1
|
Geck RC, Moresi NG, Anderson LM, Brewer R, Renz TR, Taylor MB, Dunham MJ. Experimental evolution of Saccharomyces cerevisiae for caffeine tolerance alters multidrug resistance and target of rapamycin signaling pathways. G3 (BETHESDA, MD.) 2024; 14:jkae148. [PMID: 38989875 PMCID: PMC11373655 DOI: 10.1093/g3journal/jkae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Caffeine is a natural compound that inhibits the major cellular signaling regulator target of rapamycin (TOR), leading to widespread effects including growth inhibition. Saccharomyces cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors Pdr1, Pdr3, and Yrr1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors Sit4, Sky1, and Tip41 and showed that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
Collapse
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Naomi G Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Leah M Anderson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Geck RC, Moresi NG, Anderson LM, Brewer R, Renz TR, Taylor MB, Dunham MJ. Experimental evolution of S. cerevisiae for caffeine tolerance alters multidrug resistance and TOR signaling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.28.591555. [PMID: 38746122 PMCID: PMC11092465 DOI: 10.1101/2024.04.28.591555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Caffeine is a natural compound that inhibits the major cellular signaling regulator TOR, leading to widespread effects including growth inhibition. S. cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors PDR1, PDR3, and YRR1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors SIT4, SKY1, and TIP41, and show that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance, and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.
Collapse
Affiliation(s)
- Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Naomi G Moresi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Leah M Anderson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - M Bryce Taylor
- Program in Biology, Loras College, Dubuque, IA 52001, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Antúnez S, Fuentes N, Gutierrez M, Carcelén F, Trillo F, López S, Bezada S, Rivadeneira V, Pizarro S, Nuñez J. Effect of Different Levels of Extruded Coffee ( Coffea arabica) Pulp Flour on the Productive Performance and Intestinal Morphometry of Cobb 500 Broiler Chickens. Animals (Basel) 2024; 14:1170. [PMID: 38672318 PMCID: PMC11047547 DOI: 10.3390/ani14081170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 04/28/2024] Open
Abstract
Coffee pulp is a by-product of the coffee industry. Due to conventional management techniques, it represents a severe environmental problem due to its negative impact on the soil (anaerobic fermentation and pH changes), water sources (the infiltration of pollutants into streams, acidification of water sources, and modification of microorganisms), and biodiversity (soil microbiology, fish, crustaceans, and other vertebrates). Therefore, it is essential to develop protocols for the treatment of this waste so that it can be used again in other productive activities under the circular economy approach. This means that all the waste from a production process can be reused, can generate value for the benefit of the producer, and, in turn, mitigate the environmental impact. The objective of this study was to evaluate the replacement of 5 levels of wheat bran (WB) with extruded coffee pulp flour (ECPF) as an alternative to a conventional fiber source in broiler finisher diets. A total of 300 Cobb 500 chickens in the finishing phase were assessed in the study, grouped in 5 treatments: T1, a conventional diet or control treatment (100% WB and 0% ECPF), T2 (75% WB and 25% ECPF), T3 (50% WB and 50% ECPF), T4 (25% WB and 75% ECPF), and T5 (0% WB and 100% ECPF). Feed intake, weight gain, feed conversion ratio (FCR), and intestinal morphometry (villus length: VL, villus width: VW, crypt depth: CD, villus height/crypt depth ratio: V/C, and villus surface area: VSA) were evaluated at the level of the duodenum, jejunum, and ileum. Feed intake decreased correspondingly as the ECPF in the diet was increased, with statistical differences (p < 0.01) between their averages; the most significant weight gain (834.61 g) was evidenced with the T2 treatment, this being statistically different (p < 0.01) from T4 and T5; similarly, the best FCR (1.58) was evidenced with the T2 treatment, followed by the control treatment T1 (with 1.64); however, they were not statistically different (p > 0.05). All treatment results were similar to the VL control samples in the three intestinal portions, except for the T5 in the jejunum, which showed statistical differences from the control. In VW, the treatment results were similar to the control samples of the jejunum and ileum; however, in the duodenum, the T5 results showed the highest value (172.18 μm), being statistically different (p < 0.05) from the other treatments being evaluated. For CD, it was only in the duodenum that the T2 and T3 treatments were similar to the control. Likewise, for V/C in the duodenum, only the T2 results were similar to the control. There was no significant difference in the VSA among the different treatment groups. T2 showed better production parameters without altering the intestinal villi. In conclusion, ECPF is a potential input for use to replace up to 25% of WB in the feed of broilers in the finishing phase.
Collapse
Affiliation(s)
- Steven Antúnez
- Laboratorio de Producción Avícola y Especies Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (S.A.); (V.R.)
| | - Nadia Fuentes
- Instituto Veterinario de Investigaciones Tropicales y de Altura (IVITA), Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Carretera Huaral-Chancay km 6.5, Huaral 15200, Lima, Peru;
| | - Marco Gutierrez
- AG-RESEARCH S.A.C., Av. Alfonso Ugarte SN Sapallanga, Huancayo 12400, Junín, Peru; (M.G.); (S.P.)
| | - Fernando Carcelén
- Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (F.C.); (S.L.); (S.B.)
| | - Fritz Trillo
- Departamento Académico de Producción Animal, Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 15024, Lima, Peru
| | - Sofía López
- Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (F.C.); (S.L.); (S.B.)
| | - Sandra Bezada
- Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (F.C.); (S.L.); (S.B.)
| | - Virginia Rivadeneira
- Laboratorio de Producción Avícola y Especies Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (S.A.); (V.R.)
| | - Samuel Pizarro
- AG-RESEARCH S.A.C., Av. Alfonso Ugarte SN Sapallanga, Huancayo 12400, Junín, Peru; (M.G.); (S.P.)
| | - Jimny Nuñez
- Laboratorio de Producción Avícola y Especies Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (S.A.); (V.R.)
| |
Collapse
|
4
|
Mock MB, Summers RM. Microbial metabolism of caffeine and potential applications in bioremediation. J Appl Microbiol 2024; 135:lxae080. [PMID: 38549434 DOI: 10.1093/jambio/lxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.
Collapse
Affiliation(s)
- Meredith B Mock
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| | - Ryan M Summers
- Department of Chemical and Biological Engineering, The University of Alabama, Box 870203, Tuscaloosa, AL 35487, United States
| |
Collapse
|
5
|
Al-Romaima A, Hu G, Wang Y, Quan C, Dai H, Qiu M. Identification of New Diterpenoids from the Pulp of Coffea arabica and Their α-Glucosidase Inhibition Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1683-1694. [PMID: 38157425 DOI: 10.1021/acs.jafc.3c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Six new (1, 2, 3, 5, 6, and 8) and seven known (4, 7, 9, 10, 11, 12, and 13) diterpenoids have been identified in the pulp of Coffea arabica. The structures of new diterpenoids were elucidated by extensive spectroscopic analysis, including 1D, 2D NMR (HSQC, HMBC, 1H-1H COSY, and ROESY), HRESIMS, IR, DP4+, electronic circular dichroism, and X-ray crystallography analysis. Compound 1 is ent-labdane-type diterpenoid, whereas compounds (2-13) are ent-kaurane diterpenoids. The result of α-glucosidase inhibitory assay demonstrated that compounds (1, 3, 5, 7, and 10) have moderate inhibitory activity with IC50 values of 55.23 ± 0.84, 74.02 ± 0.89, 66.46 ± 1.05, 49.70 ± 1.02, and 76.34 ± 0.46 μM, respectively, compared to the positive control (acarbose, 51.62 ± 0.21 μM). Furthermore, molecular docking analysis has been conducted to investigate the interaction between the compounds and the receptors of α-glucosidase to interpret their mechanism of activity. This study is the first investigation that successfully discovered the presence of diterpenoids within the coffee pulp.
