1
|
Muhoberac BB. Using substantial reductant concentration with chelation therapy to enhance small aggregate dispersal, iron mobilization, and its clearance in neurodegenerative diseases. Front Neurosci 2022; 16:1006203. [PMID: 36188476 PMCID: PMC9520002 DOI: 10.3389/fnins.2022.1006203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Connections between altered iron homeostasis and certain neurodegenerative diseases are highlighted by numerous studies suggesting iron neurotoxicity. Iron causes aggregation in neurodegenerative disease-linked proteins as well as others and additionally facilitates oxidative damage. Iron and oxidative damage can cause cell death including by ferroptosis. As treatment for neurodegeneration, chelation therapy alone is sometimes used with modest, varying efficacy and has not in general proven to reverse or halt the damage long term. Questions often focus on optimal chelator partitioning and fine-tuning binding strength; however iron oxidation state chemistry implies a different approach. More specifically, my perspective is that applying a redox-based component to iron mobilization and handling is crucial because ferrous iron is in general a more soluble, weaker biological binder than ferric. Once cellular iron becomes oxidized to ferric, it binds tenaciously, exchanges ligands more slowly, and enhances protein aggregation, which importantly can be reversed by iron reduction. This situation escalates with age as brain reducing ability decreases, iron concentration increases, autophagic clearance decreases, and cell stress diminishes iron handling capacity. Taken together, treatment employing chelation therapy together with a strong biological reductant may effectively remove inappropriately bound cellular iron or at least inhibit accumulation. This approach would likely require high concentration ascorbate or glutathione by IV along with chelation to enhance iron mobilization and elimination, thus reducing cumulative cellular damage and perhaps restoring partial function. Potential treatment-induced oxidative damage may be attenuated by high reductant concentration, appropriate choice of chelator, and/or treatment sequence. Comprehensive study is urged.
Collapse
|
2
|
Tang X, Liu H, Xiao Y, Wu L, Shu P. Vitamin C Intake and Ischemic Stroke. Front Nutr 2022; 9:935991. [PMID: 35911106 PMCID: PMC9330473 DOI: 10.3389/fnut.2022.935991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Vitamin C is an essential micronutrient with important antioxidant properties. Ischemic stroke is a major public health problem worldwide. Extensive evidence demonstrates that vitamin C has protective effects against cardiovascular disease, and there is a close relationship between vitamin C intake and ischemic stroke risk. Based on the evidence, we conducted this umbrella review to clarify the relationship between vitamin C intake and ischemic stroke risk from four perspectives: cellular mechanisms, animal experiments, clinical trials, and cohort studies.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Internal Neurology, Beilun District People's Hospital, Ningbo, China
| | - Hanguang Liu
- Department of Internal Neurology, Beilun District People's Hospital, Ningbo, China
| | - Yuan Xiao
- Department of Internal Neurology, Beilun District People's Hospital, Ningbo, China
| | - Lei Wu
- Department of Painology, The No. 1 People's Hospital of Ningbo, Ningbo, China
- Lei Wu
| | - Peng Shu
- Department of Molecular Laboratory, Beilun District People's Hospital, Ningbo, China
- *Correspondence: Peng Shu
| |
Collapse
|
3
|
Song J, Jiang L, Qi M, Suo W, Deng Y, Ma C, Li H, Zhang D. Microencapsulated procyanidins by extruding starch improved physicochemical properties, inhibited the protein and lipid oxidant of chicken sausages. J Food Sci 2022; 87:1184-1196. [PMID: 35122248 DOI: 10.1111/1750-3841.16057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Microencapsulated procyanidins by extruding starch (MPS) were used in meat and meat products as an antioxidant for their simple production process and high stability. This study investigated the controlled released properties of MPS and their effect on antioxidant capacity, physicochemical properties, and sensory qualities of chicken sausages during 4°C storage within 28 days. Antioxidant capacity, particle size analysis, and simulated digestion in vitro demonstrated that microencapsulation by extruding starch delayed the procyanidins release. The reduced crystal structure of MPS was determined by the morphology observation (SEM) and the decrease of the typical diffraction peak at 2θ of 20.9° (XRD). The MPS-added sausage had a higher (p < 0.05) ABTS and DPPH radical scavenging ratio (97.6% and 67.3%) and sulfhydryl contents (114.69 nmol/g protein) than other groups. Moreover, lower (p < 0.05) thiobarbituric acid reactive substances (TBARS) (0.67 mg MDA/kg sausage) and carbonyl values (3.24 nmol/mg protein) were detected in MPS-added sausages than others at the end of storage. The MPS addition increased redness (a* value) and decreased the lightness (L* value). The sensory analysis suggested that the sausage with the increased redness was favorable. These results denominated that MPS was an alternative antioxidant in chicken sausages. Practical Application: In this study, microencapsulated procyanidins were prepared by extrusion technology, and the effect on the quality of chicken sausages was investigated, which provides an alternative natural antioxidant for meat and meat products.
Collapse
Affiliation(s)
- Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| |
Collapse
|
4
|
Microcapsule prepared by extruding starch and procyanidins inhibited protein oxidation and improved quality of chicken sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Muhoberac BB. What Can Cellular Redox, Iron, and Reactive Oxygen Species Suggest About the Mechanisms and Potential Therapy of COVID-19? Front Cell Infect Microbiol 2020; 10:569709. [PMID: 33381464 PMCID: PMC7767833 DOI: 10.3389/fcimb.2020.569709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that there are important contributions to coronavirus disease (COVID-19) from redox imbalance and improperly coordinated iron, which cause cellular oxidative damage and stress. Cells have developed elaborate redox-dependent processes to handle and store iron, and their disfunction leads to several serious diseases. Cellular reductants are important as reactive oxygen species (ROS) scavengers and to power enzymatic repair mechanisms, but they also may help generate toxic ROS. These complicated interrelationships are presented in terms of a cellular redox/iron/ROS triad, including ROS generation both at improperly coordinated iron and enzymatically, ROS interconvertibility, cellular signaling and damage, and reductant and iron chelator concentration-dependent effects. This perspective provides the rational necessary to strongly suggest that COVID-19 disrupts this interdependent triad, producing a substantial contribution to the ROS load, which causes direct ROS-induced protein and phospholipid damage, taxes cellular resources and repair mechanisms, and alters cellular signaling, especially in the more critical acute respiratory distress syndrome (ARDS) phase of the infection. Specific suggestions for therapeutic interventions using reductants and chelators that may help treat COVID-19 are discussed.
Collapse
Affiliation(s)
- Barry B Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
6
|
Cytotoxic and Antiproliferative Effects of Diarylheptanoids Isolated from Curcuma comosa Rhizomes on Leukaemic Cells. Molecules 2020; 25:molecules25225476. [PMID: 33238470 PMCID: PMC7700379 DOI: 10.3390/molecules25225476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Curcuma comosa belongs to the Zingiberaceae family. In this study, two natural compounds were isolated from C. comosa, and their structures were determined using nuclear magnetic resonance. The isolated compounds were identified as 7-(3,4-dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (1) and trans-1,7-diphenyl-5-hydroxy-1-heptene (2). Compound 1 showed the strongest cytotoxicity effect against HL-60 cells, while its antioxidant and anti-inflammatory properties were stronger than those of compound 2. Compound 1 proved to be a potent antioxidant, compared to ascorbic acid. Neither compounds had any effect on red blood cell haemolysis. Furthermore, compound 1 significantly decreased Wilms' tumour 1 protein expression and cell proliferation in KG-1a cells. Compound 1 decreased the WT1 protein levels in a time- and dose- dependent manner. Compound 1 suppressed cell cycle at the S phase. In conclusion, compound 1 has a promising chemotherapeutic potential against leukaemia.
