1
|
Tang X, Chen Y, Zhu X, Miao Y, Wang D, Zhang J, Li R, Zhang L, Chen J. Alternariol monomethyl ether toxicity and genotoxicity in male Sprague-Dawley rats: 28-Day in vivo multi-endpoint assessment. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503435. [PMID: 35094809 DOI: 10.1016/j.mrgentox.2021.503435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023]
Abstract
Alternariol monomethyl ether (AME), a typical Alternaria toxin, has often been detected in grains. We have measured the general toxicity and genotoxicity of AME with a 28-day multi-endpoint (Pig-a assay + in vivo micronucleus [MN] test + comet assay) platform. Male Sprague-Dawley rats were administered AME (1.84, 3.67, or 7.35 μg/kg body weight/day), N-Ethyl-N-nitrosourea (40 mg/kg body weight/day), or corn oil by gavage for 28 consecutive days. Another group (AME-high-dose + recovery) was maintained for a further 14 days after the end of the AME administration. Hematology and serum biochemistry results suggested that AME might compromise the immune system. The histopathology results indicated that AME can cause liver (inflammatory cell infiltration, steatosis, and edema), kidney (renal glomerular atrophy), and spleen (white pulp atrophy) damage. The genotoxicity results showed that AME can induce gene mutations, chromosome breakage, and DNA damage, but the effects were diminished after the recovery period. According to point-of-departure analysis (BMDL10), the risk to the population of exposure to AME cannot be ignored and further assessment is needed.
Collapse
Affiliation(s)
- Xinyao Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Yiyi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Chenghua Center for Disease Control and Prevention, Chengdu, Sichuan, China.
| | - Xia Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Dongxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Ruirui Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Abu Zeid EH, El Sharkawy NI, Moustafa GG, Anwer AM, Al Nady AG. The palliative effect of camel milk on hepatic CYP1A1 gene expression and DNA damage induced by fenpropathrin oral intoxication in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111296. [PMID: 32949931 DOI: 10.1016/j.ecoenv.2020.111296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the alleviating role of camel milk (CM) in the mitigation of fenpropathrin (FNP) type II pyrethroid induced oxidative stress, alterations of hepatic (CYP1A1) mRNA expression pattern, and DNA damage using the alkaline comet assay (SCGE) in male rats. Sixty male Sprague-Dawley rats were separated into six groups (n = 10): 1st control (C), 2nd corn oil (CO), 3rd (CM): gavaged CM 2ml/rat, 4th (FNP): gavaged FNP 7.09 mg/kg body weight (BW), 5th (FNP pro/co-treated): gavaged CM firstly for 15 days, then CM + FNP by the same mentioned doses and route, 6th (FNP + CM co-treated): gavaged FNP firstly followed by CM by the same mentioned doses and route. Rats were orally gavaged three times per week, day after day for 60 days. FNP exposure significantly reduced serum glutathione (GSH) levels, but significantly increased serum levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), protein carbonyl (PCO), and 8hydroxy2deoxyguanosine (8OH2dG). Additionally, FNP exposure significantly up-regulated the mRNA expression levels of hepatic CYP1A1 and increased the SCGE indices in whole blood, liver, and spleen tissues of exposed male rats. Administration of CM significantly regulated the FNP induced oxidative stress, reduced hepatic CYP1A1 mRNA expression levels and values of comet assay indices particularly in the (CM + FNP pro/co-treated) group compared to the (FNP + CM co-treated) group. In conclusion, our results indicate, for the first time, that FNP retains an in vivo genotoxic potential at a dose of (1/10 LD50) and up-regulated hepatic CYP1A1 mRNA expression in male rats. Additionally, CM supplements may improve the genotoxic outcomes, oxidative stress, and altered CYP1A1 mRNA expression induced by FNP particularly in the pro/concurrent-treatment compared to the concurrent treatment alone.
Collapse
Affiliation(s)
- Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Gihan G Moustafa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt
| | - Abeer M Anwer
- Head Researcher of Immunity in Animal Reproduction Research Institute. Egypt
| | - Ahmed G Al Nady
- Veterinarian at the Central Administration of Veterinary Quarantine and Examinations, Egypt
| |
Collapse
|
3
|
Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, Fenclova M, Stranska-Zachariasova M, Vitek L, Hajslova J, Ruml T. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins (Basel) 2020; 12:E148. [PMID: 32121188 PMCID: PMC7150870 DOI: 10.3390/toxins12030148] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins found in randomly selected commercial milk thistle dietary supplement were evaluated for their toxicity in silico and in vitro. Using in silico methods, the basic physicochemical, pharmacological, and toxicological properties of the mycotoxins were predicted using ACD/Percepta. The in vitro cytotoxicity of individual mycotoxins was determined in mouse macrophage (RAW 264.7), human hepatoblastoma (HepG2), and human embryonic kidney (HEK 293T) cells. In addition, we studied the bioavailability potential of mycotoxins and silibinin utilizing an in vitro transwell system with differentiated human colon adenocarcinoma cells (Caco-2) simulating mycotoxin transfer through the intestinal epithelial barrier. The IC50 values for individual mycotoxins in studied cells were in the biologically relevant ranges as follows: 3.57-13.37 nM (T-2 toxin), 5.07-47.44 nM (HT-2 toxin), 3.66-17.74 nM (diacetoxyscirpenol). Furthermore, no acute toxicity was obtained for deoxynivalenol, beauvericin, zearalenone, enniatinENN-A, enniatin-A1, enniatin-B, enniatin-B1, alternariol, alternariol-9-methyl ether, tentoxin, and mycophenolic acid up to the 50 nM concentration. The acute toxicity of these mycotoxins in binary combinations exhibited antagonistic effects in the combinations of T-2 with DON, ENN-A1, or ENN-B, while the rest showed synergistic or additive effects. Silibinin had a significant protective effect against both the cytotoxicity of three mycotoxins (T-2 toxin, HT-2 toxin, DAS) and genotoxicity of AME, AOH, DON, and ENNs on HEK 293T. The bioavailability results confirmed that AME, DAS, ENN-B, TEN, T-2, and silibinin are transported through the epithelial cell layer and further metabolized. The bioavailability of silibinin is very similar to mycotoxins poor penetration.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Jitka Viktorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Augustynkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Nikola Jelenova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Simona Dobiasova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Katerina Rehorova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| | - Marie Fenclova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Libor Vitek
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Prague 2, Czech Republic;
- Faculty General Hospital, U Nemocnice 2, 12808 Praha 2, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (M.F.); (M.S.-Z.); (J.H.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; (V.N.T.); (J.V.); (K.A.); (N.J.); (S.D.); (K.R.)
