1
|
Wesseling-Perry K. Vanadium toxicity and chronic kidney disease: implications in a green new world. Pediatr Nephrol 2025:10.1007/s00467-024-06603-2. [PMID: 39779506 DOI: 10.1007/s00467-024-06603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
|
2
|
Zhong Q, Pan X, Chen Y, Lian Q, Gao J, Xu Y, Wang J, Shi Z, Cheng H. Prosthetic Metals: Release, Metabolism and Toxicity. Int J Nanomedicine 2024; 19:5245-5267. [PMID: 38855732 PMCID: PMC11162637 DOI: 10.2147/ijn.s459255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The development of metallic joint prostheses has been ongoing for more than a century alongside advancements in hip and knee arthroplasty. Among the materials utilized, the Cobalt-Chromium-Molybdenum (Co-Cr-Mo) and Titanium-Aluminum-Vanadium (Ti-Al-V) alloys are predominant in joint prosthesis construction, predominantly due to their commendable biocompatibility, mechanical strength, and corrosion resistance. Nonetheless, over time, the physical wear, electrochemical corrosion, and inflammation induced by these alloys that occur post-implantation can cause the release of various metallic components. The released metals can then flow and metabolize in vivo, subsequently causing potential local or systemic harm. This review first details joint prosthesis development and acknowledges the release of prosthetic metals. Second, we outline the metallic concentration, biodistribution, and elimination pathways of the released prosthetic metals. Lastly, we discuss the possible organ, cellular, critical biomolecules, and significant signaling pathway toxicities and adverse effects that arise from exposure to these metals.
Collapse
Affiliation(s)
- Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xin Pan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qiang Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Gao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yixin Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhanjun Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
3
|
Prokopciuk N, Taminskiene V, Vaideliene L, Juskiene I, Svist V, Valiulyte I, Valskys V, Valskiene R, Valiulis A, Aukstikalnis T, Vaidelys L, Butikis M, Norkuniene J, Tarasiuk N, Valiulis A. The incidence of upper respiratory infections in children is related to the concentration of vanadium in indoor dust aggregates. Front Public Health 2024; 12:1339755. [PMID: 38577275 PMCID: PMC10993999 DOI: 10.3389/fpubh.2024.1339755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Background It has been reported that the disease-initiated and disease-mediated effects of aerosol pollutants can be related to concentration, site of deposition, duration of exposure, as well as the specific chemical composition of pollutants. Objectives To investigate the microelemental composition of dust aggregates in primary schools of Vilnius and determine trace elements related to acute upper respiratory infections among 6-to 11-year-old children. Methods Microelemental analysis of aerosol pollution was performed using dust samples collected in the classrooms of 11 primary schools in Vilnius from 2016 to 2020. Sites included areas of its natural accumulation behind the radiator heaters and from the surface of high cupboards. The concentrations of heavy metals (Pb, W, Sb, Sn, Zr, Zn, Cu, Ni, Mn, Cr, V, and As) in dust samples were analyzed using a SPECTRO XEPOS spectrometer. The annual incidence rates of respiratory diseases in children of each school were calculated based on data from medical records. Results The mean annual incidence of physician-diagnosed acute upper respiratory infections (J00-J06 according to ICD-10A) among younger school-age children was between 25.1 and 71.3% per school. A significant correlation was found between vanadium concentration and the number of episodes of acute upper respiratory infections during each study year from 2016 to 2020. The lowest was r = 0.67 (p = 0.024), and the highest was r = 0.82 (p = 0.002). The concentration of vanadium in the samples of dust aggregates varied from 12.7 to 52.1 parts per million (ppm). No significant correlations between the other trace elements and the incidence of upper respiratory infections were found, which could be caused by a small number of study schools and relatively low concentrations of other heavy metals found in the samples of indoor dust aggregates. Conclusion A significant and replicable correlation was found between the concentration of vanadium in the samples of natural dust aggregates collected in primary schools and the incidence of acute upper respiratory infections in children. Monitoring the concentration of heavy metals in the indoor environment can be an important instrument for the prevention and control of respiratory morbidity in children.
Collapse
Affiliation(s)
- Nina Prokopciuk
- Clinic of Children’s Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Vaida Taminskiene
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Laimute Vaideliene
- Clinic of Children’s Diseases, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Izabele Juskiene
- Clinic of Children’s Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
| | - Vitalija Svist
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Indre Valiulyte
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Vaidotas Valskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Roberta Valskiene
- Laboratory of Ecotoxicology, Nature Research Centre, Vilnius, Lithuania
| | - Algirdas Valiulis
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tomas Aukstikalnis
- Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Lukas Vaidelys
- Clinic of Children’s Diseases, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Butikis
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Jolita Norkuniene
- Department of Mathematical Statistics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Nikolaj Tarasiuk
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
| | - Arunas Valiulis
- Clinic of Children’s Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Human Ecology Multidisciplinary Research Group, Department of Public Health, Faculty of Medicine, Institute of Health Sciences, Vilnius University, Vilnius, Lithuania
- Clinic of Asthma, Allergy and Chronic Respiratory Diseases, Vilnius, Lithuania
| |
Collapse
|
4
|
Dobson NL, Kleeberger SR, Burkholder AB, Walters DM, Gladwell W, Gerrish K, Vellers HL. Vanadium Pentoxide Exposure Causes Strain-Dependent Changes in Mitochondrial DNA Heteroplasmy, Copy Number, and Lesions, but Not Nuclear DNA Lesions. Int J Mol Sci 2023; 24:14507. [PMID: 37833956 PMCID: PMC10572248 DOI: 10.3390/ijms241914507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Interstitial lung diseases (ILDs) are lethal lung diseases characterized by pulmonary inflammation and progressive lung interstitial scarring. We previously developed a mouse model of ILD using vanadium pentoxide (V2O5) and identified several gene candidates on chromosome 4 associated with pulmonary fibrosis. While these data indicated a significant genetic contribution to ILD susceptibility, they did not include any potential associations and interactions with the mitochondrial genome that might influence disease risk. To conduct this pilot work, we selected the two divergent strains we previously categorized as V2O5-resistant C57BL6J (B6) and -responsive DBA/2J (D2) and compared their mitochondrial genome characteristics, including DNA variants, heteroplasmy, lesions, and copy numbers at 14- and 112-days post-exposure. While we did not find changes in the mitochondrial genome at 14 days post-exposure, at 112 days, we found that the responsive D2 strain exhibited significantly fewer mtDNA copies and more lesions than control animals. Alongside these findings, mtDNA heteroplasmy frequency decreased. These data suggest that mice previously shown to exhibit increased susceptibility to pulmonary fibrosis and inflammation sustain damage to the mitochondrial genome that is evident at 112 days post-V2O5 exposure.