Collapse
Affiliation(s)
- Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guilin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanbing Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
| | - Chenxi Quan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
| | - Haopeng Dai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan , China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Rogowska-van der Molen MA, Berasategui-Lopez A, Coolen S, Jansen RS, Welte CU. Microbial degradation of plant toxins. Environ Microbiol 2023; 25:2988-3010. [PMID: 37718389 DOI: 10.1111/1462-2920.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Plants produce a variety of secondary metabolites in response to biotic and abiotic stresses. Although they have many functions, a subclass of toxic secondary metabolites mainly serve plants as deterring agents against herbivores, insects, or pathogens. Microorganisms present in divergent ecological niches, such as soil, water, or insect and rumen gut systems have been found capable of detoxifying these metabolites. As a result of detoxification, microbes gain growth nutrients and benefit their herbivory host via detoxifying symbiosis. Here, we review current knowledge on microbial degradation of toxic alkaloids, glucosinolates, terpenes, and polyphenols with an emphasis on the genes and enzymes involved in breakdown pathways. We highlight that the insect-associated microbes might find application in biotechnology and become targets for an alternative microbial pest control strategy.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Aileen Berasategui-Lopez
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Amsterdam Institute for Life and Environment, Section Ecology and Evolution, Vrije Universiteit, Amsterdam, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Saewan N, Jimtaisong A, Panyachariwat N, Chaiwut P. In Vitro and In Vivo Anti-Aging Effect of Coffee Berry Nanoliposomes. Molecules 2023; 28:6830. [PMID: 37836673 PMCID: PMC10574267 DOI: 10.3390/molecules28196830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Encapsulation of bioactive compounds in the liposome system provides several advantages, such as enhancing the stability and lowering the toxicity of active compounds. Coffee berry extract (CBE) has previously been established to have in vitro anti-aging properties and to retard the aging of human skin. The purposes of this study were to encapsulate CBE in nanoliposomes and to assess its stability and in vitro anti-aging potential in human dermal fibroblasts (HDF), as well as in healthy human skin. In the HDF model, anti-aging potential was determined by nitric oxide (NO) and collagenase inhibition assays and a superoxide dismutase (SOD) activity assay, whereas in healthy human skin (in vivo), the skin elasticity and brightness were examined. First, liposomal CBE (L-CBE) was created with a particle size of 117.33 ± 2.91 nm, a polydispersity index (PDI) of 0.36 ± 0.03, and a zeta potential of -56.13 ± 1.87 mV. The percentages of encapsulation efficacy (%EE) and loading efficacy (%LE) were 71.26 ± 3.12% and 2.18 ± 0.18%, respectively. After undergoing a 12-week stability test, the L-CBE retained more phenolic content than the free CBE when stored at 4 °C, room temperature, and 45 °C. Compared to free CBE, the L-CBE demonstrated a more consistent, elevated, and prolonged release of phenolics from the lipid system. In human dermal fibroblasts, L-CBE showed lower toxicity, and at its maximum nontoxic concentration (10 mg/mL), it exhibited slightly higher anti-aging effects than CBE, including NO inhibition, enhanced SOD activity, and anti-collagenase activities. In clinical trials (30 volunteer subjects), none of the participants' skin was irritated when the L-CBE, the CBE, or base creams were applied. After 2 weeks of application, the L-CBE and CBE creams both demonstrated an improvement in skin elasticity and a reduction in melanin levels, and after 4 weeks, L-CBE cream showed a significantly greater improvement in skin elasticity and lightening. The results demonstrate that the encapsulation of the CBE in liposomal systems could increase its stability and skin penetration, reduce its toxicity, and maintain its anti-aging effect, which is powerful enough to be exploited in anti-aging and whitening agents for application in cosmetics and cosmeceuticals.
Collapse
Affiliation(s)
- Nisakorn Saewan
- School of Cosmetic Science, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand; (A.J.); (N.P.); (P.C.)
- Cosmetic and Beauty Innovations for Sustainable Development (CBIS) Research Group, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand
| | - Ampa Jimtaisong
- School of Cosmetic Science, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand; (A.J.); (N.P.); (P.C.)
- Cosmetic and Beauty Innovations for Sustainable Development (CBIS) Research Group, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand
| | - Nattakan Panyachariwat
- School of Cosmetic Science, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand; (A.J.); (N.P.); (P.C.)
- Cosmetic and Beauty Innovations for Sustainable Development (CBIS) Research Group, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand
| | - Phanuphong Chaiwut
- School of Cosmetic Science, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand; (A.J.); (N.P.); (P.C.)
- Green Cosmetic Technology Research Group, Mae Fah Luang University, 333, Moo.1, Thasud, Muang, Chiang Rai 57100, Thailand
| |
Collapse
|
8
|
Grigolon G, Nowak K, Poigny S, Hubert J, Kotland A, Waldschütz L, Wandrey F. From Coffee Waste to Active Ingredient for Cosmetic Applications. Int J Mol Sci 2023; 24:ijms24108516. [PMID: 37239862 DOI: 10.3390/ijms24108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Coffee silverskin (CS) is the thin epidermis covering and protecting the coffee bean and it represents the main by-product of the coffee roasting process. CS has recently gained attention due to its high content in bioactive molecules and the growing interest in valuable reutilization of waste products. Drawing inspiration from its biological function, here its potential in cosmetic applications was investigated. CS was recovered from one of the largest coffee roasters located in Switzerland and processed through supercritical CO2 extraction, thereby generating coffee silverskin extract. Chemical profiling of this extract revealed the presence of potent molecules, among which cafestol and kahweol fatty acid esters, as well as acylglycerols, β-sitosterol and caffeine. The CS extract was then dissolved in organic shea butter, yielding the cosmetic active ingredient SLVR'Coffee™. In vitro gene expression studies performed on keratinocytes showed an upregulation of genes involved in oxidative stress responses and skin-barrier functionality upon treatment with the coffee silverskin extract. In vivo, our active protected the skin against Sodium Lauryl Sulfate (SLS)-induced irritation and accelerated its recovery. Furthermore, this active extract improved measured as well as perceived skin hydration in female volunteers, making it an innovative, bioinspired ingredient that comforts the skin and benefits the environment.
Collapse
Affiliation(s)
| | - Kathrin Nowak
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| | - Stéphane Poigny
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| | | | | | - Laura Waldschütz
- NATECO2-Hopfenveredlung St. Johann GmbH, 85283 Wolnzach, Germany
| | | |
Collapse
|
9
|
Oussou KF, Guclu G, Kelebek H, Selli S. Valorization of cocoa, tea and coffee processing by-products-wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 107:91-130. [PMID: 37898543 DOI: 10.1016/bs.afnr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The growing threat of food insecurity together with some challenges in demography, health, malnutrition, and income instability around the globe has led researchers to take sustainable solutions to ensure secure production and distribution of food. The last decades have been remarkable in the agri-food supply chain for many food industries. However, vast quantities of food by-products and wastes are generated each year. These products are generally disposed in the environment, which could have remarkable adverse effects on the environment and biodiversity. However, they contain significant quantities of bioactive, nutritional, antioxidative, and aroma compounds. Their sustainable use could meet the increased demand for value-added pharmaceutical, nutraceutical, and food products. The amount of agri-food wastes and their disposal in the environment are predicted to double in the next decade. The valorization of these by-products could effectively contribute to the manufacture of cheaper functional food ingredients and supplements while improving regional economy and food security and mitigating environmental pollution. The main aim of this chapter is to present an understanding of the valorization of the wastes and by-products from cacao, coffee and tea processing with a focus on their bioactive, nutritional, and antioxidant capacity.
Collapse
Affiliation(s)
- Kouame Fulbert Oussou
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Gamze Guclu
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
| | - Hasim Kelebek
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Serkan Selli
- Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey.
| |
Collapse
|
10
|
R. Portillo O, Arévalo AC. Coffee's Phenolic Compounds. A general overview of the coffee fruit's phenolic composition. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.03.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phenolic compounds are secondary metabolites ubiquitously distributed in the plant kingdom which come in a wide array of molecular configurations which confer them a comprehensive set of chemical attributes such as, but not limited to: nutraceutical properties, industrial applications (e.g., dyes, rawhide processing, beer production, antioxidants), and plant self-defense mechanisms against natural enemies also known as the Systemic Acquired Resistance (SAR).However, despite the fact, that there is a large number of phenolic-containing food products (e.g., chocolate, green tea, wines, beer, wood barrel-aged spirits, cherries, grapes, apples, peaches, plums, pears, etc.), coffee remains, in the western hemisphere, as the main source of dietary phenolic compounds reflected by the fact that, in the international market, coffee occupies the second trading position after oil and its derivatives. The following discussion is the product of an extensive review of scientific literature that aims to describe essential topics related to coffee phenolic compounds, especially chlorogenic acids, their purpose in nature, biosynthesis, determination, metabolism, chemical properties, and their effect on cup quality.