| |
Collapse
|
4
|
Le Hégarat L, Takakura N, Simar S, Nesslany F, Fessard V. The in vivo genotoxicity studies on nivalenol and deoxynivalenol. ACTA ACUST UNITED AC 2014. [DOI: 10.2903/sp.efsa.2014.en-697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- L Le Hégarat
- ANSES – French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of contaminants Unit France
| | - N Takakura
- ANSES – French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of contaminants Unit France
| | - S Simar
- Institut Pasteur de Lille, Laboratory of Toxicology France
| | - F Nesslany
- Institut Pasteur de Lille, Laboratory of Toxicology France
| | - V Fessard
- ANSES – French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of contaminants Unit France
| |
Collapse
|
5
|
Cytotoxic and cytogenetic effects of α-copaene on rat neuron and N2a neuroblastoma cell lines. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0393-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Pinton P, Oswald IP. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel) 2014; 6:1615-43. [PMID: 24859243 PMCID: PMC4052256 DOI: 10.3390/toxins6051615] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/28/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
The natural food contaminants, mycotoxins, are regarded as an important risk factor for human and animal health, as up to 25% of the world's crop production may be contaminated. The Fusarium genus produces large quantities of fusariotoxins, among which the trichothecenes are considered as a ubiquitous problem worldwide. The gastrointestinal tract is the first physiological barrier against food contaminants, as well as the first target for these toxicants. An increasing number of studies suggest that intestinal epithelial cells are targets for deoxynivalenol (DON) and other Type B trichothecenes (TCTB). In humans, various adverse digestive symptoms are observed on acute exposure, and in animals, these toxins induce pathological lesions, including necrosis of the intestinal epithelium. They affect the integrity of the intestinal epithelium through alterations in cell morphology and differentiation and in the barrier function. Moreover, DON and TCTB modulate the activity of intestinal epithelium in its role in immune responsiveness. TCTB affect cytokine production by intestinal or immune cells and are supposed to interfere with the cross-talk between epithelial cells and other intestinal immune cells. This review summarizes our current knowledge of the effects of DON and other TCTB on the intestine.
Collapse
Affiliation(s)
- Philippe Pinton
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| | - Isabelle P Oswald
- INRA (Institut National de la Recherche Agronomique), UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse F-31027, France.
| |
Collapse
|
7
|
Inoue K, Takahashi M, Kodama Y, Nishikawa A, Sugita-Konishi Y, Yoshida M. The Kidneys of Infant Mice are not Sensitive to the Food Mycotoxin Contaminant Nivalenol. J Toxicol Pathol 2014; 27:57-66. [PMID: 24791068 PMCID: PMC4000074 DOI: 10.1293/tox.2013-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/27/2013] [Indexed: 11/23/2022] Open
Abstract
Nivalenol (NIV) is a trichothecene mycotoxin produced by Fusarium fungi that frequently contaminates agricultural commodities. Dietary administration of NIV to adult mice affects the renal glomeruli, but data about NIV toxicity in human infants are limited. To evaluate the effects of NIV on infant kidneys, 3-week-old male ICR-derived glomerulonephritis (ICGN) and ICR mice were administered 0, 4, 8 or 16 ppm NIV in diet for 4 weeks, and their renal status was compared with age-matched or adult ICR mice. In ICGN mice, the number of glomeruli showing mesangial expansion and α-smooth muscle actin (SMA)-positive mesangial cells was higher with 16 ppm NIV compared with controls. No other significant differences were observed in ICGN mice. In infant ICR mice, the IgA serum concentrations were significantly elevated without glomerular morphological changes in the 16 ppm NIV group. There was no difference in NIV sensitivity in the kidneys of infant ICGN and ICR mice. These data suggest that the kidneys in infant mice are not sensitive to nivalenol under the present conditions.