Collapse
Affiliation(s)
- Nick L. Dobson
- Health and Exercise Department, University of Oklahoma, Norman, OK 73019, USA;
| | - Steven R. Kleeberger
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.R.K.); (A.B.B.); (W.G.); (K.G.)
| | - Adam B. Burkholder
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.R.K.); (A.B.B.); (W.G.); (K.G.)
| | - Dianne M. Walters
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Wesley Gladwell
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.R.K.); (A.B.B.); (W.G.); (K.G.)
| | - Kevin Gerrish
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; (S.R.K.); (A.B.B.); (W.G.); (K.G.)
| | - Heather L. Vellers
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Effects of Sodium Pyruvate on Vanadyl Sulphate-Induced Reactive Species Generation and Mitochondrial Destabilisation in CHO-K1 Cells. Antioxidants (Basel) 2022; 11:antiox11050909. [PMID: 35624773 PMCID: PMC9137755 DOI: 10.3390/antiox11050909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vanadium is ranked as one of the world’s critical metals considered important for economic growth with wide use in the steel industry. However, its production, applications, and emissions related to the combustion of vanadium-containing fuels are known to cause harm to the environment and human health. Pyruvate, i.e., a glucose metabolite, has been postulated as a compound with multiple cytoprotective properties, including antioxidant and anti-inflammatory effects. The aim of the present study was to examine the antioxidant potential of sodium pyruvate (4.5 mM) in vanadyl sulphate (VOSO4)-exposed CHO-K1 cells. Dichloro-dihydro-fluorescein diacetate and dihydrorhodamine 123 staining were performed to measure total and mitochondrial generation of reactive oxygen species (ROS), respectively. Furthermore, mitochondrial damage was investigated using MitoTell orange and JC-10 staining assays. We demonstrated that VOSO4 alone induced a significant rise in ROS starting from 1 h to 3 h after the treatment. Additionally, after 24 and 48 h of exposure, VOSO4 elicited both extensive hyperpolarisation and depolarisation of the mitochondrial membrane potential (MMP). The two-way ANOVA analysis of the results showed that, through antagonistic interaction, pyruvate prevented VOSO4-induced total ROS generation, which could be observed at the 3 h time point. In addition, through the independent action and antagonistic interaction with VOSO4, pyruvate provided a pronounced protective effect against VOSO4-mediated mitochondrial toxicity at 24-h exposure, i.e., prevention of VOSO4-induced hyperpolarisation and depolarisation of MMP. In conclusion, we found that pyruvate exerted cytoprotective effects against vanadium-induced toxicity at least in part by decreasing ROS generation and preserving mitochondrial functions
Collapse
|
6
|
Rojas-Lemus M, López-Valdez N, Bizarro-Nevares P, González-Villalva A, Ustarroz-Cano M, Zepeda-Rodríguez A, Pasos-Nájera F, García-Peláez I, Rivera-Fernández N, Fortoul TI. Toxic Effects of Inhaled Vanadium Attached to Particulate Matter: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168457. [PMID: 34444206 PMCID: PMC8391836 DOI: 10.3390/ijerph18168457] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Environmental pollution is a worldwide problem recognized by the World Health Organization as a major health risk factor that affects low-, middle- and high-income countries. Suspended particulate matter is among the most dangerous pollutants, since it contains toxicologically relevant agents, such as metals, including vanadium. Vanadium is a transition metal that is emitted into the atmosphere especially by the burning of fossil fuels to which dwellers are exposed. The objective of this literature review is to describe the toxic effects of vanadium and its compounds when they enter the body by inhalation, based especially on the results of a murine experimental model that elucidates the systemic effects that vanadium has on living organisms. To achieve this goal, we reviewed 85 articles on the relevance of vanadium as a component of particulate matter and its toxic effects. Throughout several years of research with the murine experimental model, we have shown that this element generates adverse effects in all the systems evaluated, because it causes immunotoxicity, hematotoxicity, neurotoxicity, nephrotoxicity and reprotoxicity, among other noxious effects. The results with this experimental model add evidence of the effects generated by environmental pollutants and increase the body of evidence that can lead us to make more intelligent environmental decisions for the welfare of all living beings.
Collapse
Affiliation(s)
- Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Nelly López-Valdez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Patricia Bizarro-Nevares
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Adriana González-Villalva
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Martha Ustarroz-Cano
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Armando Zepeda-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Francisco Pasos-Nájera
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Isabel García-Peláez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Teresa I. Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico; (M.R.-L.); (N.L.-V.); (P.B.-N.); (A.G.-V.); (M.U.-C.); (A.Z.-R.); (F.P.-N.); (I.G.-P.)
- Correspondence:
| |
Collapse
|
7
|
Mateos-Nava RA, Rodríguez-Mercado JJ, Álvarez-Barrera L, García-Rodríguez MDC, Altamirano-Lozano MA. Vanadium oxides modify the expression levels of the p21, p53, and Cdc25C proteins in human lymphocytes treated in vitro. ENVIRONMENTAL TOXICOLOGY 2021; 36:1536-1543. [PMID: 33913241 DOI: 10.1002/tox.23150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In vitro assays have demonstrated that vanadium compounds interact with biological molecules similar to protein kinases and phosphatases and have also shown that vanadium oxides decrease the proliferation of cells, including human lymphocytes; however, the mechanism, the phase in which the cell cycle is delayed and the proteins involved in this process are unknown. Therefore, we evaluated the effects of vanadium oxides (V2 O3 , V2 O4 and V2 O5 ) in human lymphocyte cultures (concentrations of 2, 4, 8, or 16 μg/ml) on cellular proliferation and the levels of the p53, p21 and Cdc25C proteins. After 24 h of treatment with the different concentrations of vanadium oxides, the cell cycle phases were determined by evaluating the DNA content using flow cytometry, and the levels of the p21, p53 and Cdc25C proteins were assessed by Western blot analysis. The results revealed that the DNA content remained unchanged in every phase of the cell cycle; however, only at high concentrations did protein levels increase. Although, according to previous reports, vanadium oxides induce a delay in proliferation, DNA analysis did not show this occurring in a specific cell cycle phase. Nevertheless, the increases in p53 protein levels may cause this delay.
Collapse
Affiliation(s)
- Rodrigo Aníbal Mateos-Nava
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Juan José Rodríguez-Mercado
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Lucila Álvarez-Barrera
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | | | - Mario Agustín Altamirano-Lozano
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
- Laboratorio 2, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| |
Collapse
|
8
|
Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. INORGANICS 2021. [DOI: 10.3390/inorganics9020017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In aqueous media, VIV- and VV-ions and compounds undergo chemical changes such as hydrolysis, ligand exchange and redox reactions that depend on pH and concentration of the vanadium species, and on the nature of the several components present. In particular, the behaviour of vanadium compounds in biological fluids depends on their environment and on concentration of the many potential ligands present. However, when reporting the biological action of a particular complex, often the possibility of chemical changes occurring has been neglected, and the modifications of the complex added are not taken into account. In this work, we highlight that as soon as most vanadium(IV) and vanadium(V) compounds are dissolved in a biological media, they undergo several types of chemical transformations, and these changes are particularly extensive at the low concentrations normally used in biological experiments. We also emphasize that in case of a biochemical interaction or effect, to determine binding constants or the active species and/or propose mechanisms of action, it is essential to evaluate its speciation in the media where it is acting. This is because the vanadium complex no longer exists in its initial form.
Collapse
|
9
|
Effects of vanadium (sodium metavanadate) and aflatoxin-B1 on cytochrome p450 activities, DNA damage and DNA methylation in human liver cell lines. Toxicol In Vitro 2020; 70:105036. [PMID: 33164849 DOI: 10.1016/j.tiv.2020.105036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023]
Abstract
Vanadium is considered as "possibly carcinogenic to humans" (V2O5, IARC Group 2B), yet uncertainties persist related to the toxicity mechanisms of the multiple forms of vanadium. Exposure to vanadium often co-occurs with other metals or with organic compounds that can be transformed by cytochrome p450 (CYP) enzymes into DNA-reactive carcinogens. Therefore, effects of a soluble form of vanadium (sodium metavanadate, NaVO3) and aflatoxin-B1 (AFB1) were tested separately and together, for induction of CYP activities, DNA damage (γH2AX and DNA alkaline unwinding assays), and DNA methylation changes (global genome and DNA repeats) in HepaRG or HepG2 liver cell lines. NaVO3 (≥ 2.3 μM) reduced CYP1A1 and CYP3A4 activities and induced DNA damage, butcaused important cell proliferation only in HepaRG cells. As a binary mixture, NaVO3 did not modify the effects of AFB1. There was no reproducible effect of NaVO3 (<21 μM) on DNA methylation in AluYb8, satellite-α, satellite-2, and by the luminometric methylation assay, but DNA methylation flow-cytometry signals in HepG2 cells (25-50 μM) increased at the G1 and G2 cell cycle phases. In conclusion, cell lines responded differently to NaVO3 supporting the importance of investigating more than one cell line, and a carcinogenic role of NaVO3 might reside at low concentrations by stimulating the proliferation of tumorigenic cells.
