfate A (CSA) on the surface of the syncytiotrophoblast during placental malaria. This interaction facilitates placental sequestration of malaria parasites resulting in severe health outcomes for both the mother and her offspring. Furthermore, CSA is presented by diverse cancer cells and specific targeting of cells by VAR2CSA may become a viable approach for cancer treatment. In the present study, we determined the cryo-electron microscopy structures of the full-length ectodomain of VAR2CSA from P. falciparum strain NF54 in complex with CSA, and VAR2CSA from a second P. falciparum strain FCR3. The architecture of VAR2CSA is composed of a stable core flanked by a flexible arm. CSA traverses the core domain by binding within two channels and CSA binding does not induce major conformational changes in VAR2CSA. The CSA-binding elements are conserved across VAR2CSA variants and are flanked by polymorphic segments, suggesting immune selection outside the CSA-binding sites. This work provides paths for developing interventions against placental malaria and cancer.
Collapse
Affiliation(s)
- Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rick Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan P. Renn
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer D. Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Patrick E. Duffy
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA,Correspondence: (N.H.T.)
| |
Collapse
|
8
|
Doritchamou JYA, Morrison R, Renn JP, Ribeiro J, Duan J, Fried M, Duffy PE. Placental malaria vaccine candidate antigen VAR2CSA displays atypical domain architecture in some Plasmodium falciparum strains. Commun Biol 2019; 2:457. [PMID: 31840102 PMCID: PMC6897902 DOI: 10.1038/s42003-019-0704-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Two vaccines based on Plasmodium falciparum protein VAR2CSA are currently in clinical evaluation to prevent placental malaria (PM), but a deeper understanding of var2csa variability could impact vaccine design. Here we identified atypical extended or truncated VAR2CSA extracellular structures and confirmed one extended structure in a Malian maternal isolate, using a novel protein fragment assembly method for RNA-seq and DNA-seq data. Extended structures included one or two additional DBL domains downstream of the conventional NTS-DBL1X-6ɛ domain structure, with closest similarity to DBLɛ in var2csa and non-var2csa genes. Overall, 4/82 isolates displayed atypical VAR2CSA structures. The maternal isolate expressing an extended VAR2CSA bound to CSA, but its recombinant VAR2CSA bound less well to CSA than VAR2CSANF54 and showed lower reactivity to naturally acquired parity-dependent antibody. Our protein fragment sequence assembly approach has revealed atypical VAR2CSA domain architectures that impact antigen reactivity and function, and should inform the design of VAR2CSA-based vaccines.
Collapse
Affiliation(s)
- Justin Y. A. Doritchamou
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Robert Morrison
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Jonathan P. Renn
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Jose Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Junhui Duan
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Michal Fried
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology & Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD USA
| |
Collapse
|
9
|
Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. Blood 2018; 131:1234-1247. [PMID: 29363540 DOI: 10.1182/blood-2017-11-814665] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development.
Collapse
|
10
|
Goheen MM, Bah A, Wegmüller R, Verhoef H, Darboe B, Danso E, Prentice AM, Cerami C. Host iron status and erythropoietic response to iron supplementation determines susceptibility to the RBC stage of falciparum malaria during pregnancy. Sci Rep 2017; 7:17674. [PMID: 29247172 PMCID: PMC5732269 DOI: 10.1038/s41598-017-16896-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/14/2017] [Indexed: 01/14/2023] Open
Abstract
Anaemia and malaria are both common in pregnant women in Sub-Saharan Africa. Previous evidence has shown that iron supplementation may increase malaria risk. In this observational cohort study, we evaluated P. falciparum pathogenesis in vitro in RBCs from pregnant women during their 2nd and 3rd trimesters. RBCs were collected and assayed before (n = 327), 14 days (n = 82), 49 days (n = 112) and 84 days (n = 115) after iron supplementation (60 mg iron as ferrous fumarate daily). P. falciparum erythrocytic stage growth in vitro is reduced in anaemic pregnant women at baseline, but increased during supplementation. The elevated growth rates parallel increases in circulating CD71-positive reticulocytes and other markers of young RBCs. We conclude that Plasmodium growth in vitro is associated with elevated erythropoiesis, an obligate step towards erythroid recovery in response to supplementation. Our findings support current World Health Organization recommendations that iron supplementation be given in combination with malaria prevention and treatment services in malaria endemic areas.
Collapse
Affiliation(s)
- Morgan M Goheen
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amat Bah
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Rita Wegmüller
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Hans Verhoef
- London School of Hygiene & Tropical Medicine, London, UK.,Division of Human Nutrition and Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Bakary Darboe
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Ebrima Danso
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Andrew M Prentice
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia.,London School of Hygiene & Tropical Medicine, London, UK
| | - Carla Cerami
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia.
| |
Collapse
|
11
|
Heterologous Infection of Pregnant Mice Induces Low Birth Weight and Modifies Offspring Susceptibility to Malaria. PLoS One 2016; 11:e0160120. [PMID: 27467392 PMCID: PMC4965193 DOI: 10.1371/journal.pone.0160120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
Pregnancy malaria (PM) is associated with poor pregnancy outcomes, and can arise due to relapse, recrudescence or a re-infection with heterologous parasites. We have used the Plasmodium chabaudi model of pregnancy malaria in C57BL/6 mice to examine recrudescence and heterologous infection using CB and AS parasite strains. After an initial course of patent parasitemia and first recrudescence, CB but not AS parasites were observed to recrudesce again in most animals that became pregnant. Pregnancy exacerbated heterologous CB infection of AS-experienced mice, leading to mortality and impaired post-natal growth of pups. Parasites were detected in placental blood without evidence of sequestration, unlike P. falciparum but similar to other malaria species that infect pregnant women. Inflammatory cytokine levels were elevated in pregnant females during malaria, and associated with intensity of infection and with poor outcomes. Pups born to dams during heterologous infection were more resistant to malaria infections at 6–7 weeks of age, compared to pups born to malaria-experienced but uninfected dams or to malaria-naïve dams. In summary, our mouse model reproduces several features of human PM, including recrudescences, heterologous infections, poor pregnancy outcomes associated with inflammatory cytokines, and modulation of offspring susceptibility to malaria. This model should be further studied to explore mechanisms underlying PM pathogenesis.
Collapse
|
12
|
Tassi Yunga S, Thévenon AD, Leke RGF, Taylor DW. Soluble Tumor Necrosis Factor-α Receptor 2 in Urine Is a Potential Biomarker for Noninvasive Diagnosis of Malaria During Pregnancy. Open Forum Infect Dis 2016; 3:ofw084. [PMID: 27419160 PMCID: PMC4943558 DOI: 10.1093/ofid/ofw084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022] Open
Abstract
Background. During pregnancy, the placenta is inaccessible for diagnosis of placental malaria (PM), but soluble tumor necrosis factor-α receptors (sTNFR) are elevated in the plasma of women with PM. Methods. In this study, sTNFR-1 and sTNFR-2 were quantified in urine of pregnant and nonpregnant Cameroonian women who were positive or negative for malaria by blood-smear microscopy. Results. We found that levels of both sTNFR in urine were higher in pregnant compared with nonpregnant women, but malaria-positive pregnant women excreted substantially more sTNFR-1 (P = .005) and sTNFR-2 (P < .001) than malaria-negative pregnant women. The amount of sTNFR-1(rs = 0.784, P < .001) and sTNFR-2 (rs = 0.816, P < .001) in urine correlated with parasitemia, even in afebrile pregnant women. Urine sTNFR-2 predicted maternal malaria with an area under curve of 0.892 (95% confidence interval, .787–.898). At cutoff concentrations of 9.8 ng and 13.6 ng of sTNFR-2 per mL urine, the sensitivity/specificity were 82.6%/87.0% and 78.3%/95.7%, respectively. Conclusions. The sTNFR-2 in noninvasive urine samples may be useful for diagnosis of malaria during pregnancy.