Collapse
|
7
|
Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21228764. [PMID: 33233489 PMCID: PMC7699590 DOI: 10.3390/ijms21228764] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.
Collapse
|
8
|
Protective action of Grewia asiatica (phalsa) berries against scopolamine-induced deficit in learning and memory using behavior paradigms in rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00376-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Sikkink KL, Hostager R, Kobiela ME, Fremling N, Johnston K, Zambre A, Snell-Rood EC. Tolerance of Novel Toxins through Generalized Mechanisms: Simulating Gradual Host Shifts of Butterflies. Am Nat 2020; 195:485-503. [PMID: 32097036 DOI: 10.1086/707195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments.
Collapse
|
10
|
Blázovics A, Sárdi É. Methodological repertoire development to study the effect of dietary supplementation in cancer therapy. Microchem J 2018. [DOI: 10.1016/j.microc.2017.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Dueñas-García IE, Heres-Pulido ME, Arellano-Llamas MR, De la Cruz-Núñez J, Cisneros-Carrillo V, Palacios-López CS, Acosta-Anaya L, Santos-Cruz LF, Castañeda-Partida L, Durán-Díaz A. Lycopene, resveratrol, vitamin C and FeSO 4 increase damage produced by pro-oxidant carcinogen 4-nitroquinoline-1-oxide in Drosophila melanogaster: Xenobiotic metabolism implications. Food Chem Toxicol 2017; 103:233-245. [PMID: 28202360 DOI: 10.1016/j.fct.2017.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022]
Abstract
4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 μM], resveratrol [11, 43, 172 μM], and vitamin C [5.6 mM] added or not with FeSO4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 μM], vitamin C and FeSO4 resulted in genotoxicity; the three antioxidants and FeSO4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO4, were genotoxic. Only resveratrol [172 μM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.
Collapse
Affiliation(s)
- I E Dueñas-García
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.
| | - M R Arellano-Llamas
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J De la Cruz-Núñez
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - V Cisneros-Carrillo
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - C S Palacios-López
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Acosta-Anaya
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de México (UNAM), Los Barrios N° 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
12
|
Zhao J, Wang S, Zhong W, Yang B, Sun L, Zheng Y. Oxidative stress in the trabecular meshwork (Review). Int J Mol Med 2016; 38:995-1002. [PMID: 27572245 DOI: 10.3892/ijmm.2016.2714] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/11/2016] [Indexed: 11/06/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide and elevated intraocular pressure (IOP) is the most important risk factor. High IOP usually occurs as a result of an increase in aqueous humor outflow resistance at the trabecular meshwork (TM). An abnormal TM contributes to the development of glaucoma. Oxidative stress and vascular damage are considered two major cellular factors that lead to alterations in the TM. In this review, we discuss the findings related to oxidative damage to the TM, including the sources of oxidative stress in the TM such as the mitochondria, peroxisomes, endoplasmic reticulum, membrane, cytosol and exogenous factors. We also discuss antioxidants and clinical studies related to protection against oxidative stress in the TM. Although many questions remain unanswered, it is becoming increasingly clear that oxidative stress-induced damage to the TM is related to glaucoma. This may inspire new studies to find better and more stable antioxidants, and better models with which to elucidate the mechanisms involved, and to determine whether in vitro findings translate into in vivo observations. The regulation of the oxidative/redox balance may be the ultimate target for protecting the TM from oxidative stress and preventing glaucoma.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuang Wang
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130031, P.R. China
| | - Wei Zhong
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130031, P.R. China
| | - Ben Yang
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130031, P.R. China
| | - Lixia Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
13
|
Coleman MD, Tolley HL, Desai AK. Monitoring antioxidant effects using methaemoglobin formation in diabetic erythrocytes †. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514010010011601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Deficiencies in the reducing power of diabetic erythrocytes can be studied using the sulphone metabolite, monoacetyl dapsone hydroxylamine (MADDS-NHOH) to generate methaemoglobin, which is a form of oxidative stress. The effects of three antioxidants, dyhydrolipoic acid (DHLA), lipoic acid and ascorbate were compared using this method in erythrocytes of type 1 diabetic patients. During 2-hour incubations, DHLA and lipoic acid significantly reduced MADDS-NHOH-mediated methaemoglobin formation to the same extent in diabetic and non-diabetic erythrocytes. In contrast, ascorbate markedly increased MADDS-NHOH-mediated methaemoglobin formation at all time points up to 2 hours for diabetic cells and 15—60 minutes in non-diabetic erythrocytes. Ascorbate abolished the deficiency in methaemoglobin sensitivity normally seen in diabetic erythrocytes compared with non-diabetic erythrocytes. During a 1-hour pre-incubation period, neither DHLA, lipoic acid nor ascorbate significantly altered total thiol concentrations. After a 2-hour incubation with MADDS-NHOH, thiol concentrations did not significantly change in the non-diabetic erythrocytes, but they fell significantly in the diabetic cells. Diabetic and non-diabetic erythrocytes pre-incubated with ascorbate, DHLA and lipoic acid showed no changes in thiol levels in the presence of MADDS-NHOH. In summary, ascorbate, DHLA and lipoic acid showed contrasting effects on methaemoglobin generation, although they each abolished the diabetic erythrocytic deficit in total thiol status caused by hydroxylamine-mediated methaemoglobin formation. This work provides evidence for the potential future use of antioxidant supplements in diabetic management.
Collapse
|
14
|
Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med 2015; 2:29. [PMID: 26664900 PMCID: PMC4671344 DOI: 10.3389/fcvm.2015.00029] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key feature of the atherothrombotic process involved in the etiology of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason that antioxidants represent a credible therapeutic option to prevent disease progression and thereby improve outcome, but despite positive findings from in vitro studies, clinical trials have failed to consistently show benefit. The aim of this review is to re-appraise the concept of antioxidants in the prevention and management of cardiovascular disease. In particular, the review will explore the reasons behind failed antioxidant strategies with vitamin supplements and will evaluate how flavonoids might improve cardiovascular function despite bioavailability that is not sufficiently high to directly influence antioxidant capacity. As well as reaching conclusions relating to those antioxidant strategies that might hold merit, the major myths, limitations, and pitfalls associated with this research field are explored.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; James Hutton Institute , Dundee , UK
| | - Sherine J Deakin
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| | - Garry G Duthie
- Rowett Institute of Health and Nutrition , Aberdeen , UK
| | - Derek Stewart
- James Hutton Institute , Dundee , UK ; School of Life Sciences, Heriot Watt University , Edinburgh , UK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; Cardiology Unit, Raigmore Hospital , Inverness , UK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| |
Collapse
|
15
|
Karamian R, Komaki A, Salehi I, Tahmasebi L, Komaki H, Shahidi S, Sarihi A. Vitamin C reverses lead-induced deficits in hippocampal synaptic plasticity in rats. Brain Res Bull 2015; 116:7-15. [DOI: 10.1016/j.brainresbull.2015.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 04/11/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
|
16
|
Iron induced genotoxicity: attenuation by vitamin C and its optimization. Interdiscip Toxicol 2014; 7:154-8. [PMID: 26109893 PMCID: PMC4434109 DOI: 10.2478/intox-2014-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/13/2014] [Accepted: 09/14/2014] [Indexed: 11/21/2022] Open
Abstract
Vitamin C (VC) is a well-known antioxidant and strong free radical scavenger. Its antioxidant activity is useful for protection of cellular macromolecules, particularly DNA, from oxidative damage induced by different agents. This study was undertaken to evaluate the optimum level of VC in attenuating the chromosome aberrations (CAs) and DNA damage after iron sulfate (FeSO4) acute administration in Wistar rats. The results exhibited that the increase of CAs and DNA damage induced by FeSO4, 200 mg Fe/kg, could be reduced significantly by VC pretreatment at the dose of 500 mg/kg (p<0.001), but not in the 100 mg/kg group. The findings provide evidence that VC at the dose of 500 mg/kg exerted a possible protective effect against FeSO4 induced CAs and DNA damage. The possible mechanisms of VC may be attributed to its property as a free radical scavenger or to its indirect action in reducing the level of reactive oxygen species (ROS).
