1
|
Li N, Yan F, Wang N, Song Y, Yue Y, Guan J, Li B, Huo G. Distinct Gut Microbiota and Metabolite Profiles Induced by Different Feeding Methods in Healthy Chinese Infants. Front Microbiol 2020; 11:714. [PMID: 32435235 PMCID: PMC7219020 DOI: 10.3389/fmicb.2020.00714] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 01/03/2023] Open
Abstract
Human milk is closely correlated with infant gut microbiota and is important for infant development. However, most infants receive exclusively insufficient breast milk, and the discordance between effects of commercial formula and human milk exists. To elucidate the differences induced by various feeding methods, we determined microbiota and metabolites composition in fecal samples from 77 healthy infants in Northeast China and identified the differences in various feeding methods. Bacterial 16S rRNA gene sequence analysis demonstrated that the fecal samples of exclusively breastfed (BF) infants were abundant in Bifidobacterium and Lactobacillus; the mixed-fed (MF) infants had the highest abundance of Veillonella and Klebsiella; the exclusively formula-fed (FF) infants were enriched in Bacteroides and Blautia; and the complementary food-fed (CF) infants were associated with higher relative abundance of Lachnoclostridium and Akkermansia. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data revealed that the fecal samples of BF infants had the highest abundance of dl-citrulline, threonine, l-proline, l-glutamine, guanine, and l-arginine; the MF infants were abundant in d-maltose, stearidonic acid, capric acid, and myristic acid; the FF infants were enriched in itaconic acid, 4-pyridoxic acid, prostaglandin B2, thymine, dl-α-hydroxybutyric acid, and orotic acid; and the CF infants were associated with higher relative abundance of taurine, l-tyrosine, adenine, and uric acid. Furthermore, compared with the BF infants, the MF and FF infants were more abundant in fatty acid biosynthesis. Collectively, these findings will provide probable explanations for some of the risks and benefits related to infant feeding methods and will support a theoretical basis for the development of infant formula.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Fenfen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Nana Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Yue Song
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Jiaqi Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Secore S, Wang S, Doughtry J, Xie J, Miezeiewski M, Rustandi RR, Horton M, Xoconostle R, Wang B, Lancaster C, Kristopeit A, Wang SC, Christanti S, Vitelli S, Gentile MP, Goerke A, Skinner J, Strable E, Thiriot DS, Bodmer JL, Heinrichs JH. Development of a Novel Vaccine Containing Binary Toxin for the Prevention of Clostridium difficile Disease with Enhanced Efficacy against NAP1 Strains. PLoS One 2017; 12:e0170640. [PMID: 28125650 PMCID: PMC5268477 DOI: 10.1371/journal.pone.0170640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile.
Collapse
Affiliation(s)
- Susan Secore
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Su Wang
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Doughtry
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jinfu Xie
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Matt Miezeiewski
- Eurofins Laboratories, Lancaster, Pennsylvania, United States of America
| | - Richard R. Rustandi
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Melanie Horton
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Rachel Xoconostle
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Bei Wang
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Catherine Lancaster
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Adam Kristopeit
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sheng-Ching Wang
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Sianny Christanti
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Salvatore Vitelli
- Vaccine Analytical Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Marie-Pierre Gentile
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Aaron Goerke
- Vaccine Process Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Julie Skinner
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Erica Strable
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - David S. Thiriot
- Vaccine Drug Product Development, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jean-Luc Bodmer
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| | - Jon H. Heinrichs
- Vaccine Basic Research, Merck Research Laboratories, Merck and Company, Incorporated, West Point, Pennsylvania, United States of America
| |
Collapse
|
3
|
Mallozzi M, Viswanathan VK, Vedantam G. Spore-forming Bacilli and Clostridia in human disease. Future Microbiol 2010; 5:1109-23. [DOI: 10.2217/fmb.10.60] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Gram-positive spore-forming bacteria in the Firmicute phylum are important members of the human commensal microbiota, which, in rare cases, cause opportunistic infections. Other spore-formers, however, have evolved to become dedicated pathogens that can cause a striking variety of diseases. Despite variations in disease presentation, the etiologic agent is often the spore, with bacterially produced toxins playing a central role in the pathophysiology of infection. This review will focus on the specific diseases caused by spores of the Clostridia and Bacilli.
Collapse
Affiliation(s)
- Michael Mallozzi
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | - VK Viswanathan
- Department of Veterinary Science and Microbiology, University of Arizona, 1117, East Lowell St., Building 90, Room 303, Tucson, AZ 85721, USA
| | | |
Collapse
|
4
|
Hoffmann A, Hofmann F, Just I, Lehnardt S, Hanisch UK, Brück W, Kettenmann H, Ahnert-Hilger G, Höltje M. Inhibition of Rho-dependent pathways by Clostridium botulinum C3 protein induces a proinflammatory profile in microglia. Glia 2008; 56:1162-75. [PMID: 18442097 DOI: 10.1002/glia.20687] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful regeneration in the central nervous system crucially depends on the adequate environment. Microglia as brain immune-competent cells importantly contribute to this task by producing pro- and anti-inflammatory mediators. Any environmental change transforms these cells towards an activated phenotype, leading to major morphological, transcriptional and functional alterations. Rho GTPases affect multiple cellular properties, including the cytoskeleton, and C3 proteins are widely used to study their involvement. Especially C3bot from Clostridium botulinum has been considered to promote neuronal regeneration by changing Rho activity. Yet C3bot may exert cellular influences through alternative mechanisms. To determine the role of Rho-dependent pathways in microglia we investigated the influence of C3bot on functional properties of cultivated primary mouse microglial cells. Nanomolar concentrations of C3bot transformed microglia towards an activated phenotype and triggered the release of nitric oxide and several proinflammatory cyto- and chemokines. These inductions were not mediated by the ROCK-kinase pathway, since its selective inhibitors Y27632 and H1152 had no effect. C3-induced and Rho-mediated NO release was instead found to be under the control of NFkappaB, as revealed by treatment with the NFkappaB inhibitor PDTC. Thus, C3bot induces a proinflammatory response in microglia resembling the classical proinflammatory phenotype elicited by bacterial LPS. The findings are relevant for the use of C3bot in regenerative approaches.