Collapse
Affiliation(s)
- Samuel Tassi Yunga
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu; The Biotechnology Center, University of Yaoundé 1, Cameroon
| | - Audrey Davidson Thévenon
- Department of Tropical Medicine, Medical Microbiology and Pharmacology , John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu
| | | | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology , John A. Burns School of Medicine, University of Hawaii at Manoa , Honolulu
| |
Collapse
|
13
|
Doritchamou J, Sossou-tchatcha S, Cottrell G, Moussiliou A, Hounton Houngbeme C, Massougbodji A, Deloron P, Ndam NT. Dynamics in the cytoadherence phenotypes of Plasmodium falciparum infected erythrocytes isolated during pregnancy. PLoS One 2014; 9:e98577. [PMID: 24905223 PMCID: PMC4048182 DOI: 10.1371/journal.pone.0098577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/05/2014] [Indexed: 11/19/2022] Open
Abstract
Pregnant women become susceptible to malaria infection despite their acquired immunity to this disease from childhood. The placental sequestration of Plasmodium falciparum infected erythrocytes (IE) is the major feature of malaria during pregnancy, due to ability of these parasites to bind chondroitin sulfate A (CSA) in the placenta through the VAR2CSA protein that parasites express on the surface of IE. We collected parasites at different times of pregnancy and investigated the adhesion pattern of freshly collected isolates on the three well described host receptors (CSPG, CD36 and ICAM-1). Var genes transcription profile and VAR2CSA surface-expression were assessed in these isolates. Although adhesion of IE to CD36 and ICAM-1 was observed in some isolates, CSA-adhesion was the predominant binding feature in all isolates analyzed. Co-existence in the peripheral blood of several adhesion phenotypes in early pregnancy isolates was observed, a diversity that gradually tightens with gestational age in favour of the CSA-adhesion phenotype. Infections occurring in primigravidae were often by parasites that adhered more to CSA than those from multigravidae. Data from this study further emphasize the specificity of CSA adhesion and VAR2CSA expression by parasites responsible for pregnancy malaria, while drawing attention to the phenotypic complexity of infections occurring early in pregnancy as well as in multigravidae.
Collapse
Affiliation(s)
- Justin Doritchamou
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
- UMR216 Mère et enfant face aux infections tropicales, Institut de Recherche pour le Développement, Paris, France
- Centre d'Etude et de Recherche sur le paludisme associé à la Grossesse et à l'Enfance, Université d'Abomey-Calavi, Cotonou, Benin
| | - Sylvain Sossou-tchatcha
- Centre d'Etude et de Recherche sur le paludisme associé à la Grossesse et à l'Enfance, Université d'Abomey-Calavi, Cotonou, Benin
| | - Gilles Cottrell
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
- UMR216 Mère et enfant face aux infections tropicales, Institut de Recherche pour le Développement, Paris, France
| | - Azizath Moussiliou
- UMR216 Mère et enfant face aux infections tropicales, Institut de Recherche pour le Développement, Paris, France
- ED Physiologie Physiopathologie et thérapeutique Sorbone Université, Université Pierre Marie Curie, Paris, France
| | | | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le paludisme associé à la Grossesse et à l'Enfance, Université d'Abomey-Calavi, Cotonou, Benin
| | - Philippe Deloron
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
- UMR216 Mère et enfant face aux infections tropicales, Institut de Recherche pour le Développement, Paris, France
| | - Nicaise Tuikue Ndam
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, Paris, France
- UMR216 Mère et enfant face aux infections tropicales, Institut de Recherche pour le Développement, Paris, France
- Centre d'Etude et de Recherche sur le paludisme associé à la Grossesse et à l'Enfance, Université d'Abomey-Calavi, Cotonou, Benin
- * E-mail:
| |
Collapse
|
14
|
Rowe JH, Ertelt JM, Xin L, Way SS. Regulatory T cells and the immune pathogenesis of prenatal infection. Reproduction 2013; 146:R191-203. [PMID: 23929902 DOI: 10.1530/rep-13-0262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pregnancy in placental mammals offers exceptional comprehensive benefits of in utero protection, nutrition, and metabolic waste elimination for the developing fetus. However, these benefits also require durable strategies to mitigate maternal rejection of fetal tissues expressing foreign paternal antigens. Since the initial postulate of expanded maternal immune tolerance by Sir Peter Medawar 60 years ago, an amazingly elaborate assortment of molecular and cellular modifications acting both locally at the maternal-placental interface and systemically have been shown to silence potentially detrimental maternal immune responses. In turn, simultaneously maintaining host defense against the infinite array of potential pathogens during pregnancy is equally important. Fortunately, resistance against most infections is preserved seamlessly throughout gestation. On the other hand, recent studies on pathogens with unique predisposition for prenatal infections have uncovered distinctive holes in host defense associated with the reproductive process. Using these infections to probe the response during pregnancy, the immune suppressive regulatory subset of maternal CD4 T cells has been increasingly shown to dictate the inter-workings between prenatal infection susceptibility and pathogenesis of ensuing pregnancy complications. Herein, the recent literature suggesting a necessity for maternal regulatory T cells (Tregs) in pregnancy-induced immunological shifts that sustain fetal tolerance is reviewed. Additional discussion is focused on how expansion of maternal Treg suppression may become exploited by pathogens that cause prenatal infections and the perilous potential of infection-induced immune activation that may mitigate fetal tolerance and inadvertently inject hostility into the protective in utero environment.
Collapse
Affiliation(s)
- Jared H Rowe
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
15
|
Matthews K, Kalanon M, Chisholm SA, Sturm A, Goodman CD, Dixon MWA, Sanders PR, Nebl T, Fraser F, Haase S, McFadden GI, Gilson PR, Crabb BS, de Koning-Ward TF. The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth. Mol Microbiol 2013; 89:1167-86. [PMID: 23869529 DOI: 10.1111/mmi.12334] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 11/30/2022]
Abstract
Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX. Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth. In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.
Collapse
Affiliation(s)
- Kathryn Matthews
- School of Medicine, Deakin University, Waurn Ponds, Vic., 3216, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Antibodies to Escherichia coli-expressed C-terminal domains of Plasmodium falciparum variant surface antigen 2-chondroitin sulfate A (VAR2CSA) inhibit binding of CSA-adherent parasites to placental tissue. Infect Immun 2013; 81:1031-9. [PMID: 23319559 DOI: 10.1128/iai.00978-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Placental malaria (PM) is characterized by infected erythrocytes (IEs) that selectively bind to chondroitin sulfate A (CSA) and sequester in placental tissue. Variant surface antigen 2-CSA (VAR2CSA), a Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) protein family member, is expressed on the surface of placental IEs and mediates adherence to CSA on the surface of syncytiotrophoblasts. This transmembrane protein contains 6 Duffy binding-like (DBL) domains which might contribute to the specific adhesive properties of IEs. Here, we use laboratory isolate 3D7 VAR2CSA DBL domains expressed in Escherichia coli to generate antibodies specific for this protein. Flow cytometry results showed that antibodies generated against DBL4ε, DBL5ε, DBL6ε, and tandem double domains of DBL4-DBL5 and DBL5-DBL6 all bind to placental parasite isolates and to lab strains selected for CSA binding but do not bind to children's parasites. Antisera to DBL4ε and to DBL5ε inhibit maternal IE binding to placental tissue in a manner comparable to that for plasma collected from multigravid women. These antibodies also inhibit binding to CSA of several field isolates derived from pregnant women, while antibodies to double domains do not enhance the functional immune response. These data support DBL4ε and DBL5ε as vaccine candidates for pregnancy malaria and demonstrate that E. coli is a feasible tool for the large-scale manufacture of a vaccine based on these VAR2CSA domains.