Collapse
|
17
|
Pineda J, Herrera A, Antonio MT. Comparison between hepatic and renal effects in rats treated with arsenic and/or antioxidants during gestation and lactation. J Trace Elem Med Biol 2013; 27:236-41. [PMID: 23339766 DOI: 10.1016/j.jtemb.2012.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/27/2012] [Accepted: 12/21/2012] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether biochemical changes occurred in the liver and kidney of arsenic (As) exposed pups during gestation and lactation, and investigate the potential beneficial role of antioxidants against arsenic exposure damage. Pregnant wistar rats received the following treatments as drinking water: (1) distilled water; (2) arsenic (50 mg/L); (3) antioxidants: zinc (20 mg/L)+vitamin C (2 g/L)+vitamin E (500 mg/L); (4) arsenic (50 mg/L)+antioxidants. As- intoxicated pups showed significant decreases in liver cholesterol and triglyceride concentration, whereas Aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities were increased. Treatment with antioxidants returns these values to control ones. TBARS production in both organs and liver glutathione peroxidase (GPx) activity also increased whereas catalase (CAT) activity in both organs decreased in arsenic-exposed pups; the antioxidant administration only recover TBARS concentration to control values. Our findings suggest that administration of antioxidants during gestation and lactation could prevent some of the negative effects of arsenic.
Collapse
Affiliation(s)
- Javier Pineda
- Department of Physiology (Animal Physiology II), Faculty of Biology, Complutense University, Madrid 28040, Spain
| | | | | |
Collapse
|
18
|
Eshginia S, Marjani A. The effect of vitamin C on the erythrocyte antioxidant enzymes in intoxicated-lead rat offsprings. J Clin Diagn Res 2013; 7:1078-81. [PMID: 23905107 DOI: 10.7860/jcdr/2013/5310.3059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/12/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Lead exposure or lead poisoning is known to cause a large spectrum of physiological, biochemical, and behavioural disorders in animals. This study was aimed at assessing the effect of vitamin C on the erythrocyte superoxide dismutase, glutathione peroxidase and the glutathione reductase activities in intoxicated- lead rat offsprings. METHODS This study was performed on the pups from female Wistar albino rats. The rats were divided into 4 groups and the treatments were administered through drinking water. Group1 (control group) consumed distilled water. Group 2 (lead group) consumed a solution of lead acetate (300mg/L). Group3 (lead + vitamin C) consumed a solution of lead (300mg/L) which was supplemented with vitamin C (2g/L). Group4 (vitamin group) consumed a solution of vitamin C (2g/L). The enzyme activities were determined in all the 4 groups. RESULTS The administration of lead showed a decrease in the enzyme activities. The superoxide dismutase activity was increased after the administration of lead in combination with vitamin C. The lead treated rats showed significantly lower body weights at birth and at weaning. The vitamin C treatment showed a significant increase in the body weight. The haemoglobin levels were significantly decreased in the lead-treated rats. The addition of vitamin C to the lead treatment and vitamin C alone could elevate the haemoglobin levels significantly. CONCLUSION The results of this study showed that lead alterates the erythrocyte antioxidant enzyme activities. There was an increase in the superoxide dismutase activity following the treatment with vitamin C. This study suggests that the treatment with vitamin C during lactation has a therapeutic effect in the treatment of lead intoxication. The administration of vitamin C prevents haemoglobin reduction in the erythrocytes.
Collapse
Affiliation(s)
- Samira Eshginia
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences , Iran
| | | |
Collapse
|
19
|
Szeto YT, To TL, Pak SC, Kalle W. A study of DNA protective effect of orange juice supplementation. Appl Physiol Nutr Metab 2013; 38:533-6. [DOI: 10.1139/apnm-2012-0344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The potential acute genoprotective effect of orange juice supplementation was investigated. Six healthy subjects (aged 33 to 60 years; 3 women and 3 men) were asked to drink 400 mL of commercial orange juice, which contained 100 mg vitamin C and 40.8 g sugar. Venous blood (2 mL) was taken before and 2 h after ingestion (test trial). A week later, the subjects were asked to repeat the trial by drinking 400 mL water with 100 mg vitamin C and 40.8 g glucose (control trial). Lymphocytes isolated from blood samples underwent comet assay on the day of collection. Pre- and postingestion DNA damage scores were measured in both the test and control trials. Results showed that there was a significant decrease in DNA damage induced by hydrogen peroxide after 2 h of supplementation with orange juice, and no change in baseline DNA damage. There was no significant decrease in the DNA damage in lymphocytes in the control trial.
Collapse
Affiliation(s)
- Yim Tong Szeto
- Department of Applied Science, Hong Kong Institute of Vocational Education (Shatin), 21 Yuen Wo Road, Shatin, New Territories, Hong Kong; Macao Society for the Study of Women's Health, Macao
| | - Tai Lun To
- Department of Pathology, Ruttonjee Hospital, 266 Queen's Road East, Wan Chai, Hong Kong
| | - Sok Cheon Pak
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Wouter Kalle
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
20
|
Pastoriza-Gallego MJ, Losada-Barreiro S, Bravo-Díaz C. Effects of acidity and emulsifier concentration on the distribution of vitamin C in a model food emulsion. J PHYS ORG CHEM 2012. [DOI: 10.1002/poc.2949] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Carlos Bravo-Díaz
- Facultad de Química, Dpto. Química Física; Universidad de Vigo; 36200 Vigo Spain
| |
Collapse
|
21
|
Da Costa LA, García-Bailo B, Badawi A, El-Sohemy A. Genetic determinants of dietary antioxidant status. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:179-200. [PMID: 22656378 DOI: 10.1016/b978-0-12-398397-8.00008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress refers to a physiological state in which an imbalance between pro-oxidants and antioxidants results in oxidative damage. Oxidative stress has been associated with the development of numerous chronic diseases such as type 2 diabetes, cardiovascular disease (CVD), osteoporosis, and cancer. Endogenous production of free radicals occurs during normal physiological processes, such as aerobic metabolism, oxidation of biological molecules, and enzymatic activity. Environmental factors such as ultraviolet radiation, air pollution, and cigarette smoking can also contribute to the accumulation of free radicals in the body. Excess free radicals can damage tissues and promote the upregulation of disease-related pathways such as inflammation. Modulating oxidative stress by dietary supplementation with antioxidant micronutrients such as vitamins C and E or phytochemicals such as different carotenoids may help prevent or delay the development of certain diseases. However, research on antioxidant supplementation and disease has yielded inconsistent findings, which may be due, in part, to interindividual genetic variation. Polymorphisms in genes coding for endogenous antioxidant enzymes or proteins responsible for the absorption, transport, distribution, or metabolism of dietary antioxidants have been shown to affect antioxidant status and response to supplementation. These genetic variants may also interact with environmental factors, such as diet, to determine an individual's overall antioxidant status. This chapter examines current knowledge of the relationship between genetic variation and dietary antioxidant status.