Keywords: phenolic acids, caffeoylquinic acid, antioxidant capacity, metabolism, biosynthesis.
Collapse
Affiliation(s)
- Ostilio R. Portillo
- Faculty of Engineering, National Autonomous University of Honduras, Tegucigalpa (UNAH), Honduras
| | - Ana C. Arévalo
- Faculty of Chemistry & Pharmacy, National Autonomous University of Honduras, Tegucigalpa (UNAH), Honduras
| |
Collapse
|
11
|
Rusnam, Puari AT, Yanti NR, Efrizal, Efrizal E. Utilisation of Exhausted Coffee Husk as Low-Cost Bio-Sorbent for Adsorption of Pb 2. Trop Life Sci Res 2022; 33:229-252. [PMID: 36545053 PMCID: PMC9747100 DOI: 10.21315/tlsr2022.33.3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study utilised a bio-sorbent from exhausted coffee husk (ECHBS) for the removal of ion Pb2+ from an aqueous solution. Four different activation methods were conducted by chemical activation with KOH, H3PO4, ZnCl2, and without chemical activation. In addition, the influence of process parameters such as heating temperature, heating time and heating gradient were investigated. Based on the experimental results, ECHBS without chemical activation (biochar) had the highest Pb2+ ion removal efficiency. The results showed that the heating temperature of 500°C, the heating time of 60 min and the heating rate of 15°C/min were optimum for preparation of the biochar. Under the optimum conditions, the removal efficiency and adsorption capacity reached 99% and 3.3 mg/g, respectively. The experimental data indicated that the adsorption isotherms are well fitted with the Langmuir Equilibrium isotherm model. Furthermore, the adsorption of the biochar follows the pseudo-second-order model. The result obtained from the present study confirmed that exhausted coffee husk is a suitable low-cost bio-sorbent for removing ion Pb2+.
Collapse
Affiliation(s)
- Rusnam
- Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Andalas University, Padang, West Sumatera, Indonesia,Corresponding author:
| | - Aninda Tifani Puari
- Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Andalas University, Padang, West Sumatera, Indonesia
| | - Nika Rahma Yanti
- Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Andalas University, Padang, West Sumatera, Indonesia
| | - Efrizal
- Department of Biology, Faculty of Mathematics and Natural Science, Andalas University, Padang, West Sumatera, Indonesia
| | | | | | | | | |
Collapse
|
12
|
Manga M, Evans BE, Ngasala TM, Camargo-Valero MA. Recycling of Faecal Sludge: Nitrogen, Carbon and Organic Matter Transformation during Co-Composting of Faecal Sludge with Different Bulking Agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10592. [PMID: 36078309 PMCID: PMC9518209 DOI: 10.3390/ijerph191710592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effect of locally available bulking agents on the faecal sludge (FS) composting process and quality of the final FS compost. Dewatered FS was mixed with sawdust, coffee husk and brewery waste, and composted on a pilot scale. The evolution of physical and chemical characteristics of the composting materials was monitored weekly. Results indicate that bulking agents have a statistically significant effect (p < 0.0001) on the evolution of composting temperatures, pH, electrical conductivity, nitrogen forms, organic matter mineralisation, total organic carbon, maturity indices, quality of the final compost and composting periods during FS composting. Our results suggest reliable maturity indices for mature and stable FS compost. From the resource recovery perspective, this study suggests sawdust as a suitable bulking agent for co-composting with FS-as it significantly reduced the organic matter losses and nitrogen losses (to 2.2%), and improved the plant growth index, thus improving the agronomic values of the final compost as a soil conditioner. FS co-composting can be considered a sustainable and decentralised treatment option for FS and other organic wastes in the rural and peri-urban communities, especially, where there is a strong practice of reusing organic waste in agriculture.
Collapse
Affiliation(s)
- Musa Manga
- The Water Institute at UNC, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 357 Rosenau Hall, 135 Dauer Drive, Chapel Hill, NC 27599, USA
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Construction Economics and Management, College of Engineering, Design, Art and Technology (CEDAT), Makerere University, Kampala P.O. Box 7062, Uganda
| | - Barbara E. Evans
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Tula M. Ngasala
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Miller A. Camargo-Valero
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
- Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales 170003, Colombia
| |
Collapse
|
13
|
Kristanti D, Setiaboma W, ratnawati L, Sagita D. Robusta coffee cherry fermentation: Physicochemical and sensory evaluation of fermented cascara tea. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dita Kristanti
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| | - Woro Setiaboma
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| | - Lia ratnawati
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| | - Diang Sagita
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| |
Collapse
|
14
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Development of Cascara Tea from Coffee Cherry Pulp. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
15
|
Abstract
The aging process encompasses gradual and continuous changes at the cellular level that slowly accumulate with age. The signs of aging include many physiological changes in both skin and hair such as fine lines, wrinkles, age spots, hair thinning and hair loss. The aim of the current study was to investigate the anti-aging potential of coffee berry extract (CBE) on human dermal fibroblast (HDF) and hair follicle dermal papilla (HFDP) cells. Coffee berry was extracted by 50% ethanol and determined for chemical constituents by HPLC technique. Cytotoxicity of the extract was examined on both cells by MTT assay. Then, HDF cells were used to evaluate antioxidant properties by using superoxide dismutase activity (SOD) and nitric oxide inhibition as well as anti-collagenase inhibition assays. The effectiveness of anti-hair loss properties was investigated in HFDP cells by considering cell proliferation, 5α-reductase inhibition (5AR), and growth factor expression. The results showed that caffeine and chlorogenic acid were identified as major constituents in CBE. CBE had lower toxicity and cell proliferation than caffeine and chlorogenic acid on both cells. CBE showed SOD and nitric oxide inhibition activities that were higher than those of caffeine but lower than those of chlorogenic acid. Interestingly, CBE had the highest significant anti-collagenase activity, and its 5AR inhibition activity was comparable to that of chlorogenic acid, which was higher than caffeine. CBE also stimulated hair-related gene expression, especially insulin-like growth factor 1 (IGF-1), keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF). The results confirmed that CBE provided anti-aging activity on both skin and hair cells and could be beneficial for applications in cosmeceuticals.
Collapse
|
16
|
Cultivation of Different Oyster Mushroom (Pleurotus species) on Coffee Waste and Determination of Their Relative Biological Efficiency and Pectinase Enzyme Production, Ethiopia. Int J Microbiol 2022; 2022:5219939. [PMID: 35571352 PMCID: PMC9098300 DOI: 10.1155/2022/5219939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cultivation of specialty mushrooms on lignocellulosic wastes represents one of the most economic and cost-effective organic recycling processes. Solid-state cultivation (SSC) was carried out to evaluate the feasibility of using coffee waste (husk and parchment) as substrate for cultivation of oyster mushroom (Pleurotus species). The periods for spawn running, pinhead and fruit body formation, number of flushes, yield, and biological efficiency of the four Pleurotus species (P. citrinopileatus, P. eryngii, P. ostreatus, and P. sapidus) grown on coffee husk and parchment were studied. The results revealed that the time for the first appearance of pinhead was shortest for P. ostreatus (20–21) days followed by P. sapidus (22–23) days on coffee husks, while P. eryngii and P. citrinopileatus required 26–27 days and 23–24 days, respectively, on the some substrate. All the four Pleurotus species recorded at least four flushes and three flushes on coffee husk and parchment, respectively; flush 1 gave the highest yield while flush 3 and 4 gave the lowest yield. The biological efficiency (B.E.) for P. citrinopileatus, P. eryngii, P. ostreatus and P. sapidus obtained from fresh coffee husk was 26.54, 40.94, 60.33, and 55.72, respectively. Significant differences (P < 0.05) in yield and % B.E. of the four mushrooms species were recorded. The results also showed that the B.E. (61.92%) of P. ostreatus grown on composted coffee husk was insignificantly higher (P < 0.05) than that grown on noncomposted coffee husk (60.33). The yields of P. sapidus obtained from the two substrates were almost comparable with that of P. ostreatus. There was a significant difference at (P < 0.05) observed between noncomposted and composted coffee husk and coffee parchment as well as between coffee husk and coffee parchment on yield and biological efficiency (B.E.). Composted coffee waste is more efficient than noncomposted one. Pectinase enzymes productions by these mushrooms were also studied. They are known to produce extracellular enzymes, particularly pectinase, which contribute to the biochemical decomposition of pectin-rich lignocellulosic wastes biomass. Accordingly, P. sapidus showed more pectolytic activities followed by P. ostreatus. But the pectolytic activity showed by P. eryngii and P. citrinopileatus was relatively lower. The implications of this study are the feasibility of using composted coffee husks and coffee parchment with the supplementary substrate to cultivate very protein-rich mushrooms for food in solid-state cultivation (SSC) while at the same time promoting environmental sustainability.
