1
|
Cachafeiro L, Heiss-Blanquet S, Hudebine D. An experimental and modeling approach to describe the deactivation of cellulases at the air-liquid interface. Biotechnol Bioeng 2024; 121:1927-1936. [PMID: 38501733 DOI: 10.1002/bit.28698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Understanding the reaction mechanisms involved in the enzymatic hydrolysis of cellulose is important because it is kinetically the most limiting step of the bioethanol production process. The present work focuses on the enzymatic deactivation at the air-liquid interface, which is one of the aspects contributing to this global deactivation. This phenomenon has already been experimentally proven, but this is the first time that a model has been proposed to describe it. Experiments were performed by incubating Celluclast cocktail solutions on an orbital stirring system at different enzyme concentrations and different surface-to-volume ratios. A 5-day follow-up was carried out by measuring the global FPase activity of cellulases for each condition tested. The activity loss was proven to depend on both the air-liquid surface area and the enzyme concentration. Both observations suggest that the loss of activity takes place at the air-liquid surface, the total amount of enzymes varying with volume or enzyme concentration. Furthermore, tests performed using five individual enzymes purified from a Trichoderma reesei cocktail showed that the only cellulase that is deactivated at the air-liquid interface is cellobiohydrolase II. From the experimental data collected by varying the initial enzyme concentration and the ratio surface to volume, it was possible to develop, for the first time, a model that describes the loss of activity at the air-liquid interface for this configuration.
Collapse
|
2
|
Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Crit Rev Biotechnol 2024; 44:218-235. [PMID: 36592989 DOI: 10.1080/07388551.2022.2151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Poonam Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | | | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, Brazil
| |
Collapse
|
3
|
Migkos TM, Ioannidou G, Karapatsia A, Flevaris K, Chatzidoukas C. Enzymatic hydrolysis for the systematic production of second-generation glucose from the dual polysaccharide reserves of an anti-pollutant plant. BIORESOURCE TECHNOLOGY 2021; 340:125711. [PMID: 34385124 DOI: 10.1016/j.biortech.2021.125711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, the anti-pollutant macrophyte Typha domingensis is exploited for the production of highly concentrated second-generation glucose. A two-stage starch and cellulose enzymatic hydrolysis process is compared for the first time with a single-stage simultaneous starch and cellulose hydrolysis approach, with the former achieving enhanced glucose production, making it more promising for large-scale deployment. The proposed two-stage process is optimized via the Box-Behnken response surface methodology achieving glucose yield values of 74.4% and 71.7% with respect to the starch and cellulose fraction, respectively. Elevated shaking rates are shown to exert a positive effect on both starch and cellulose enzymatic hydrolysis only under high initial substrate concentrations and high initial enzyme to substrate ratios, indicating the importance of accounting for the synergies between key process variables when aiming to increase glucose production. The findings of the presented experimental framework aspire to support future scale-up studies and techno-economic assessments.
Collapse
Affiliation(s)
- Theofanis-Matthaios Migkos
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, Thessaloniki 54124, Greece
| | - Georgia Ioannidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, Thessaloniki 54124, Greece
| | - Anna Karapatsia
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, Thessaloniki 54124, Greece; Chemical Process & Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), P.O. Box: 60361, Thermi, Thessaloniki 57001, Greece
| | - Konstantinos Flevaris
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, Thessaloniki 54124, Greece
| | - Christos Chatzidoukas
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), P.O. Box: 472, Thessaloniki 54124, Greece.