Collapse
Affiliation(s)
- Laura A Da Costa
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Hildebrandt TM. Modulation of sulfide oxidation and toxicity in rat mitochondria by dehydroascorbic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1206-13. [PMID: 21699882 DOI: 10.1016/j.bbabio.2011.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/30/2011] [Accepted: 06/07/2011] [Indexed: 01/16/2023]
Abstract
Hydrogen sulfide is enzymatically produced in mammalian tissues and functions as a gaseous transmitter. However, H(2)S is also highly toxic as it inhibits mitochondrial respiration at the level of cytochrome c oxidase, which additionally is involved in sulfide oxidation. The accumulation of toxic sulfide levels contributes to the pathology of some diseases. This paper demonstrates that sulfide toxicity can be modified, and dehydroascorbic acid functions as an effector in this process. It significantly reduces the inhibitory effect of sulfide on cytochrome c oxidase, resulting in higher rates of respiration and sulfide oxidation in rat mitochondria. After the addition of dehydroascorbic acid mitochondria maintained more than 50% of the oxygen consumption and ATP production rates with different substrates in the presence of high concentrations of sulfide that would normally lead to complete inhibition. Dehydroascorbic acid significantly increased the sulfide concentration necessary to cause half maximal inhibition of mitochondrial respiration and thus completely prevented inhibition at low, physiological sulfide concentrations. In addition, sulfide oxidation was stimulated and led to ATP production even at high concentrations. The decrease in sulfide toxicity was more pronounced when analyzing supermolecular functional units of the respiratory chain than in isolated cytochrome c oxidase activity. Furthermore, the protective effect of dehydroascorbic acid at high sulfide concentrations was completely abolished by quantitative solubilization of mitochondrial membrane proteins with dodeclymaltoside. These results suggest that binding of cytochrome c oxidase to other proteins probably within respiratory chain supercomplexes is involved in the modulation of sulfide oxidation and toxicity by dehydroascorbic acid.
Collapse
|
23
|
|
24
|
Haghighi B, Bozorgzadeh S. Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles. Microchem J 2010. [DOI: 10.1016/j.microc.2009.11.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Abstract
Intracellular vitamin C acts to protect cells against oxidative stress by intercepting reactive oxygen species (ROS) and minimising DNA damage. However, rapid increases in intracellular vitamin C may induce ROS with subsequent DNA damage priming DNA repair processes. Herein, we examine the potential of vitamin C and the derivative ascorbate-2-phosphate (2-AP) to induce a nucleotide excision repair (NER) response to DNA damage in a model of peripheral blood mononuclear cells. Exposure of cells to elevated levels of vitamin C induced ROS activity, resulting in increased levels of deoxycytidine glyoxal (gdC) and 8-oxo-2'-deoxyguanosine (8-oxodG) adducts in DNA; a stress response was also induced by 2-AP, but was delayed in comparison to vitamin C. Evidence of gdC repair was also apparent. Measurement of cyclobutane thymine-thymine dimers (T < >T) in DNA and culture supernatant were included as a positive marker for NER activity; this was evidenced by a reduction in DNA and increases in culture supernatant levels of T < >T for vitamin C-treated cells. Genomics analysis fully supported these findings confirming that 2-AP, in particular, induced genes associated with stress response, cell cycle arrest, DNA repair and apoptosis, and additionally provided evidence for the involvement of vitamin C in the mobilisation of intracellular catalytic Fe.
Collapse
|
26
|
Yedjou C, Thuisseu L, Tchounwou C, Gomes M, Howard C, Tchounwou P. Ascorbic Acid Potentiation of Arsenic Trioxide Anticancer Activity Against Acute Promyelocytic Leukemia. ARCHIVES OF DRUG INFORMATION 2009; 2:59-65. [PMID: 20098508 PMCID: PMC2805867 DOI: 10.1111/j.1753-5174.2009.00022.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION: Acute promyelocytic leukemia (APL) is a malignant disorder of the white blood cells. Arsenic trioxide (As(2)O(3)) has been used as a therapeutic agent to treat APL and other tumors. Studies suggest that ascorbic acid (AA) supplementation may improve the clinical outcome of As(2)O(3) for APL patients. Our aim was to use human leukemia (HL-60) APL-cells as an in vitro test model to evaluate the effect of physiologic doses of AA on As(2)O(3)-induced toxicity and apoptosis of HL-60 cells. METHODS: HL-60 cells were treated either with a pharmacologic dose of As(2)O(3) alone and with several physiologic doses of AA. Cell survival was determined by trypan blue exclusion test. The extent of oxidative cell/tissue damage was determined by measuring lipid hydroperoxide concentration by spectrophotometry. Cell apoptosis was measured by flow cytometry using Annexin-V and propidium iodide (PI) staining. RESULTS: AA treatment potentiates the cytotoxicity of As(2)O(3) in HL-60 cells. Viability decreased from (58 +/- 3)% in cells with As(2)O(3) alone to (47 +/- 2)% in cells treated with 100 microM AA and 6 microg/mL As(2)O(3) with P < 0.05. There was a significant (P < 0.05) increase in lipid hydroperoxide concentrations in HL-60 cells co-treated with AA compared to As(2)O(3) alone. Flow cytometry assessment (Annexin V FITC/PI) suggested that AA co-treatment induces more apoptosis of HL-60 cells than did As(2)O(3) alone, but this was not statistically significant. Taken together, our experiment indicates that As(2)O(3) induced in vitro cell death and apoptosis of HL-60 cells. Administration of physiologic doses of AA enhanced As(2)O(3)-induced cytotoxicity, oxidative cell/tissue damage, and apoptosis of HL-60 cells through externalization of phosphatidylserine. CONCLUSIONS: These suggest that AA may enhance the cytotoxicity of As(2)O(3), suggesting a possible future role of AA/As(2)O(3) combination therapy in patients with APL.
Collapse
Affiliation(s)
- Clement Yedjou
- Cellomics and Toxicogenomics Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University Jackson, MS, USA
| | | | | | | | | | | |
Collapse
|
27
|
Sharma KV, Sisodia R. Evaluation of the free radical scavenging activity and radioprotective efficacy of Grewia asiatica fruit. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2009; 29:429-443. [PMID: 19690357 DOI: 10.1088/0952-4746/29/3/007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The radioprotective effect of Grewia asiatica fruit (GAE) which contains anthocyanin-type cyanidin 3-glucoside, vitamins C and A, minerals, carotenes and dietary fibre was studied. For the study Swiss albino mice were divided into five groups: (1) control (vehicle treated); (2) GAE treated (700 mg kg(-1) day(-1) for 15 days); (3) irradiated (5 Gy); (4) GAE+irradiated and (5) irradiated+GAE treated. The irradiation of animals resulted in a significant elevation of lipid peroxidation in terms of thiobarbituric acid reactive substances (TBARS) content and depletion in glutathione (GSH) and protein levels at all intervals studied, namely 1-30 days, in comparison to the control group. Treatment of mice with GAE before and after irradiation caused a significant depletion in TBARS content followed by a significant elevation in GSH and protein concentration in the intestine and testis of mice at all post-irradiation autopsy intervals in comparison to irradiated mice. Significant protection of DNA and RNA in testis was also noticed. GAE was found to have strong radical scavenging activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH(*)) and O(2)(-) assays and also showed in vitro radioprotective activity in protein carbonyl assay in a dose-dependent manner. The above results prove the radioprotective efficacy of GAE.