Collapse
Affiliation(s)
- Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Yukio Kodama
- Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Akiyoshi Nishikawa
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Yoshiko Sugita-Konishi
- Laboratory of Food and Hygiene, Department of Food and Life Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| |
Collapse
|
8
|
Türkez H, Celik K, Toğar B. Effects of copaene, a tricyclic sesquiterpene, on human lymphocytes cells in vitro. Cytotechnology 2013; 66:597-603. [PMID: 24287609 DOI: 10.1007/s10616-013-9611-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/20/2013] [Indexed: 01/08/2023] Open
Abstract
In this study, the cytotoxic, genotoxic/antigenotoxic and antioxidant/oxidant activity of copaene (COP), a plant-derived tricyclic sesquiterpene, on human lymphocyte cultures (n = 5) was investigated. COP was added into culture tubes at various concentrations (0, 10, 25, 50, 100, 200 and 400 mg/L). While the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were used for viability and cytotoxic evaluations, the micronucleus (MN) and sister chromatid exchange (SCE) assays were used for genetic evaluations. Moreover, total antioxidant capacity (TAC) and total oxidative status analysis were used for biochemical evaluations. According to LDH and MTT assays COP significantly reduced cell proliferation at high concentrations (200 and 400 mg/L). In addition, there was no significant increase (P < 0.05) in both SCE and MN frequencies of cultures treated with COP as compared to controls. We have also concluded that concentrations of COP of 50 and 100 mg/L increased TAC level when compared to the controls. In conclusion, in this study it has been reported for the first time that copaene is not genotoxic and it increases the antioxidant capacity in human lymphocyte cultures.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | | |
Collapse
|
9
|
Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3262] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
Nusuetrong P, Saito M, Kikuchi H, Oshima Y, Moriya T, Nakahata N. Apoptotic effects of satratoxin H is mediated through DNA double-stranded break in PC12 cells. J Toxicol Sci 2012; 37:803-12. [PMID: 22863859 DOI: 10.2131/jts.37.803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Satratoxin H is an important air- and food-borne mycotoxin, which has been implicated in human health damage. Satratoxin H is known to induce apoptosis as well as genotoxicity in PC12 cells. In the present study, we further investigated the mechanism of apoptotic effects of satratoxin H with focus on caspase-3 and poly-ADP-ribose polymerase (PARP) pathway. We also examined whether it induces DNA damage in PC12 cells. In the cells treated with satratoxin H, caspase-3 was cleaved in a time-dependent manner. Furthermore, satratoxin H induced cleavage of PARP, one of the downstream molecules of caspase-3. The cleavage was inhibited by SB203580, a p38 MAPK inhibitor, or SP600125, a JNK inhibitor. Satratoxin H, however, had no effect on expression levels of Bax and Bcl-2. Furthermore, the micronucleus assay revealed that satratoxin H induced chromosome break. Also, satratoxin H increased the level of phosphorylation of histone H2A, indicating that it caused DNA double-stranded breaks in PC12 cells. Meanwhile, no genotoxicity was detected with any of treatments carried out in the alkaline comet assay. These results imply that satratoxin H induces genotoxicity by DNA double-stranded break. Our results suggest a considerable potential for the genotoxic risk associated with the presence of satratoxin H.
Collapse
Affiliation(s)
- Punnee Nusuetrong
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Ðikić D, Mojsović-Cuić A, Cupor I, Benković V, Horvat-Knezević A, Lisicić D, Orsolić N. Carbendazim combined with imazalil or cypermethrin potentiate DNA damage in hepatocytes of mice. Hum Exp Toxicol 2011; 31:492-505. [PMID: 21868589 DOI: 10.1177/0960327111417910] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Traces of pesticides imazalil, cypermethrin and carbendazim are detected in plants used for human consumption. To explore whether their application in oral combinations will induce DNA breaks in hepatocytes, a subchronic in vivo experiment was performed in Swiss mice. Doses of 10 mg kg(-1) of imazalil (im) and cypermethrin (cy), and 20 mg kg(-1) of carbendazim (car) and their combinations (im, 10 mg kg(-1) + cy, 10 mg kg(-1); im, 10 mg kg(-1) + car, 20 mg kg(-1); car, 20 mg kg(-1) + cy, 10 mg kg(-1)) were applied daily for 28 days. Afterward, DNA damage in hepatocytes was evaluated by comet assay. Individually, imazalil and cypermethrin damaged DNA at alkali-labile sites, while the tail moment (TM) of carbendazim alone was similar to control but with higher tail length. In combination with carbendazim clastogen, properties of imazalils and cypermethrins were potentiated compared to all other treatments and control. There were pronounced sex differences in pattern of fragmentation between treated groups. Higher long tail nuclei (LTN) in females indicate that certain cells in females were especially prone to total nucleus disintegration. Due to synergistic effects, low environmentally present concentrations of imazalil and cypermethrin in food, and especially their mixtures with carbendazim have genotoxic potential that could be particularly dangerous over prolonged exposure in mammalian organism.
Collapse
Affiliation(s)
- D Ðikić
- Department of Animal Physiology, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1247] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Produced by the mould genus Fusarium, the type B trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated precursors. These mycotoxins often contaminate cereal staples, posing a potential threat to public health that is still incompletely understood. Understanding the mechanistic basis by which these toxins cause toxicity in experimental animal models will improve our ability to predict the specific thresholds for adverse human effects as well as the persistence and reversibility of these effects. Acute exposure to DON and NIV causes emesis in susceptible species such as pigs in a manner similar to that observed for certain bacterial enterotoxins. Chronic exposure to these mycotoxins at low doses causes growth retardation and immunotoxicity whereas much higher doses can interfere with reproduction and development. Pathophysiological events that precede these toxicities include altered neuroendocrine responses, upregulation of proinflammatory gene expression, interference with growth hormone signalling and disruption of gastrointestinal tract permeability. The underlying molecular mechanisms involve deregulation of protein synthesis, aberrant intracellular cell signalling, gene transactivation, mRNA stabilisation and programmed cell death. A fusion of basic and translational research is now needed to validate or refine existing risk assessments and regulatory standards for DON and NIV. From the perspective of human health translation, biomarkers have been identified that potentially make it possible to conduct epidemiological studies relating DON consumption to potential adverse human health effects. Of particular interest will be linkages to growth retardation, gastrointestinal illness and chronic autoimmune diseases. Ultimately, such knowledge can facilitate more precise science-based risk assessment and management strategies that protect consumers without reducing availability of critical food sources.