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Song M, Topakas E, Yu Q, Yuan Z, Wang Z, Guo Y. Combining Michaelis-Menten theory and enzyme deactivation reactions for the kinetic study of enzymatic hydrolysis by different pretreated sugarcane bagasse. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Pandey AK, Gaur VK, Udayan A, Varjani S, Kim SH, Wong JWC. Biocatalytic remediation of industrial pollutants for environmental sustainability: Research needs and opportunities. CHEMOSPHERE 2021; 272:129936. [PMID: 35534980 DOI: 10.1016/j.chemosphere.2021.129936] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
An increasing quantum of pollutants from various industrial sector activities represents a severe menace to environmental & ecological balance. Bioremediation is gaining flow globally due to its cost-effective and environment-friendly nature. Understanding biodegradation mechanisms is of high ecological significance. Application of microbial enzymes has been reported as sustainable approach to mitigate the pollution. Immobilized enzyme catalyzed transformations are getting accelerated attention as potential alternatives to physical and chemical methods. The attention is now also focused on developing novel protein engineering strategies and bioreactor design systems to ameliorate overall biocatalysis and waste treatment further. This paper presents and discusses the most advanced and state of the art scientific & technical developments about biocatalytic remediation of industrial pollutants. It also covers various biocatalysts and the associated sustainable technologies to remediate various pollutants from waste streams. Enzyme production and immobilization in bioreactors have also been discussed. This paper also covers challenges and future research directions in this field.
Collapse
Affiliation(s)
| | - Vivek K Gaur
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Aswathy Udayan
- CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695 019, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
6
|
Abstract
To investigate effective and reasonable methods for the remediation of nitrate nitrogen pollution in groundwater, two groups of laboratory denitrification experiments were conducted: one on the effect of native denitrifying microbes in groundwater and another on the effect of artificially added denitrifying microbes. The water used in the experiment was typical groundwater with a high concentration of nitrate nitrogen. The temperature was controlled at 15°C. Both groups of experiments established four types of culture environments: anaerobic, anaerobic with an added carbon source (glucose), aerobic, and aerobic with an added carbon source (glucose). The results indicated that native denitrifying microbes in the groundwater have almost no ability to remove high concentrations of nitrate nitrogen. However, artificially added denitrifying microbes can effectively promote denitrification. Artificially added denitrifying microbes had the highest activity in an anaerobic environment in which a carbon source had been added, and the rate removal of a high concentration of nitrate nitrogen in groundwater was the highest and reached as high as 89.52%.
Collapse
|
7
|
Reyes C, Poulin A, Nyström G, Schwarze FWMR, Ribera J. Enzyme Activities of Five White-Rot Fungi in the Presence of Nanocellulose. J Fungi (Basel) 2021; 7:jof7030222. [PMID: 33803754 PMCID: PMC8003285 DOI: 10.3390/jof7030222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
White-rot fungi can degrade all lignocellulose components due to their potent lignin and cellulose-degrading enzymes. In this study, five white-rot fungi, Trametes versicolor, Trametes pubescens, Ganoderma adspersum, Ganoderma lipsiense, and Rigidoporus vitreus were tested for endoglucanase, laccase, urease, and glucose-6-phosphate (G6P) production when grown with malt extract and nanocellulose in the form of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidized cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC). Results show that temperature plays a key role in controlling the growth of all five fungi when cultured with malt extract alone. Endoglucanase activities were highest in cultures of G. adspersum and G. lipsiense and laccase activities were highest in cultures of T. versicolor and R. vitreus. Urease activities were highest in cultures of G. adspersum, G. lipsiense, and R. vitreus. Glucose-6-phosphate levels also indicate that cells were actively metabolizing glucose present in the cultures. These results show that TEMPO-oxidized CNF and CNC do not inhibit the production of specific lignocellulose enzymes by these white-rot fungi. The apparent lack of enzymatic inhibition makes TEMPO-oxidized CNF and CNC excellent candidates for future biotechnological applications in combination with the white-rot fungi studied here.
Collapse
Affiliation(s)
- Carolina Reyes
- Laboratory for Cellulose & Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (A.P.); (G.N.)
- Correspondence: (C.R.); (J.R.)
| | - Alexandre Poulin
- Laboratory for Cellulose & Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (A.P.); (G.N.)
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland; (A.P.); (G.N.)