Collapse
Affiliation(s)
- Anja Hoffmann
- Institut für Neuropathologie, Universität Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Höltje M, Hofmann F, Lux R, Veh RW, Just I, Ahnert-Hilger G. Glutamate Uptake and Release by Astrocytes Are Enhanced by Clostridium botulinum C3 Protein. J Biol Chem 2008; 283:9289-99. [DOI: 10.1074/jbc.m706499200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Abstract
SUMMARY Bacteroides species are significant clinical pathogens and are found in most anaerobic infections, with an associated mortality of more than 19%. The bacteria maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. B. fragilis, which accounts for only 0.5% of the human colonic flora, is the most commonly isolated anaerobic pathogen due, in part, to its potent virulence factors. Species of the genus Bacteroides have the most antibiotic resistance mechanisms and the highest resistance rates of all anaerobic pathogens. Clinically, Bacteroides species have exhibited increasing resistance to many antibiotics, including cefoxitin, clindamycin, metronidazole, carbapenems, and fluoroquinolones (e.g., gatifloxacin, levofloxacin, and moxifloxacin).
Collapse
|
7
|
Rupnik M, Grabnar M, Geric B. Binary toxin producing Clostridium difficile strains. Anaerobe 2007; 9:289-94. [PMID: 16887714 DOI: 10.1016/j.anaerobe.2003.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2002] [Revised: 08/28/2003] [Accepted: 09/09/2003] [Indexed: 01/05/2023]
Abstract
Clostridium difficile produces three toxins, TcdA, TcdB and CDT. TcdA and TcdB are single-stranded molecules acting as glucosyltransferases specific for small GTPases. CDT is an actin specific ADP-ribosylating binary toxin characteristically composed of two independent components, enzymatic CDTa (48 kDa) and binding CDTb (99 kDa). The cdtA and cdtB genes were sequenced in two CDT-positive strains of C. difficile (CD 196 and 8864) and at least two CDT-negative strains with truncated form of binary toxin genes are known (VPI 10463 and C. difficile genome strain 630). The prevalence of binary toxin producing strains is estimated to be from 1.6% to 5.5%, although a much higher proportion has been reported in some studies. The role of the binary toxin as an additional virulence factor is discussed.
Collapse
Affiliation(s)
- M Rupnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, Ljubljana SLO-1000, Slovenia.
| | | | | |
Collapse
|
8
|
Aldape MJ, Bryant AE, Stevens DL. Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin Infect Dis 2006; 43:1436-46. [PMID: 17083018 DOI: 10.1086/508866] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 07/17/2006] [Indexed: 12/27/2022] Open
Abstract
Clostridium sordellii infections pose difficult clinical challenges and are usually fatal. Most commonly, these infections occur after trauma, childbirth, and routine gynecological procedures, but they have recently been associated with medically induced abortions and injection drug use. We report 2 fatal cases, one of which was associated with minor trauma, and the other of which was associated with normal childbirth, and we summarize the clinical features of 43 additional cases of reported C. sordellii infection. Of these 45 cases, 8 (18%) were associated with normal childbirth, 5 (11%) were associated with medically induced abortion, and 2 (0.4%) were associated with spontaneous abortion. The case-fatality rate was 100% in these groups. Ten (22%) of the C. sordellii infections occurred in injection drug users, and 50% of these patients died. Other cases of C. sordellii infection (in 19 patients [43%]) occurred after trauma or surgery, mostly in healthy persons, and 53% these patients died. Overall, the mortality rate was 69% (31 of 45 patients). Eighty-five percent of all patients with fatal cases died within 2-6 days of initial infection, and nearly 80% of fatal cases developed leukemoid reactions. Rapid diagnostic tests and improved treatments are needed to reduced the morbidity and mortality associated with this devastating infection.
Collapse
Affiliation(s)
- M J Aldape
- Veterans Affairs Medical Center, Boise, ID 83702, USA.
| | | | | |
Collapse
|
9
|
Nakano V, Gomes DA, Arantes RME, Nicoli JR, Avila-Campos MJ. Evaluation of the pathogenicity of the Bacteroides fragilis toxin gene subtypes in gnotobiotic mice. Curr Microbiol 2006; 53:113-7. [PMID: 16832728 DOI: 10.1007/s00284-005-0321-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 04/10/2006] [Indexed: 12/31/2022]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) strains produce a metalloprotease toxin (BFT) related to diarrheal disease in animals, young children, and adults. Three different isoforms of the enterotoxin, designated BFT-1, BFT-2, and BFT-3, have been identified and sequenced. In the present study, the pathogenicity of the ETBF strains carrying bft-1 or bft-2 was evaluated. Each toxin gene subtype of ETBF (bft-1 or bft-2) was intragastrically monoassociated to germ-free mice during 10 days and histopathological data from intestines and liver compared with those from mice monoassociated to a non-enterotoxigenic B. fragilis. Histopathological alterations were observed in all groups of animals related to ETBF. These alterations were characterized mainly by ulceration, edema, and inflammatory infiltration in intestine. However, these lesions were slightly more severe in mice monoassociated with bft-2 subtype. No alteration or lesion was observed in animals associated with the non-enterotoxigenic B. fragilis. In conclusion, strains harboring bft-1 or bft-2 gene subtypes were able to induce histopathological alterations in intestine of a gnotobiotic mice model and it could explain the effect produced for the enterotoxin.