Collapse
Affiliation(s)
- J. Pestka
- Deptartment of Food Science and Human Nutrition, Deptartment of Microbiology and Molecular Genetics, Center for Integrative Toxicology, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA
| |
Collapse
|
13
|
Paterson RRM, Lima N. Mutagens manufactured in fungal culture may affect DNA/RNA of producing fungi. J Appl Microbiol 2010; 106:1070-80. [PMID: 19291250 DOI: 10.1111/j.1365-2672.2008.04024.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-produced mutagens in culture by fungi may affect DNA analysis of the same fungi. This has not been considered previously. Many fungi produce numerous mutagenic secondary metabolites (SM) in culture. There is a paradox of growing fungi in media to produce representative DNA which also support mutagenic SM. This is a crucial issue in developing diagnostic and phylogenetic methods, especially for closely-related fungi. For example, idh gene analysis of the patulin metabolic pathway in fungi can be interpreted as producing some false negative and positive results in terms of possession, or nonpossession, of the gene from mutated strains. The most obvious mycotoxins and fungi to consider in this regard are aflatoxins and Aspergillus, as aflatoxins are the most mutagenic natural compounds. Many other fungi and SM are relevant. Conditions to grow fungi have not been selected to inhibit SM production although relevant data exist. In fact, fungi repair damaged nucleic acid (NA) and are capable of removing toxins by employing transporter proteins. These and NA repair mechanisms could be inhibited by secondary metabolites. Mutagenic effects may involve inhibition of DNA stabilizing enzymes. There may be an equivalent situation for bacteria. Researchers need to devise methods to reduce SM for valid protocols. More work on how mutagens affect the NA of producing fungus in vitro is required. The current review assesses the potential seriousness of the situation with selected papers.
Collapse
Affiliation(s)
- R R M Paterson
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Braga, Portugal.
| | | |
Collapse
|
14
|
Eggert K, Hollmann J, Hiller B, Kruse HP, Rawel HM, Pawelzik E. Effects of fusarium infection on the phenolics in emmer and naked barley. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3043-9. [PMID: 20143853 DOI: 10.1021/jf903545j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inoculated or non-inoculated naked barley and emmer cultivars were investigated with regard to their influence on phenolic acid profiles and their arabinoxylan content. Two groups of phenolic compounds were differentiated-methanol-soluble and hydrolyzable covalent-bound phenolic compounds. Chromatographic methods were applied for their analysis. The results showed ferulic acid as the predominant phenol in both total and covalent-bound fractions. The inoculation significantly reduced the ferulic acid content within a range of 5.6-6.6% in the two cereals and all their cultivars. Naked barley cultivars additionally contained the flavonoid catechin in the soluble fraction. The innoculation led here to a significant increase in the catechin content of about 4.5%. These results document an induction of the synthesis of catechin in naked barley after artificial Fusarium infection, whereas the ferulic acid content declined.
Collapse
Affiliation(s)
- Kai Eggert
- Quality of Plant Products, Department of Crop Sciences, Faculty of Agricultural Sciences, Georg-August University Gottingen, 37075 Gottingen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
The influence of Fusarium infection and growing location on the quantitative protein composition of (Part II) naked barley (Hordeum vulgare nudum). Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1234-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
The influence of Fusarium infection and growing location on the quantitative protein composition of (part I) emmer (Triticum dicoccum). Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1229-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Abstract
Humans are exposed to mycotoxins via ingestion, contact and inhalation. This must have occurred throughout human history and led to severe outbreaks. Potential diseases range from akakabio-byo to stachybotryotoxicosis and cancer. The known molecular bases of toxicology run the gamut of 23 compounds, from aflatoxins (AFs) to zearalenone, ochratoxin A and deoxynivalenol. Ergotism is one of the oldest recognized mycotoxicosis, although mycotoxin science only commenced in the 1960s with the discovery of AFs in turkey feed. AFs are carcinogenic. Some others are suspected carcinogens. The effects of mycotoxins are acute or chronic in nature. Mycotoxins are well known in the scientific community, although they have a low profile in the general population. An incongruous situation occurs in United States where mycotoxins from "moldy homes" are considered to be a significant problem, although there is a general debate about seriousness. This contrasts with the thousands of deaths from mycotoxins that occur, even now, in the technologically less developed countries (e.g., Indonesia, China, and Africa). Mycotoxins are more toxic than pesticides. Studies are moving from whole animal work to investigating the biochemical mechanisms in isolated cells, and the mechanisms of toxicity at the molecular level are being elucidated. The stereochemical nature of AFs has been shown to be important. In addition, the effect of multiple mycotoxins is being increasingly investigated, which will more accurately represent the situation in nature. It is anticipated that more fungal metabolites will be recognized as dangerous toxins and permitted statutory levels will decrease in the future.