Collapse
|
10
|
Usende IL, Olopade JO, Emikpe BO, Nafady AAHM. Biochemical and ultrastructural changes in kidney and liver of African Giant Rats (Cricetomysgambianus, Waterhouse, 1840) exposed to intraperitoneal sodium metavanadate (vanadium) intoxication. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103414. [PMID: 32442722 DOI: 10.1016/j.etap.2020.103414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/28/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
We studied the hepatic and renal impact of sodium metavanadate (SMV) exposure in African giant rats (AGR). Twelve male AGR were used and divided into two groups. The control group received sterile water while the SMV-exposed group received 3 mg/kg SMV intraperitoneally for 14 days. SMV exposed AGR groups showed significantly decreased activities of serum AST, ALT, ALP and creatinine concentration but increased blood urea nitrogen (BUN), albumin and globulin concentrations. Kidney ultrastructure examination revealed atrophy of the glomerular tuft, loss of podocytes, distortions of the endothelium and glomerular basement membrane. The liver sinusoids fenestration phenotypes were abnormal. Hepatocytes exhibited hypertrophy with uneven, crenated and dentate nuclei. SMV exposure induced activation of monocytes, as well as Kupffer and fibrous cells. Alterations in glomerular podocytes and cell-cell and cell matrix contact and inflammatory liver fibrosis are key events in progressive glomerular failure and hepatic damage due to SMV intoxication.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Nigeria; Department of Veterinary Anatomy, University of Ibadan, Nigeria
| | | | | | | |
Collapse
|
11
|
Ścibior A, Szychowski KA, Zwolak I, Dachowska K, Gmiński J. In vitro effect of vanadyl sulfate on cultured primary astrocytes: cell viability and oxidative stress markers. J Appl Toxicol 2020; 40:737-747. [PMID: 31975418 DOI: 10.1002/jat.3939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
Exposure to vanadium has been associated with deleterious effects on the central nervous system in animals and humans. Although vanadium-derived pro-oxidant species were reported to be involved in vanadium-mediated neurotoxicity, the ability of this metal to induce oxidative stress markers in glial cells remains to be elucidated. In this study, we investigated the cytotoxicity and the generation of reactive oxygen species (ROS) and nitric oxide (NO) by mouse primary astrocytes after treatment with vanadyl sulfate (VOSO4 ) at concentrations of 20, 50, 100, 200, and 500 μM. The resazurin assay revealed that treatment with VOSO4 for 24 and 48 h at concentrations of 50 and 100 μM, respectively, or higher substantially induced astrocytic cytotoxicity. Intracellular ROS increased after 6-h exposure to the lowest concentration tested (20 μM VOSO4 ) and tended to intensify after 24- and 48-h treatments reaching significant values for 20 and 500 μM VOSO4 . In turn, NO production in the examined cells was elevated after exposure to all concentrations at the 6-, 24-, and 48-h incubation periods. Our study demonstrated the ability of VOSO4 to induce H2 O2 generation in cell-free DMEM/F12 medium. The H2 O2 levels were in the micromolar range (up to 5 μM) and were detected mostly during the first few minutes after VOSO4 addition, suggesting that the generated H2 O2 could not induce toxic effects on the cells. Taken together, these results show VOSO4 induced cytotoxicity in primary astrocyte cells, which may have resulted from vanadyl-stimulated intracellular ROS and NO generation in these cells.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Tyczyn, Poland
| | - Iwona Zwolak
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Klaudia Dachowska
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Tyczyn, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Tyczyn, Poland
| |
Collapse
|
12
|
Moreira LDPD, Gomes JVP, Mattar JB, Chaves LO, Martino HSD. Potential of trace elements as supplements for the metabolic control of Type 2 Diabetes Mellitus: A systematic review. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
13
|
Wang YX, Chen HG, Li XD, Chen YJ, Liu C, Feng W, Zeng Q, Wang P, Pan A, Lu WQ. Concentrations of vanadium in urine and seminal plasma in relation to semen quality parameters, spermatozoa DNA damage and serum hormone levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:441-448. [PMID: 30025243 DOI: 10.1016/j.scitotenv.2018.07.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Widespread human exposure to vanadium has been well documented. Vanadium exposure was reported to induce male reproductive toxicity in toxicological studies, yet human epidemiologic studies are lacking. Here we determined the associations between environmental exposure to vanadium and semen quality, spermatozoa DNA damage and serum reproductive hormones. Concentrations of vanadium in seminal plasma and repeated urine samples were determined among 764 men recruited from a reproductive medicine centre. Associations of vanadium concentrations with semen quality parameters (n = 764), DNA integrity measures (n = 404) and serum reproductive hormones (n = 381) were assessed by logistic or linear regression models with adjustment for potential confounders. Significant positive dose-response relationships were observed between vanadium concentrations in seminal plasma and tail length and serum estradiol, as well as odds ratios for a below-reference-value sperm concentration; whereas inverse relationships between seminal plasma vanadium with total testosterone (T) and free T (all p values for trends <0.05) were observed. These relationships were maintained after adjusting for seminal plasma concentrations of other elements (i.e., arsenic, cadmium, copper, selenium, or tin). No significant associations was revealed between urinary vanadium concentrations and semen quality, spermatozoa DNA integrity and reproductive hormones. Our findings suggested that elevated vanadium exposure may be adversely associated with male reproductive health, and that seminal plasma vanadium may be a more direct exposure biomarker for the male reproductive system than urinary vanadium.
Collapse
Affiliation(s)
- Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xian-Dong Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Feng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Wang
- Department of Biostatistics, School of Public Health and Tropical Medicine, Southern Medical University, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
14
|
Abstract
Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.