Collapse
Affiliation(s)
- Viviane Nakano
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
10
|
Höltje M, Hoffmann A, Hofmann F, Mucke C, Grosse G, Van Rooijen N, Kettenmann H, Just I, Ahnert-Hilger G. Role of Rho GTPase in astrocyte morphology and migratory response during in vitro wound healing. J Neurochem 2005; 95:1237-48. [PMID: 16150054 DOI: 10.1111/j.1471-4159.2005.03443.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Small Rho GTPases are key regulators of the cytoskeleton in a great variety of cells. Rho function mediates morphological changes as well as locomotor activity. Using astrocyte cultures established from neonatal mice we investigated the role of Rho in process formation during astrocyte stellation. Using a scratch-wound model, we examined the impact of Rho on a variety of morphological and functional variables such as stellation and migratory activity during wound healing. C3 proteins are widely used to study cellular Rho functions. In addition, C3 derived from Clostridium botulinum (C3bot) is considered selectively to promote neuronal regeneration. Because the latter requires a balanced activity of neurones and glial cells, the effects of C3 protein on glial cells such as astrocytes have to be considered carefully. Low nanomolar concentrations of C3 proteins significantly promoted process outgrowth and increased process branching. Besides enzymatic inactivation of Rho by ADP-ribosylation, changes in protein levels of the various Rho GTPases may also contribute to the observed effects. Furthermore, incubation of scratch-wounded astrocyte cultures with C3bot accelerated wound healing. By inhibiting the Rho downstream effector ROCK with the selective inhibitor Y27632 we were able to demonstrate that the accelerated wound closure resulted from both enhanced polarized process formation and increased migratory activity of astrocytes into the lesion site. These results suggest that Rho negatively regulates astrocytic process growth and migratory responses after injury and that its inactivation by C3bot in nanomolar concentrations promotes astrocyte migration.
Collapse
Affiliation(s)
- Markus Höltje
- Charité-Universitätsmedizin Berlin, Centrum für Anatomie, AG Funktionelle Zellbiologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aktories K, Wilde C, Vogelsgesang M. Rho-modifying C3-like ADP-ribosyltransferases. Rev Physiol Biochem Pharmacol 2004; 152:1-22. [PMID: 15372308 DOI: 10.1007/s10254-004-0034-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.
Collapse
Affiliation(s)
- K Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University Freiburg, Otto-Krayer-Haus, Albertstr. 25, Freiburg, Germany.
| | | | | |
Collapse
|
12
|
Ahnert-Hilger G, Höltje M, Grosse G, Pickert G, Mucke C, Nixdorf-Bergweiler B, Boquet P, Hofmann F, Just I. Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J Neurochem 2004; 90:9-18. [PMID: 15198662 DOI: 10.1111/j.1471-4159.2004.02475.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Formation of neurites and their differentiation into axons and dendrites requires precisely controlled changes in the cytoskeleton. While small GTPases of the Rho family appear to be involved in this regulation, it is still unclear how Rho function affects axonal and dendritic growth during development. Using hippocampal neurones at defined states of differentiation, we have dissected the function of RhoA in axonal and dendritic growth. Expression of a dominant negative RhoA variant inhibited axonal growth, whereas dendritic growth was promoted. The opposite phenotype was observed when a constitutively active RhoA variant was expressed. Inactivation of Rho by C3-catalysed ADP-ribosylation using C3 isoforms (Clostridium limosum, C3(lim) or Staphylococcus aureus, C3(stau2)), diminished axonal branching. By contrast, extracellularly applied nanomolar concentrations of C3 from C. botulinum (C3(bot)) or enzymatically dead C3(bot) significantly increased axon growth and axon branching. Taken together, axonal development requires activation of RhoA, whereas dendritic development benefits from its inactivation. However, extracellular application of enzymatically active or dead C3(bot) exclusively promotes axonal growth and branching suggesting a novel neurotrophic function of C3 that is independent from its enzymatic activity.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Centrum für Anatomie, Charité Universitätsmedizin, Berlin, AG Funktionelle Zellbiologie, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Minnaard J, Lievin-Le Moal V, Coconnier MH, Servin AL, Pérez PF. Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells. Infect Immun 2004; 72:3106-12. [PMID: 15155611 PMCID: PMC415652 DOI: 10.1128/iai.72.6.3106-3112.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 07/10/2003] [Accepted: 01/19/2004] [Indexed: 11/20/2022] Open
Abstract
In the present study, the role of direct procaryote-eucaryote interactions in the virulence of Bacillus cereus was investigated. As a model of human enterocytes, differentiated Caco-2 cells were used. Infection of fully differentiated Caco-2 cells with B. cereus in the exponential phase of growth, in order to minimize the concentration of spores or sporulating microorganisms, shows that a strain-dependent cytopathic effect develops. Interestingly, addition of 3-h-old cultures of some strains resulted in complete detachment of the cultured cells after a 3-h infection whereas no such effect was found after a 3-h infection with 16-h-old cultures. Infection of enterocyte-like cells with B. cereus leads to disruption of the F-actin network and necrosis. Even though the effect of secreted factors cannot be ruled out, direct eucaryote-procaryote interaction seems to be necessary. In addition, we observed that some B. cereus strains were able to be internalized in Caco-2 cells. Our findings add a new insight into the mechanisms of virulence of B. cereus in the context of intestinal infection.