Collapse
Affiliation(s)
- Robert R M Paterson
- IBB-Institute for Biotechnology and Bioengineering, Universidade do Minho, Portugal.
| | | |
Collapse
|
18
|
Türker L, Gümüş S. Quantum chemical treatment of nivalenol and its tautomers. JOURNAL OF HAZARDOUS MATERIALS 2008; 153:329-39. [PMID: 17904283 DOI: 10.1016/j.jhazmat.2007.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 05/17/2023]
Abstract
Nivalenol, a highly poisonous mycotoxin, and its possible tautomers have been considered theoretically by RHF/6-31G/d,p) and B3LYP/6-31G(d,p) calculations together with a semi-empirical PM3 method. The calculations revealed that some of the tautomers are more stable and exothermic than nivalenol. The calculated IR spectra as well as some geometrical and physicochemical properties of the structures considered have been presented.
Collapse
Affiliation(s)
- Lemi Türker
- Middle East Technical University, Department of Chemistry, Ankara, Turkey.
| | | |
Collapse
|
19
|
Ivanov SD, Yashmanov VA, Kovan'ko EG, Vorobtsova IE, Poroshina TE, Bershtein LM. Comparative study of postradiation genotoxic changes in mammalian cells by biochemical and cytogenetic methods. Bull Exp Biol Med 2007; 142:679-82. [PMID: 17603668 DOI: 10.1007/s10517-006-0449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The results of studying the genotoxic effect of radiation on endometrial cells of irradiated rats using comet assay correlated with the index of spontaneous DNA degradation. Studying the genotoxic effect of in vitro irradiation (2 Gy) on human lymphocytes by means of chromosome analysis and fluorometric assay of nucleoids DNA in irradiated leukocytes also yielded similar results. Measuring of the biochemical marker holds much promise as an express method of evaluation of the genotoxic effect of radiation on mammalian somatic cells.
Collapse
Affiliation(s)
- S D Ivanov
- Central Research Institute of Roentgenoradiology, Russian Ministry of Health, St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Bony S, Olivier-Loiseau L, Carcelen M, Devaux A. Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicol In Vitro 2006; 21:457-65. [PMID: 17161579 DOI: 10.1016/j.tiv.2006.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/30/2006] [Accepted: 10/30/2006] [Indexed: 10/23/2022]
Abstract
This study aims to assess the genotoxic potential of nivalenol (NIV) and fusarenon X (FusX), produced by various Fusarium on cereals. Toxins were applied in time and dose-dependent experiments to the human enterocyte-like Caco-2 cell-line, both in dividing (undifferentiated) and in 10-12 days post-confluent cells (differentiated). Genotoxicity was evaluated through the alkaline Comet assay in a concentration range defined for each toxin as below the cytotoxicity threshold IC(10), determined by the MTS and the neutral red assays, to prevent false positive results because of DNA damage stemming from necrosis. Thus, genotoxicity was explored in the sub-cytotoxic 0-0.5 microM and 0-0.05 microM ranges respectively for NIV and FusX as the latter was found about 10-fold more cytotoxic than NIV. For both toxins, a 3h exposure did not cause any DNA damage, unlike after 24 and 72 h exposure in post confluent Caco-2 cells where DNA damage was significantly observed with a dose-dependent relationship. In dividing cells, only FusX increases DNA strand breaks in the 0.01-0.05 microM range after 72 h. These results demonstrated the existence of a genotoxic potential for NIV and FusX at low exposure levels and could contribute to the risk assessment process of these toxins that are of growing concern.
Collapse
Affiliation(s)
- S Bony
- UMR INRA-DGER Mycotoxines et Toxicologie Comparée des Xénobiotiques, Ecole Nationale Vétérinaire de Lyon, 1, av. Bourgelat, F-69280 Marcy l'Etoile, France.
| | | | | | | |
Collapse
|
22
|
Bony S, Carcelen M, Olivier L, Devaux A. Genotoxicity assessment of deoxynivalenol in the Caco-2 cell line model using the Comet assay. Toxicol Lett 2006; 166:67-76. [PMID: 16828243 DOI: 10.1016/j.toxlet.2006.04.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/28/2006] [Accepted: 04/28/2006] [Indexed: 11/25/2022]
Abstract
The genotoxic risk associated with deoxynivalenol (DON), a prevalent trichothecene mycotoxin which contaminates cereal-based products has not yet been deeply explored. In this work, the alkaline version of the Comet assay was used to evaluate DNA damage stemming from DON exposure in both dividing and differentiated Caco-2 cells, an epithelial intestinal cell line. To avoid false positive results, cytotoxic and apoptotic thresholds were firstly established using the MTS and neutral red assays and the Hoestch staining method, respectively. Dividing cells were found to be more sensitive to DON than differentiated cells and the lowest IC(10) (0.5 microM) obtained for dividing cells exposed for 72 h was used as the highest working concentration in the genotoxicity study. Both differentiated and dividing cells responded with a dose-dependent relationship to DON in terms of DNA damage in the 0.01-0.5 microM range. These results demonstrated the existence of a genotoxic potential for DON at low concentrations compatible with actual exposure situations and calls for additional studies to determine the functional consequences which could be taken into account for the risk assessment of this food contaminant.