Collapse
Affiliation(s)
| | - Veena Mani
- National Dairy Research Institute, Karnal, Haryana, India
| | | |
Collapse
|
15
|
Usende IL, Alimba CG, Emikpe BO, Bakare AA, Olopade JO. Intraperitoneal sodium metavanadate exposure induced severe clinicopathological alterations, hepato-renal toxicity and cytogenotoxicity in African giant rats (Cricetomys gambianus, Waterhouse, 1840). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26383-26393. [PMID: 29981023 DOI: 10.1007/s11356-018-2588-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Pollution of environment due to increased exploitation of minerals has been on the rise, and vanadium, a metal in the first transition series essential for mammalian existence, is a major component of air pollution. This study investigated the clinico-pathological, hepato-renal toxicity, and cytogenotoxicity of intraperitoneal exposure of African giant rats (AGRs), a proposed model for ecotoxicological research to sodium metavanadate. A total of 27 adult male African giant rats weighing 975 ± 54.10 g were distributed into two major groups: sodium metavanadate (SMV) treated and control. They were observed daily for clinical signs of toxicity. Four rats from each group were randomly collected and sacrificed after 3, 7, and 14 days of SMV treatment. Liver, kidney, and bone marrow were analyzed for histopathology and micronucleated normochromated and polychromated erythrocytes (MNNCE and MNPCE), respectively. Clinical signs in treated AGR include sluggish and weak movements, un-groomed fur, and labored breathing. Histology of the kidney revealed severe glomerular atrophy, tubular ectasia, and vacuolar degeneration of tubular epithelium, while liver histology showed sinusoidal congestion and severe hepatocellular necrosis after 14 days SMV exposure. Also, MNNCE and MNPCE significantly increased with a decrease in PCE/NCE ratio in SMV-treated AGR, suggestive of alternations in bone marrow cell proliferation. Hence, SMV treatment to AGR resulted to severe clinicopathologic alterations, kidney, and liver dysfunction and cytogenotoxicity evident by somatic mutation induction which could be severe with prolonged exposure. This suggests African giant rat as an ecotoxicological model to measure major health risks to animals and human populations in highly polluted environment.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Abuja, Nigeria
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | | | - Benjamin O Emikpe
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
16
|
Gallardo-Vera F, Tapia-Rodriguez M, Diaz D, Fortoul van der Goes T, Montaño LF, Rendón-Huerta EP. Vanadium pentoxide increased PTEN and decreased SHP1 expression in NK-92MI cells, affecting PI3K-AKT-mTOR and Ras-MAPK pathways. J Immunotoxicol 2018; 15:1-11. [PMID: 29228829 DOI: 10.1080/1547691x.2017.1404662] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vanadium is an air pollutant that imparts immunosuppressive effects on NK cell immune responses, in part, by dysregulating interleukin (IL)-2/IL-2R-mediated JAK signaling pathways and inducing apoptosis. The aim of the present study was to evaluate effects of vanadium pentoxide (V2O5) on other IL-2 receptor-mediated signaling pathways, i.e. PI3K-AKT-mTOR and Ras-MAPK. Here, IL-2-independent NK-92MI cells were exposed to different V2O5 doses for 24 h periods. Expression of PI3K, Akt, mTOR, ERK1/2, MEK1, PTEN, SHP1, BAD and phosphorylated forms, as well as caspases-3, -8, -9, BAX and BAK in/on the cells were then determined by flow cytometry. The results show that V2O5 was cytotoxic to NK cells in a dose-related manner. Exposure increased BAD and pBAD expression and decreased that of BAK and BAX, but cell death was not related to caspase activation. At 400 µM V2O5, expression of PI3K-p85 regulatory subunit increased 20% and pPI3K 50%, while that of the non-pPI3K 110α catalytic subunit decreased by 20%. At 200 μM, V2O5 showed significant decrease in non-pAkt expression (p < 0.05); the decrease in pAkt expression was significant at 100 μM. Non-pmTOR expression displayed a significant downward trend beginning at 100 μM. Expressions of pMEK-1/2 and pERK-1/2 increased substantially at 200 μM V2O5. No differences were found with non-phosphorylated ERK-1/2. PTEN expression increased significantly at 100 μM V2O5 exposure whereas pPTEN decreased by 18% at 25 μM V2O5 concentrations, but remained unchanged thereafter. Lastly, V2O5 at all doses decreased SHP1 expression and increased expression of its phosphorylated form. These results indicated a toxic effect of V2O5 on NK cells that was due in part to dysregulation of signaling pathways mediated by IL-2 via increased PTEN and decreased SHP1 expression. These results can help to explain some of the known deleterious effects of this particular form of vanadium on innate immune responses.
Collapse
Affiliation(s)
- Francisco Gallardo-Vera
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Miguel Tapia-Rodriguez
- b Unidad de Microscopia , Instituto de Investigaciones Biomédicas, UNAM , Mexico City , México
| | - Daniel Diaz
- c Facultad de Ciencias , UNAM , Mexico City , México
| | - Teresa Fortoul van der Goes
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Luis F Montaño
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| | - Erika P Rendón-Huerta
- a Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM , Mexico City , México
| |
Collapse
|
17
|
Fatola OI, Olaolorun FA, Olopade FE, Olopade JO. Trends in vanadium neurotoxicity. Brain Res Bull 2018; 145:75-80. [PMID: 29577939 DOI: 10.1016/j.brainresbull.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Vanadium, atomic number 23, is a transition metal widely distributed in nature. It is a major contaminant of fossil fuels and is widely used in industry as catalysts, in welding, and making steel alloys. Over the years, vanadium compounds have been generating interests due to their use as therapeutic agents in the control of diabetes, tuberculosis, and some neoplasms. However, the toxicity of vanadium compounds is well documented in literature with occupational exposure of workers in vanadium allied industries, environmental pollution from combustion of fossil fuels and industrial exhausts receiving concerns as major sources of toxicity and a likely predisposing factor in the aetiopathogenesis of neurodegenerative diseases. A lot has been done to understand the neurotoxic effects of vanadium, its mechanisms of action and possible antidotes. Sequel to our review of the subject in 2011, this present review is to detail the recent insights gained in vanadium neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
18
|
Fallahi P, Foddis R, Elia G, Ragusa F, Patrizio A, Guglielmi G, Frenzilli G, Benvenga S, Cristaudo A, Antonelli A, Ferrari SM. Induction of Th1 chemokine secretion in dermal fibroblasts by vanadium pentoxide. Mol Med Rep 2018. [PMID: 29532885 DOI: 10.3892/mmr.2018.8712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vanadium is a soft, silvery‑grey metal with a number of different oxidation states. The most common commercial form of vanadium is vanadium pentoxide (V2O5). All vanadium compounds are considered toxic. An increase in skin rashes has been observed in certain vanadium workers, including the development of atopic dermatitis. However, to the best of our knowledge, no prior in vivo or in vitro studies have evaluated the effect of vanadium exposure in human dermal fibroblasts. The present study evaluated the effect of V2O5 on proliferation and chemokine secretion in dermal fibroblasts. The results revealed that V2O5 had no significant effect on the viability or proliferation of fibroblasts, however it was able to induce the secretion of T‑helper (Th)1 chemokines from dermal fibroblasts, synergistically increasing the effect of important Th1 cytokines, including interferon‑γ and tumor necrosis factor‑α. Through these processes, V2O5 may lead to the induction and perpetuation of an inflammatory reaction in dermal tissue. The induction and perpetuation of inflammation in the dermis and the variety of involved candidate genes may be at the base of V2O5‑induced effects following occupational and environmental exposures. Further studies are necessary to evaluate dermal integrity and manifestations in subjects who are occupationally exposed, or living in polluted areas.