Collapse
Affiliation(s)
- Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | |
Collapse
|
14
|
Geric B, Johnson S, Gerding DN, Grabnar M, Rupnik M. Frequency of binary toxin genes among Clostridium difficile strains that do not produce large clostridial toxins. J Clin Microbiol 2004; 41:5227-32. [PMID: 14605169 PMCID: PMC262504 DOI: 10.1128/jcm.41.11.5227-5232.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pathogenic strains of Clostridium difficile commonly produce two large clostridial toxins (LCTs), A and B, virulence factors responsible for C. difficile disease. Some strains have been reported to produce an additional toxin, a binary toxin designated CDT. Binary toxin has cytotoxic effects on cells in culture, but its role in human disease is not yet defined. In this study we examined the frequency of binary toxin genes (cdtB and cdtA) among C. difficile isolates that do not produce LCTs (A(-) B(-)) from a large United States-based collection organized by restriction endonuclease analysis (REA) typing. Of 58 strains tested, 9 (15.5%) were cdtB and cdtA positive, including 4 of 46 (8.7%) non-LCT-producing REA groups, with an estimated prevalence of at least 2% of all non-LCT-producing isolates within the collection. Five of the binary toxin-positive strains belonged to toxinotype XI, which does not produce LCTs but has minor parts of the LCT coding region or pathogenicity locus (PaLoc). We describe two new binary toxin-positive variants, one without any remnant of the LCT genes. This previously unknown variation was found in three isolates that were unrelated by REA typing. LCT-negative, binary toxin-positive strains were isolated from symptomatic and asymptomatic patients and from the hospital environment.
Collapse
Affiliation(s)
- Barbara Geric
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
15
|
Genth H, Gerhard R, Maeda A, Amano M, Kaibuchi K, Aktories K, Just I. Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho-guanine nucleotide dissociation inhibitor-1 complex. J Biol Chem 2003; 278:28523-7. [PMID: 12750364 DOI: 10.1074/jbc.m301915200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RhoA, -B, and -C are ADP-ribosylated by Clostridium botulinum exoenzyme C3 to induce redistribution of the actin filaments in intact cells, a finding that has led to the notion that the ADP-ribosylation blocks coupling of Rho to the downstream effectors. ADP-ribosylation, however, does not alter nucleotide binding, intrinsic, and GTPase-activating protein-stimulated GTPase activity. ADP-ribosylated Rho is even capable of activating the effector protein ROK in a recombinant system. Treatment of cells with a cell-permeable chimeric C3 toxin led to complete localization of modified Rho to the cytosolic fraction based on the complexation of ADP-ribosylated Rho with the guanine-nucleotide dissociation inhibitor-1 (GDI-1). The modified complex turned out to be resistant to phosphatidylinositol 4,5-bisphosphate- and GTPgammaS-induced release of Rho from GDI-1. Thus, ADP-ribosylation leads to entrapment of Rho in the GDI-1 complex. The increased stability of the GDI complex prevented binding of Rho to membrane-associated players of the GTPase cycle such as the activating guanine nucleotide exchange factors and effector proteins.
Collapse
Affiliation(s)
- Harald Genth
- Institut für Toxikologie, Medizinische Hochschule D-30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G. cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci 2003; 116:1519-25. [PMID: 12640036 DOI: 10.1242/jcs.00355] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have recently demonstrated that inhibition of Rho GTPase with Clostridium difficile toxin B, or with Clostridium botulinum C3 toxin, causes actin depolymerization and translocation of aquaporin 2 (AQP2) in renal CD8 cells in the absence of hormonal stimulation. Here we demonstrate that Rho inhibition is part of the signal transduction cascade activated by vasopressin leading to AQP2 insertion into the apical membrane. Quantitation of active RhoA (GTP-bound) by selective pull down experiments demonstrated that the amount of active RhoA decreased upon stimulation of CD8 cells with the cAMP-elevating agent forskolin. Consistent with this observation, forskolin treatment resulted in a decreased expression of membrane-associated (active) Rho, as assessed by cell fractionation followed by western blotting analysis. In addition, the abundance of the endogenous Rho GDP dissociation inhibitor (Rho-GDI) was found to have decreased in the membrane fraction after forskolin stimulation. Co-immunoprecipitation experiments revealed that, after forskolin stimulation, the amount of Rho-GDI complexed with RhoA increased, suggesting that Rho GTPase inhibition occurs through association of RhoA with Rho-GDI. Finally, forskolin stimulation was associated with an increase in Rho phosphorylation on a serine residue, a protein modification known to stabilize the inactive form of RhoA and to increase its interaction with Rho-GDI. Taken together, these data demonstrate that RhoA inhibition through Rho phosphorylation and interaction with Rho-GDI is a key event for cytoskeletal dynamics controlling cAMP-induced AQP2 translocation.