- Department of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Francis W. M. R. Schwarze
- Laboratory for Cellulose & Wood Materials, Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
| | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland;
- Correspondence: (C.R.); (J.R.)
| |
Collapse
|
8
|
The impact of fluid-dynamic stress in stirred tank bioreactors on the synthesis of cellulases by Trichoderma reesei at the intracellular and extracellular levels. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Roldan-Cruz C, Garcia-Hernandez A, Alvarez-Ramirez J, Vernon-Carter E. Effect of the stirring speed in the in vitro activity of α-amylase. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Digaitis R, Thybring EE, Thygesen LG. Investigating the role of mechanics in lignocellulosic biomass degradation during hydrolysis: Part II. Biotechnol Prog 2020; 37:e3083. [PMID: 32935452 PMCID: PMC7988658 DOI: 10.1002/btpr.3083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022]
Abstract
Lignocellulose breakdown in biorefineries is facilitated by enzymes and physical forces. Enzymes degrade and solubilize accessible lignocellulosic polymers, primarily on fiber surfaces, and make fibers physically weaker. Meanwhile physical forces acting during mechanical agitation induce tearing and cause rupture and attrition of the fibers, leading to liquefaction, that is, a less viscous hydrolysate that can be further processed in industrial settings. This study aims at understanding how mechanical agitation during enzymatic saccharification can be used to promote fiber attrition. The effects of reaction conditions, such as substrate and enzyme concentration on fiber attrition rate and hydrolysis yield were investigated. To gain insight into the fiber attrition mechanism, enzymatic hydrolysis was compared to hydrolysis by use of hydrochloric acid. Results show that fiber attrition depends on several factors concerning reactor design and operation including drum diameter, rotational speed, mixing schedule, and concentrations of fibers and enzymes. Surprisingly, different fiber attrition patterns during enzymatic and acid hydrolysis were found for similar mixing schedules. Specifically, for tumbling mixing, slow continuous mixing appears to function better than faster, intermittent mixing even for the same total number of drum revolutions. The findings indicate that reactor design and operation as well as hydrolysis conditions are key to process optimization and that detailed insights are needed to obtain fast liquefaction without sacrificing saccharification yields.
Collapse
Affiliation(s)
- Ramūnas Digaitis
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.,Biofilms Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Emil Engelund Thybring
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
11
|
da Silva AS, Espinheira RP, Teixeira RSS, de Souza MF, Ferreira-Leitão V, Bon EPS. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:58. [PMID: 32211072 PMCID: PMC7092515 DOI: 10.1186/s13068-020-01697-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts.
Collapse
Affiliation(s)
- Ayla Sant’Ana da Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Roberta Pereira Espinheira
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Ricardo Sposina Sobral Teixeira
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Marcella Fernandes de Souza
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Viridiana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, Innovation and Communication, Rio de Janeiro, RJ 20081-312 Brazil
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| | - Elba P. S. Bon
- Bioethanol Laboratory, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-909 Brazil
| |
Collapse
|
12
|
Bhagia S, Wyman CE, Kumar R. Impacts of cellulase deactivation at the moving air-liquid interface on cellulose conversions at low enzyme loadings. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:96. [PMID: 31044009 PMCID: PMC6477705 DOI: 10.1186/s13068-019-1439-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/13/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND We recently confirmed that the deactivation of T. reesei cellulases at the air-liquid interface reduces microcrystalline cellulose conversion at low enzyme loadings in shaken flasks. It is one of the main causes for lowering of cellulose conversions at low enzyme loadings. However, supplementing cellulases with small quantities of surface-active additives in shaken flasks can increase cellulose conversions at low enzyme loadings. It was also shown that cellulose conversions at low enzyme loadings can be increased in unshaken flasks if the reactions are carried for a longer time. This study further explores these recent findings to better understand the impact of air-liquid interfacial phenomena on enzymatic hydrolysis of cellulose contained in Avicel, Sigmacell, α-cellulose, cotton linters, and filter paper. The impacts of solids and enzyme loadings, supplementation with nonionic surfactant Tween 20 and xylanases, and application of different types of mixing and reactor designs on cellulose hydrolysis were also evaluated. RESULTS Avicel cellulose conversions at