Collapse
|
17
|
Abstract
Pregnant women have a higher risk of malaria compared to non-pregnant women. This review provides an update on knowledge acquired since 2000 on P. falciparum and P.vivax infections in pregnancy. Maternal risk factors for malaria in pregnancy (MiP) include low maternal age, low parity, and low gestational age. The main effects of MIP include maternal anaemia, low birth weight (LBW), preterm delivery and increased infant and maternal mortality. P. falciparum infected erythrocytes sequester in the placenta by expressing surface antigens, mainly variant surface antigen (VAR2CSA), that bind to specific receptors, mainly chondroitin sulphate A. In stable transmission settings, the higher malaria risk in primigravidae can be explained by the non-recognition of these surface antigens by the immune system. Recently, placental sequestration has been described also for P.vivax infections. The mechanism of preterm delivery and intrauterine growth retardation is not completely understood, but fever (preterm delivery), anaemia, and high cytokines levels have been implicated. Clinical suspicion of MiP should be confirmed by parasitological diagnosis. The sensitivity of microscopy, with placenta histology as the gold standard, is 60% and 45% for peripheral and placental falciparum infections in African women, respectively. Compared to microscopy, RDTs have a lower sensitivity though when the quality of microscopy is low RDTs may be more reliable. Insecticide treated nets (ITN) and intermittent preventive treatment in pregnancy (IPTp) are recommended for the prevention of MiP in stable transmission settings. ITNs have been shown to reduce malaria infection and adverse pregnancy outcomes by 28–47%. Although resistance is a concern, SP has been shown to be equivalent to MQ and AQ for IPTp. For the treatment of uncomplicated malaria during the first trimester, quinine plus clindamycin for 7 days is the first line treatment and artesunate plus clindamycin for 7 days is indicated if this treatment fails; in the 2nd and 3rd trimester first line treatment is an artemisinin-based combination therapy (ACT) known to be effective in the region or artesunate and clindamycin for 7 days or quinine and clindamycin. For severe malaria, in the second and third trimester parenteral artesunate is preferred over quinine. In the first trimester, both artesunate and quinine (parenteral) may be considered as options. Nevertheless, treatment should not be delayed and should be started immediately with the most readily available drug.
Collapse
|
18
|
Bhattacharjee S, Speicher KD, Stahelin RV, Speicher DW, Haldar K. PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte. Mol Biochem Parasitol 2012; 185:106-13. [PMID: 22828070 DOI: 10.1016/j.molbiopara.2012.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 11/18/2022]
Abstract
Malaria parasites export 'a secretome' of hundreds of proteins, including major virulence determinants, from their endoplasmic reticulum (ER), past the parasite plasma and vacuolar membranes to the host erythrocyte. The export mechanism is high affinity (nanomolar) binding of a host (cell) targeting (HT) motif RxLxE/D/Q to the lipid phosphatidylinositol 3-phosphate (PI(3)P) in the ER. Cleavage of the HT motif releases the secretory protein from the ER membrane. The HT motif is thought to be the only export signal resident in an N-terminal vacuolar translocation sequence (VTS) that quantitatively targets green fluorescent protein to the erythrocyte. We have previously shown that the R to A mutation in the HT motif, abrogates VTS binding to PI(3)P (K(d)>5 μM). We now show that remarkably, the R to A mutant is exported to the host erythrocyte, for both membrane and soluble reporters, although the efficiency of export is reduced to ~30% of that seen with a complete VTS. Mass spectrometry indicates that the R to A mutant is cleaved at sites upstream of the HT motif. Antibodies to upstream sequences confirm that aberrantly cleaved R to A protein mutant is exported to the erythrocyte. These data suggest that export mechanisms, independent of PI(3)P as well as those dependent on PI(3)P, function together in a VTS to target parasite proteins to the host erythrocyte.
Collapse
Affiliation(s)
- Souvik Bhattacharjee
- Center for Rare and Neglected Diseases, University of Notre Dame, 103 Galvin Life Sciences, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
19
|
Bhattacharjee S, Stahelin RV, Speicher KD, Speicher DW, Haldar K. Endoplasmic reticulum PI(3)P lipid binding targets malaria proteins to the host cell. Cell 2012; 148:201-12. [PMID: 22265412 DOI: 10.1016/j.cell.2011.10.051] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/11/2011] [Accepted: 10/28/2011] [Indexed: 10/14/2022]
Abstract
Hundreds of effector proteins of the human malaria parasite Plasmodium falciparum constitute a "secretome" carrying a host-targeting (HT) signal, which predicts their export from the intracellular pathogen into the surrounding erythrocyte. Cleavage of the HT signal by a parasite endoplasmic reticulum (ER) protease, plasmepsin V, is the proposed export mechanism. Here, we show that the HT signal facilitates export by recognition of the lipid phosphatidylinositol-3-phosphate (PI(3)P) in the ER, prior to and independent of protease action. Secretome HT signals, including those of major virulence determinants, bind PI(3)P with nanomolar affinity and amino acid specificities displayed by HT-mediated export. PI(3)P-enriched regions are detected within the parasite's ER and colocalize with endogenous HT signal on ER precursors, which also display high-affinity binding to PI(3)P. A related pathogenic oomycete's HT signal export is dependent on PI(3)P binding, without cleavage by plasmepsin V. Thus, PI(3)P in the ER functions in mechanisms of secretion and pathogenesis.
Collapse
Affiliation(s)
- Souvik Bhattacharjee
- Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
20
|
Mackroth MS, Malhotra I, Mungai P, Koech D, Muchiri E, King CL. Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens. THE JOURNAL OF IMMUNOLOGY 2011; 186:2780-91. [PMID: 21278348 DOI: 10.4049/jimmunol.1001188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In malaria endemic regions, a fetus is often exposed in utero to Plasmodium falciparum blood-stage Ags. In some newborns, this can result in the induction of immune suppression. We have previously shown these modulated immune responses to persist postnatally, with a subsequent increase in a child's susceptibility to infection. To test the hypothesis that this immune suppression is partially mediated by malaria-specific regulatory T cells (T(regs)) in utero, cord blood mononuclear cells (CBMC) were obtained from 44 Kenyan newborns of women with and without malaria at delivery. CD4(+)CD25(lo) T cells and CD4(+)CD25(hi) FOXP3(+) cells (T(regs)) were enriched from CBMC. T(reg) frequency and HLA-DR expression on T(regs) were significantly greater for Kenyan as compared with North American CBMC (p < 0.01). CBMC/CD4(+) T cells cultured with P. falciparum blood-stage Ags induced production of IFN-γ, IL-13, IL-10, and/or IL-5 in 50% of samples. Partial depletion of CD25(hi) cells augmented the Ag-driven IFN-γ production in 69% of subjects with malaria-specific responses and revealed additional Ag-reactive lymphocytes in previously unresponsive individuals (n = 3). Addition of T(regs) to CD4(+)CD25(lo) cells suppressed spontaneous and malaria Ag-driven production of IFN-γ in a dose-dependent fashion, until production was completely inhibited in most subjects. In contrast, T(regs) only partially suppressed malaria-induced Th2 cytokines. IL-10 or TGF-β did not mediate this suppression. Thus, prenatal exposure to malaria blood-stage Ags induces T(regs) that primarily suppress Th1-type recall responses to P. falciparum blood-stage Ags. Persistence of these T(regs) postnatally could modify a child's susceptibility to malaria infection and disease.
Collapse
Affiliation(s)
- Maria S Mackroth
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Joergensen LM, Salanti A, Dobrilovic T, Barfod L, Hassenkam T, Theander TG, Hviid L, Arnot DE. The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs. Malar J 2010; 9:100. [PMID: 20403153 PMCID: PMC2868858 DOI: 10.1186/1475-2875-9-100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/19/2010] [Indexed: 11/25/2022] Open
Abstract
Background Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by Plasmodium falciparum parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target. Methods A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob. Results Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of P. falciparum-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules. Conclusions High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.