Collapse
Affiliation(s)
- Grazia Tamma
- Dipartimento di Fisiologia Generale ed Ambientale, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Brest P, Mograbi B, Hofman V, Loubat A, Rossi B, Auberger P, Hofman P. Rho GTPase is activated by cytotoxic necrotizing factor 1 in peripheral blood T lymphocytes: potential cytotoxicity for intestinal epithelial cells. Infect Immun 2003; 71:1161-9. [PMID: 12595428 PMCID: PMC148851 DOI: 10.1128/iai.71.3.1161-1169.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Revised: 10/08/2002] [Accepted: 11/23/2002] [Indexed: 02/01/2023] Open
Abstract
Some strains of Escherichia coli related to acute cystitis or colitis produce a toxin named cytotoxic necrotizing factor 1 (CNF-1). CNF-1 mediates its effects on epithelial cells or phagocytes via the permanent activation of small GTP-binding proteins, caused by the toxin-induced deamidation of Glu(63) of p21 Rho. The behavior of peripheral blood T lymphocytes during the acute phase of bacterial colitis has been poorly investigated. Our study was conducted to test whether (i) peripheral blood T lymphocytes can be activated by CNF-1 and (ii) CNF-1-activated T lymphocytes are cytotoxic against intestinal epithelial cells. Activation of T lymphocytes by CNF-1 was assessed by electrophoresis, flow cytometry, confocal microscopy, and electron microscopy studies. Assays for migration and adherence of CNF-1-treated T lymphocytes were performed in Transwell chambers with T84 intestinal epithelial cells grown on polycarbonate semipermeable filters. CNF-1 induced a decrease in the electrophoretic mobility of the GTP-binding protein Rho in treated T lymphocytes. CNF-1 provoked an increase in the content of actin stress fibers and pseudopodia in T lymphocytes. Several adherence molecules were clustered into cytoplasmic projections in CNF-1-treated T lymphocytes and adherence of such lymphocytes on the basolateral pole of T84 was increased, resulting in cytotoxicity toward epithelial cells. Such enhanced adherence in response to CNF-1 was dependent on p42-44(MAP) kinase activation of T lymphocytes. Taken together, these results suggest that CNF-1, by acting on T lymphocytes, may increase in an important fashion the virulence of certain strains of E. coli against the intestinal epithelia.
Collapse
Affiliation(s)
- Patrick Brest
- INSERM 364, Faculté de Médecine, 06107 Nice Cédex 02, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Genth H, Schmidt M, Gerhard R, Aktories K, Just I. Activation of phospholipase D1 by ADP-ribosylated RhoA. Biochem Biophys Res Commun 2003; 302:127-32. [PMID: 12593858 DOI: 10.1016/s0006-291x(03)00112-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridium botulinum exoenzyme C3 exclusively ADP-ribosylates RhoA, B, and C to inactivate them, resulting in disaggregation of the actin filaments in intact cells. The ADP-ribose resides at Asn-41 in the effector binding region, leading to the notion that ADP-ribosylation inactivates Rho by blocking coupling of Rho to its downstream effectors. In a recombinant system, however, ADP-ribosylated Rho bound to effector proteins such as phospholipase D-1 (PLD1), Rho-kinase (ROK), and rhotekin. The ADP-ribose rather mediated binding of Rho-GDP to PLD1. ADP-ribosylation of Rho-GDP followed by GTP-gamma-S loading resulted in binding but not in PLD activation. On the other hand, ADP-ribosylation of Rho previously activated by binding to GTP-gamma-S resulted in full PLD activation. This finding indicates that ADP-ribosylation seems to prevent GTP-induced change to the active conformation of switch I, the prerequisite of Rho-PLD interaction. In contrast to recombinant systems, ADP-ribosylation in intact cells results in functional inactivation of Rho, indicating other mechanisms of inactivation than blocking effector coupling.
Collapse
Affiliation(s)
- Harald Genth
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, Hannover D-30625, Germany.
| | | | | | | | | |
Collapse
|
19
|
Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 2002; 111:553-64. [PMID: 12437928 DOI: 10.1016/s0092-8674(02)01132-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CNF1 toxin is a virulence factor produced by uropathogenic Escherichia coli. Upon cell binding and introduction into the cytosol, CNF1 deamidates glutamine 63 of RhoA (or 61 of Rac and Cdc42), rendering constitutively active these GTPases. Unexpectedly, we measured in bladder cells a transient CNF1-induced activation of Rho GTPases, maximal for Rac. Deactivation of Rac correlated with the increased susceptibility of its deamidated form to ubiquitin/proteasome-mediated degradation. Sensitivity to ubiquitylation could be generalized to other permanent-activated forms of Rac and to its sustained activation by Dbl. Degradation of the toxin-activated Rac allowed both host cell motility and efficient cell invasion by uropathogenic bacteria. CNF1 toxicity thus results from a restricted activation of Rho GTPases through hijacking the host cell proteasomal machinery.