Collapse
Affiliation(s)
- Krishna V Sharma
- Radiation Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | | |
Collapse
|
28
|
Sisodia R, Singh S. Biochemical, behavioural and quantitative alterations in cerebellum of Swiss albino mice following irradiation and its modulation by Grewia asiatica. Int J Radiat Biol 2009; 85:787-95. [PMID: 19657863 DOI: 10.1080/09553000903009555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To study the biochemical, quantitative histopathological and behavioural changes after 5 Gy whole body irradiation and its modulation by supplementation of Grewia asiatica extract (GAE) on male Swiss albino mice up to 30 days. MATERIALS AND METHODS For this, healthy mice from an inbred colony were divided into five groups: (i) Control (vehicle treated); (ii) GAE treated--mice in this group were orally supplemented with GAE (700 mg/kg body weight (bw)/day) once daily for 15 consecutive days; (iii) Irradiated mice; (iv) GAE + irradiated--mice in this group were orally supplemented GAE for 15 days (once a day) prior to irradiation; and (v) Irradiated + GAE--mice in this group were administered GAE orally for 15 days (once a day) consequently after irradiation. RESULTS Marked radiation induced changes in the amount of cerebellar lipid peroxidation (LPO), Glutathione (GSH), protein, nucleic acids and histopathological changes could be significantly (p < 0.001) ameliorated specially at later intervals by supplementation of GAE prior to and post irradiation. Radiation induced deficits in learning and memory were also significantly (p < 0.001) ameliorated. CONCLUSION The result of present study showed that prior/post-supplementation of G. asiatica has radioprotective potential as well as neuroprotective properties against the radiation.
Collapse
Affiliation(s)
- Rashmi Sisodia
- Radiation Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, India.
| | | |
Collapse
|
29
|
Duarte TL, Lunec J. ReviewPart of the Series: From Dietary Antioxidants to Regulators in Cellular Signalling and Gene ExpressionReview: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res 2009; 39:671-86. [PMID: 16036346 DOI: 10.1080/10715760500104025] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin C (or ascorbic acid) is regarded as the most important water-soluble antioxidant in human plasma and mammalian cells which have mechanisms to recycle and accumulate it against a concentration gradient, suggesting that the vitamin might also have important intracellular functions. In this review we summarize evidence from human trials that have attempted an association between vitamin C supplementation and an effect on biomarkers of oxidative DNA damage. Most studies reviewed herein showed either a vitamin C-mediated reduction in oxidative DNA damage or a null effect, whereas only a few studies showed an increase in specific base lesions. We also address the possible beneficial effects of vitamin C supplementation for the prevention of cancer and cardiovascular disease. Finally, we discuss the contribution of cell culture studies to our understanding of the mode of action of vitamin C and we review recent evidence that vitamin C is able to modulate gene expression and cellular function, with a particular interest in cell differentiation.
Collapse
Affiliation(s)
- Tiago L Duarte
- Pharmaceutical Sciences Research Division, Kings College London University
| | | |
Collapse
|
30
|
Khoo SHG, Al-Rubeai M. Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metab Eng 2009; 11:199-211. [DOI: 10.1016/j.ymben.2009.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 12/10/2008] [Accepted: 02/10/2009] [Indexed: 11/28/2022]
|
31
|
Hildebrandt TM, Grieshaber MK. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 2008; 275:3352-61. [DOI: 10.1111/j.1742-4658.2008.06482.x] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Antonio-García MT, Massó-Gonzalez EL. Toxic effects of perinatal lead exposure on the brain of rats: involvement of oxidative stress and the beneficial role of antioxidants. Food Chem Toxicol 2008; 46:2089-95. [PMID: 18417264 DOI: 10.1016/j.fct.2008.01.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 11/19/2007] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
The aim of this study was to determine whether changes in the activities of antioxidant enzymes occur in the brain of lead-exposed rats (300mgPb/L in drinking water) and to investigate the potential benefit of the administration of some natural antioxidants (Zn 20mg/L+vitamins A 50.000U/L, C 2g/L, E 500mg/L and B6 500mg/L) during pregnancy and lactation. Lead exposure caused a significant increase in brain TBARS (23%) vs. control, whereas co-administration of antioxidants+lead was effective in reducing TBARS levels. The catalase activity in brain samples of the lead group was enhanced 99% vs. control, but no changes were found in the remainder of the groups. No statistically significant effect of lead and/or antioxidants in brain SOD activity was noted. Acid phosphatase activity was enhanced in both lead groups but no changes were found in alkaline phosphatase activity. Finally, a statistically significant decrease (-35%) of acetylcholinesterase activity was noted in the lead+antioxidants group. This study provides evidence of the beneficial role of antioxidants in early status of brain development in rats against lead exposure.
Collapse
Affiliation(s)
- Maria Teresa Antonio-García
- Department of Animal Physiology II, Biology College, Complutense University of Madrid, C/José Antonio Novais, n(o) 2, Ciudad Universitaria, 28040 Madrid, Spain.
| | | |
Collapse
|
33
|
Pastoriza-Gallego MJ, Fernández-Alonso A, Losada-Barreiro S, Sánchez-Paz V, Bravo-Díaz C. Kinetics and mechanism of the reaction between 4-hexadecylbenzenediazonium ions and vitamin C in emulsions: further evidence of the formation of diazo ether intermediates in the course of the reaction. J PHYS ORG CHEM 2008. [DOI: 10.1002/poc.1289] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
|
35
|
Grant MM, Mistry N, Lunec J, Griffiths HR. Dose-dependent modulation of the T cell proteome by ascorbic acid. Br J Nutr 2007; 97:19-26. [PMID: 17217556 DOI: 10.1017/s0007114507197592] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 microM) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.
Collapse
|
36
|
Chapple ILC, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 2007; 43:160-232. [PMID: 17214840 DOI: 10.1111/j.1600-0757.2006.00178.x] [Citation(s) in RCA: 549] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Iain L C Chapple
- Unit of Periodontology, The University of Birmingham School of Dentistry, Birmingham, UK
| | | |
Collapse
|
37
|
Bok Jung H, Zheng Y. Enhanced recovery of arsenite sorbed onto synthetic oxides by L-ascorbic acid addition to phosphate solution: calibrating a sequential leaching method for the speciation analysis of arsenic in natural samples. WATER RESEARCH 2006; 40:2168-80. [PMID: 16725174 DOI: 10.1016/j.watres.2006.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/02/2005] [Accepted: 03/15/2006] [Indexed: 05/09/2023]
Abstract
Stripping voltammetry capable of detecting 0.3microg/L arsenate and arsenite was applied for speciation analysis of arsenic sorbed onto synthetic ferrihydrite, goethite at As/Fe ratio of approximately 1.5mg/g with or without birnessite after sequential extraction using 1M phosphate (24 and 16 h) and 1.2M HCl (1h). Precautions to avoid oxygen were undertaken by extracting under anaerobic conditions and by adding 0.1M l-ascorbic acid to 1M NaH(2)PO(4) (pH 5). Addition of l-ascorbic acid did not reduce As(V) to As(III). The recovery rate for As(III) using l-ascorbic acid for extraction (pH 5) but not for adsorption was 81% and 74% of total sorbed As, and was 99% and 97% of extracted As for ferrihydrite and goethite, respectively. Birnessite oxidized most As(III) during the adsorption procedure. l-ascorbic acid used both in adsorption and extraction procedures improved the recovery of As(III) to 79-94% for ferrihydrite-birnessite and 57-94% for goethite-birnessite systems with Fe/Mn ratios of 7, 70, 140 and 280g/g.
Collapse
Affiliation(s)
- Hun Bok Jung
- School of Earth and Environmental Sciences, Queens College and Graduate School and University Center of the City University of New York, Flushing, New York 11367, USA
| | | |
Collapse
|
38
|
Olsson ME, Andersson CS, Oredsson S, Berglund RH, Gustavsson KE. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1248-55. [PMID: 16478244 DOI: 10.1021/jf0524776] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The effects of extracts from five cultivars of strawberries on the proliferation of colon cancer cells HT29 and breast cancer cells MCF-7 were investigated, and possible correlations with the levels of several antioxidants were analyzed. In addition, the effects of organic cultivation compared to conventional cultivation on the content of antioxidants in the strawberries and strawberry extracts on the cancer cell proliferation were investigated. The ratio of ascorbate to dehydroascorbate was significantly higher in the organically cultivated strawberries. The strawberry extracts decreased the proliferation of both HT29 cells and MCF-7 cells in a dose-dependent way. The inhibitory effect for the highest concentration of the extracts was in the range of 41-63% (average 53%) inhibition compared to controls for the HT29 cells and 26-56% (average 43%) for MCF-7 cells. The extracts from organically grown strawberries had a higher antiproliferative activity for both cell types at the highest concentration than the conventionally grown, and this might indicate a higher content of secondary metabolites with anticarcinogenic properties in the organically grown strawberries. For HT29 cells, there was a negative correlation at the highest extract concentration between the content of ascorbate or vitamin C and cancer cell proliferation, whereas for MCF-7 cells, a high ratio of ascorbate to dehydroascorbate correlated with a higher inhibition of cell proliferation at the second highest concentration. The significance of the effect of ascorbate on cancer cell proliferation might lie in a synergistic action with other compounds.