Collapse
|
17
|
Mahingsapun R, Tantayotai P, Panyachanakul T, Samosorn S, Dolsophon K, Jiamjariyatam R, Lorliam W, Srisuk N, Krajangsang S. Enhancement of Arabica coffee quality with selected potential microbial starter culture under controlled fermentation in wet process. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Elkhateeb YAM, Fadel M. Bioinformatic Studies, Experimental Validation of Phytase Production and Optimization of Fermentation Conditions for Enhancing Phytase Enzyme Production by Different Microorganisms under Solid-State Fermentation. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2202160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Phytase is an essential enzyme necessary for the digestive process. It is a natural enzyme found in plant materials. It prevents bad effect of phytic acid on protein and energy utilization. Phytase frees the bound minerals such as phosphorus, calcium, zinc, iron, magnesium and manganese from the phytic acid molecule providing essential minerals available for healthy nutrition. This study depends on converting food processing waste into highly valuable products. Optimizing the fermentation conditions for enhancing high phytase production with low cost was the objective of this research.
Methods:
A bibliographical survey was carried out to select the most fungul producers of phytase from fungal species deposited in NCBI database. Phytases of the selected organisms were analyzed in the UNIPROT database and their protein sequences were submitted to multiple sequence alignments using Clustal Omega and visualized using Jalview program. Experimental studies using five fungal strains of Aspergillus.ssp on wheat bran under Solid-State Fermentation carried out. Comparisons were made for phytase production. A. awamori NRC- F18 as the best phytase producer-strain cultured on different types of treated wastes followed by optimizing the fermentation conditions for enhancing phytase production using rice straw as the best substrate, which provides the highest phytase production. Thermostability of crude enzyme was studied. Statistical analyses were performed using SPSS at P < 0.05 or P < 0.01.
Results:
Bioinformatic studies predicted the most producer species and explained the difference in activity of phytases produced from different species, although they have the same function. All phytases of the selected fungal species from the database NCBI have highly conserved amino acid sequences; there are 88 identical positions; 135 similar positions, but the identity percentage was 16.858%. Experimental studies using five fungal strains of Aspergillus ssp. on wheat bran revealed optimum conditions for phytase production by A. awamori NRC- F18, which cultured on different types of treated wastes. A considerably higher phytase production was obtained using rice straw as substrate 424.66± 2.92 IU /g at pH 6 (371.883± 0.822 IU /g), after 144 hrs of incubation at 30°C. The maximum enzyme activity observed when solid: moisture was 1:4; Inoculum concentration 2mg/5g (418.363± 16.709 IU /g) and substrate concentration 4.5% (277.39± 12.05 IU /g). Glucose and Ammonium acetate were the best carbon and nitrogen sources that enhanced phytase production from A. awamori NRC- F18. The obtained phytase was found to be thermostable and the maximum temperature at which phytase still active was 80°C.
Conclusion:
Bioinformatic studies predicted the most producer species. Experimental study revealed that A.awamori NRC- F18 was the best Phytase -producer strain. Solid state fermentation was a good method; pretreatment of agriculture residues as rice straw was useful for less expensive phytase production, which was thermostable. A. awamori NRC- F18 can be used in the industrial production of phytase.
Collapse
|
19
|
Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon 2022; 8:e09173. [PMID: 35368548 PMCID: PMC8971590 DOI: 10.1016/j.heliyon.2022.e09173] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reviews the pertinent literature from 1970 to 2020 and presents a bibliometric analysis of research trends in the application of solid-state fermentation in the bioprocessing of agro-industrial wastes. A total 5630 publications of studies on solid-state fermentation that comprised of 5208 articles (92.50%), 340 book chapters (6.04%), 39 preprints (0.69%), 32 proceedings (0.56%), 8 edited books (0.14%) and 3 monographs (0.05%) were retrieved from Dimensions database. A review of the literature indicated that (i) fermentation of solid substrates is variously defined in the literature over the past 50 years, where "solid-state fermentation" is the most dominant research term used, and (ii) key products derived from the valorization of agro-industrial wastes through solid-state fermentation include, among others, enzymes, antioxidants, animal feed, biofuel, organic acids, biosurfactants, etc. Bibliometric analyses with VOSviewer revealed an astronomic increase in publications between 2000 and 2020, and further elucidated the most frequently explored core research topics, the most highly cited publications and authors, and countries/regions with the highest number of citations. The most cited publication between 2010 and 2020 had 382 citations compared to 725 citations for the most cited publication from 1970 to 2020. Ashok Pandey from India was the most published and cited author with 123 publications and 8,613 citations respectively; whereas Bioresource Technology was the most published and cited journal with 233 publications and 12,394 citations. Countries with the most publications and citations are Brazil, France, India, and Mexico. These findings suggest that research in the application of solid-state fermentation for bioprocessing of agro-industrial wastes has gained prominence over the past 50 years. Future perspectives and implications are discussed.
Collapse
|
20
|
Lestari W, Hasballah K, Listiawan MY, Sofia S. Coffee by-products as the source of antioxidants: a systematic review. F1000Res 2022; 11:220. [PMID: 35646331 PMCID: PMC9123331 DOI: 10.12688/f1000research.107811.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Solid waste from coffee depulping process threatens the organism in environment as it produces organic pollutants. Evidence suggested that coffee by-product could valorize owing to its potential as antioxidant sources. The aim of this systematic review was to evaluate antioxidant activity of coffee by-products obtained from different coffee variants (arabica and robusta) and processing methods. Methods: The systematic review was conducted as of May 29, 2021 for records published within the last ten years (2011-2021) using seven databases: Embase, Medline, BMJ, Web of Science, Science Direct, Cochrane, and PubMed. Data on type of specimen, processing methods, and antioxidant activities were collected based on PRISMA guidelines. Results: Our data suggested that aqueous extract was found to be the most common processing method used to obtain the antioxidant from various coffee by-products, followed by methanol and ethanol extract. A variety of antioxidant properties ranging from strong to low activity was found depending on the variety, type of coffee by-products (cascara, pulp, husk, silverskin, and parchment), and processing technique. Fermentation employing proper bacteria was found effective in improving the yield of bioactive compounds resulting in higher antioxidant capacity. Applications in feedstuffs, foods, beverages, and topical formulation are among the potential utilization of coffee by-products. Conclusion: Coffee by-products contain bioactive compounds possessing antioxidant properties which could be used as additives in foods, beverages, and cosmetics. In particular, their benefits in skin care products require further investigation.