Collapse
Affiliation(s)
- Anne Doye
- INSERM U452, IFR 50, Faculté de Médecine, 28 avenue de Valombrose, 06107, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cheng H, Kartenbeck J, Kabsch K, Mao X, Marqués M, Alonso A. Stress kinase p38 mediates EGFR transactivation by hyperosmolar concentrations of sorbitol. J Cell Physiol 2002; 192:234-43. [PMID: 12115730 DOI: 10.1002/jcp.10134] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activation of the epidermal growth factor receptor (EGFR) has been shown to occur by ligand-dependent and ligand-independent mechanisms. Different molecular mechanisms have been found to be responsible for ligand-independent receptor transactivation. Here, we show that hyperosmolar concentrations of sorbitol activate the EGFR in human keratinocytes. Experiments using specific inhibitors of EGFR phosphorylation show that the increased amount of activated receptors is the result of a decreased rate of dephosphorylation. Furthermore, sorbitol treatment results in a strong activation of stress kinase p38. Treatment of the cells with SB203580, a known inhibitor of p38 alpha and beta kinases, results in impairment of receptor activation, indicating that the stress kinase is involved in receptor activation modulation. This is further reinforced by experiments showing that addition of Toxin B, known to be an inhibitor of the small Rho GTPases rac1, cdc42, and Rho A/B, to the cells results in a strong induction of EGFR activation. Our results point, therefore, to a mechanism by which osmotic shock activates EGFR through the small Rho GTPases-p38 stress kinase pathway.
Collapse
Affiliation(s)
- Hao Cheng
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Just I, Hofmann F, Genth H, Gerhard R. Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins. Int J Med Microbiol 2001; 291:243-50. [PMID: 11680784 DOI: 10.1078/1438-4221-00127] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rho GTPases, which belong to the Ras superfamily of low-molecular-mass GTP-binding proteins, are the preferred intracellular targets of bacterial protein toxins. The Rho GTPases RhoA/B/C, Rac1/2 and Cdc42 are the master regulators of the actin cytoskeleton. Clostridium difficile toxins A and B, the causative agents of the antibiotic-associated pseudomembranous colitis, are intracellularly acting cytotoxins which mono-glucosylate the Rho GTPases. Clostridium botulinum C3 toxin, which is not related to the clostridial neurotoxins, catalyses ADP-ribosylation of RhoA/B/C but not of other Rho GTPases. Glucosylation as well as ADP-ribosylation result in functional inactivation of Rho causing disassembly of the actin cytoskeleton.
Collapse
Affiliation(s)
- I Just
- Institut für Toxikologie, Medizinische Hochschule Hannover, Germany.
| | | | | | | |
Collapse
|
22
|
Qa'Dan M, Spyres LM, Ballard JD. pH-enhanced cytopathic effects of Clostridium sordellii lethal toxin. Infect Immun 2001; 69:5487-93. [PMID: 11500421 PMCID: PMC98661 DOI: 10.1128/iai.69.9.5487-5493.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Clostridium sordellii lethal toxin (TcsL) is a large clostridial toxin (LCT) that glucosylates Ras, Rac, and Ral. TcsL differs from other LCTs because it modifies Ras, which does not cycle from cytosol to membrane. By using a suite of inhibitors, steps in cell entry by TcsL were dissected, and entry appears to be dependent on endosomal acidification. However, in contrast to TcdB, TcsL was substantially slower in its time course of entry. TcsL cytopathic effects (CPE) were blocked by bafilomycin A1 and neutralized by antiserum up to 2 h following treatment of cells with the toxin. The slow time course of intoxication and relatively high cytopathic dose were alleviated by exposing TcsL to acid pH, resulting in a time course similar to that of TcdB. The optimal pH range for activation was 4.0 to 5.0, which increased the rate of intoxication over 5-fold, lowered the minimal intoxicating dose by over 100-fold, and allowed complete substrate modification within 2 h, as shown by differential glucosylation. Fluorescence analysis of TcsL with 2-(p-toluidinyl) naphthalene-6-sulfonic acid as a probe suggested the acid pH stimulated a hydrophobic transition in the protein, a likely prelude to membrane insertion. Finally, acid entry by TcsL caused TcdB-like morphological changes in CHO cells, which suggesting that acid activation may impact substrate recognition profiles for TcsL.
Collapse
Affiliation(s)
- M Qa'Dan
- Department of Botany and Microbiology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
23
|
Abstract
Pathogenic bacteria and higher eukaryotes have spent a long time together, leading to a precise understanding of one another's way of functioning. Through rapid evolution, bacteria have engineered increasingly sophisticated weapons to hit exactly where it hurts, interfering with fundamental host functions. However, toxins are not only useful to the bacteria - they have also become an essential asset for life scientists, who can now use them as toolkits to explore cellular processes.
Collapse
Affiliation(s)
- G Schiavo
- Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
24
|
Wilde C, Chhatwal GS, Schmalzing G, Aktories K, Just I. A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3. J Biol Chem 2001; 276:9537-42. [PMID: 11124969 DOI: 10.1074/jbc.m011035200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium botulinum C3 is the prototype of the family of the C3-like transferases that ADP-ribosylate exclusively RhoA, -B and -C. The ADP-ribose at Asn-41 results in functional inactivation of Rho reflected by disaggregation of the actin cytoskeleton. We report on a new C3-like transferase produced by a pathogenic Staphylococcus aureus strain. The transferase designated C3(Stau) was cloned from the genomic DNA. At the amino acid level, C3(Stau) revealed an identity of 35% to C3 from C. botulinum and Clostridium limosum exoenzyme, respectively, and of 78% to EDIN from S. aureus. In addition to RhoA, which is the target of the other C3-like transferases, C3(Stau) modified RhoE and Rnd3. RhoE was ADP-ribosylated at Asn-44, which is equivalent to Asn-41 of RhoA. RhoE and Rnd3 are members of the Rho subfamily, which are deficient in intrinsic GTPase activity and possess a RhoA antagonistic cell function. The protein substrate specificity found with recombinant Rho proteins was corroborated by expression of RhoE in Xenopus laevis oocytes showing that RhoE was also modified in vivo by C3(Stau) but not by C3 from C. botulinum. The poor cell accessibility of C3(Stau) was overcome by generation of a chimeric toxin recruiting the cell entry machinery of C. botulinum C2 toxin. The chimeric C3(Stau) caused the same morphological and cytoskeletal changes as the chimeric C. botulinum C3. C3(Stau) is a new member of the family of the C3-like transferases but is also the prototype of a subfamily of RhoE/Rnd modifying transferases.