Collapse
Affiliation(s)
- Lars M Joergensen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), CSS Øster Farimagsgade 5, Building 22 & 23, Postbox 2099, 1014 Copenhagen K, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Salanti A, Resende M, Ditlev SB, Pinto VV, Dahlbäck M, Andersen G, Manczak T, Theander TG, Nielsen MA. Several domains from VAR2CSA can induce Plasmodium falciparum adhesion-blocking antibodies. Malar J 2010; 9:11. [PMID: 20064234 PMCID: PMC2817698 DOI: 10.1186/1475-2875-9-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum can result in several different syndromes with severe clinical consequences for the about 200 million individuals infected each year. During pregnancy, women living in endemic areas become susceptible to malaria due to lack of antibodies against a unique P. falciparum membrane protein, named VAR2CSA. This antigen is not expressed in childhood infections, since it binds chondroitin sulphate A (CSA) expressed on the intervillous space in the placenta. A vaccine appears possible because women acquire protective antibodies hindering sequestration in the placenta as a function of parity. A challenge for vaccine development is to design small constructs of this large antigen, which can induce broadly protective antibodies. It has previously been shown that one domain of VAR2CSA, DBL4-FCR3, induces parasite adhesion-blocking antibodies. In this study, it is demonstrated that other domains of VAR2CSA also can induce antibodies with inhibitory activity. METHODS All VAR2CSA domains from the 3D7 and HB3 parasites were produced in Baculovirus-transfected insect cells. Groups of three rats per protein were immunized and anti-sera were tested for surface reactivity against infected erythrocytes expressing FCR3 VAR2CSA and for the ability to inhibit FCR3CSA parasite adhesion to CSA. The fine specificity of the immune sera was analysed by VAR2CSA peptide arrays. RESULTS Inhibitory antibodies were induced by immunization with DBL3-HB3 T1 and DBL1-3D7. However, unlike the previously characterised DBL4-FCR3 response the inhibitory response against DBL1-3D7 and DBL3-HB3 T1 was poorly reproduced in the second rounds of immunizations. CONCLUSION It is possible to induce parasite adhesion-blocking antibodies when immunizing with a number of different VAR2CSA domains. This indicates that the CSA binding site in VAR2CSA is comprised of epitopes from different domains.
Collapse
Affiliation(s)
- Ali Salanti
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hanssen E, Goldie KN, Tilley L. Ultrastructure of the asexual blood stages of Plasmodium falciparum. Methods Cell Biol 2010; 96:93-116. [PMID: 20869520 DOI: 10.1016/s0091-679x(10)96005-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasmodium falciparum is the most deadly of the human malaria parasites. The particular virulence of this species derives from its ability to subvert the physiology of its host during the blood stages of its development. The parasite grows and divides within erythrocytes, feeding on the hemoglobin, and remodeling its host cells so they adhere to blood vessel walls. The advent of molecular transfection technology, coupled with optical microscopy of fluorescent protein reporters, has greatly improved our understanding of the ways in which the malaria parasite alters its host cell. However, a full interpretation of the information from these studies requires similar advances in our knowledge of the ultrastructure of the parasite. Here we give an overview of different electron microscopy techniques that have revealed the fine structure of the parasite at different stages of development. We present data on some of the unusual organelles of P. falciparum, in particular, the membrane structures that are elaborated in the erythrocyte cytoplasm and are thought to play an important role in trafficking of virulence proteins. We present and discuss some of the exciting whole cell imaging techniques that represent a new frontier in the studies of parasite ultrastructure.
Collapse
Affiliation(s)
- Eric Hanssen
- Electron Microscopy Unit, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | |
Collapse
|
24
|
Yusa A, Kitajima K, Habuchi O. N-linked oligosaccharides are required to produce and stabilize the active form of chondroitin 4-sulphotransferase-1. Biochem J 2009; 388:115-21. [PMID: 15628971 PMCID: PMC1186699 DOI: 10.1042/bj20041573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
C4ST-1 (chondroitin 4-sulphotransferase-1) transfers sulphate to position 4 of N-acetylgalactosamine in chondroitin. We showed previously that purified C4ST-1 from the culture medium of rat chondrosarcoma cells was a glycoprotein containing approx. 35% N-linked oligosaccharides. In the present paper, we investigated the functional role of the N-linked oligosaccharides attached to C4ST-1. We found that (i) treatment of recombinant C4ST-1 with peptide N-glycosidase F caused a marked decrease in activity, (ii) production of the active form of C4ST-1 by COS-7 cells transfected with cDNA of C4ST-1 was inhibited by tunicamycin, (iii) deletion of the N-glycosylation site located at the C-terminal region of C4ST-1 abolished activity, (iv) attachment of a single N-glycan at the C-terminal region supported production of the active form of C4ST-1, but the resulting recombinant enzyme was much more unstable at 37 degrees C than the control recombinant protein, and (v) truncation of C-terminal region up to the N-glycosylation site at the C-terminal region resulted in total loss of activity. These observations strongly suggest that N-linked oligosaccharides attached to C4ST-1 contribute to the production and stability of the active form of C4ST-1. In addition, the N-linked oligosaccharide at the C-terminal region appears to affect the glycosylation pattern of recombinant C4ST; a broad protein band of the wildtype protein resulting from microheterogeneity of N-linked oligosaccharides disappeared and four discrete protein bands with different numbers of N-linked oligosaccharides appeared when the N-linked oligosaccharide at the C-terminal region was deleted.
Collapse
Affiliation(s)
- Akiko Yusa
- *Department of Chemistry, Aichi University of Education, Igaya-cho, Kariya, Aichi 448-8542, Japan
- †Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ken Kitajima
- †Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- ‡Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
- §Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Osami Habuchi
- *Department of Chemistry, Aichi University of Education, Igaya-cho, Kariya, Aichi 448-8542, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Sander AF, Salanti A, Lavstsen T, Nielsen MA, Magistrado P, Lusingu J, Ndam NT, Arnot DE. Multiple var2csa-type PfEMP1 genes located at different chromosomal loci occur in many Plasmodium falciparum isolates. PLoS One 2009; 4:e6667. [PMID: 19690615 PMCID: PMC2723927 DOI: 10.1371/journal.pone.0006667] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/13/2009] [Indexed: 12/03/2022] Open
Abstract
Background The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. Methodology/Principal Findings To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (∼26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. Conclusions/Significance Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria.
Collapse
Affiliation(s)
- Adam F. Sander
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Morten A. Nielsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pamela Magistrado
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- JMP-ENRICA Project, National Institute for Medical Research, Korogwe Laboratory, Tanga, Tanzania
| | - John Lusingu
- JMP-ENRICA Project, National Institute for Medical Research, Korogwe Laboratory, Tanga, Tanzania
| | - Nicaise Tuikue Ndam
- Institut de Recherche pour le Developpment, UR010, Universite Paris Descartes, Paris, France
| | - David E. Arnot
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health Sciences, University of Copenhagen & Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Institute of Immunology & Infection Research, School of Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Espinoza E, Hidalgo L, Chedraui P. The effect of malarial infection on maternal-fetal outcome in Ecuador. J Matern Fetal Neonatal Med 2009; 18:101-5. [PMID: 16203594 DOI: 10.1080/147670500231989] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To describe maternal and fetal outcome among pregnancies complicated with malarial infection. METHODS Charts of pregnancies complicated with malarial infection were reviewed. Parasital etiology and maternal/fetal data was analyzed. RESULTS During the year 2001, at the Enrique C. Sotomayor Obstetrics and Gynecology Hospital, Guayaquil-Ecuador, 80 pregnancies complicated with malarial infection were admitted for treatment. This rendered an incidence of 2.1 per 1,000 live births (80/37,579). Mean maternal age was 25.2 +/- 6.7 years and the 19-29 age group was the most frequently affected (50%). On admittance, fever, chills, jaundice and anemia was present in 97.5%, 78.8%, 38.8% and 60% respectively. Falciparum was the most frequently presenting species (56.3%). Patients admitted at < 20 weeks gestation (n = 17) had a 76.5% and 82.4% abortion and adverse fetal outcome rate respectively. Among those admitted at 20-36 weeks (n = 55) the rates for preterm birth, intrauterine fetal death, low birthweight (LBW) and small-for-gestational age (SGA) were 34.5%, 11%, 40.8% and 48.9% respectively. Among patients admitted > 36 weeks, 87.5% (7/8) ended in a live term delivery. Adolescents presented a higher rate of anemia and SGA neonates. The overall (n = 80) abortion, preterm delivery and intrauterine fetal demise rates were 16.3%, 25% and 8.8% respectively. Chloroquine effectively treated 98.8% of cases and there was one maternal death due to falciparum infection. CONCLUSIONS In this Ecuadorian population, malarial infection complicating gestation was associated to adverse maternal-fetal outcome, which was more evident among teenagers and pregnancies presenting malaria at an earlier gestational age.