high solid loading were more than doubled by minimizing loss of cellulases to the air-liquid interface. Maximum cellulose conversions were high for surface-active supplemented shaken flasks or unshaken flasks because of low cellulase deactivation at the air-liquid interface. The nonionic surfactant Tween 20 was unable to completely prevent cellulase deactivation in shaken flasks and only reduced cellulose conversions at unreasonably high concentrations. CONCLUSIONS High dynamic interfacial areas created through baffles in reactor vessels, low volumes in high-capacity vessels, or high shaking speeds severely limited cellulose conversions at low enzyme loadings. Precipitation of cellulases due to aggregation at the air-liquid interface caused their continuous deactivation in shaken flasks and severely limited solubilization of cellulose.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
13
|
Digaitis R, Thybring EE, Thygesen LG. Investigating the role of mechanics in lignocellulosic biomass degradation during hydrolysis. Biotechnol Prog 2018; 35:e2754. [PMID: 30468315 DOI: 10.1002/btpr.2754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/13/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022]
Abstract
Enzymes and mechanics play major roles in lignocellulosic biomass deconstruction in biorefineries by catalyzing chemical cleavage or inducing physical breakdown of biomass, respectively. At industrially relevant substrate concentrations mechanical agitation is also a driving force for mass transfer as well as agglomeration of elongated biomass particles. Contrary to the physically induced particle attrition, which typically facilitates feedstock handling, particle agglomeration tends to hinder mass transfer and in the worst case induces processing difficulties like pipe blockage. Understanding the complex interplay between mechanical agitation and enzymatic degradation during hydrolysis is therefore critical and was the aim of this study. Particle size analyses revealed that neither mechanical agitation alone nor enzymatic treatment without mechanical agitation had any noteworthy effect on flax fiber attrition. Similarly, successive treatment, where mechanical agitation was either preceded or proceeded by enzymatic hydrolysis, did not induce any substantial segmentation of flax fibers. Simultaneous enzymatic and mechanical treatment on the other hand was found to promote fast fiber shortening. Higher hydrolysis yields, however, were obtained from nonagitated samples after prolonged enzymatic treatment, indicating that mechanical agitation in the long run reduces activity of the cellulolytic enzymes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2754, 2019.
Collapse
Affiliation(s)
- Ramūnas Digaitis
- Dept. of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, Denmark
| | - Emil Engelund Thybring
- Dept. of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, Denmark
| | - Lisbeth Garbrecht Thygesen
- Dept. of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, Denmark
| |
Collapse
|
14
|
Kumar V, Shukla P. Extracellular xylanase production from T. lanuginosus VAPS24 at pilot scale and thermostability enhancement by immobilization. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Lou H, Zeng M, Hu Q, Cai C, Lin X, Qiu X, Yang D, Pang Y. Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. BIORESOURCE TECHNOLOGY 2018; 249:1-8. [PMID: 29035726 DOI: 10.1016/j.biortech.2017.07.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/24/2023]
Abstract
Effects of nonionic surfactants on enzymatic hydrolysis of Avicel at different agitation rates and solid loadings and the mechanism were studied. Nonionic surfactants couldn't improve the enzymatic hydrolysis efficiency at 0 and 100rpm but could enhance the enzymatic hydrolysis significantly at high agitation rate (200 and 250rpm). Cellulase was easily deactivated at high agitation rate and the addition of nonionic surfactants can protect against the shear-induced deactivation, especially when the cellulase concentration was low. When 25mg protein/L of cellulase solution was incubated at 200rpm for 72h, the enzyme activity increased from 36.0% to 89.5% by adding PEG4600. Moreover nonionic surfactants can compete with enzyme in air-liquid interface and reduce the amount of enzyme exposed in the air-liquid interface. The mechanism was proposed that nonionic surfactants could enhance the enzymatic hydrolysis of Avicel by reducing the cellulase deactivation caused by shear force and air-liquid interface.
Collapse
Affiliation(s)
- Hongming Lou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Meijun Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Qiaoyan Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Cheng Cai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xuliang Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
16
|
Masuda H, Horie T, Hubacz R, Ohmura N, Shimoyamada M. Process development of starch hydrolysis using mixing characteristics of Taylor vortices. Biosci Biotechnol Biochem 2017; 81:755-761. [DOI: 10.1080/09168451.2017.1282806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor–Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.