Collapse
Affiliation(s)
- Sylvie Bony
- UMR INRA-DGER Mycotoxines et Toxicologie Comparée des Xénobiotiques, Ecole Nationale Vétérinaire de Lyon, F-69280 Marcy l'Etoile, France.
| | | | | | | |
Collapse
|
23
|
Patel S, Pandey AK, Bajpayee M, Parmar D, Dhawan A. Cypermethrin-induced DNA damage in organs and tissues of the mouse: Evidence from the comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 607:176-83. [PMID: 16765632 DOI: 10.1016/j.mrgentox.2006.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 02/13/2006] [Accepted: 04/10/2006] [Indexed: 11/28/2022]
Abstract
Cypermethrin is the most widely used Type II pyrethroid pesticide because of its high effectiveness against target species and its low mammalian toxicity reported so far. It is a fast-acting neurotoxin and is known to cause free radical-mediated tissue damage. The present study investigates the genotoxic effects of cypermethrin in multiple organs (brain, kidney, liver, spleen) and tissues (bone marrow, lymphocytes) of the mouse, using the alkaline comet assay. Male Swiss albino mice were given 12.5, 25, 50, 100, 200 mg/kg BW of cypermethrin intraperitoneally, daily for 5 consecutive days. A statistically significant (p<0.05) dose-dependent increase in DNA damage was observed in all the organs assessed, as evident from the comet-assay parameters, viz., Olive tail moment (OTM; arbitrary unit), tail DNA (%) and tail length (microm). Brain showed maximum DNA damage followed by spleen>kidney>bone marrow>liver>lymphocytes, as evident by the OTM. Our data demonstrate that cypermethrin induces systemic genotoxicity in mammals as it causes DNA damage in vital organs like brain, liver, kidney, apart from that in the hematopoietic system.
Collapse
Affiliation(s)
- Sushila Patel
- Developmental Toxicology Section, Predictive Toxicology Group, Industrial Toxicology Research Centre, PO Box 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
24
|
Kanno SI, Uwai K, Tomizawa A, Hiura T, Osanai Y, Ujibe M, Takeshita M, Ohtake T, Kimura K, Ishikawa M. Trimidox Induces Apoptosis via Cytochrome c Release in NALM-6 Human B Cell Leukaemia Cells. Basic Clin Pharmacol Toxicol 2006; 98:44-50. [PMID: 16433890 DOI: 10.1111/j.1742-7843.2006.pto_188.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trimidox (3,4,5-trihydroxybenzamidoxime) has been shown to reduce the activity of ribonucleotide reductase accompanied by growth inhibition and the differentiation of mammalian cells. Here we examine the induction of apoptosis by trimidox in several human leukaemia cell lines, focusing on the release of cytochrome c and the activation of caspase proteases in the human B cell line NALM-6. Induction of apoptosis by trimidox (300 microM) was detected in NALM-6, HL-60 (premyelocytic leukaemia cells), MOLT-4 (an acute lymphoblastic leukaemia cells), Jurkat (a T-cell leukaemia cells), U937 (expressing many monocyte-like characteristics), and K562 (erythroleukaemia). NALM-6 was most affected by trimidox among leukaemia cells; therefore, we employed NALM-6 cells in the subsequent experiments. The cells showed a time-dependent increase in DNA damage after trimidox (250 microM) treatment. A significant increase in the amount of cytochrome c release was detected after treatment with trimidox. Bcl-2 and Bax protein expressions were not changed by trimidox. Caspase-3 and -9 were activated by incubation with trimidox, whereas caspase-8 was not. Furthermore, trimidox-induced apoptosis was prevented by a broad-spectrum caspase inhibitor, a caspase-3, and a caspase-9 inhibitor, but not by a caspase-8 inhibitor. Inhibition of c-Jun NH2-terminal kinase (JNK) by SP600125 appreciably protected cells from trimidox-induced apoptosis, but no effect inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580. In contrast, extracellular signal-regulated kinase (ERK) inhibitors U0126 and PD98059 strongly potentiated the apoptotic effect of trimidox. This report shows that the induction of apoptosis by trimidox occurs through a cytochrome c-dependent pathway, which sequentially activates caspase-3 and caspase-9.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Pharmacology and Toxicology, Cancer Research Institute, Tohoku Pharmaceutical University, Komatsushima, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Berstein L, Kovalevskij A, Zimarina T, Maximov S, Gershfeld E, Vasilyev D, Baisheva S, Baymakhasheva A, Thijssen JHH. Aromatase and comparative response to its inhibitors in two types of endometrial cancer. J Steroid Biochem Mol Biol 2005; 95:71-4. [PMID: 15939586 DOI: 10.1016/j.jsbmb.2005.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aromatase activity (AA) was evaluated totally in 80 tumors collected from primary endometrial cancer (EC) patients. All patients were divided into cases belonging to the types I or II of EC (respectively, 50 and 30 observations). Samples of malignant endometrium from type II demonstrated inclination to the higher AA in comparison with type I samples; the difference reached level of statistical significance in non-smoking patients (p=0.02). Although no positive correlation was revealed between AA in EC tissue and percentage of cells with DNA damage in normal endometrium from the same patients, the rate of DNA damage (percent of comets, comet's tail average length, etc.) was higher in intact endometrium collected from patients with type II of the disease. In 19 tumor samples, CYP19 gene expression was evaluated by RT-PCR and level of mRNA signal demonstrated positive correlation with AA (R(s)=+0.63, p=0.05) in the whole this material. Of note, though, CYP19 mRNA expression was not revealed in six cases, and all of them belonged to the type I of disease. Finally, in 23 EC patients (15 with type I and 8 with type II of the disease) effects of 2 weeks treatment with letrozole (10 pts) and exemestane (13 pts) were evaluated in neoadjuvant setting. Although diminishing of endometrial M-echo signal and the increases in FSH and LH concentration after treatment were more pronounced in type I patients, decrease in tumor PR content (p=0.04) was more revealing in patients with type II of EC; besides, the decreases in AA in tumor tissue by the end of treatment were noted predominantly in patients with lower body weight (BMI <27.5). Thus, although type II of EC is frequently considered as hormone-independent, increased ability of this type of the tumor to estrogen biosynthesis (at CYP19 gene and protein level) may lead to the reconsideration of such conclusion and warrants further investigation. The search of possible ethnic differences in AA and in the biologic response to aromatase inhibitors in EC can be of importance too.