Collapse
Affiliation(s)
- E Espinoza
- High Risk Pregnancy Unit of the Enrique C. Sotomayor Obstetrics and Gynecology Hospital, Guayaquil, Ecuador
| | | | | |
Collapse
|
27
|
Sikora M, Ferrer-Admetlla A, Laayouni H, Menendez C, Mayor A, Bardaji A, Sigauque B, Mandomando I, Alonso PL, Bertranpetit J, Casals F. A variant in the gene FUT9 is associated with susceptibility to placental malaria infection. Hum Mol Genet 2009; 18:3136-44. [PMID: 19460885 DOI: 10.1093/hmg/ddp240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Malaria in pregnancy forms a substantial part of the worldwide burden of malaria, with an estimated annual death toll of up to 200 000 infants, as well as increased maternal morbidity and mortality. Studies of genetic susceptibility to malaria have so far focused on infant malaria, with only a few studies investigating the genetic basis of placental malaria, focusing only on a limited number of candidate genes. The aim of this study therefore was to identify novel host genetic factors involved in placental malaria infection. To this end we carried out a nested case-control study on 180 Mozambican pregnant women with placental malaria infection, and 180 controls within an intervention trial of malaria prevention. We genotyped 880 SNPs in a set of 64 functionally related genes involved in glycosylation and innate immunity. A single nucleotide polymorphism (SNP) located in the gene FUT9, rs3811070, was significantly associated with placental malaria infection (odds ratio = 2.31, permutation P-value=0.028). Haplotypic analysis revealed a similarly strong association of a common haplotype of four SNPs including rs3811070. FUT9 codes for a fucosyl-transferase that is catalyzing the last step in the biosynthesis of the Lewis-x antigen, which forms part of the Lewis blood group-related antigens. These results therefore suggest an involvement of this antigen in the pathogenesis of placental malaria infection.
Collapse
Affiliation(s)
- Martin Sikora
- Institute of Evolutionary Biology (UPF-CSIC), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 2009; 7:341-54. [PMID: 19369950 DOI: 10.1038/nrmicro2110] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exported proteins of the malaria parasite Plasmodium falciparum interact with proteins of the erythrocyte membrane and induce substantial changes in the morphology, physiology and function of the host cell. These changes underlie the pathology that is responsible for the deaths of 1-2 million children every year due to malaria infections. The advent of molecular transfection technology, including the ability to generate deletion mutants and to introduce fluorescent reporter proteins that track the locations and dynamics of parasite proteins, has increased our understanding of the processes and machinery for export of proteins in P. falciparum-infected erythrocytes and has provided us with insights into the functions of the parasite protein exportome. We review these developments, focusing on parasite proteins that interact with the erythrocyte membrane skeleton or that promote delivery of the major virulence protein, PfEMP1, to the erythrocyte membrane.
Collapse
Affiliation(s)
- Alexander G Maier
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
29
|
Achur RN, Kakizaki I, Goel S, Kojima K, Madhunapantula SV, Goyal A, Ohta M, Kumar S, Takagaki K, Gowda DC. Structural interactions in chondroitin 4-sulfate mediated adherence of Plasmodium falciparum infected erythrocytes in human placenta during pregnancy-associated malaria. Biochemistry 2009; 47:12635-43. [PMID: 18975976 DOI: 10.1021/bi801643m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection with Plasmodium falciparum during pregnancy results in the adherence of infected red blood cells (IRBCs) in placenta, causing pregnancy-associated malaria with severe health complications in mothers and fetuses. The chondroitin 4-sulfate (C4S) chains of very low sulfated chondroitin sulfate proteoglycans (CSPGs) in placenta mediate the IRBC adherence. While it is known that partially sulfated but not fully sulfated C4S effectively binds IRBCs, structural interactions involved remain unclear and are incompletely understood. In this study, structurally defined C4S oligosaccharides of varying sulfate contents and sizes were evaluated for their ability to inhibit the binding of IRBCs from different P. falciparum strains to CSPG purified from placenta. The results clearly show that, with all parasite strains studied, dodecasaccharide is the minimal chain length required for the efficient adherence of IRBCs to CSPG and two 4-sulfated disaccharides within this minimal structural motif are sufficient for maximal binding. Together, these data demonstrate for the first time that the C4S structural requirement for IRBC adherence is parasite strain-independent. We also show that the carboxyl group on nonreducing end glucuronic acid in dodecasaccharide motif is important for IRBC binding. Thus, in oligosaccharides containing terminal 4,5-unsaturated glucuronic acid, the nonreducing end disaccharide moiety does not interact with IRBCs due to the altered spatial orientation of carboxyl group. In such C4S oligosaccharides, 14-mer but not 12-mer constitutes the minimal motif for inhibition of IRBC binding to placental CSPG. These data have important implications for the development and evaluation of therapeutics and vaccine for placental malaria.
Collapse
Affiliation(s)
- Rajeshwara N Achur
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jones C, Owens S, Senga E, van Rheenen P, Faragher B, Denton J, Brabin B. Placental Expression of α2,6-Linked Sialic Acid is Upregulated in Malaria. Placenta 2008; 29:300-4. [DOI: 10.1016/j.placenta.2007.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
|
31
|
Achur RN, Muthusamy A, Madhunapantula SV, Gowda DC. Binding affinity of Plasmodium falciparum-infected erythrocytes from infected placentas and laboratory selected strains to chondroitin 4-sulfate. Mol Biochem Parasitol 2008; 159:79-84. [PMID: 18359524 DOI: 10.1016/j.molbiopara.2008.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 11/26/2022]
Abstract
The adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in human placenta is mediated by chondroitin 4-sulfate (C4S). The C4S-adherent parasites selected from laboratory strains have been widely used for determining the C4S structural elements involved in IRBC binding and for the identification of parasite adhesive protein(s). However, as far as we know, the relative binding strength of the placental versus laboratory-selected parasites has not been reported. In this study, we show that IRBCs from the infected placentas bind to C4S about 3-fold higher than those selected for C4S adherence from laboratory strains. Although adherent parasites selected from several laboratory strains have comparable binding strengths, the one obtained from 3D7 parasites designated as 3D7N61 used for malaria genome sequencing, exhibits markedly lower binding strength. Furthermore, 3D7N61-CSA parasites lose most of the binding capacity by tenth generation in continuous culture.
Collapse
Affiliation(s)
- Rajeshwara N Achur
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
32
|
Muthusamy A, Achur RN, Valiyaveettil M, Botti JJ, Taylor DW, Leke RF, Gowda DC. Chondroitin sulfate proteoglycan but not hyaluronic acid is the receptor for the adherence of Plasmodium falciparum-infected erythrocytes in human placenta, and infected red blood cell adherence up-regulates the receptor expression. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1989-2000. [PMID: 17525266 PMCID: PMC1899447 DOI: 10.2353/ajpath.2007.061238] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A low-sulfated chondroitin sulfate proteoglycan (CSPG) has been shown to be the receptor for the adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in human placenta. Recently, hyaluronic acid (HA) has been suggested as an additional receptor even though IRBC binding to HA and the presence of HA at locations where IRBCs adhere in the placenta have not been established. In this study, we investigated whether HA is also a receptor for IRBC binding. IRBCs from infected placentas as well as those from different laboratory strains could bind to CSPG but not to HA. In a cell depletion assay, IRBCs from infected placentas could bind quantitatively to CSPG. Although CSPG is present both in the intervillous space and on the syncytiotrophoblast surface, HA is absent in these locations. These data conclusively demonstrate that CSPG, but not HA, is a receptor for IRBC adherence in the placenta. Our data also show, for the first time, that the IRBC-binding CSPG in the placenta is of fetal origin and that, in P. falciparum-infected placentas, the CSPG level is significantly increased, which could exacerbate IRBC adherence and placental pathogenesis. These results have important implications for the development of anti-IRBC adhesion-based vaccine for pregnancy-associated malaria.