Collapse
Affiliation(s)
- Hayato Masuda
- School of Food and Nutritional Science, University of Shizuoka, Shizuoka, Japan
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, Kobe, Japan
| | - Takafumi Horie
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Robert Hubacz
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Naoto Ohmura
- Complex Fluid and Thermal Engineering Research Center (COFTEC), Kobe University, Kobe, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
| | - Makoto Shimoyamada
- School of Food and Nutritional Science, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
17
|
Effect of mechanically modified wheat flour on dough fermentation properties and bread quality. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2743-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Pratto B, de Souza RBA, Sousa R, da Cruz AJG. Enzymatic Hydrolysis of Pretreated Sugarcane Straw: Kinetic Study and Semi-Mechanistic Modeling. Appl Biochem Biotechnol 2015; 178:1430-44. [DOI: 10.1007/s12010-015-1957-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
|
19
|
Toftgaard Pedersen A, Birmingham WR, Rehn G, Charnock SJ, Turner NJ, Woodley JM. Process Requirements of Galactose Oxidase Catalyzed Oxidation of Alcohols. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00278] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Asbjørn Toftgaard Pedersen
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - William R. Birmingham
- School
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Gustav Rehn
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Simon J. Charnock
- Prozomix
Ltd, Station Court, Haltwhistle, Northumberland NE49 9HN, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Sitanggang AB, Drews A, Kraume M. Influences of operating conditions on continuous lactulose synthesis in an enzymatic membrane reactor system: A basis prior to long-term operation. J Biotechnol 2015; 203:89-96. [DOI: 10.1016/j.jbiotec.2015.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/09/2015] [Accepted: 03/18/2015] [Indexed: 01/01/2023]
|
21
|
Bychkov AL, Bukhtoyarov VA, Lomovskii OI. Stabilization of cellulosolytic enzymes by sorption on the plant raw materials surface. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-0998-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Effect of lignocellulose substrate on enzyme denaturation during joint mechanical treatment. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-0960-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Reduced power consumption compared to a traditional stirred tank reactor (STR) for enzymatic saccharification of alpha-cellulose using oscillatory baffled reactor (OBR) technology. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Sitanggang AB, Drews A, Kraume M. Continuous synthesis of lactulose in an enzymatic membrane reactor reduces lactulose secondary hydrolysis. BIORESOURCE TECHNOLOGY 2014; 167:108-115. [PMID: 24971952 DOI: 10.1016/j.biortech.2014.05.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Newly developed parallel small-scale enzymatic membrane reactors (EMRs) were used to enhance the synthesis of lactulose using β-galactosidase. Under batch operation, the productivity of lactulose decreased abruptly from 2.72 down to 0.04 mg lactulose/(Uenzymeh) over 35 h of reaction. This was presumably caused by the action of β-galactosidase which performed secondary hydrolysis upon the produced lactulose. The continuous operations of an EMR system led to continuous removal of lactulose in the reactors restricting lactulose degradation caused by secondary hydrolysis. Therefore, continuous lactulose syntheses in the EMRs yielded significantly higher specific productivities under "steady state" conditions. Approximately 0.70 and 0.50 mg lactulose/(U enzyme h) for hydraulic residence times of 5 and 7h were reached, respectively. Continuous lactulose synthesis performed in an EMR system conclusively can circumvent the drawbacks (e.g., secondary hydrolysis) of lactulose synthesis encountered in batch operation. It is, therefore, beneficial in terms of enhanced lactulose productivity and reduced enzyme consumption.