Collapse
Affiliation(s)
- L Berstein
- Laboratory of Oncoendocrinology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kanno SI, Shouji A, Hirata R, Asou K, Ishikawa M. Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in P388 cells. Life Sci 2004; 75:353-65. [PMID: 15135655 DOI: 10.1016/j.lfs.2003.12.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 12/20/2003] [Indexed: 12/17/2022]
Abstract
Naringin (NG), a flavonoid in grapefruit and citrus, has been reported to exhibit antioxidant effects and pharmacological actions. Recently, we have reported that NG suppressed the cytotoxicity and apoptosis induced by H(2)O(2), a typical pro-oxidant, in mouse leukemia P388 cells. Cytosine arabinoside (1-beta-d-arabinofuranosylcytosine; Ara-C) is the most important antimetabolite chemotherapeutic drug used for acute leukemia. It has been suggested that Ara-C-induced cytotoxicity is caused by apoptosis, which is mediated by reactive oxygen species (ROS). In this study, we examined the effect of NG on the cytotoxicity and apoptosis in mouse leukemia P388 cells treated with Ara-C. Ara-C caused cytotoxicity in a concentration and time-dependent manner in the cells. N-Acetyl-L-cysteine (NAC), cystamine (CysA) or a reduced form of glutathione (GSH), typical antioxidants significantly blocked Ara-C-induced cytotoxicity. Similarly, Ara-C-induced cell death was completely prevented by NG. NG strongly reduced ROS production caused by Ara-C in the cells. NG slightly increased the activities of antioxidant enzymes, catalase and glutathione peroxidase. Ara-C caused apoptosis with nuclear morphological change and DNA fragmentation. NG remarkably attenuated the Ara-C-induced apoptosis. NG completely blocked the DNA damage caused by Ara-C treatment at 6 h using the Comet assay. Our data suggest that NG reduces Ara-C-induced oxidative stress through both an inhibition of the generation of ROS production and an increase in antioxidant enzyme activities. Consequently, NG blocked apoptosis caused by Ara-C-induced oxidative stress, resulting in the inhibition of the cytotoxicity of Ara-C.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Pharmacology and Toxicology, Cancer Research Institute, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba, Sendai 981-8558, Japan.
| | | | | | | | | |
Collapse
|
27
|
Kanno SI, Shouji A, Asou K, Ishikawa M. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci 2003; 92:166-70. [PMID: 12832847 DOI: 10.1254/jphs.92.166] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flavonoids are widely recognized as naturally occurring antioxidants. Naringin (NG) is one of the flavonoid components in citrus fruits such as grapefruit. Hydrogen peroxide (H2O2) causes cytotoxicity through oxidative stress and apoptosis. In this paper, we examined the effects of NG on H2O2-induced cytotoxicity and apoptosis in mouse leukemia P388 cells. Cytotoxicity was determined by mitochondrial activity (MTT assay). Apoptosis and DNA damage were analyzed by measuring chromatin condensation and Comet assay (alkaline single cell gel electrophoresis), respectively. H2O2-induced cytotoxicity was significantly attenuated by NG or the reduced form of glutathione (GSH), a typical intracellular antioxidant. NG suppressed chromatin condensation and DNA damage induced by H2O2. These results indicate that NG from natural products is a useful drug having antioxidant and anti-apoptopic properties.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Pharmacology and Toxicology, Cancer Research Institute, Tohoku Pharmaceutical University.
| | | | | | | |
Collapse
|
28
|
Bershtein LM, Tsyrlina EV, Poroshina TE, Bychkova NV, Kalinina NM, Gamayunova VB, Kryukova OG, Kovalenko IG, Vasil'ev DA. Induction of the estrogen effect-switching phenomenon by ethanol and its correction. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:603-7. [PMID: 12469887 DOI: 10.1023/a:1020405610682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Female rats (aged three months at the start of the study) were kept for four months on drinking water (group 1) or 5% ethanol. Rats drinking ethanol were additionally divided into six groups (groups 2-7). During the next two months of the experiment, animals of group 2 continued to drink only ethanol, while rats of group 3 additionally received N-acetylcysteine, those of group 4 received ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E), those of group 5 received melatonin, those of group 6 received carnosine, and those of group 7 swam in the so-called training regime for five days a week. All animals underwent bilateral ovariectomy 2.5 weeks before experiments ended, and were given daily i.m. estradiol (2 microg) during the 11 days before the last experimental day. After treatments, blood estradiol and cholesterol levels were measured, along with progesterone receptor levels, peroxidase activity, the index of proliferation, the proportions of cells in the S and G2/M phases, the thickness of the endometrium, and the extent of DNA damage (using the "comet" technique) in uterine tissue. Liver estradiol 2-hydroxylase activity was also measured. The results led to the conclusion that drinking of 5% ethanol in combination with administration of estrogens was accompanied by induction of genotoxic (G) changes in the uterus and that this was prevented by administration of N-acetylcysteine and melatonin. The combination of vitamins C and E increased some of the manifestations of the hormonal (H) effect of estrogens (uterine weight and induction of progesterone receptors), but weakened others (the index of proliferation). As a result, the combination of N-acetylcysteine and optimum doses of ascorbic acid and alpha-tocopherol can be recommended for preventing the estrogen effect-switching phenomenon (increases in the G component on the background of weakening of the H component), which is seen particularly in patients consuming excessive amounts of alcohol, increasing the risk that the genotoxic version of hormonal cancerogenesis will develop.