Collapse
Affiliation(s)
- P Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - R Foddis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, I‑56126 Pisa, Italy
| | - G Elia
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - F Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - A Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - G Guglielmi
- U.O. Medicina Preventiva del Lavoro, Azienda Ospedaliero‑Universitaria Pisana, I‑56124 Pisa, Italy
| | - G Frenzilli
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - S Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, I‑98125 Messina, Italy
| | - A Cristaudo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, I‑56126 Pisa, Italy
| | - A Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| | - S M Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, I‑56126 Pisa, Italy
| |
Collapse
|
19
|
Copat C, Grasso A, Fiore M, Cristaldi A, Zuccarello P, Signorelli SS, Conti GO, Ferrante M. Trace elements in seafood from the Mediterranean sea: An exposure risk assessment. Food Chem Toxicol 2018; 115:13-19. [PMID: 29510219 DOI: 10.1016/j.fct.2018.03.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Fish and shellfish belonging to five different species among pelagic, benthonic and molluscs, were collected from the Gulf of Catania in 2017 to evaluate arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), manganese (Mn), nickel (Ni), selenium (Se) vanadium (V) and zinc (Zn). Risk of developing chronic systemic effects derived from seafood consumption was evaluated with the Target Hazard Quotient (THQ) and compared with the results obtained from the same area and the species, collected in 2012. Hg, Cd and Pb concentrations were found below the limits set by European Community for human consumption in all the analysed species. The total risk is reduced from 1.1 to 0.49, and this result is strongly associated with the lower bioaccumulations levels found for Hg, Mn, Se and V. Others metals such as As, Pb, Ni and Zn bioaccumulation levels remain approximately the same, conversely, it is revealed a slight increase of Cd and Cr. Overall, the present study show a positive picture of the studied area, the Gulf of Catania, highlighting not only a decreased metal availability of the study area, but, above all, a decreased risk to develop chronic systemic effects derived from consumption of local seafood.
Collapse
Affiliation(s)
- Chiara Copat
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy.
| | - Alfina Grasso
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Antonio Cristaldi
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Pietro Zuccarello
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Salvatore Santo Signorelli
- Departments of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgery Sciences and Advanced Technologies, G. F. Ingrassia, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| |
Collapse
|
20
|
Usende IL, Emikpe BO, Olopade JO. Heavy metal pollutants in selected organs of African giant rats from three agro-ecological zones of Nigeria: evidence for their role as an environmental specimen bank. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22570-22578. [PMID: 28808954 DOI: 10.1007/s11356-017-9904-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
An assessment of the concentration of heavy metals in the liver, brain, kidney, bone, and lungs of African giant rats (AGRs) from three agro-ecological zones of Nigeria having different industrial activities was carried out using atomic absorption spectrophotometer. Twenty adult AGRs from cities in mangrove/freshwater swamp, rainforest, and woodland/tall grass savanna agro-ecological zones of Nigeria were used for this study. AGRs were euthanized, carefully dissected, and the brains, liver, lungs, bone, and kidneys were harvested, digested, and analyzed for concentrations of vanadium (V), lead (Pb), cadmium (Cd), zinc (Zn), selenium (Se), copper (Cu), and iron (Fe). All data generated were evaluated for statistical significance using one-way ANOVA with Tukey's multiple post-test comparison. Results showed the major environmental heavy metal pollutants of the mangrove/freshwater swamp to be vanadium and selenium while those of woodland/tall grass savanna agro-ecological zones were lead, selenium, and zinc. The vanadium concentration was more than twofold higher in the observed tissues of AGR from the mangrove/freshwater swamp, and this may be related to increased exploitation of minerals and the activities of militants in pipeline vandalization in this zone. Interestingly, the highest concentration of this metal was seen in the lungs suggestive of a respiratory route of exposure. Among the potential adverse effects derived from exposure to metals, developmental toxicity is a serious risk. This type of investigation can assist in knowing the level of animal and human exposure to environmental pollutants both in highly industrialized and non-industrialized areas and is more ideal in environmental monitoring. This study therefore suggests AGR as model for ecotoxicological research and environmental specimen banks (ESBs) in this part of Africa.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Abuja, Nigeria
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Benjamin O Emikpe
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
21
|
Panchal SK, Wanyonyi S, Brown L. Selenium, Vanadium, and Chromium as Micronutrients to Improve Metabolic Syndrome. Curr Hypertens Rep 2017; 19:10. [PMID: 28197835 DOI: 10.1007/s11906-017-0701-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trace metals play an important role in the proper functioning of carbohydrate and lipid metabolism. Some of the trace metals are thus essential for maintaining homeostasis, while deficiency of these trace metals can cause disorders with metabolic and physiological imbalances. This article concentrates on three trace metals (selenium, vanadium, and chromium) that may play crucial roles in controlling blood glucose concentrations possibly through their insulin-mimetic effects. For these trace metals, the level of evidence available for their health effects as supplements is weak. Thus, their potential is not fully exploited for the target of metabolic syndrome, a constellation that increases the risk for cardiovascular disease and type 2 diabetes. Given that the prevalence of metabolic syndrome is increasing throughout the world, a simpler option of interventions with food supplemented with well-studied trace metals could serve as an answer to this problem. The oxidation state and coordination chemistry play crucial roles in defining the responses to these trace metals, so further research is warranted to understand fully their metabolic and cardiovascular effects in human metabolic syndrome.
Collapse
Affiliation(s)
- Sunil K Panchal
- Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia
| | - Stephen Wanyonyi
- Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia
| | - Lindsay Brown
- Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, QLD, Toowoomba, 4350, Australia.
| |
Collapse
|
22
|
Hong XL, Zeng MH, Liu LJ, Ye XL, Yi DS. Synthesis, characterization and in vitro antitumor behavior of a vanadium(V) complex with 4′-(3-methoxyphenyl)-2,2′:6′2″-terpyridine. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1290800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xian-Lan Hong
- Department of Chemistry, Shaoguan University, Shaoguan, Guangdong, PR China
| | - Mao-Hua Zeng
- Department of Chemistry, Shaoguan University, Shaoguan, Guangdong, PR China
| | - Li-Juan Liu
- Department of Chemistry, Shaoguan University, Shaoguan, Guangdong, PR China
| | - Xiu-Li Ye
- Department of Chemistry, Shaoguan University, Shaoguan, Guangdong, PR China
| | - Dao-Sheng Yi
- Yingdong College of Life Sciences, Shaoguan University, Shaoguan, Guangdong, PR China
| |
Collapse
|
23
|
Nersesyan A, Hoelzl C, Ferk F, Mišík M, Al-Serori H, Setayesh T, Knasmueller S. Use of Single-cell Gel Electrophoresis Assays in Dietary Intervention Trials. THE COMET ASSAY IN TOXICOLOGY 2016. [DOI: 10.1039/9781782622895-00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The single-cell gel electrophoresis (SCGE) technique has been frequently used to investigate the impact of consumption of complex foods and individual constituents on DNA stability in humans. Since no division or cultivation of the indicator cells (in most studies lymphocytes) is required, this approach is less costly and time consuming than cytogenetic methods. Apart from single- and double-stand breaks and apurinic sites, which can be detected under standard conditions, it is also possible to assess the formation of oxidized DNA bases and alterations of DNA repair as well as protection of the DNA against chemical carcinogens. In total, 93 studies have been published since the first use of the Comet assay in this field in 1997. The results which emerged from these studies show that human foods contain specific highly protective components (e.g. gallic acid, xanthohumol, isoflavones); promising results were also obtained with beverages (coffee and other drinks), while mixed diets with vegetables and fruits conferred no or moderate protection; however, individual plant foods (e.g. kiwis and specific cruciferous vegetables) were highly protective. It is notable that prevention of DNA damage was rarely detected under standard conditions while evidence for reduced formation of oxidized DNA bases was found in approximately 30% of the trials. In some investigations it was possible to identify the modes of action by which specific compounds prevented damage of the genetic material in additional mechanistic experiments. The currently available data show that SCGE assays are a valuable tool for identifying dietary factors which improve the stability of the genetic material and prevent adverse health effects which are causally related to DNA damage.