Collapse
Affiliation(s)
- Arivalagan Muthusamy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Madhunapantula SV, Achur RN, Gowda DC. Developmental stage- and cell cycle number-dependent changes in characteristics of Plasmodium falciparum-infected erythrocyte adherence to placental chondroitin-4-sulfate proteoglycan. Infect Immun 2007; 75:4409-15. [PMID: 17591790 PMCID: PMC1951145 DOI: 10.1128/iai.00478-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in the human placenta is mediated by chondroitin-4-sulfate (C4S). Although IRBC binding to C4S has been unequivocally established, the adherence characteristics of IRBCs at different stages of parasite development and through successive parasite generations after selection for C4S adherence are not known. Here we show that IRBCs acquire a significant capacity to bind to C4S at as early as 14 h and exhibit maximum binding at 22 to 26 h postinvasion. Surprisingly, the IRBC binding ability decreases by approximately 50% at the late trophozoite and schizont stages. The binding strength of the IRBCs also gradually decreases during successive generations after selection for C4S binding, and at the 32nd generation, the binding capacity was only approximately 31% of that of IRBCs at the 2nd generation, suggesting that IRBCs eventually lose their C4S-adherent capacity. We also tested the susceptibility of the adhesive protein(s) on the IRBC surface to trypsin treatment at different stages of parasite development. The data show that IRBCs with late trophozoites are more resistant to trypsin treatment than those containing early trophozoites, indicating that parasite proteins expressed on the IRBC surface during trophozoite maturation partially mask accessibility of adhesive protein for binding to C4S. These data provide important insights into the expression pattern of the C4S-adhesive protein(s) on the IRBC surface, emphasizing the need for understanding the regulation of genes involved in IRBC binding to C4S. Our data also define the parasite stage at which IRBCs are suitable for studying structural interactions with C4S.
Collapse
Affiliation(s)
- Subbarao V Madhunapantula
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
34
|
Gowda DC. Role of chondroitin-4-sulfate in pregnancy-associated malaria. ADVANCES IN PHARMACOLOGY 2007; 53:375-400. [PMID: 17239776 DOI: 10.1016/s1054-3589(05)53018-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- D Channe Gowda
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine Hershey, Pennsylvania 17033, USA
| |
Collapse
|
35
|
Abstract
Human immunodeficiency virus (HIV) and Plasmodium parasites are pathogens that induce significant perturbation and activation of the immune system. Due to their geographical overlap, there have been concerns that co-infection with the two pathogens may be a factor in the modification of their development, and in the severity and rate of disease progression that they induce. In this article, we have reviewed some of the studies that have addressed this topic and we have tried to provide immunological mechanisms to explain these potential interactions.
Collapse
Affiliation(s)
- L Rénia
- Institut Cochin, Département d'Immunologie, 75014 Paris, France.
| | | |
Collapse
|
36
|
Rindsjö E, Hulthén Varli I, Ofori MF, Lundquist M, Holmlund U, Papadogiannakis N, Scheynius A. Presence of IgE cells in human placenta is independent of malaria infection or chorioamnionitis. Clin Exp Immunol 2006; 144:204-11. [PMID: 16634792 PMCID: PMC1809662 DOI: 10.1111/j.1365-2249.2006.03055.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2006] [Indexed: 11/29/2022] Open
Abstract
We have shown previously that numerous IgE(+) macrophage-like cells are present in the villous stroma of full term placenta and that there was no difference in the amount of IgE(+) cells between allergic and non-allergic mothers. The presence of such an abundant number of IgE(+) cells in the placenta in allergic as well as non-allergic women suggests that the IgE is of some importance for a successful pregnancy outcome. Here we have investigated the IgE-pattern in 59 placentas from second and third trimesters from Sweden with different degrees of chorioamnionitis and 27 full term placentas from Ghana with and without malaria parasites. The immunohistochemical staining pattern for IgE looked similar to our previous study, with the IgE located on Hofbauer-like cells. We could not find any difference in the amount or distribution of IgE(+) cells between malaria-infected and non-infected placentas, nor between different degrees of chorioamnionitis. The IgE score in the placenta did not correlate with the levels of IgE in maternal serum or plasma. However, the IgE score was significantly higher in second- compared to third-trimester placentas (P = 0.03). This might reflect a maturation time-point in the fetus and in the intrauterine environment during the second trimester, or it might be associated with the increased number of intrauterine fetal deaths in the second trimester.
Collapse
Affiliation(s)
- E Rindsjö
- Department of Medicine, Clinical Allergy Research Unit L2:04, Karolinska Institutet and University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
37
|
Kassam SN, Nesbitt S, Hunt LP, Oster N, Soothill P, Sergi C. Pregnancy outcomes in women with or without placental malaria infection. Int J Gynaecol Obstet 2006; 93:225-32. [PMID: 16626713 DOI: 10.1016/j.ijgo.2006.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/14/2006] [Accepted: 02/28/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess delivery outcomes in women with placental malaria who presented at public hospitals in Kisumu, a holoendemic region in western Kenya. METHODS A cross-sectional study using both histology and molecular biology was conducted with 90 consecutive pregnant women who presented at 3 hospitals during a 2-week period. Data collectors completed standardized questionnaires using each patient's hospital record and physical examination results, and registered birth indices such as weight, head circumference, and weight-head ratio. Malaria infection of the placenta was assessed using a molecular biology approach (for genomic differences among parasite species) as well as histology techniques. Of the 5 histologic classes of placental infection, class 1 corresponds to active infection and class 4 to past infection; class 2 and 3 to active chronic infection; and class 5 to uninfected individuals. Plasmodium species typing was determined by polymerase chain reaction amplification of the parasite's genome. RESULTS In newborns at term, low birth weight was directly associated with classes 2 and 4 of placental infection (P = 0.053 and P = 0.003, respectively), and differences in birth weight remained significant between the 5 classes (P < 0.001) even after adjusting for parity and mother's age. Plasmodium falciparum was the only detected parasite. CONCLUSIONS In Kisumu, infection with P. falciparum is an important cause of low birth weight and morbidity when it is associated with histologic classes 2 and 4 of placental infection. Moreover, polymerase chain reaction assays should be supported by ministries of health as an ancillary method of collecting data for malaria control during pregnancy and providing a baseline for future interventions.