Collapse
Affiliation(s)
- C Wilde
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität Freiburg, Hermann-Herder-Strasse 5, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- I Just
- Institut für Pharmakologie und Toxikologie, Universität Freiburg, Germany
| | | |
Collapse
|
26
|
Fullner KJ, Mekalanos JJ. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J 2000; 19:5315-23. [PMID: 11032799 PMCID: PMC314022 DOI: 10.1093/emboj/19.20.5315] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enteric pathogens often export toxins that elicit diarrhea as a part of the etiology of disease, including toxins that affect cytoskeletal structure. Recently, we discovered that the intestinal pathogen Vibrio cholerae elicits rounding of epithelial cells that is dependent upon a gene we designated rtxA. Here we investigate the association of rtxA with the cell-rounding effect. We find that V. cholerae exports a large toxin, RTX (repeats-in-toxin) toxin, to culture supernatant fluids and that this toxin is responsible for cell rounding. Furthermore, we find that cell rounding is not due to necrosis, suggesting that RTX toxin is not a typical member of the RTX family of pore-forming toxins. Rather, RTX toxin causes depolymerization of actin stress fibers and covalent cross-linking of cellular actin into dimers, trimers and higher multimers. This RTX toxin-specific cross-linking occurs in cells previously rounded with cytochalasin D, indicating that G-actin is the toxin target. Although several models explain our observations, our simultaneous detection of actin cross-linking and depolymerization points toward a novel mechanism of action for RTX toxin, distinguishing it from all other known toxins.
Collapse
Affiliation(s)
- K J Fullner
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, D1-408, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- P Boquet
- INSERM U 452, Faculté de Médecine, Nice, France.
| |
Collapse
|
28
|
Vetter IR, Hofmann F, Wohlgemuth S, Herrmann C, Just I. Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. J Mol Biol 2000; 301:1091-5. [PMID: 10966807 DOI: 10.1006/jmbi.2000.4045] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin at effector region threonine 35 has diverse effects on the Ras GTPase cycle, the dominant one of which is the inhibition of Ras-Raf coupling, leading to complete blockade of Ras downstream signaling. To understand the structural basis of the functional consequences of glucosylation, the X-ray crystal structure of glucosylated Ras-GDP was compared with that of non-modified Ras. Glucosylated Ras exhibits a different crystal packing but the overall three-dimensional structure is not altered. The glucose group does not affect the conformation of the effector loop. Due to steric constraints, the glucose moiety prevents the formation of the GTP conformation of the effector loop, which is a prerequisite for binding to the Raf-kinase. The X-ray crystal data also revealed the alpha-anomeric configuration of the bound glucose, indicating that the glucose transfer proceeds under retention of the C-1 configuration of the d-alpha-glucose. Therefore, glucosylation preserves the inactive conformation of the effector loop independently of the nucleotide occupancy, leading to a complete inhibition of downstream signaling of Ras.
Collapse
Affiliation(s)
- I R Vetter
- Max-Planck-Institut für molekulare Physiologie, Dortmund, D-44227, Germany
| | | | | | | | | |
Collapse
|
29
|
Abstract
Many bacterial toxins and bacterial enzymes modify small GTPases. Toxins exhibit different enzymatic activities on either the switch 1 or switch 2 domains of these small GTPases leading to inactivation or activation of such intracellular timer molecules. In addition, some virulence factors of certain invasive bacteria such as Salmonella also modulate small GTP binding proteins either by mimicking GTPase exchange factors or GTPase activating proteins.
Collapse
Affiliation(s)
- P Boquet
- Inserm U452, Faculté de médecine, Nice, France
| |
Collapse
|
30
|
Qa'Dan M, Spyres LM, Ballard JD. pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun 2000; 68:2470-4. [PMID: 10768933 PMCID: PMC97448 DOI: 10.1128/iai.68.5.2470-2474.2000] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin B from Clostridium difficile is a monoglucosylating toxin that targets substrates within the cytosol of mammalian cells. In this study, we investigated the impact of acidic pH on cytosolic entry and structural changes within toxin B. Bafilomycin A1 was used to block endosomal acidification and subsequent toxin B translocation. Cytopathic effects could be completely blocked by addition of bafilomycin A1 up to 20 min following toxin treatment. Furthermore, providing a low extracellular pH could circumvent the effect of bafilomycin A1 and other lysosomotropic agents. Acid pH-induced structural changes were monitored by using the fluorescent probe 2-(p-toluidinyl) naphthalene-6-sulfonic acid, sodium salt (TNS), inherent tryptophan fluorescence, and relative susceptibility to a specific protease. As the toxin was exposed to lower pH there was an increase in TNS fluorescence, suggesting the exposure of hydrophobic domains by toxin B. The change in hydrophobicity appeared to be reversible, since returning the pH to neutrality abrogated TNS fluorescence. Furthermore, tryptophan fluorescence was quenched at the acidic pH, indicating that domains may have been moving into more aqueous environments. Toxin B also demonstrated variable susceptibility to Staphylococcus aureus V8 protease at neutral and acidic pH, further suggesting pH-induced structural changes in this protein.