Collapse
Affiliation(s)
- Azis Boing Sitanggang
- Chair of Chemical and Process Engineering, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; Department of Food Science and Technology, Bogor Agricultural University, Raya Darmaga St, Kampus IPB Darmaga, Bogor 16680, West Java, Indonesia.
| | - Anja Drews
- HTW Berlin - University of Applied Science, Engineering II, School of Life Science Engineering, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - Matthias Kraume
- Chair of Chemical and Process Engineering, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| |
Collapse
|
25
|
Gao Y, Xu J, Yuan Z, Zhang Y, Liu Y, Liang C. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. BIORESOURCE TECHNOLOGY 2014; 167:41-45. [PMID: 24968110 DOI: 10.1016/j.biortech.2014.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 05/28/2023]
Abstract
Fed-batch enzymatic hydrolysis process from alkali-pretreated sugarcane bagasse was investigated to increase solids loading, produce high-concentration fermentable sugar and finally to reduce the cost of the production process. The optimal initial solids loading, feeding time and quantities were examined. The hydrolysis system was initiated with 12% (w/v) solids loading in flasks, where 7% fresh solids were fed consecutively at 6h, 12h, 24h to get a final solids loading of 33%. All the requested cellulase loading (10 FPU/g substrate) was added completely at the beginning of hydrolysis reaction. After 120 h of hydrolysis, the maximal concentrations of cellobiose, glucose and xylose obtained were 9.376 g/L, 129.50 g/L, 56.03 g/L, respectively. The final total glucan conversion rate attained to 60% from this fed-batch process.
Collapse
Affiliation(s)
- Yueshu Gao
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingliang Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhenhong Yuan
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Yu Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yunyun Liu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Cuiyi Liang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
26
|
Ritter CET, Fontana RC, Camassola M, da Silveira MM, Dillon AJP. The influence of sorbitol on the production of cellulases and xylanases in an airlift bioreactor. BIORESOURCE TECHNOLOGY 2013; 148:86-90. [PMID: 24045195 DOI: 10.1016/j.biortech.2013.08.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/11/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
The production of cellulases and xylanases by Penicillium echinulatum in an airlift bioreactor was evaluated. In batch production, we tested media with isolated or associated cellulose and sorbitol. In fed-batch production, we tested cellulose addition at two different times, 30 h and 48 h. Higher liquid circulation velocities in the downcomer were observed in sorbitol 10 g L(-1) medium. In batch production, higher FPA (filter paper activity) and endoglucanase activities were obtained with cellulose (7.5 g L(-1)) and sorbitol (2.5 g L(-1)), 1.0 U mL(-1) (120 h) and 6.4 U m L(-1) (100 h), respectively. For xylanases, the best production condition was cellulose 10 g L(-1), which achieved 5.5 U mL(-1) in 64 h. The fed-batch process was favorable for obtaining xylanases, but not for FPA and endoglucanases, suggesting that in the case of cellulases, the inducer must be added early in the process.
Collapse
Affiliation(s)
- Carla Eliana Todero Ritter
- Institute of Biotechnology, University of Caxias do Sul, Caixa Postal 1352, 95001-970 Caxias do Sul, RS, Brazil
| | | | | | | | | |
Collapse
|
27
|
Dos Reis L, Fontana RC, da Silva Delabona P, da Silva Lima DJ, Camassola M, da Cruz Pradella JG, Dillon AJP. Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. BIORESOURCE TECHNOLOGY 2013; 146:597-603. [PMID: 23973981 DOI: 10.1016/j.biortech.2013.07.124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
The development of more productive strains of microorganisms and processes that increase enzyme levels can contribute to the economically efficient production of second generation ethanol. To this end, cellulases and xylanases were produced with the S1M29 mutant strain of Penicillium echinulatum, using different concentrations of cellulose (20, 40, and 60 g L(-1)) in batch and fed-batch processes. The highest activities of FPase (8.3 U mL(-1)), endoglucanases (37.3 U mL(-1)), and xylanases (177 U mL(-1)) were obtained in fed-batch cultivation with 40 g L(-1) of cellulose. The P. echinulatum enzymatic broth and the commercial enzyme Cellic CTec2 were tested for hydrolysis of pretreated sugar cane bagasse. Maximum concentrations of glucose and xylose were achieved after 72 h of hydrolysis. Glucose yields of 28.0% and 27.0% were obtained using the P. echinulatum enzymatic extract and Cellic CTec2, respectively.