Collapse
Affiliation(s)
- Wahyu Lestari
- Postgraduate Program, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Dermatology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Department of Dermatology, Dr. Zainoel Abidin General Hospital, Banda Aceh, 24415, Indonesia
| | - Kartini Hasballah
- Department of Pharmacology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - M. Yulianto Listiawan
- Department of Dermatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Sofia Sofia
- Department of Biochemistry, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Master of Public Health, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
21
|
Singh N, Singhania RR, Nigam PS, Dong CD, Patel AK, Puri M. Global status of lignocellulosic biorefinery: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126415. [PMID: 34838977 DOI: 10.1016/j.biortech.2021.126415] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The bioprocessing of lignocellulosic biomass to produce bio-based products under biorefinery setup is gaining global attention. The economic viability of this biorefinery would be inclined by the efficient bioconversion of all three major constituents of lignocellulosic biomass i.e. cellulose, hemicellulose, and lignin for value-added biochemicals and biofuels production. Although the lignocellulosic biorefinery setup has a clear value proposition, the commercial success at the industrial scale is still inadequate. This can be attributed mainly to irregular biomass supply chain, market uncertainties, and scale-up challenges. Global research efforts are underway by public and private sectors to get deeper market penetration. A comprehensive account of important factors, limitations, and propositions are worth consideration for the commercial success of lignocellulosic biorefineries. In this article, the importance of integration of lignocellulosic biorefineries with existing petrochemical refineries, the technical challenges of industrialization, SWOT analysis, and future directions have been reviewed.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Life Sciences, J. C. Bose University of Science & Technology, YMCA, Sector-8, Faridabad 121006, Haryana, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science & Technology, Kaohsiung City, Taiwan
| | - Poonam S Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science & Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science & Technology, Kaohsiung City, Taiwan.
| | - Munish Puri
- Bioprocessing Laboratory, Medical Biotechnology, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia
| |
Collapse
|
22
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
23
|
Wu S, Zhou R, Ma Y, Fang Y, Xie G, Gao X, Xiao Y, Liu J, Fang Z. Development of a consortium-based microbial agent beneficial to composting of distilled grain waste for Pleurotus ostreatus cultivation. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:242. [PMID: 34920748 PMCID: PMC8684267 DOI: 10.1186/s13068-021-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Pleurotus ostreatus is an edible mushroom popularly cultivated worldwide. Distilled grain waste (DGW) is a potential substrate for P. ostreatus cultivation. However, components in DGW restrict P. ostreatus mycelial growth. Therefore, a cost-effective approach to facilitate rapid P. ostreatus colonization on DGW substrate will benefit P. ostreatus cultivation and DGW recycling. RESULTS Five dominant indigenous bacteria, Sphingobacterium sp. X1, Ureibacillus sp. X2, Pseudoxanthomonas sp. X3, Geobacillus sp. X4, and Aeribacillus sp. X5, were isolated from DGW and selected to develop a consortium-based microbial agent to compost DGW for P. ostreatus cultivation. Microbial agent inoculation led to faster carbohydrate metabolism, a higher temperature (73.2 vs. 71.2 °C), a longer thermophilic phase (5 vs. 3 days), and significant dynamic changes in microbial community composition and diversity in composts than those of the controls. Metagenomic analysis showed the enhanced microbial metabolisms, such as xenobiotic biodegradation and metabolism and terpenoid and polyketide metabolism, during the mesophilic phase after microbial agent inoculation, which may facilitate the fungal colonization on the substrate. In accordance with the bioinformatic analysis, a faster colonization of P. ostreatus was observed in the composts with microbial inoculation than in control after composting for 48 h, as indicated from substantially higher fungal ergosterol content, faster lignocellulose degradation, and higher lignocellulase activities in the former than in the latter. The final mushroom yield shared no significant difference between composts with microbial inoculation and control, with 0.67 ± 0.05 and 0.60 ± 0.04 kg fresh mushroom/kg DGW, respectively (p > 0.05). CONCLUSION The consortium-based microbial agent comprised indigenous microorganisms showing application potential in composting DGW for providing substrate for P. ostreatus cultivation and will provide an alternative to facilitate DGW recycling.
Collapse
Affiliation(s)
- Sibao Wu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Rongrong Zhou
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Yuting Ma
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Yong Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Guopai Xie
- Anhui Golden Seed Winery Co., LTD, Fuyang, 341200, Anhui, China
| | - Xuezhi Gao
- Livestock and Poultry Breeding Service Center of Fuyang City, Fuyang, 341200, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, 230601, Anhui, China.
| |
Collapse
|
24
|
Changes in Bioactive Compounds of Coffee Pulp through Fermentation-Based Biotransformation Using Lactobacillus plantarum TISTR 543 and Its Antioxidant Activities. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of biotransformation has become a popular trend in the food and cosmetic industry. Lactic acid bacteria (LAB) are widely used due to their safety and beneficial effects on human health. Coffee pulp, a by-product obtained from coffee production, has antioxidant activity because it contains different classes of phenolic compounds. To investigate the factors affecting the biotransformation process of coffee pulp using L. plantarum TISTR 543, a systematic study using 23 factorial designs in a completely randomized design (CRD) was done. After the coffee pulp was bio-transformed, its bacterial count, pH, phenol contents, flavonoid contents, tannin contents, changes in bioactive compounds by LC-QQQ, and antioxidant properties were studied. The highest phenolic content was obtained in the sample containing the substrate, water, and sugar in the ratio of 3:10:3 with a 5% starter. After the fermentation was done, for 24–72 h, total bacteria count, total phenol contents, and antioxidant activities significantly increased compared to their initial values. Protocatechuic acid also markedly increased after 24 h of the biotransformation process. Hence, the fermentation of coffee pulp with L. plantarum TISTR 543 can produce substances with a higher biological activity which can be further studied and used as functional foods or active ingredients in cosmetic application.
Collapse
|
25
|
Aroma-Active Compounds in Robusta Coffee Pulp Puree-Evaluation of Physicochemical and Sensory Properties. Molecules 2021; 26:molecules26133925. [PMID: 34198992 PMCID: PMC8271582 DOI: 10.3390/molecules26133925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
Wet coffee processing generates a large amount of coffee pulp waste that is mostly disposed of in the processing units. To reduce this waste and the associated environmental burden, an alternative strategy would be to exploit the coffee pulp to produce a durable and stable consumable product. Accordingly, a puree produced from Robusta coffee pulp was investigated in relation to its physicochemical and sensory properties. After thermal and chemical stabilization, the obtained puree (pH 3.6) was found to exhibit a multimodal particle size distribution, shear-thinning behavior, and lower discoloration, as well as an antioxidant capacity of 87.9 µmolTE/gDM. The flavor of the puree was examined by sensory evaluation and the corresponding analyses of aroma-active volatile compounds, as determined using aroma extract dilution analyses (AEDA) and gas chromatography-mass spectrometry/olfactometry (GC-MS/O). The puree was characterized by dominant fruity (4.4), floral (3.4), citrusy (3.3) and hay-like (3.3) odor impressions. The aroma-active compounds were predominantly aldehydes, acids, and lactones, whereby (E)-β-damascenone, geraniol, 4-methylphenol, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, and 4-hydroxy-3-methoxybenzaldehyde exhibited the highest flavor dilution (FD) factor (1024), thereby indicating their high impact on the overall aroma of the puree. This study demonstrates an approach to stabilize coffee pulp to produce a sweet, fruity puree with comparable physical properties to other fruit purees and that can be used as a new and versatile flavoring ingredient for various food applications.
Collapse
|
26
|
A Study on the Feasibility of Anaerobic Co-Digestion of Raw Cheese Whey with Coffee Pulp Residues. ENERGIES 2021. [DOI: 10.3390/en14123611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, a study on the feasibility of the treatment of raw cheese whey by anaerobic co-digestion using coffee pulp residues as a co-substrate is presented. It considers raw whey generated in artisanal cheese markers, which is generally not treated, thus causing environmental pollution problems. An experimental design was carried out evaluating the effect of pH and the substrate ratio on methane production at 35 °C (i.e., mesophilic conditions). The interaction of the parameters on the co-substrate degradation and the methane production was analyzed using a response surface analysis. Furthermore, two kinetic models were proposed (first order and modified Gompertz models) to determine the dynamic profiles of methane yield. The results show that co-digestion of the raw whey is favored at pH = 6, reaching a maximum yield of 71.54 mLCH4 gVSrem−1 (31.5% VS removed) for raw cheese whey and coffee pulp ratio of 1 gVSwhey gVSCoffe−1. The proposed kinetic models successfully fit the experimental methane production data, the Gompertz model being the one that showed the best fit. Then, the results show that anaerobic co-digestion can be used to reduce the environmental impact of raw whey. Likewise, the methane obtained can be integrated into the cheese production process, which could contribute to reducing the cost per energy consumption.