Collapse
Affiliation(s)
- S N Kassam
- School of Biomedical Sciences, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
38
|
Viebig NK, Gamain B, Scheidig C, Lépolard C, Przyborski J, Lanzer M, Gysin J, Scherf A. A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A. EMBO Rep 2006; 6:775-81. [PMID: 16025132 PMCID: PMC1369142 DOI: 10.1038/sj.embor.7400466] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/13/2005] [Accepted: 05/31/2005] [Indexed: 11/08/2022] Open
Abstract
In high-transmission regions, protective clinical immunity to Plasmodium falciparum develops during the early years of life, limiting serious complications of malaria in young children. Pregnant women are an exception and are especially susceptible to severe P. falciparum infections resulting from the massive adhesion of parasitized erythrocytes to chondroitin sulphate A (CSA) present on placental syncytiotrophoblasts. Epidemiological studies strongly support the feasibility of an intervention strategy to protect pregnant women from disease. However, different parasite molecules have been associated with adhesion to CSA. In this work, we show that disruption of the var2csa gene of P. falciparum results in the inability of parasites to recover the CSA-binding phenotype. This gene is a member of the var multigene family and was previously shown to be composed of domains that mediate binding to CSA. Our results show the central role of var2CSA in CSA adhesion and support var2CSA as a leading vaccine candidate aimed at protecting pregnant women and their fetuses.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan
- Antigenic Variation
- Blotting, Northern
- Blotting, Southern
- CD36 Antigens/biosynthesis
- CD36 Antigens/metabolism
- Cell Adhesion
- Chondroitin Sulfates/chemistry
- Cloning, Molecular
- Crossing Over, Genetic
- Exons
- Female
- Genome
- Genome, Protozoan
- Humans
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/transmission
- Models, Biological
- Models, Genetic
- Multigene Family
- Mutation
- Phenotype
- Placenta/metabolism
- Plasmids/metabolism
- Plasmodium falciparum/genetics
- Plasmodium falciparum/metabolism
- Pregnancy
- Pregnancy Complications, Parasitic/prevention & control
- Protein Binding
- Protozoan Proteins/genetics
- RNA/metabolism
- Time Factors
- Trophoblasts/metabolism
Collapse
Affiliation(s)
- Nicola K Viebig
- Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 2581, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Benoit Gamain
- Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 2581, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Christine Scheidig
- Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 2581, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Catherine Lépolard
- Unité de Parasitologie Expérimentale URA IPP/UNIV-MED EA 3282, IFR 48, Université de la Méditerranée (Aix-Marseille II), 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Jude Przyborski
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Hygiene Institut, Abteilung Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jürg Gysin
- Unité de Parasitologie Expérimentale URA IPP/UNIV-MED EA 3282, IFR 48, Université de la Méditerranée (Aix-Marseille II), 27 Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 2581, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
- Tel: +33 1 45 68 86 16; Fax: +33 1 45 68 83 48; E-mail:
| |
Collapse
|
39
|
Cooke BM, Mohandas N, Cowman AF, Coppel RL. Cellular adhesive phenomena in apicomplexan parasites of red blood cells. Vet Parasitol 2005; 132:273-95. [PMID: 16087297 DOI: 10.1016/j.vetpar.2005.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The apicomplexan parasites Babesia and Plasmodium are related, yet phylogenetically distinct haemoprotozoa that infect red blood cells and cause severe diseases of major human and veterinary importance. A variety of cellular and molecular interactions are pivotal in many aspects of the pathogenicity of these two parasites. Comparison of the cellular and molecular mechanisms that culminate in accumulation of parasitised red blood cells in the microvasculature of cattle infected with Babesia bovis (babesiosis) and humans infected with Plasmodium falciparum (falciparum malaria) is particularly instructive given the striking similarities in the pathophysiology of these two important medical and veterinary diseases. While such adhesive phenomena have been studied extensively in malaria, they have received relatively little attention in babesiosis. In this review, we summarise the findings of more than 25 years of research into cellular adhesive phenomena in malaria and speculate on how this body of work can now be applied to Babesia parasites. Such information is fundamental if we are to learn more about the biology of Babesia parasites, the cellular and molecular mechanisms by which they cause infection and disease and how to develop novel therapeutic strategies or vaccines for both Babesia and malaria infections.
Collapse
Affiliation(s)
- Brian M Cooke
- Department of Microbiology, Monash University, Vic. 3800, Australia.
| | | | | | | |
Collapse
|
40
|
Abstract
Malaria in pregnancy is one of the major causes of maternal morbidity worldwide, and leads to poor birth outcomes. There is a complex interaction between pregnancy and parasite-all favour the parasite and disadvantage the pregnant woman. Women who are semi-immune lose much of that immunity. They may present with placental malaria but with no parasites in their peripheral blood. A non-immune pregnant women and her fetus are at serious risk from falciparum malaria. The diagnosis and management of malaria in pregnancy, including the safety of antimalarial drugs and interactions of malaria with HIV in pregnancy are reviewed.
Collapse
Affiliation(s)
- Christopher J M Whitty
- Department of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | | | | |
Collapse
|
41
|
Malhotra I, Dent A, Mungai P, Muchiri E, King CL. Real-time quantitative PCR for determining the burden of Plasmodium falciparum parasites during pregnancy and infancy. J Clin Microbiol 2005; 43:3630-5. [PMID: 16081889 PMCID: PMC1234007 DOI: 10.1128/jcm.43.8.3630-3635.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Real-time quantitative PCR (RTQ-PCR) provides a quick, accurate, and reproducible quantification of parasites. However, the value of RTQ-PCR for predicting clinical outcomes of malaria is unknown. Here, we compared RTQ-PCR to microscopy of blood smears, nested PCR (nPCR), and parasite circulating-antigen (CAg) assays for detection of Plasmodium falciparum in pregnant Kenyan women and their infants and related these findings to parity and birth weights in their newborns (n = 554). nPCR was the most sensitive assay for detection of malaria in pregnancy, followed in decreasing order of sensitivity by RTQ-PCR, CAg assays, and blood smears. RTQ-PCR detected a higher frequency of malaria infection (46%) in maternal peripheral blood in primiparous than in multiparous women (35%; P < 0.001), with a >12-fold difference in parasite burden (geometric mean = 25,870 versus 2,143 amplicons/microl blood; P < 0.0001). Similarly, the presence of placental malaria determined by RTQ-PCR was approximately twofold higher in primiparous versus multiparous women (21% versus 13%; P < 0.01). The presence and intensity of malaria infection in pregnant women estimated by RTQ-PCR strongly correlated with low-birth-weight babies, especially in those with high amplicon numbers. RTQ-PCR identified malaria-infected women, missed by blood smear, who were at risk for having underweight offspring. By contrast, malaria detected by nPCR and CAg assay showed a much weaker association with parity or low birth weight. Thus, RTQ-PCR provides an estimate of parasite burden that is more sensitive than blood smear and is predictive of clinical outcomes of malaria infection in pregnant women and newborns.
Collapse
Affiliation(s)
- Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, Division of Vector Borne Diseases, Nairobi, Kenya, Department of Veteran's Affairs Medical Center, Cleveland, Ohio
| | - Arlene Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, Division of Vector Borne Diseases, Nairobi, Kenya, Department of Veteran's Affairs Medical Center, Cleveland, Ohio
| | - Peter Mungai
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, Division of Vector Borne Diseases, Nairobi, Kenya, Department of Veteran's Affairs Medical Center, Cleveland, Ohio
| | - Eric Muchiri
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, Division of Vector Borne Diseases, Nairobi, Kenya, Department of Veteran's Affairs Medical Center, Cleveland, Ohio
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, Division of Vector Borne Diseases, Nairobi, Kenya, Department of Veteran's Affairs Medical Center, Cleveland, Ohio
- Corresponding author. Mailing address: Center for Global Health and Diseases, Case Western Reserve University, 2103 Cornell Rd., WRC Rm. 4132, Cleveland, OH 44106-7286. Phone: (216) 368-4817. Fax: (216) 368-4825. E-mail:
| |
Collapse
|
42
|
Malhotra I, Mungai P, Muchiri E, Ouma J, Sharma S, Kazura JW, King CL. Distinct Th1- and Th2-Type prenatal cytokine responses to Plasmodium falciparum erythrocyte invasion ligands. Infect Immun 2005; 73:3462-70. [PMID: 15908375 PMCID: PMC1111871 DOI: 10.1128/iai.73.6.3462-3470.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prenatal immunity to Plasmodium falciparum merozoite proteins involved in erythrocyte invasion may contribute to the partial protection against malaria that is acquired during infancy in areas of stable malaria transmission. We examined newborn and maternal cytokine and antibody responses to merozoite surface protein-1 (MSP-1), ribosomal phosphoprotein P0 (PfP0), and region II of erythrocyte binding antigen-175 (EBA-175) in infant-mother pairs in Kenya. Overall, 82 of 167 (50%), 106 of 176 (60%), and 38 of 84 (45%) cord blood lymphocytes (CBL) from newborns produced one or more cytokines in response to MSP-1, PfP0, and EBA-175, respectively. Newborns of primigravid and/or malaria-infected women were more likely to have antigen-responsive CBL than were newborns of multigravid and/or uninfected women at delivery. Newborn cytokine responses did not match those of their mothers and fell into three distinct categories, Th1 (21 of 55 CBL donors produced only gamma interferon and/or interleukin 2 [IL-2]), Th2 (21 of 55 produced only IL-5 and/or IL-13), and mixed Th1/Th2 (13 of 55). Newborns produced more IL-10 than adults. High and low levels of cord blood IL-12 p70 production induced by anti-CD40 activation were associated with malaria-specific Th1 and Th2 responses, respectively. Antigen-responsive CBL in some newborns were detected only after depletion of IL-10-secreting CD8 cells with enrichment for CD4 cells. These data indicate that prenatal sensitization to blood-stage Plasmodium falciparum occurs frequently in areas where malaria is holoendemic. Modulation of this immunity, possibly by maternal parity and malaria, may affect the acquisition of protective immunity against malaria during infancy.