Collapse
Affiliation(s)
- Laísa Dos Reis
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - Roselei Claudete Fontana
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - Priscila da Silva Delabona
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caxia Postal 6192, 13083-970 Campinas, São Paulo, Brazil
| | - Deise Juliana da Silva Lima
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caxia Postal 6192, 13083-970 Campinas, São Paulo, Brazil
| | - Marli Camassola
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil
| | - José Geraldo da Cruz Pradella
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caxia Postal 6192, 13083-970 Campinas, São Paulo, Brazil
| | - Aldo José Pinheiro Dillon
- Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas 1130, 95070-560 Caxias do Sul, RS, Brazil.
| |
Collapse
|
28
|
Vossenberg P, Beeftink H, Nuijens T, Quaedflieg P, Cohen Stuart M, Tramper J. Dipeptide synthesis in near-anhydrous organic media: Long-term stability and reusability of immobilized Alcalase. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Effects of High-Intensity Pulsed Electric Fields Processing Parameters on the Chlorophyll Content and Its Degradation Compounds in Broccoli Juice. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1152-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Abbott MSR, Harvey AP, Perez GV, Theodorou MK. Biological processing in oscillatory baffled reactors: operation, advantages and potential. Interface Focus 2013; 3:20120036. [PMID: 24427509 PMCID: PMC3638279 DOI: 10.1098/rsfs.2012.0036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing 'long' processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future.
Collapse
Affiliation(s)
- M. S. R. Abbott
- Bioprocessing Biopharmaceutical Technology Centre, Newcastle University, Newcastle upon Tyne, UK
- The Centre for Process Innovation, Redcar, UK
| | - A. P. Harvey
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | | | - M. K. Theodorou
- The Centre for Process Innovation, Redcar, UK
- Department of Biological and Biomedical Sciences, Durham, UK
| |
Collapse
|
31
|
Improvement of the cellulose hydrolysis yields and hydrolysate concentration by management of enzymes and substrate input. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.cervis.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Ye Z, Hatfield KM, Berson RE. Deactivation of individual cellulase components. BIORESOURCE TECHNOLOGY 2012; 106:133-137. [PMID: 22200557 DOI: 10.1016/j.biortech.2011.11.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 05/31/2023]
Abstract
Deactivation extents of cellobiohydrolase, endoglucanase, and a total cellulase mixture (Spezyme CP) were studied independently as functions of incubating time and mixing intensity. It was found that the decrease in total cellulase activity was more strongly related to deactivation of cellobiohydrolase 1 (CBH1) than endoglucanase. The mass-averaged shear in orbiting flasks at 50, 150, and 250rpm was quantified by computational fluid dynamics and was two-orders smaller than shear in typical stirred tanks. Endoglucanase activity did not change significantly with mixing speed, but CBH1 and total cellulase activities were 10-25% higher at 250rpm compared to the lower speeds after a 24-h incubation. Total deactivation due to mechanical mixing (∼20%) may be too low to account for all the rate reduction during cellulose hydrolysis. Thermal deactivation was independent of enzyme concentration while deactivation due to mechanical stress decreased when cellulase loading increased over 0.15 filterpaperunit/ml.
Collapse
Affiliation(s)
- Zhuoliang Ye
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
33
|
Riedlberger P, Weuster-Botz D. New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. BIORESOURCE TECHNOLOGY 2012; 106:138-146. [PMID: 22206921 DOI: 10.1016/j.biortech.2011.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Many factors strongly influence the enzymatic hydrolysis of biomass to fermentable sugars (feedstock composition, pretreatment, enzymes and enzyme loading). In order to optimize the reaction conditions for the hydrolysis of biomass, an accurate high-throughput bioprocess development tool is mandatory, which enables a parallelization and an easy scale-up. New S-shaped impellers were developed for magnetically inductive driven stirred-tank bioreactors at a 10mL-scale. An efficient and reproducible homogenization was shown at 20% w/w solids loading of microcrystalline cellulose and at, 4-10% with wheat straw in 48 parallel operated stirred-tank bioreactors. The scale-up was successfully validated for the enzymatic hydrolysis of wheat straw suspensions and microcrystalline cellulose mixtures by application of a cellulase complex at a milliliter- and liter-scale. As an example, the parallel stirred-tank bioreactor system was applied for the evaluation of enzymatic batch hydrolyses of plant materials with varying pretreatments.