Collapse
|
27
|
Oliveira G, Passos CP, Ferreira P, Coimbra MA, Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021; 10:foods10030683. [PMID: 33806924 PMCID: PMC8005104 DOI: 10.3390/foods10030683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/30/2023] Open
Abstract
The coffee industry generates a wide variety of by-products derived from green coffee processing (pulp, mucilage, parchment, and husk) and roasting (silverskin and spent coffee grounds). All these fractions are simply discarded, despite their high potential value. Given their polysaccharide-rich composition, along with a significant number of other active biomolecules, coffee by-products are being considered for use in the production of plastics, in line with the notion of the circular economy. This review highlights the chemical composition of coffee by-products and their fractionation, evaluating their potential for use either as polymeric matrices or additives for developing plastic materials. Coffee by-product-derived molecules can confer antioxidant and antimicrobial activities upon plastic materials, as well as surface hydrophobicity, gas impermeability, and increased mechanical resistance, suitable for the development of active food packaging. Overall, this review aims to identify sustainable and eco-friendly strategies for valorizing coffee by-products while offering suitable raw materials for biodegradable plastic formulations, emphasizing their application in the food packaging sector.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Cláudia P. Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Paula Ferreira
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
| | - Manuel A. Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.P.P.); (M.A.C.)
| | - Idalina Gonçalves
- CICECO–Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; (G.O.); (P.F.)
- Correspondence:
| |
Collapse
|
28
|
da Silva CQ, Fernandes ADS, Teixeira GF, França RJ, Marques MRDC, Felzenszwalb I, Falcão DQ, Ferraz ERA. Risk assessment of coffees of different qualities and degrees of roasting. Food Res Int 2021; 141:110089. [PMID: 33641967 DOI: 10.1016/j.foodres.2020.110089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/16/2023]
Abstract
During the coffee beans roasting process, occurs the formation of polycyclic aromatic hydrocarbons, which are associated with the incidence of cancer in humans. This study aimed to evaluate the influence of coffee bean quality and roasting degree regarding mutagenicity, cytotoxicity and genotoxicity. Six samples of coffee drink made with roasted and ground Coffea arabica beans from different qualities and roast degrees were used after freeze-drying. Both commercial and special quality grains suffered light, medium and dark roasting. According to the Salmonella/microsome assay, the highest concentration of commercial grain sample (dark roast) significantly increased the number of revertants of the TA98 strain in the absence of metabolization. All the samples induced cytotoxicity to HepG2 cells. These effects can be ranked in the following order from most to least toxic: medium roast - special grain > light roast - special grain > dark roast - commercial grain > dark roast - special grain > light roast - commercial grain > medium roast - commercial grain. None of the samples induced genotoxicity in HepG2 cells. Our findings show that the harmful effects of coffee depend not only on the degree of roasting but also on the grain quality.
Collapse
Affiliation(s)
- Carina Quintanilha da Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Andréia da Silva Fernandes
- Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Gabriela Félix Teixeira
- Department of Pharmacy and Pharmaceutical Administration, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Rodrigo José França
- Department of Organic Chemistry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Mônica Regina da Costa Marques
- Department of Organic Chemistry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Israel Felzenszwalb
- Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, CEP 20.550-900 Rio de Janeiro, RJ, Brazil.
| | - Deborah Quintanilha Falcão
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| | - Elisa Raquel Anastácio Ferraz
- Department of Pharmacy and Pharmaceutical Administration, Faculty of Pharmacy, Fluminense Federal University, Rua Mário Viana, 523, Santa Rosa, CEP 24.241-000 Niterói, RJ, Brazil.
| |
Collapse
|
29
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
30
|
Manasa V, Padmanabhan A, Anu Appaiah KA. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:762-771. [PMID: 33257134 DOI: 10.1016/j.wasman.2020.10.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Coffee pulp is one of the major underutilized byproduct of coffee processing in farm level. Disposal of this agro-industrial waste has become one of the most challenging tasks for coffee planters. However, most of the efforts are towards the management of coffee pulp as an effluent, and not-on re-use. The problem is compounded due to the large volumes produced in diluted forms, which makes it expensive to reuse. The preliminary proximate analysis of coffee pulp indicated it to be rich in pectin and polyphenols. The efficacy of various chemicals like ethanol, sulfuric acid, hydrochloric acid, nitric acid, ammonium oxalate and metal salts for effective precipitation of pectin from coffee pulp was evaluated. HPLC characterization of the extracted and concentrated polyphenols fractions was analyzed. The maximum extraction of pectin was achieved by using metal salts and ethanol with 6.0% and 6.7% on wet weight basis respectively. The equivalent weight of extracted pectin (1180.5 mg/g) was found to be higher than that of commercial pectin (724.8 mg/g). The methoxyl content of the commercial pectin and crude pectin were 9.3 and 5.6% respectively. Gallic, vanillin, catechin, ethyl catechol, coumaric, Caffeic, and ferulic acid were the major polyphenols as quantified by the HPLC. The polyphenol fraction showed a good antioxidant activity with phosphomolybdate, FRAP, DPPH, and ABTS radicals respectively. The sustainable utilization of coffee pulp as a source of pectin and polyphenols with good antioxidant activities could help to solve the problem of waste generated in coffee processing in farm level.
Collapse
Affiliation(s)
- Vallamkondu Manasa
- Microbiology and Fermentation Technology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India
| | - Aparna Padmanabhan
- Microbiology and Fermentation Technology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India
| | - K A Anu Appaiah
- Microbiology and Fermentation Technology Department, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
31
|
Caffeine: A potential strategy to improve survival of neonatal pigs and sheep. Anim Reprod Sci 2021; 226:106700. [PMID: 33517067 DOI: 10.1016/j.anireprosci.2021.106700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Caffeine is commonly used to treat pre-and postnatal injuries, including apnoea in premature infants, as well as neurological impairment caused by hypoxia or asphyxiation often associated with difficult birthing. As an adenosine antagonist, caffeine is metabolised rapidly and transported into many tissues. Caffeine stimulates the brain respiratory centre, improving respiratory function in immature infants or neonates, provides neuroprotection to the fetal brain, and initiates non-shivering thermoregulation increasing metabolic rates. Recently, potential benefits of caffeine for animal production have been investigated. This has particularly occurred in pig production, where large litters are associated with relatively long parturition durations, and piglets born near the end of the parturition period have an increased risk of mortality due to asphyxia-related birthing injury. Similarly, in sheep, dystocia or prolonged parturition is a significant problem, where neonatal injury, dystocia and death in utero contributes to approximately 46 % of lamb mortalities. Within these two livestock production systems, large prevalence's of neonatal mortality is a persistent issue contributing to lost revenue, as well as being a significant animal welfare concern. Pre-partum maternal caffeine supplementation is a promising strategy to reduce neonatal mortality; however, there needs to be refinement of appropriate quantities administered, duration and administration pathway to provide producers with an efficient and cost-effective method to reduce mortality rates and increase production output. The information in this review details effects, benefits and important considerations regarding caffeine use in animal production, and identifies areas of limited knowledge where further research is needed.
Collapse
|
32
|
Abstract
Coffee is one of the most consumed beverages in the world, and its popularity has prompted the necessity to constantly increase the variety and improve the characteristics of coffee as a general commodity. The popularity of coffee as a staple drink has also brought undesired side effects, since coffee production, processing and consumption are all accompanied by impressive quantities of coffee-related wastes which can be a threat to the environment. In this review, we integrated the main studies on fermentative yeasts used in coffee-related industries with emphasis on two different directions: (1) the role of yeast strains in the postharvest processing of coffee, the possibilities to use them as starting cultures for controlled fermentation and their impact on the sensorial quality of processed coffee, and (2) the potential to use yeasts to capitalize on coffee wastes—especially spent coffee grounds—in the form of eco-friendly biomass, biofuel or fine chemical production.