Collapse
Affiliation(s)
- Armen Nersesyan
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Christine Hoelzl
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Franziska Ferk
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Miroslav Mišík
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Halh Al-Serori
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Tahereh Setayesh
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Siegfried Knasmueller
- Department of Internal Medicine I, Institute of Cancer Research, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|
24
|
Annangi B, Bonassi S, Marcos R, Hernández A. Biomonitoring of humans exposed to arsenic, chromium, nickel, vanadium, and complex mixtures of metals by using the micronucleus test in lymphocytes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:140-161. [DOI: 10.1016/j.mrrev.2016.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
|
25
|
Yuvakkumar R, Hong SI. Structural and toxic effect investigation of vanadium pentoxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:419-24. [PMID: 27157769 DOI: 10.1016/j.msec.2016.04.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/17/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023]
Abstract
A facile inorganic complex synthesis route has been developed to synthesis V2O5 nanostructures. The effects of varying incubation time on the crystallinity and morphology of the V2O5 phase has been investigated. The obtained XRD result clearly revealed the pure orthorhombic V2O5 crystalline phase. Raman antiphase bridging VO and chaining VO stretching modes peaks at 686 and 521cm(-1) attributed orthorhombic V2O5 characteristics. The V2p3/2 peak at the binding energies of 517eV and V2p1/2 peak at 524eV assigned to V(5+) oxidation state. Bioinspired V2O5 nanostructures as a biocompatible material for anticancer agents show excellent cytotoxicity at higher V2O5 concentration.
Collapse
Affiliation(s)
- R Yuvakkumar
- Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India; Department of Nanomaterials Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| | - S I Hong
- Department of Nanomaterials Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| |
Collapse
|
26
|
Mussali-Galante P, Rodríguez-Lara V, Hernández-Tellez B, Avila-Costa MR, Colín-Barenque L, Bizarro-Nevarez P, Martínez-Levy G, Rojas-Lemus M, Piñón-Zarate G, Saldivar-Osorio L, Diaz-Beck P, Herrera-Enríquez MA, Tovar-Sánchez E, Fortoul TI. Inhaled vanadium pentoxide decrease gamma-tubulin of mouse testes at different exposure times. Toxicol Ind Health 2016; 21:215-22. [PMID: 16342472 DOI: 10.1191/0748233705th232oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vanadium is an important environmental and industrial pollutant whose concentrations have increased in the last decades. Due to its status as reproductive toxicant and a microtubule damaging agent, the present study investigated by immunohistochemistry the effect of the inhalation of vanadium pentoxide on gamma-tubulin within somatic and testicular germ cells. Male mice inhaled vanadium pentoxide (V2O5) (0.02 M) 1 h/twice a week for 12 weeks. Our results demonstrated that vanadium accumulates in the testes starting with the initial inhalation (24 h), and this pattern remained until the last week of treatment. In general, vanadium was capable of significantly decreasing the percentage of gamma-tubulin in all analyzed testicular cells (Sertoli, Leydig and germ cells) starting with the first week of treatment. For all cell types studied, regression analysis revealed a negative and significant relationship between the percentage of immunopositive cells to gamma-tubulin and exposure time, showing a time dependent response in all cases. Our findings suggest that alterations on this protein might imply changes in microtubule-involved function such as cell division, which in the testes might lead to damage in the spermatogenesis, leading probably to infertility.
Collapse
Affiliation(s)
- Patricia Mussali-Galante
- Departamento de Biologia Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
González-Villalva A, Fortoul TI, Avila-Costa MR, Piñón-Zarate G, Rodriguez-Laraa V, Martínez-Levy G, Rojas-Lemus M, Bizarro-Nevarez P, Díaz-Bech P, Mussali-Galante P, Colin-Barenque L. Thrombocytosis induced in mice after subacute and subchronic V2O5 inhalation. Toxicol Ind Health 2016; 22:113-6. [PMID: 16716040 DOI: 10.1191/0748233706th250oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reports about vanadium (V) inhalation toxicity on the hematopoietic system, specifically about coagulation are limited. Therefore, we decided to evaluate the effects of V with a complete blood count and morphologic analysis of platelets on blood smears. CD-1 male mice inhaled V2O5 0.02 M 1 h twice weekly over 12 weeks. Blood samples were obtained by direct heart puncture; Wright stained smears were used for platelet quantification. An increase in platelet count from the third week of exposure was observed, as well as the presence of megaplatelets. Our results demonstrate, for the first time, that V induces thrombocytosis and it might correlate with some thromboembolic diseases. Further analysis is needed to evaluate the functionality of these platelets as well as the cause of its increase.
Collapse
|
28
|
First data on trace elements in Haliotis tuberculata ( Linnaeus, 1758 ) from southern Italy: Safety issues. Food Chem Toxicol 2015; 81:143-150. [DOI: 10.1016/j.fct.2015.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/31/2015] [Accepted: 04/17/2015] [Indexed: 11/19/2022]
|
29
|
Arena G, Copat C, Dimartino A, Grasso A, Fallico R, Sciacca S, Fiore M, Ferrante M. Determination of total vanadium and vanadium(V) in groundwater from Mt. Etna and estimate of daily intake of vanadium(V) through drinking water. JOURNAL OF WATER AND HEALTH 2015; 13:522-530. [PMID: 26042983 DOI: 10.2166/wh.2014.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Vanadium(V) can be found in natural waters in the form of V(IV) and V(V) species, which have different biological properties and toxicity. The purpose of this study was to determine the concentrations of total V and V(V) in groundwater from the area of Mt. Etna and to assess the estimated daily intake (EDI) of V(V) of adults and children through drinking water. Water was sampled monthly at 21 sites in 2011. Total vanadium was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and speciation by ion chromatography-ICP-MS (IC-ICP-MS). The concentration of V(V) species ranged from 62.8 to 98.9% of total V, with significantly higher concentrations in samples from the S/SW slope of Mt. Etna. The annual mean concentrations of total V exceeded the Italian legal limit of 140 μg/L at four sites on the S/SW slope. In the absence of thresholds for V(V) intake, only the Environmental Protection Agency (EPA) has calculated a reference dose. Children's EDI of V(V) at the sites with the higher V concentrations exceeded EPA thresholds (9 μg/kg/day). In particular, we found in Camporotondo, Mascalucia, Ragalna and San Pietro Clarenza sites children's EDIs of 11, 9.3, 11 and 9.9, respectively. The EDI of V(V) was significantly higher than the literature range (0.09-0.34 μg/kg/day).