Collapse
Affiliation(s)
- M Qa'Dan
- Department of Botany and Microbiology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
31
|
Abstract
Amino acids located on the switch 1 or switch 2 domains of small GTPases of the Ras and Rho family are targets of several bacterial toxins. Exoenzyme C3 from Clostridium botulinum ADP-ribosylates specifically Rho at R43 and prevents the recruitment of Rho on the cell membrane. This blocks the downstream effects of the Rho GTPase. However, exoenzyme C3 is not a toxin, and chimeric proteins fusing C3 with the B moiety of either diphtheria toxin or Pseudomonas aeruginosa exotoxin A have been produced to intoxicate cells with low concentration of C3. C. difficile toxin B modifies by glucosylation Rho on T37 and Rac and Cdc42 on T35. Glucosylation of Rho, Rac, and Cdc42 blocks the binding of these GTPases on their downstream effectors. C. sordellii lethal toxin modifies Ras, Rap, and Rac on T35 by glucosylation. Cytotoxic necrotizing factor 1 (CNF1), from uropathogenic Escherichia coli strains, deamidates Q63 of Rho into E63, thereby blocking the intrinsic or GAP-mediated GTPase of Rho. This allows permanent activation of Rho. Thus, Rho GTPases are targets for three different toxin activities. Molecular mechanisms of these toxins are discussed.
Collapse
Affiliation(s)
- P Boquet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Faculté de Médecine, Nice, France.
| |
Collapse
|
32
|
|
33
|
Steele-Mortimer O, Knodler LA, Finlay BB. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton. Traffic 2000; 1:107-18. [PMID: 11208091 DOI: 10.1034/j.1600-0854.2000.010203.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.
Collapse
Affiliation(s)
- O Steele-Mortimer
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | |
Collapse
|
34
|
Eckhardt M, Barth H, Blöcker D, Aktories K. Binding of Clostridium botulinum C2 toxin to asparagine-linked complex and hybrid carbohydrates. J Biol Chem 2000; 275:2328-34. [PMID: 10644682 DOI: 10.1074/jbc.275.4.2328] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium botulinum C2 toxin is a binary toxin composed of an enzymatic subunit (C2I) capable of ADP-ribosylating actin and a binding subunit (C2II) that is responsible for interaction with receptors on eukaryotic cells. Here we show that binding of C2 toxin depends on the presence of asparagine-linked carbohydrates. A recently identified Chinese hamster ovary cell mutant (Fritz, G., Schroeder, P., and Aktories, K. (1995) Infect. Immun. 63, 2334-2340) was found to be deficient in N-acetylglucosaminyltransferase I. C2 sensitivity of this mutant was restored by transfection of an N-acetylglucosaminyltransferase I cDNA. C2 toxin sensitivity was reduced after inhibition of alpha-mannosidase II. In contrast, Chinese hamster ovary cell mutants deficient in sialylated (Lec2) or galactosylated (Lec8) glycoconjugates showed an increase in toxin sensitivity compared with wild-type cells. Our results show that the GlcNAc residue linked beta-1,2 to the alpha-1,3-mannose of the asparagine-linked core structure is essential for C2II binding to Chinese hamster ovary cells.
Collapse
Affiliation(s)
- M Eckhardt
- Institut für Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 5, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
35
|
Donelli, Loredana Falzano, Alessia G. Enteric Toxins from Bacteria Colonizing Human Gut. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2000. [DOI: 10.1080/089106000750060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
36
|
Fabbri A, Falzano L, Frank C, Donelli G, Matarrese P, Raimondi F, Fasano A, Fiorentini C. Vibrio parahaemolyticus thermostable direct hemolysin modulates cytoskeletal organization and calcium homeostasis in intestinal cultured cells. Infect Immun 1999; 67:1139-48. [PMID: 10024554 PMCID: PMC96440 DOI: 10.1128/iai.67.3.1139-1148.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a marine bacterium known to be the leading cause of seafood gastroenteritis worldwide. A 46-kDa homodimer protein secreted by this microorganism, the thermostable direct hemolysin (TDH), is considered a major virulence factor involved in bacterial pathogenesis since a high percentage of strains of clinical origin are positive for TDH production. TDH is a pore-forming toxin, and its most extensively studied effect is the ability to cause hemolysis of erythrocytes from different mammalian species. Moreover, TDH induces in a variety of cells cytotoxic effects consisting mainly of cell degeneration which often leads to loss of viability. In this work, we examined the cellular changes induced by TDH in monolayers of IEC-6 cells (derived from the rat crypt small intestine), which represent a useful cell model for studying toxins from enteric bacteria. In experimental conditions allowing cell survival, TDH induces a rapid transient increase in intracellular calcium as well as a significant though reversible decreased rate of progression through the cell cycle. The morphological changes seem to be dependent on the organization of the microtubular network, which appears to be the preferential cytoskeletal element involved in the cellular response to the toxin.
Collapse
Affiliation(s)
- A Fabbri
- Department of Ultrastructures, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Buckel W, Golding BT. Radical species in the catalytic pathways of enzymes from anaerobes. FEMS Microbiol Rev 1998. [DOI: 10.1111/j.1574-6976.1998.tb00385.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Abstract
Recently, protein toxins have provided novel information on the anatomy of the machinery that mediates vesicle docking and fusion with target membranes within the cell. Their use is being extended to the study of the physiology of these processes in different cells and tissues, as well as to the intracellular pathways of membrane transport.
Collapse
|