Collapse
|
33
|
Díaz-Godínez G, Téllez-Téllez M. Mushrooms as Edible Foods. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Gemechu FG. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Oktaviani L, Astuti DI, Rosmiati M, Abduh MY. Fermentation of coffee pulp using indigenous lactic acid bacteria with simultaneous aeration to produce cascara with a high antioxidant activity. Heliyon 2020; 6:e04462. [PMID: 32743093 PMCID: PMC7387815 DOI: 10.1016/j.heliyon.2020.e04462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Coffee pulp which is a by-product of coffee production contains considerable amounts of phenolic compounds that can be valorised to produce cascara as an antioxidant beverage. The fermentation and drying conditions of the coffee pulp have a great influence on the bioactive compounds in the cascara. This study aimed to investigate the effect of natural fermentation with simultaneous aeration on the phenolic content and antioxidant activity of cascara. A systematic study was carried out using a response surface methodology with a face-centered central composite design to determine the effect of fermentation time (0-8 h) and temperature (27-37 °C) on the number of bacteria in the coffee pulp after natural fermentation with simultaneous aeration (an air flowrate of 4 m/s) as well as phenolic content and antioxidant activity of cascara. The experimental dataset was modelled with an empirical model using multi-variable non-linear regression. A good agreement between model and experimental data was obtained. At the optimum conditions (4.2 h, 31.8 °C), the phenolic content was 6.72% whereas the antioxidant activity was 27.6%. Indigenous lactic acid bacteria were also isolated from the coffee pulp and determined as Leuconostoc pseudomesenteroides. The isolated bacteria can be used as a starter for controlled fermentation of coffee pulp as it increased the antioxidant activity up to 15% higher than the antioxidant activity of cascara obtained at the optimum conditions for natural fermentation with simultaneous aeration and 30% higher from the fresh coffee pulp.
Collapse
Affiliation(s)
- Lina Oktaviani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
| | - Dea Indriani Astuti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
| | - Mia Rosmiati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
| | - Muhammad Yusuf Abduh
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
- Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
- Corresponding author.
| |
Collapse
|
36
|
Torres-Valenzuela LS, Ballesteros-Gómez A, Rubio S. Supramolecular solvent extraction of bioactives from coffee cherry pulp. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Galali Y, Omar ZA, Sajadi SM. Biologically active components in by-products of food processing. Food Sci Nutr 2020; 8:3004-3022. [PMID: 32724565 PMCID: PMC7382179 DOI: 10.1002/fsn3.1665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/14/2023] Open
Abstract
Food by-products happen at various stages of production and processing at home and on commercial scales. In the recent years, because of the fast-growing food companies and production, food processing by-products have gained a lot of interest and attracted many technical and health professionals as well as policy makers internally and internationally. Also, concerns are increasing about food by-products due to their ecological and environmental impact on the planet. This is particularly of concern when large companies emit. Large quantities of food by-products are thrown into environment in which they can be exploited technically, medicinally, and pharmaceutically. This is due to their chemical component and biologically active compounds of the by-products. Therefore, this systematic review focuses on the food by-product biological compounds present in different parts of the food products, particularly in some common foods such as fruits, vegetables, cereals, dairy products, meat, eggs, nuts, coffee, and tea. Moreover, the review also explains the kind of biologically active compounds and their quantity not just in edible foods, but also in part and types of the by-product which then can be reused and recycled into different processes in order to extract and get benefit from.
Collapse
Affiliation(s)
- Yaseen Galali
- Food Technology DepartmentCollege of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilKRG‐Iraq
- Department of NutritionCihan University‐ErbilErbilIraq
| | - Zagros A. Omar
- Department of PhytochemistryScientific Research CentreSoran UniversitySoranIraq
- Department of PharmacyRwanduz Private Technical InstituteRwandusIraq
| | - S. Mohammad Sajadi
- Department of PhytochemistryScientific Research CentreSoran UniversitySoranIraq
| |
Collapse
|
38
|
Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food Chem 2020; 319:126600. [DOI: 10.1016/j.foodchem.2020.126600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
|
39
|
Excavation of coffee maturity markers and further research on their changes in coffee cherries of different maturity. Food Res Int 2020; 132:109121. [DOI: 10.1016/j.foodres.2020.109121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
|
40
|
Nunes C, Garcia R, Chizzotti M, Roseira J, Ribeiro E, Veloso C. Performance, carcass traits and meat quality of lambs fed coffee hulls treated with calcium oxide. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Solid-State Fermentation (SSF) versus Submerged Fermentation (SmF) for the Recovery of Cellulases from Coffee Husks: A Life Cycle Assessment (LCA) Based Comparison. ENERGIES 2020. [DOI: 10.3390/en13112685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article studies the environmental impacts of cellulase production by using a comparative attributional life cycle assessment (LCA) of two different scenarios of production. The first one is the commonly used submerged fermentation (SmF) using a pure substrate (cellulose powder) and a specific microorganism (Trichoderma reesei). The second scenario considers a novel system to produce enzymes and simultaneously treat a waste using the solid-state fermentation (SSF) process of coffee husk (CH) used as substrate. Experimental data were used in this scenario. The complete production process was studied for these two technologies including the fermentation phase and the complete downstream of cellulase. Life cycle inventory (LCI) data were collected from the database EcoInvent v3 (SimaPro 8.5) modified by data from literature and pilot scale experiments. The environmental impacts of both production systems revealed that those of SmF were higher than those of SSF. A sensitivity analysis showed that the results are highly conditioned by the energy use in the form of electricity during lyophilization, which is needed in both technologies. The results point to a possible alternative to produce the cellulase enzyme while reducing environmental impacts.
Collapse
|
42
|
Iriondo-DeHond A, Elizondo AS, Iriondo-DeHond M, Ríos MB, Mufari R, Mendiola JA, Ibañez E, del Castillo MD. Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Cascara Beverage: Melanoidins and Acrylamide. Foods 2020; 9:E620. [PMID: 32408584 PMCID: PMC7278827 DOI: 10.3390/foods9050620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/18/2023] Open
Abstract
Our research aimed to evaluate the formation of Maillard reaction products in sun-dried coffee cascara and their impact on the safety and health promoting properties of a novel beverage called "Instant Cascara" (IC) derived from this coffee by-product. Maillard reaction products in sun-dried coffee cascara have never been reported. "Instant Cascara" (IC) extract was obtained by aqueous extraction and freeze-drying. Proteins, amino acids, lipids, fatty acid profile, sugars, fiber, minerals, and vitamins were analyzed for its nutritional characterization. Acrylamide and caffeine were used as chemical indicators of safety. Colored compounds, also called melanoidins, their stability under 40 °C and in light, and their in vitro antioxidant capacity were also studied. A safe instant beverage with antioxidant properties was obtained to which the following nutritional claims can be assigned: "low fat", "low sugar" "high fiber" and "source of potassium, magnesium and vitamin C". For the first time, cascara beverage color was attributed to the presence of antioxidant melanoidins (>10 kDa). IC is a potential sustainable alternative for instant coffee, with low caffeine and acrylamide levels and a healthy composition of nutrients and antioxidants.
Collapse
Affiliation(s)
- Amaia Iriondo-DeHond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (A.S.E.); (M.B.R.); (R.M.); (J.A.M.); (E.I.)
| | - Ana Sofía Elizondo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (A.S.E.); (M.B.R.); (R.M.); (J.A.M.); (E.I.)
| | - Maite Iriondo-DeHond
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38, 28800 Alcalá de Henares, Spain;
| | - Maria Belén Ríos
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (A.S.E.); (M.B.R.); (R.M.); (J.A.M.); (E.I.)
| | - Romina Mufari
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (A.S.E.); (M.B.R.); (R.M.); (J.A.M.); (E.I.)