Collapse
Affiliation(s)
- Giovanni Arena
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| | - Chiara Copat
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| | - Angela Dimartino
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| | - Alfina Grasso
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| | - Roberto Fallico
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| | - Salvatore Sciacca
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| | - Maria Fiore
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| | - Margherita Ferrante
- Department of Hygiene and Public Health 'G.F. Ingrassia', University of Catania, Via Santa Sofia 87, 95123 Catania, Italy E-mail:
| |
Collapse
|
30
|
Gallardo-Vera F, Diaz D, Tapia-Rodriguez M, Fortoul van der Goes T, Masso F, Rendon-Huerta E, Montaño LF. Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation. J Immunotoxicol 2015; 13:27-37. [PMID: 25565016 DOI: 10.3109/1547691x.2014.996681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vanadium is a major air pollutant with toxic and carcinogenic effects; it also exercises immunosuppressive effects on the adaptive immune response. Its effect on the innate immune response is poorly explored. The aim of this study was to identify if vanadium pentoxide (V2O5) impairs the function of immunoregulatory NK cells and to determine possible mechanisms associated with this effect. Interleukin-2-independent NK-92MI cells were exposed to different V2O5 concentrations for 6, 12, or 24 h periods. Cell proliferation was then evaluated using CFSE staining, apoptosis by Annexin V binding, and necrosis by 7-AAD staining. The release of IL-2, -4, -6, -10, -17A, IFNγ, and TNFα by the cells were assessed using a human CBA kit. Expression of CD45, SOCS1, JAK3, pJAK3, STAT5, pSTAT5, IL-2R, IL-15R, Fas, and FasL in/on the cells was determined by flow cytometry; JAK3 and pJAK3 expression were also evaluated via confocal microscopy. The results indicated that V2O5 could inhibit NK-92MI cell proliferation and induce cell apoptosis in a dose- and time-related manner. V2O5 also inhibited IL-2, IL-10, and IFNγ secretion but mostly only after 24 h of exposure and with primarily the higher doses tested. V2O5 had no effect on expression of JAK3 and STAT5, but did cause an increase in pJAK3 and appeared to lead (trend) to reductions in levels of phosphorylated STAT5. V2O5 increased the expression of IL-2R, IL-15R, Fas, and FasL at concentrations above the 50-100 µM range. V2O5 had no effect on expression of the CD45 membrane phosphatase, but it did cause an increase in the expression of SOCS1. These results indicate that a key toxic effect of V2O5 on NK cells is a dysregulation of signaling pathways mediated by IL-2. These effects could help to explain the previously-reported deleterious effects on innate immune responses of hosts exposed to inhaled V2O5.
Collapse
Affiliation(s)
- Francisco Gallardo-Vera
- a Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina
| | - Daniel Diaz
- b Departamento de Biología Celular y Fisiología
| | | | | | - Felipe Masso
- d Departamento de Fisiología , Instituto Nacional de Cardiología 'Ignacio Chávez' , México
| | - Erika Rendon-Huerta
- a Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina
| | - Luis F Montaño
- a Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina
| |
Collapse
|
31
|
|
32
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|
33
|
Zwolak I. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review ofin vitrostudies. Toxicol Mech Methods 2013; 24:1-12. [DOI: 10.3109/15376516.2013.843110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Rodríguez-Lara V, Morales-Rivero A, Rivera-Cambas AM, Fortoul TI. Vanadium inhalation induces actin changes in mice testicular cells. Toxicol Ind Health 2013; 32:367-74. [PMID: 24097359 DOI: 10.1177/0748233713501364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Infertility is becoming a health problem, which has increased mainly in megacities, and several studies have shown its association with environmental pollution. Air pollution has been linked to alterations in sperm parameters, both in humans and animal models. In male humans, it has been associated with reduced semen quality and DNA alterations. Vanadium is a transition element that has increased in recent decades as a component of air suspended matter and has been associated with reprotoxic effects in animal models. Few are the mechanisms described by which the vanadium produces these effects, and cytoskeleton interaction is a possibility. We reported immunohistochemical changes in actin testicular cytoskeleton in a vanadium inhalation experimental mice model. Our findings show that exposure to vanadium pentoxide (0.02 M) results in actin decrease in testicular cells from 3-12 weeks exposure time; this effect was statistically significant and exposure time dependent. Actin cytoskeleton damage is a mechanism that could explain vanadium reprotoxic effects and its association with impaired fertility.
Collapse
Affiliation(s)
- Vianey Rodríguez-Lara
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Alonso Morales-Rivero
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Angelica Muñiz Rivera-Cambas
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
35
|
Niu Y, Zhang X, Zheng Y, Zhang R. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:311-319. [PMID: 23708312 DOI: 10.1016/j.etap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
γ-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to γ-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to γ-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the γ-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell.
Collapse
Affiliation(s)
- Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China; Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xing Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Yuxin Zheng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| |
Collapse
|
36
|
Altamirano-Lozano MA, Álvarez-Barrera L, Mateos-Nava RA, Fortoul TI, Rodríguez-Mercado JJ. Potential for genotoxic and reprotoxic effects of vanadium compounds due to occupational and environmental exposures: An article based on a presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15–18, 2012. J Immunotoxicol 2013; 11:19-27. [DOI: 10.3109/1547691x.2013.791734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Sex differences in blood genotoxic and cytotoxic effects as a consequence of vanadium inhalation: micronucleus assay evaluation. J Appl Toxicol 2013; 34:258-64. [DOI: 10.1002/jat.2873] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
|
38
|
Jeju ground water containing vanadium induced immune activation on splenocytes of low dose γ-rays-irradiated mice. Food Chem Toxicol 2012; 50:2097-105. [DOI: 10.1016/j.fct.2012.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/18/2012] [Accepted: 03/07/2012] [Indexed: 11/17/2022]
|
39
|
Abdelhamid G, Amara IE, Anwar-Mohamed A, El-Kadi AO. Modulation of aryl hydrocarbon receptor-regulated genes by acute administration of ammonium metavanadate in kidney, lung and heart of C57BL/6 mice. J Appl Toxicol 2012; 33:1230-40. [DOI: 10.1002/jat.2774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Ghada Abdelhamid
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| | - Issa E.A. Amara
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| | - Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton; Alberta; Canada; T6G 2 N8
| |
Collapse
|
40
|
Hosseini MJ, Seyedrazi N, Shahraki J, Pourahmad J. Vanadium induces liver toxicity through reductive activation by glutathione and mitochondrial dysfunction. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.38134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Schuler D, Chevalier HJ, Merker M, Morgenthal K, Ravanat JL, Sagelsdorff P, Walter M, Weber K, McGregor D. First Steps Towards an Understanding of a Mode ofCarcinogenic Action for Vanadium Pentoxide. J Toxicol Pathol 2011; 24:149-62. [PMID: 22272055 PMCID: PMC3234591 DOI: 10.1293/tox.24.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/01/2011] [Indexed: 01/22/2023] Open
Abstract
Inhalation of vanadium pentoxide clearly increases the incidence of
alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all
concentrations tested (1, 2 or 4 mg/m3), whereas responses in F344/N
rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in
vitro and possibly in vivo in mice, this does not
explain the species or site specificity of the neoplastic response. A nose-only
inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and
4 mg/m3, 6 h/day for 16 days) to explore histopathological,
biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet
assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment
related histopathology was observed at 0.25 mg/m3. At 1 and
4 mg/m3, exposure-dependent increases were observed in lung
weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic
infiltration and a generally time-dependent increased cell proliferation rate of
histiocytes. Glutathione was slightly increased, whereas there were no
consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence
for DNA strand breakage in lung or BAL cells, but there was an increase in
8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction
of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier
reports of histopathological changes in the lungs after inhalation of vanadium
pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode
of action. Evidence is weak for oxidative stress playing any role in lung
carcinogenesis at the lowest effective concentrations of vanadium pentoxide.
Collapse
|
42
|
Montiel-Dávalos A, Gonzalez-Villava A, Rodriguez-Lara V, Montaño LF, Fortoul TI, López-Marure R. Vanadium pentoxide induces activation and death of endothelial cells. J Appl Toxicol 2011; 32:26-33. [PMID: 21721017 DOI: 10.1002/jat.1695] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 01/15/2023]
Abstract
Vanadium is a transition metal released into the atmosphere, as air-suspended particles, as a result of the combustion of fossil fuels and some metallurgic industry activities. Air-suspended particle pollution causes inflammation-related processes such as thrombosis and other cardiovascular events. Our aim was to evaluate the effect of vanadium pentoxide (V2O5) on endothelial cells since they are key participants in the pathogenesis of several cardiovascular and inflammatory diseases. Cell adhesion, the expression of adhesion molecules and oxidative stress, as well as proliferation, morphology and cell death of human umbilical vein endothelial cells (HUVECs) exposed to V2O5, were evaluated. Vanadium pentoxide at a 3.12 µg cm(-2) concentration induced an enhanced adhesion of the U937 macrophage cell line to HUVECs, owing to an increased expression of late adhesion molecules. HUVECs exposed to V2O5 showed an increase in ROS and nitric oxide production, and a diminished proliferation. These changes in vanadium-treated HUVECs were accompanied by severe morphological changes and apoptotic cell death. Vanadium pentoxide induced serious endothelial cell damage, probably related to the increased cardiovascular morbidity and mortality observed in individuals living in highly air-polluted areas.