Collapse
Affiliation(s)
- Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, 2103 Cornell Rd., WRC Room 4132, Cleveland, OH 44106-7286, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Smith JD, Deitsch KW. Pregnancy-associated malaria and the prospects for syndrome-specific antimalaria vaccines. ACTA ACUST UNITED AC 2005; 200:1093-7. [PMID: 15520241 PMCID: PMC2211864 DOI: 10.1084/jem.20041974] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aided by the Plasmodium falciparum genome project, recent discoveries regarding the molecular basis of malaria pathogenesis have led to a better understanding of the interactions between host and parasite. Although vaccines that prevent infection by malaria parasites remain only hopes for the future, there are now more immediate prospects for vaccines that protect against specific disease syndromes. Here, we discuss the latest advances in the development of a vaccine that specifically targets pregnancy-associated malaria (PAM).
Collapse
Affiliation(s)
- Joseph D Smith
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Ste. 500, Seattle, WA 98109-5219, USA.
| | | |
Collapse
|
44
|
Eda S, Sherman IW. Plasmodium falciparum-infected erythrocytes bind to the RGD motif of fibronectin via the band 3-related adhesin. Exp Parasitol 2004; 107:157-62. [PMID: 15363941 DOI: 10.1016/j.exppara.2004.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 05/17/2004] [Accepted: 06/14/2004] [Indexed: 01/05/2023]
Abstract
Previously it was shown that Plasmodium falciparum-infected erythrocytes bound to thrombospondin by the interaction of the peptidic sequence, HPLQKTY, of the band 3 protein of infected erythrocytes, and the RGD motif of thrombospondin. Here, we show that falciparum-parasitized erythrocytes bind to immobilized fibronectin by the RGD sequence of fibronectin. Involvement of the HPLQKTY region of band 3 in binding was demonstrated by inhibition of adhesion of parasitized erythrocytes to fibronectin by an HPLQKTY-containing peptide and the binding of the HPLQKTY peptide to the RGD sequence of immobilized fibronectin. Since fibronectin occurs on endothelial cells and platelets, this interaction may contribute to the binding of falciparum-infected erythrocytes to such host cells.
Collapse
Affiliation(s)
- Shigetoshi Eda
- Department of Biology, University of California, Riverside 92521, USA
| | | |
Collapse
|
45
|
Muthusamy A, Achur RN, Valiyaveettil M, Gowda DC. Plasmodium falciparum: adherence of the parasite-infected erythrocytes to chondroitin sulfate proteoglycans bearing structurally distinct chondroitin sulfate chains. Exp Parasitol 2004; 107:183-8. [PMID: 15363944 DOI: 10.1016/j.exppara.2004.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 05/13/2004] [Accepted: 05/19/2004] [Indexed: 11/21/2022]
Abstract
Infection with Plasmodium falciparum during pregnancy leads to the selective adherence of infected red blood cells (IRBCs) in the placenta causing placental malaria. The IRBC adherence is mediated through the chondroitin 4-sulfate (C4S) chains of unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) in the placenta. To study the structural interactions involved in C4S-IRBC adherence, various investigators have used CSPGs from different sources. Since the structural characteristics of the polysaccharide chains in CSPGs from various sources differ substantially, the CSPGs are likely to differentially bind IRBCs. In this study, the CSPG purified from bovine trachea, a CSPG form of human recombinant thrombomodulin (TM-CSPG), two CSPG fractions from bovine cornea, and the CSPGs of human placenta, the natural receptor, were studied in parallel for their IRBC binding characteristics. The TM-CSPG and corneal CSPG fractions could bind IRBCs at significantly higher density compared to the placental CSPGs. However, the avidity of IRBC binding by TM-CSPG was considerably low compared to placental CSPGs. The corneal CSPGs have substantially higher binding strengths. The bovine tracheal CSPG bound IRBCs at much lower density and exhibited significantly lower avidity than the placental CSPGs. These data demonstrated that the bovine tracheal CSPG and TM-CSPG are not ideal for studying the fine structural interactions involved in the IRBC adherence to the placental C4S, whereas the bovine corneal CSPGs are better alternatives to the placental CSPGs for determining these interactions.
Collapse
Affiliation(s)
- Arivalagan Muthusamy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes in the placenta is responsible for many of the harmful effects of malaria during pregnancy. Sequestration occurs as a result of parasite adhesion molecules expressed on the surface of infected erythrocytes binding to host receptors in the placenta such as chondroitin sulphate A (CSA). Identification of the parasite ligand(s) responsible for placental adhesion could lead to the development of a vaccine to induce antibodies to prevent placental sequestration. Such a vaccine would reduce the maternal anaemia and infant deaths that are associated with malaria in pregnancy. Current research indicates that the parasite ligands mediating placental adhesion may be members of the P. falciparum variant surface antigen family PfEMP1, encoded by var genes. Two relatively well-conserved subfamilies of var genes have been implicated in placental adhesion, however, their role remains controversial. This review examines the evidence for and against the involvement of var genes in placental adhesion, and considers whether the most appropriate vaccine candidates have yet been identified.
Collapse
Affiliation(s)
- J A Rowe
- Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
47
|
Gamain B, Smith JD, Avril M, Baruch DI, Scherf A, Gysin J, Miller LH. Identification of a 67-amino-acid region of the Plasmodium falciparum variant surface antigen that binds chondroitin sulphate A and elicits antibodies reactive with the surface of placental isolates. Mol Microbiol 2004; 53:445-55. [PMID: 15228526 DOI: 10.1111/j.1365-2958.2004.04145.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complications of malaria in pregnancy are caused by the massive sequestration of parasitized erythrocytes (PE) in the placenta. Placental isolates of Plasmodium falciparum are unusual in that they do not bind the primary microvasculature receptor CD36 but instead bind chondroitin sulphate A (CSA). Pregnant mothers develop antibodies that recognize placental variants worldwide, suggesting that a vaccine against malaria in pregnancy is possible. Some members of the Duffy binding-like gamma (DBL-gamma) domain of the large and diverse P. falciparum erythrocyte membrane protein-1 (PfEMP-1) family, when expressed on Chinese hamster ovary (CHO) cells, bind CSA. To characterize better the molecular requirements for DBL-gamma adhesion to CSA, we determined the binding of various DBL-gamma domains. Most DBL-gamma did not bind CSA, and no conserved region was identified that strictly differentiated binders from non-binders. Structure-function analysis of the FCR3-CSA DBL-gamma domain localized the minimal CSA binding region to a 67-residue fragment. This region was partially conserved among some binding sequences. Serum from a rabbit immunized with the minimal domain reacted with CSA-binding parasite lines, but not with non-CSA-adherent PE lines that adhered to CD36 and other receptors. The identification of a minimal binding region from a highly variable cytoadherent family may have application for a vaccine against malaria in pregnancy.
Collapse
Affiliation(s)
- Benoit Gamain
- Laboratory of Molecular and Vector Research, NIAID, NIH, Bethesda, MD 20892-0425, USA.
| | | | | | | | | | | | | |
Collapse
|