Collapse
Affiliation(s)
- Peter Riedlberger
- Lehrstuhl für Bioverfahrenstechnik, Technische Universität München, Boltzmannstr. 15, 85748 Garching, Germany
| | | |
Collapse
|
34
|
Yang M, Zhang A, Liu B, Li W, Xing J. Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.04.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Effect of adding surfactant for transforming lignocellulose into fermentable sugars during biocatalysing. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-011-0138-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Brethauer S, Studer MH, Yang B, Wyman CE. The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. BIORESOURCE TECHNOLOGY 2011; 102:6295-8. [PMID: 21376571 DOI: 10.1016/j.biortech.2011.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 05/10/2023]
Abstract
Bovine serum albumin (BSA) was applied as a model non-catalytic protein to enzymatic hydrolysis of Avicel and dilute acid pretreated corn stover at different reaction conditions to improve the understanding of its ability to enhance cellulose hydrolysis. Addition of BSA improved the 72 h hydrolysis yields in shake flasks by up to 26% for both substrates by reducing de-activation of the exoglucanases and by facilitating reductions in particle size and crystallinity during a magnetically stirred pre-incubation step. The enzyme stabilizing effect of BSA addition was most striking for batch hydrolysis in a stirred tank reactor, with glucose yields increasing by 76% after 72 h for Avicel and by 40% after 145 h for corn stover. Application of BSA to continuous hydrolysis for a mean residence time of 24h gave 33% and 40% higher glucose yields for corn stover and Avicel compared to the controls.
Collapse
Affiliation(s)
- Simone Brethauer
- Center for Environmental Research and Technology and Chemical and Environmental Engineering Department, University of California, 1084 Columbia Ave., Riverside, CA 92507, USA
| | | | | | | |
Collapse
|
37
|
Deactivation of isoamylase and β-amylase in the agitated reactor under supercritical carbon dioxide. Bioprocess Biosyst Eng 2010; 33:1007-15. [DOI: 10.1007/s00449-010-0425-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 03/23/2010] [Indexed: 11/26/2022]
|
38
|
|
39
|
Simultaneous saccharification and co-fermentation of paper sludge to ethanol bySaccharomyces cerevisiaeRWB222. Part II: Investigation of discrepancies between predicted and observed performance at high solids concentration. Biotechnol Bioeng 2009; 104:932-8. [DOI: 10.1002/bit.22465] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Singh R, Kumar R, Bishnoi K, Bishnoi NR. Optimization of synergistic parameters for thermostable cellulase activity of Aspergillus heteromorphus using response surface methodology. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Patel N, Choy V, Malouf P, Thibault J. Growth of Trichoderma reesei RUT C-30 in stirred tank and reciprocating plate bioreactors. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Shen J, Agblevor FA. KINETICS OF ENZYMATIC HYDROLYSIS OF STEAM-EXPLODED COTTON GIN WASTE. CHEM ENG COMMUN 2008. [DOI: 10.1080/00986440801907110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Ghadge R, Patwardhan A, Sawant S, Joshi J. Effect of flow pattern on cellulase deactivation in stirred tank bioreactors. Chem Eng Sci 2005. [DOI: 10.1016/j.ces.2004.09.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Ghadge R, Sawant S, Joshi J. Enzyme deactivation in a bubble column, a stirred vessel and an inclined plane. Chem Eng Sci 2003. [DOI: 10.1016/j.ces.2003.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochem 2003. [DOI: 10.1016/s0032-9592(02)00220-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Joshi J, Sawant S, Patwardhan A, Patil D, Kshatriya S, Nere N. Relation between flow pattern and de-activation of enzymes in stirred reactors. Chem Eng Sci 2001. [DOI: 10.1016/s0009-2509(00)00247-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|