Collapse
Affiliation(s)
- Angélica Montiel-Dávalos
- Departamento de Biología Celular, Instituto Nacional de Cardiología 'Ignacio Chávez', México City, CP 14080, Mexico
| | | | | | | | | | | |
Collapse
|
43
|
Premature chromosome condensation induced by caffeine, 2-aminopurine, staurosporine and sodium metavanadate in S-phase arrested HeLa cells is associated with a decrease in Chk1 phosphorylation, formation of phospho-H2AX and minor cytoskeletal rearrangements. Histochem Cell Biol 2011; 135:263-80. [PMID: 21347609 PMCID: PMC3052479 DOI: 10.1007/s00418-011-0793-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 10/25/2022]
Abstract
Here, we demonstrate that in HeLa cells, Ser317 of Chk1 undergoes phosphorylation in response to replication stress induced by hydroxyurea. We also demonstrate the existence of constitutive (interphase and mitotic) Chk1 kinase phosphorylation, the translocation of its phosphorylated form from the nucleus to cytoplasm in prometaphase as well as strong labeling of apoptotic nuclei with α-Chk1(S317) antibodies. Additionally, we show that caffeine, 2-aminopurine, staurosporine and sodium metavanadate can induce premature chromosome condensation (PCC) by the abrogation of the S-M checkpoint. Staurosporine appeared to be the most effective PCC inductor, and as in the case of the remaining inductors, the addition of hydroxyurea each time brought about an increase in the number of cells showing PCC symptoms (synergic effect). The forced premature mitosis was accompanied by an increasing index of double-strand breaks marked by the phosphorylation of histone H2AX on Ser139. Moreover, we found that the chemicals used brought about minor actin and tubulin network rearrangements that occurred following either replication stress or drug-induced cell cycle delay. At the same time, it was found that the extent of the cytoskeleton rearrangement did not hinder PCC in all its subperiods, i.e., from PCC-type prophase to PCC-type telophase.
Collapse
|
44
|
Genotoxic effects of occupational exposure measured in lymphocytes of waste-incinerator workers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 720:3-7. [DOI: 10.1016/j.mrgentox.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/21/2010] [Accepted: 06/24/2010] [Indexed: 11/24/2022]
|
45
|
Khan S, Kazi TG, Baig JA, Kolachi NF, Afridi HI, Wadhwa SK, Shah AQ, Kandhro GA, Shah F. Cloud point extraction of vanadium in pharmaceutical formulations, dialysate and parenteral solutions using 8-hydroxyquinoline and nonionic surfactant. JOURNAL OF HAZARDOUS MATERIALS 2010; 182:371-376. [PMID: 20619536 DOI: 10.1016/j.jhazmat.2010.06.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/04/2010] [Accepted: 06/10/2010] [Indexed: 05/29/2023]
Abstract
A cloud point extraction (CPE) method has been developed for the determination of trace quantity of vanadium ions in pharmaceutical formulations (PF), dialysate (DS) and parenteral solutions (PS). The CPE of vanadium (V) using 8-hydroxyquinoline (oxine) as complexing reagent and mediated by nonionic surfactant (Triton X-114) was investigated. The parameters that affect the extraction efficiency of CPE, such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validity of CPE of V was checked by standard addition method in real samples. The extracted surfactant-rich phase was diluted with nitric acid in ethanol, prior to subjecting electrothermal atomic absorption spectrometry. Under these conditions, the preconcentration of 50 mL sample solutions, allowed raising an enrichment factor of 125-fold. The lower limit of detection obtained under the optimal conditions was 42 ng/L. The proposed method has been successfully applied to the determination of trace quantity of V in various pharmaceutical preparations with satisfactory results. The concentration ranges of V in PF, DS and PS samples were found in the range of 10.5-15.2, 0.65-1.32 and 1.76-6.93 microg/L, respectively.
Collapse
Affiliation(s)
- Sumaira Khan
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Arakawa H, Dovbeshko G, Diamantoglou S, Tajmir-Riahi HA. Oxovanadium Ions Bind Transfer RNA at Multiple Sites. DNA Cell Biol 2010; 29:459-64. [DOI: 10.1089/dna.2010.1028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hirohumi Arakawa
- Department of Chemistry-Biology, University of Québec at Trois-Riviéres, Trois-Riviéres, Quebec, Canada
| | - Galina Dovbeshko
- Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Stavroula Diamantoglou
- Department of Chemistry-Biology, University of Québec at Trois-Riviéres, Trois-Riviéres, Quebec, Canada
| | - Heidar-Ali Tajmir-Riahi
- Department of Chemistry-Biology, University of Québec at Trois-Riviéres, Trois-Riviéres, Quebec, Canada
| |
Collapse
|
47
|
Chandra AK, Ghosh R, Chatterjee A, Sarkar M. Protection against vanadium-induced testicular toxicity by testosterone propionate in rats. Toxicol Mech Methods 2010; 20:306-15. [DOI: 10.3109/15376516.2010.485623] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Fortoul TI, González-Villalva A, Piñón-Zarate G, Rodríguez-Lara V, Montaño LF, Saldivar-Osorio L. Ultrastructural megakaryocyte modifications after vanadium inhalation in spleen and bone marrow. JOURNAL OF ELECTRON MICROSCOPY 2009; 58:375-380. [PMID: 19567481 DOI: 10.1093/jmicro/dfp031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Previous reports from our laboratory informed in mice an increase in platelets in blood, and megakaryocytes in spleen and bone marrow after vanadium inhalation. This element has become important in recent years because of its increased presence as an air pollutant. With this precedent, we evaluate the ultrastructural modifications in MKs from the spleen and bone marrow in our mouse experimental model. Mice inhaled 0.02 M V(2)O(5) 1 h twice a week for 12 weeks. Tissues were processed for transmission electron microscopy. Results indicate an increase in the size and cytoplasmic granular content, as well as nuclear changes in MKs of exposed mice, changes which correlate with the time of exposure. Modifications in MKs described here suggest that inhaled vanadium induce megakaryocytic maturation, a raise in its granules content and demarcation membrane systems, which may lead to a rise in circulating platelet production and an increased risk for thromboembolic events.
Collapse
Affiliation(s)
- Teresa I Fortoul
- Department of Cellular and Tissular Biology, School of Medicine, National University of Mexico, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
49
|
Sturini M, Maraschi F, Cucca L, Spini G, Talamini G, Profumo A. Determination of vanadium(V) in the particulate matter of emissions and working areas by sequential dissolution and solid-phase extraction. Anal Bioanal Chem 2009; 397:395-399. [DOI: 10.1007/s00216-009-3277-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/29/2009] [Accepted: 10/31/2009] [Indexed: 11/25/2022]
|
50
|
Nersesyan A, Hoelzl C, Ferk F, Mišík M, Knasmueller S. Comet Assays in Dietary Intervention Trials. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Christine Hoelzl
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| |
Collapse
|