- Instituto de Ciencia y Tecnologia de los Alimentos (ICTA), Av. Velez Sarsfield 1611, Cordoba 5016, Argentina
| | - Jose A. Mendiola
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (A.S.E.); (M.B.R.); (R.M.); (J.A.M.); (E.I.)
| | - Elena Ibañez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (A.S.E.); (M.B.R.); (R.M.); (J.A.M.); (E.I.)
| | - Maria Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), Calle Nicolás Cabrera, 9, 28049 Madrid, Spain; (A.I.-D.); (A.S.E.); (M.B.R.); (R.M.); (J.A.M.); (E.I.)
| |
Collapse
|
43
|
Production and characterization of a new distillate obtained from fermentation of wet processing coffee by-products. Journal of Food Science and Technology 2020; 57:4481-4491. [PMID: 33087961 DOI: 10.1007/s13197-020-04485-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
Coffee is one of the most important commodities worldwide. The industrial processing of coffee cherries generates a considerable volume of by-products such as wastewater, coffee pulp, mucilage, and husk. These by-products have sugars and nutrients that can be converted into value-added products via microbial action. In this study, for the first time, we evaluated the potential of coffee pulp and coffee wastewater as substrate for alcoholic fermentation produce a distilled beverage. The must composed by dry or wet coffee pulp and coffee wastewater added of commercial sucrose or sugarcane molasses was fermented by S. cerevisiae. After a screening step, a larger fermentation was carried out with the wet pulp added of sucrose due to its higher alcoholic fermentation efficiency. The distilled beverage contained 38% (v/v) ethanol and 0.2 g/L of acetic acid. The contaminants furfural, hydroxymethylfurfural and ethyl carbamate were below detection level. Among the 48 volatile compounds detected, the majority (21) were ethyl esters usually associated with floral and sweet aromas. Ethyl decanoate (996.88 µg/L) and ethyl dodecanoate (1088.09 µg/L) were the most abundant esters. Coffee spirit presented taste acceptance of 80% and sugarcane spirit, 70%. The tasters indicated an aroma acceptance of 86% for the coffee spirit and 78% for the sugarcane spirit. The results of this work demonstrate the potential for using coffee by-products to produce a good quality distilled beverage. Considering our results, especially sensorial analysis, we can infer that the produced coffee beverage represents a new alternative for adding value to the coffee production chain.
Collapse
|
44
|
Godoy Padilla DJ, Daza La Plata R, Fernández Curi LM, Layza Mendiola AE, Roque Alcarraz RE, Hidalgo Lozano V, Gamarra Carrillo SG, Gómez Bravo CA. Caracterización del valor nutricional de los residuos agroindustriales para la alimentación de ganado vacuno en la región de San Martín, Perú. ACTA ACUST UNITED AC 2020. [DOI: 10.21930/rcta.vol21_num2_art:1374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Se realizó una caracterización nutricional de 10 residuos agroindustriales disponibles en San Martín, Perú. Se colectaron 19 muestras de residuos provenientes de 11 plantas agroindustriales dedicadas a la producción de aceite de palma, arroz, cacao, café, coco y chontaduro. Se determinó la materia seca (MS), proteína cruda (PC), extracto etéreo (EE), fibra cruda (FC), extracto libre de nitrógeno (ELN), ceniza, digestibilidad aparente in vitro de la materia seca (DIVMS), fibra detergente neutro (FDN), fraccionamiento de proteína, proteína cruda utilizable (uCP), nutrientes digestibles totales (NDT) y energía neta de lactación (ENL). Se encontraron diferencias significativas entre subproductos con respecto a su potencial nutricional (p < 0,05), siendo el nielen, arrocillo y polvillo de arroz, insumos energéticos con valores altos de ENL (2,1 ± 0,02, 2,1 ± 0,02 y 1,7 ± 0,02 Mcal/kg en base seca, respectivamente) y alta DIVMS (99,3 ± 0,25 %, 90,5 ± 0,42 % y 99,0 ± 0,68 %, respectivamente). Insumos con mayor aporte proteico fueron torta de coco y cascarilla de cacao (21,9 % y 21,8 ± 1,34 % de pc, respectivamente). La fibra de palma y cascarilla de arroz fueron residuos fibrosos con menor potencial de uso por su baja DIVMS (27,8 ± 2,45 % y 27,7 ± 5,02 %, respectivamente) y alto contenido de FDN (69,8 ± 4,17 % y 72,6 ± 6,45 %, respectivamente). La cáscara de palmito tuvo regular DIVMS (57,2 %) y alto FDN (60,4 %). Los residuos agroindustriales de San Martín tienen un variado potencial energético y proteico de utilidad en la alimentación de ganado vacuno.
Collapse
|
45
|
Massaya J, Prates Pereira A, Mills-Lamptey B, Benjamin J, Chuck CJ. Conceptualization of a spent coffee grounds biorefinery: A review of existing valorisation approaches. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Pleurotus spp. Cultivation on Different Agri-Food By-Products: Example of Biotechnological Application. SUSTAINABILITY 2019. [DOI: 10.3390/su11185049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Agri-food industry generally produces huge volumes of wastes all over the world, and their disposal is a threat to the environment and public health. The chemical composition of most of these wastes make them be defined as lignocellulosic materials, so they could be a suitable substrate for solid-state fermentation process operated by mushrooms. White-rot fungi are well known for their degradation ability of lignocellulosic material, and many scientific works reported the use of different substrates for their production. Biotechnological treatments of agri-food wastes by mushrooms could be considered an eco-friendly solution to reuse and valorize them, besides to reduce their environmental impact. In this way, wastes would be transformed into new resources to produce added-value food products, besides representing an economic return for the same industries. The aim of this review is to provide an overview of the recent literature concerning the use of different agri-food residues as growth substrates for Pleurotus spp. cultivation, with attention to their effects on the growth and chemical composition of the cultivated mushrooms.
Collapse
|
47
|
Enhanced production of alkaline protease by Neocosmospora sp. N1 using custard apple seed powder as inducer and its application for stain removal and dehairing. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Nurkhasanah U, Suharti. Preliminary Study on Keratinase Fermentation by Bacillus sp. MD24 under Solid State Fermentation. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/276/1/012016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
González Bautista E, Gutierrez E, Dupuy N, Gaime-Perraud I, Ziarelli F, Farnet da Silva AM. Pre-treatment of a sugarcane bagasse-based substrate prior to saccharification: Effect of coffee pulp and urea on laccase and cellulase activities of Pycnoporus sanguineus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:178-186. [PMID: 30901696 DOI: 10.1016/j.jenvman.2019.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Production of second-generation bioethanol uses lignocellulose from agricultural by-products such as sugarcane bagasse (SCB). A lignocellulose pre-treatment is required to degrade lignin, ensuring further efficient saccharification. Two experimental designs were set up to define culture conditions of Pycnoporus sanguineus in mesocosms to increase laccase activities and thus delignification. The first experimental design tested the effect of phenolic complementation (via coffee pulp) and the use of urea as a simple nitrogen source and the second defined more precisely the percentages of coffee pulp and urea to enhance delignification. The responses measured were: lignocellulolytic activities, laccase isoform profiles by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the chemical transformation of the substrate using solid-state NMR of 13C. Adding 10% of coffee pulp increased laccase activities and fungal biomass (32.5% and 16% respectively), enhanced two constitutive isoforms (Rf 0.23 and 0.27), induced a new isoform (Rf 0.19) and led to a decrease in total aromatics. However, higher concentrations of coffee pulp (25%) decreased laccase and cellulase activities but no decrease in aromaticity was observed, potentially due to the toxic effect of phenols from coffee pulp. Moreover, laccase production was still inhibited even for lower concentrations of urea (0-5%). Our findings revealed that an agricultural by-product like coffee pulp can enhance laccase activity -though to a threshold- and that urea limited this process, indicating that other N-sources should be tested for the biological delignification of SCB.
Collapse
Affiliation(s)
- Enrique González Bautista
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France; Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Campus para la Cultura, las Artes y el Deporte, Av. de las Culturas Veracruzanas No. 101Col. Emiliano Zapata, C.P. 91090, Xalapa, Veracruz, Mexico
| | - Enrique Gutierrez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Campus para la Cultura, las Artes y el Deporte, Av. de las Culturas Veracruzanas No. 101Col. Emiliano Zapata, C.P. 91090, Xalapa, Veracruz, Mexico
| | - Nathalie Dupuy
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | | | - Fabio Ziarelli
- Aix Marseille Université, CNRS, Spectropole Campus St Jérôme, Fédération des Sciences Chimiques de Marseille, FR 1739, 13397, Marseille, France
| | | |
Collapse
|
50
|
Win YY, Singh M, Sadiq MB, Anal AK. Isolation and identification of caffeine-degrading bacteria from coffee plantation area. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1570854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yi Yi Win
- Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Klong Luang, Pathumthani, Thailand
| | - Manisha Singh
- Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Klong Luang, Pathumthani, Thailand
| | - Muhammad Bilal Sadiq
- Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Klong Luang, Pathumthani, Thailand
| | - Anil Kumar Anal
- Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Klong Luang, Pathumthani, Thailand
| |
Collapse
|