Collapse
Affiliation(s)
- Marie E Olsson
- Department of Crop Science, Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53 Alnarp, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Costas-Costas U, Bravo-Diaz C, Gonzalez-Romero E. Kinetics and mechanism of the reaction between ascorbic acid derivatives and an arenediazonium salt: cationic micellar effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:10983-91. [PMID: 16285762 DOI: 10.1021/la051564p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effects of tetradecyltrimethylammonium bromide, TTAB, and hexadecyl-trimethylammonium bromide, CTAB, micellar systems on the reaction of 3-methylbenzenediazonium, 3MBD, tetrafluoroborate with ascorbic acid, VC, and with the hydrophobic derivatives 6-O-dodecyl-L-ascorbic acid, VC12, and 6-O-palmitoyl-L-ascorbic acid, VC16, were investigated at different pH values by employing a combination of UV-vis spectroscopy and high-performance liquid chromatography, HPLC, techniques. Previous studies in the absence of surfactant showed that the reaction between 3MBD and VC derivatives takes place through a rate-limiting decomposition of a transient diazo ether, DE, formed from reaction between 3MBD and the monoanion form of ascorbic acid, VC-, in a rapid preequilibrium step. In the presence of a fixed [CTAB], the kinetics of the reaction of 3MBD with VC follows a saturation kinetics similar to that observed in its absence, but for the reaction with VC12 and VC16, only the first linear portions of the saturation profiles could be obtained because k(obs) values become too large. HPLC analyses of the reaction mixtures show that no unexpected products are detected, suggesting that cationic micelles do not modify the mechanism of the reaction. Analyses of the kinetic data allowed estimations of the rate constant for the decomposition of the diazo ether and of the equilibrium constant for the formation of DE in the presence of CTAB micelles, which is approximately 6 times higher than in its absence; this suggests that CTAB micelles promote diazo ether formation. At constant [antioxidant], the variations of k(obs) for the reactions with VC, VC12, or VC16 follow bell-shaped curves, with rate enhancements of up to 2-3-fold for VC with respect to the value in the absence of surfactant. The rate maximum for the reaction of 3MBD with VC is reached at [CTAB] = 0.02 M suggesting a CTAB-induced rate increase, i.e., micellar catalysis; meanwhile the rate maximum for the reaction with VC12 and VC16, which may behave as amphiphilic compounds, is reached at [CTAB] approximately 1 x 10(-4) M, a concentration about 10 times lower than its critical micelle concentration, cmc, in pure water, but only approximately 3 times lower than the cmc of VC16, suggesting the formation of reactive CTAB-VC12 and CTAB-VC16 premicellar aggregates. Kinetic and HPLC results are consistent with the predictions of the pseudophase model and are interpreted in terms of 3MBD ions sampling in the aqueous bulk phase and the micellar effects on the different equilibrium involved. The results should contribute to a better understanding of the role of compartmentalized systems on the efficiency with which hydrophilic and hydrophobic reductants such as ascorbic acid derivatives interact with potentially mutagenic and carcinogenic ArN2+ ions.
Collapse
Affiliation(s)
- U Costas-Costas
- Universidad de Vigo, Facultad de Ciencias, Departamento Quimica Fisica, 36200 Vigo, Pontevedra, Spain
| | | | | |
Collapse
|
40
|
Miccichè F, van Haveren J, Oostveen E, Laven J, Ming W, Okan Oyman Z, van der Linde R. Oxidation of methyl linoleate in micellar solutions induced by the combination of iron(II)/ascorbic acid and iron(II)/H2O2. Arch Biochem Biophys 2005; 443:45-52. [PMID: 16207483 DOI: 10.1016/j.abb.2005.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 11/21/2022]
Abstract
The oxidation of methyl linoleate (ML) was studied in the presence of Fe(II) alone and its combination with either ascorbic acid (AsAH(2)) or hydrogen peroxide (H(2)O(2)) at different molar ratios. Reactions were carried out in micellar solutions of TTAB (tetradecyltrimethylammonium bromide) and SDS (sodium dodecyl sulfate), respectively, and were monitored by UV spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Fe(II) alone was able to catalyze the oxidation of ML in micellar solutions of TTAB, but not in those of SDS. The combination of H(2)O(2) with Fe(II) showed catalytic effect only in the TTAB medium, leading to different ML and Fe(II) oxidation kinetics compared to the Fe(II)-only catalyzed reactions. The AsAH(2)/Fe(II) combination demonstrated to be a good catalyst for the oxidation of ML in SDS micellar solutions, but not in TTAB micellar solutions; the activity of the catalyst was dependent on the AsAH(2)/Fe(II) molar ratio. The obtained results confirm that, for the ML oxidation to be initiated, the presence of a Fe(II)/Fe(III) couple is essential, which is related to the pH of micellar solutions. The catalytic properties of the AsAH(2)/Fe(II) combination were explained by taking into account the anti-oxidant and pro-oxidant properties of AsAH(2), as well as the possible formation of an iron/ascorbate complex as the initiator of the ML oxidation.
Collapse
Affiliation(s)
- Fabrizio Miccichè
- Laboratory of Coatings Technology, Materials and Interface Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Grant MM, Barber VS, Griffiths HR. The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics 2005; 5:534-40. [PMID: 15627972 DOI: 10.1002/pmic.200300924] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxidative stress and free radical production have been implicated in Alzheimer's disease, where low levels of the antioxidant vitamin C (ascorbate) have been shown to be associated with the disease. In this study, neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide in the presence of ascorbate in order to elucidate the mechanism(s) of protection against oxidative stress afforded by ascorbate. Protein oxidation, glutathione levels, cell viability and the effects on the proteome and its oxidized counterpart were monitored. SH-SY5Y cells treated with ascorbate prior to co-incubation with peroxide showed increased viability in comparison to cells treated with peroxide alone. This dual treatment also caused an increase in protein carbonyl content and a decrease in glutathione levels within the cells. Proteins, extracted from SH-SY5Y cells that were treated with either ascorbate or peroxide alone or with ascorbate prior to peroxide, were separated by two-dimensional gel electrophoresis and analyzed for oxidation. Co-incubation for 24 hours decreased the number of oxidised proteins (e.g. acyl CoA oxidase 3) and induced brain derived neurotrophic factor (BDNF) expression. Enhanced expression of BDNF may contribute to the protective effects of ascorbate against oxidative stress in neuronal cells.
Collapse
Affiliation(s)
- Melissa M Grant
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | | | | |
Collapse
|
42
|
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 2005; 266:37-56. [PMID: 15646026 DOI: 10.1023/b:mcbi.0000049134.69131.89] [Citation(s) in RCA: 1041] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of cancer in humans and animals is a multistep process. The complex series of cellular and molecular changes participating in cancer development are mediated by a diversity of endogenous and exogenous stimuli. One type of endogenous damage is that arising from intermediates of oxygen (dioxygen) reduction - oxygen-free radicals (OFR), which attacks not only the bases but also the deoxyribosyl backbone of DNA. Thanks to improvements in analytical techniques, a major achievement in the understanding of carcinogenesis in the past two decades has been the identification and quantification of various adducts of OFR with DNA. OFR are also known to attack other cellular components such as lipids, leaving behind reactive species that in turn can couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations. The most extensively studied lesion is the formation of 8-OH-dG. This lesion is important because it is relatively easily formed and is mutagenic and therefore is a potential biomarker of carcinogenesis. Mutations that may arise from formation of 8-OH-dG involve GC --> TA transversions. In view of these findings, OFR are considered as an important class of carcinogens. The effect of OFR is balanced by the antioxidant action of non-enzymatic antioxidants as well as antioxidant enzymes. Non-enzymatic antioxidants involve vitamin C, vitamin E, carotenoids (CAR), selenium and others. However, under certain conditions, some antioxidants can also exhibit a pro-oxidant mechanism of action. For example, beta-carotene at high concentration and with increased partial pressure of dioxygen is known to behave as a pro-oxidant. Some concerns have also been raised over the potentially deleterious transition metal ion-mediated (iron, copper) pro-oxidant effect of vitamin C. Clinical studies mapping the effect of preventive antioxidants have shown surprisingly little or no effect on cancer incidence. The epidemiological trials together with in vitro experiments suggest that the optimal approach is to reduce endogenous and exogenous sources of oxidative stress, rather than increase intake of anti-oxidants. In this review, we highlight some major achievements in the study of DNA damage caused by OFR and the role in carcinogenesis played by oxidatively damaged DNA. The protective effect of antioxidants against free radicals is also discussed.
Collapse
Affiliation(s)
- Marian Valko
- Faculty of Chemical and Food Technology, Slovak Technical University, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
43
|
Nath M, Jairath R, Eng G, Song X, Kumar A. New organotin(IV) ascorbates: synthesis, spectral characterization, biological and potentiometric studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 61:77-86. [PMID: 15556424 DOI: 10.1016/j.saa.2004.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/22/2004] [Indexed: 05/24/2023]
Abstract
New organotin(IV) ascorbates of the general formulae R(3)Sn(HAsc) (where R = Me , n-Pr, n-Bu and Ph) and R(2)Sn(Asc) (where R = n-Bu and Ph) have been synthesized by the reaction of R(n)SnCl(4-n) (where n = 2 or 3) with monosodium-l-ascorbate. The bonding and coordination behaviour in these complexes are discussed on the basis of UV-Vis, IR, Far-IR, (1)H and (13)C NMR, and (119)Sn Mossbauer spectroscopic studies. L-Ascorbic acid acts as a monoanionic bidentate ligand in R(3)Sn(HAsc) coordinating through O(1) and O(3). The Mossbauer studies together with IR and NMR studies suggest that for these polymeric derivatives, the polyhedron is trigonal bipyramidal around tin with three organic groups in the equatorial positions. In R(2)Sn(Asc), L-ascorbic acid acts as dianionic tetradentate ligand and a polymeric structure with octahedral geometry around tin with trans organic groups has been tentatively proposed. The complexes have been assayed for their anti-inflammatory and cardiovascular activity. Ph(2)Sn(Asc) has been found to show the highest activity among the studied complexes. It is suggested on the basis of potentiometric studies of Me(2)Sn(IV) and Me(3)Sn(IV) systems with L-ascorbic acid that under physiological conditions (pH = 7.0) Me(2)Sn(HAsc)(OH) (approximately 60%), Me(2)Sn(OH)(2) (approximately 40%) and Me(3)Sn(HAsc) (approximately 60%), Me(3)Sn(OH) (approximately 40%), respectively, are existing, which may be responsible for their biological activities.
Collapse
Affiliation(s)
- Mala Nath
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667, India.
| | | | | | | | | |
Collapse
|
44
|
Olsson ME, Gustavsson KE, Andersson S, Nilsson A, Duan RD. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:7264-7271. [PMID: 15563205 DOI: 10.1021/jf030479p] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of 10 different extracts of fruits and berries on cell proliferation of colon cancer cells HT29 and breast cancer cells MCF-7 were investigated. The fruits and berries used were rosehips, blueberries, black currant, black chokeberries, apple, sea buckthorn, plum, lingonberries, cherries, and raspberries. The extracts decreased the proliferation of both colon cancer cells HT29 and breast cancer cells MCF-7, and the effect was concentration dependent. The inhibition effect for the highest concentration of the extracts varied 2-3-fold among the species, and it was in the ranges of 46-74% (average = 62%) for the HT29 cells and 24-68% (average = 52%) for the MCF-7 cells. There were great differences in the content of the analyzed antioxidants in the extracts. The level of the vitamin C content varied almost 100-fold, and the content of total carotenoids varied almost 150-fold among the species. Also in the composition and content of flavonols, hydroxycinnamic acids, anthocyanins, and phenolics were found great differences among the 10 species. The inhibition of cancer cell proliferation seen in these experiments correlated with levels of some carotenoids and with vitamin C levels, present at levels that can be found in human tissues. The same inhibition of cell proliferation could not be found by ascorbate standard alone. This correlation might indicate a synergistic effect of vitamin C and other substances. In MCF-7 cells, the anthocyanins may contribute to the inhibition of proliferation.
Collapse
Affiliation(s)
- Marie E Olsson
- Department of Crop Science, Swedish University of Agricultural Sciences, P.O. Box 44, SE-230 53 Alnarp, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Choi SW, Benzie IFF, Collins AR, Hannigan BM, Strain JJ. Vitamins C and E: acute interactive effects on biomarkers of antioxidant defence and oxidative stress. Mutat Res 2004; 551:109-17. [PMID: 15225585 DOI: 10.1016/j.mrfmmm.2004.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 04/30/2023]
Abstract
Oxidative stress is implicated in the aetiology of many diseases; however, most supplementation trials with antioxidant micronutrients have not shown expected beneficial effects. This randomized, double-blinded, placebo-controlled study evaluated acute effects (at 90, 180min and 24h [fasting] post-ingestion) of single doses of Vitamins C (500mg) and E (400IU), alone and in combination, on biomarkers of plasma antioxidant status, lipid peroxidation and lymphocyte DNA damage in 12 healthy, consenting volunteers. Plasma ascorbic acid increased significantly (P < 0.01) within 2h of ingestion of Vitamin C, and alpha-tocopherol was significantly (P < 0.01) higher at 24h post-ingestion Vitamin E. The pattern of response was not significantly different whether Vitamin C (or Vitamin E) was taken alone or in combination, indicating no augmentation of response to one by co-ingestion of the other vitamin. No significant changes were seen in plasma FRAP in the group overall (although increases (P < 0.05) were seen at 90 and 180min post-ingestion in women after Vitamin C ingestion) or in MDA across treatments, and no evidence of increased DNA damage, or of DNA protection, was seen at any time point after Vitamin C and/or E ingestion. In conclusion, the data from this first controlled study of acute effects of single doses of Vitamin C and/or E show no evidence of either a protective or deleterious effect on DNA damage, resistance of DNA to oxidant challenge, or lipid peroxidation. No evidence of a synergistic or cooperative interaction between Vitamins C and E was seen, but further study is needed to determine possible interactive effects in a staggered supplementation cycle, and study of subjects under increased oxidative stress or with marginal antioxidant status would be useful. It would be of interest also to study the effects of these vitamins ingested with, or in, whole food, to determine if they are directly protective at doses above the minimum required to prevent deficiency, if combinations with other food components are needed for effective protection, or if Vitamins C and E are largely surrogate biomarkers of a 'healthy' diet, but are not the key protective agents.
Collapse
Affiliation(s)
- S W Choi
- Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | | | | | |
Collapse
|
46
|
Robichová S, Slamenová D, Chalupa I, Sebová L. DNA lesions and cytogenetic changes induced by N-nitrosomorpholine in HepG2, V79 and VH10 cells: the protective effects of Vitamins A, C and E. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 560:91-9. [PMID: 15157648 DOI: 10.1016/j.mrgentox.2004.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 01/26/2004] [Accepted: 01/31/2004] [Indexed: 04/10/2023]
Abstract
INTRODUCTION N-Nitrosomorpholine (NMOR), present in the workplace of tyre chemical factories, is a known hepatocarcinogen. This compound belongs to the group of N-nitrosamines, which are indirect-acting and require metabolic activation. However, the mechanism of its carcinogenic effect is not completely clear. AIMS The objective of this study was (i) to compare the DNA-damaging and clastogenic effects of NMOR in three cell lines (HepG2, V79 and VH10) with different levels of metabolizing enzymes and (ii) to determine the protective effects of Vitamins A, C and E against deleterious effects of NMOR. METHODS The exponentially growing cells were pre-treated with Vitamins A, C and E and treated with NMOR. Genotoxic effects of NMOR were evaluated by single-cell gel electrophoresis (SCGE, comet assay), while the chromosomal aberration assay was used for the study of clastogenic effects. KEY RESULTS NMOR-induced a significant dose-dependent increase of DNA damage as analyzed by SCGE, but the extent of DNA migration in the electric field was unequal in the different cell lines. Although the results obtained by SCGE confirmed the genotoxicity of NMOR in all cell lines studied, the number of chromosomal aberrations was significantly increased only in HepG2 and V79 cells, while no changes were observed in VH10 cells. In HepG2 cells pre-treated with Vitamins A, C and E we found a significant decrease of the percentage of tail DNA induced by NMOR. The reduction of the clastogenic effects of NMOR was observed only after pretreatment with Vitamins A and E; Vitamin C did not alter the frequency of NMOR-induced chromosomal aberrations under the experimental conditions of this study. CONCLUSIONS The fat-soluble Vitamins A and E, which are dietary constituents, reduce the harmful effects of N-nitrosomorpholine in human hepatoma cells HepG2, which are endowed with the maximal capacity for metabolic activation of several drugs.
Collapse
Affiliation(s)
- Sona Robichová
- Laboratory of Mutagenesis and Carcinogenesis, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
47
|
Andican G, Gelişgen R, Civelek S, Seven A, Seymen O, Altuğ T, Yiğit G, Burçak G. Oxidative damage to nuclear DNA in hyperthyroid rat liver: inability of vitamin C to prevent the damage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:413-420. [PMID: 14718177 DOI: 10.1080/15287390490273479] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of hyperthyroidism on oxidative DNA damage in liver tissue and modification by vitamin C supplementation were investigated in rats. Animals were rendered hyperthyroid by administration of L-thyroxine (0.4 mg/100 g food) for 25 d. In the plasma samples, T(3), T(4), and thyroid-stimulating hormone (TSH) were measured by radioimmunoassay and ascorbate spectrophotometrically. Oxidative damage to hepatic nuclear DNA was determined by measuring deoxy-guanosine (dG) and 8-oxodG by high-performance liquid chromatography with diode array detector electrochemical detection (HPLC-DAD-ECD). In hyperthyroidism, 8-oxodG/(10(5) dG) levels were significantly higher and plasma vitamin C levels lower than in control rats. The results of this experimental study show that oxidative damage to hepatic nuclear DNA increases in the hyperthyroid state and that vitamin C was not effective in preventing this damage.
Collapse
Affiliation(s)
- Gülnur Andican
- Department of Biochemistry, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fisher AEO, Naughton DP. Iron supplements: the quick fix with long-term consequences. Nutr J 2004; 3:2. [PMID: 14728718 PMCID: PMC340385 DOI: 10.1186/1475-2891-3-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 01/16/2004] [Indexed: 11/11/2022] Open
Abstract
Co-supplementation of ferrous salts with vitamin C exacerbates oxidative stress in the gastrointestinal tract leading to ulceration in healthy individuals, exacerbation of chronic gastrointestinal inflammatory diseases and can lead to cancer. Reactive oxygen and nitrogen species (RONS) have been ascribed an important role in oxidative stress. Redox-active metal ions such as Fe(II) and Cu(I) further activate RONS and thus perpetuate their damaging effects. Ascorbic acid can exert a pro-oxidant effect by its interaction with metal ions via a number of established RONS generating systems which are reviewed here. Further studies are required to examine the detrimental effects of nutraceuticals especially in chronic inflammatory conditions which co-present with anaemia.
Collapse
Affiliation(s)
- Anna EO Fisher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, U.K
| | - Declan P Naughton
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton, U.K
| |
Collapse
|
49
|
Aldred S, Griffiths HR. Oxidation of protein in human low-density lipoprotein exposed to peroxyl radicals facilitates uptake by monocytes; protection by antioxidants in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2004; 15:111-117. [PMID: 21782687 DOI: 10.1016/j.etap.2003.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Accepted: 11/19/2003] [Indexed: 05/31/2023]
Abstract
Generation of neoepitopes on apolipoprotein B within oxidised low-density lipoprotein (LDL) is important in the unregulated uptake of LDL by monocytic scavenger receptors (CD36, SR-AI, LOX-1). Freshly isolated LDL was oxidised by peroxyl radicals generated from the thermal decomposition of an aqueous azo-compound. We describe that formation of carbonyl groups on the protein component is early as protein oxidation was seen after 90min. This is associated with an increased propensity for LDL uptake by U937 monocytes. Three classes of antioxidants (quercetin, dehydroepiandrosterone (DHEA) and ascorbic acid) have been examined for their capacity to inhibit AAPH-induced protein oxidation, (protein carbonyls, Δ electrophoretic mobility and LDL uptake by U937 monocytes). CD36 expression was assessed by flow cytometry and was seen to be unaltered by oxidised LDL uptake. All three classes were effective antioxidants, quercetin (P<0.01), ascorbic acid (P<0.01), DHEA (P<0.05). As LDL protein is the control point for LDL metabolism, the degree of oxidation and protection by antioxidants is likely to be of great importance for (patho)-physiological uptake of LDL by monocytes.
Collapse
Affiliation(s)
- Sarah Aldred
- Molecular Biosciences, Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | |
Collapse
|
50
|
Abstract
The purpose of the present study was to evaluate the effect of a dietary vitamin C supplement on cadmium absorption and distribution in an animal model. An aqueous solution of cadmium chloride (labelled with cadmium-109) was given by gavage to male Wistar rats for 28 days at a daily dose corresponding to 10 mg Cd/kg diet (1.0-1.2 mg Cd/kg b.w.). The animals assigned to groups 1 and 2 (45 animals per group) received a standard laboratory diet LSM, and tap water or tap water supplemented with ascorbic acid (1.5 mg/l), respectively. The radioactivity of the samples was measured using a liquid scintillation counter (tissue samples) and a gas-flow automatic counter (ashed carcasses). The fractional uptake of cadmium-109 in the carcass and organs was evaluated within 32 days after treatment by dividing the cadmium-109 activity in the whole sample by the total activity of cadmium-109 administered for 28 days. Results were compared using AUC (areas under the concentration time curve) values. The vitamin C supplement decreased the carcass cadmium burden and the cadmium content in the liver, kidneys, testicles and muscles; the highest decreases were found in the testicles, the lowest ones in the muscles. In addition, the rats supplemented with vitamin C revealed an improved body weight gain during the experimental period.
Collapse
Affiliation(s)
- Andrzej Grosicki
- Laboratory of Radiological Protection and Isotopic Research, National Veterinary Research Institute, ul. Partyzantow 57, 24-100 Pulawy, Poland.
| |
Collapse
|