Collapse
Affiliation(s)
- L M Bershtein
- Professor N. N. Petrov Science Research Institute of Oncology, Ministry of Health of the Russian Federation, 68 Leningradskaya Street, Pesochnyi-2, 189646 St. Petersburg, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sekihashi K, Sasaki T, Yamamoto A, Kawamura K, Ikka T, Tsuda S, Sasaki YF. A comparison of intraperitoneal and oral gavage administration in comet assay in mouse eight organs. Mutat Res 2001; 493:39-54. [PMID: 11516714 DOI: 10.1016/s1383-5718(01)00157-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the important advantages of the comet assay is its ability to detect genotoxicity in many different organs. Since the exposure route of the test compounds is likely to influence the genotoxicity detected in a given organ, it is an important factor to consider when conducting the assay. In this study, we compared the effects of numerous model compounds on eight organs when administered to mice by intraperitoneal (i.p.) injection and oral (p.o.) gavage. Groups of four mice were treated once i.p. or p.o. at the identical proportion of LD50 for each route, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and 24h after treatment. For 19 of the 20 tested mutagens with various modes of action, genotoxicity in some organs varied with treatment route; only the genotoxicity of methyl methane sulfonate was not affected. Treatment route, however, did not produce a qualitative difference in the genotoxicity of promutagens at the sites of conversion to ultimate mutagens, with aromatic hydrocarbons as the exception. When chemicals with positive responses in at least one organ were considered to be comet assay-positive, the administration route made no difference. Since azo reduction is mediated by azo reductase synthesized in the gastrointestinal wall and by gut microflora and i.p.-administered azo dyes bypass their activation site (colon), the administration route is expected to make a difference in their in vivo genotoxicity. Direct-acting mutagens are expected to affect the mucosa of the gastrointestinal tract when given p.o. For those mutagens, however, the administration route did not make a qualitative difference in gastrointestinal tract genotoxicity. Moreover, although the gastrointestinal mucosa is the first site to be exposed to p.o. administered agents, the peak times in the stomach tended to be the same as in most other organs. Based on those results, we concluded that the genotoxicity at high exposures was due to a systemic effect, and that both routes are acceptable for the comet assay when the liver and gastrointestinal organs are sampled, so long as appropriate dose levels for systemic exposure are selected for each route.
Collapse
Affiliation(s)
- K Sekihashi
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Tamonoki Uwanotai 16-1, Hachinohe, Aomori 039-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Sasaki YF, Sekihashi K, Izumiyama F, Nishidate E, Saga A, Ishida K, Tsuda S. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP Carcinogenicity Database. Crit Rev Toxicol 2000; 30:629-799. [PMID: 11145306 DOI: 10.1080/10408440008951123] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The comet assay is a microgel electrophoresis technique for detecting DNA damage at the level of the single cell. When this technique is applied to detect genotoxicity in experimental animals, the most important advantage is that DNA lesions can be measured in any organ, regardless of the extent of mitotic activity. The purpose of this article is to summarize the in vivo genotoxicity in eight organs of the mouse of 208 chemicals selected from International Agency for Research on Cancer (IARC) Groups 1, 2A, 2B, 3, and 4, and from the U.S. National Toxicology Program (NTP) Carcinogenicity Database, and to discuss the utility of the comet assay in genetic toxicology. Alkylating agents, amides, aromatic amines, azo compounds, cyclic nitro compounds, hydrazines, halides having reactive halogens, and polycyclic aromatic hydrocarbons were chemicals showing high positive effects in this assay. The responses detected reflected the ability of this assay to detect the fragmentation of DNA molecules produced by DNA single strand breaks induced chemically and those derived from alkali-labile sites developed from alkylated bases and bulky base adducts. The mouse or rat organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Therefore, organ-specific genotoxicity was necessary but not sufficient for the prediction of organ-specific carcinogenicity. It would be expected that DNA crosslinkers would be difficult to detect by this assay, because of the resulting inhibition of DNA unwinding. The proportion of 10 DNA crosslinkers that was positive, however, was high in the gastrointestinal mucosa, stomach, and colon, but less than 50% in the liver and lung. It was interesting that the genotoxicity of DNA crosslinkers could be detected in the gastrointestinal organs even though the agents were administered intraperitoneally. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative nongenotoxic (Ames test-negative) carcinogens. The Ames test is generally used as a first screening method to assess chemical genotoxicity and has provided extensive information on DNA reactivity. Out of 208 chemicals studied, 117 are Ames test-positive rodent carcinogens, 43 are Ames test-negative rodent carcinogens, and 30 are rodent noncarcinogens (which include both Ames test-positive and negative noncarcinogens). High positive response ratio (110/117) for rodent genotoxic carcinogens and a high negative response ratio (6/30) for rodent noncarcinogens were shown in the comet assay. For Ames test-negative rodent carcinogens, less than 50% were positive in the comet assay, suggesting that the assay, which detects DNA lesions, is not suitable for identifying nongenotoxic carcinogens. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. This assay had a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic noncarcinogens, suggesting that the comet assay can be used to evaluate the in vivo genotoxicity of in vitro genotoxic chemicals. For chemicals whose in vivo genotoxicity has been tested in multiple organs by the comet assay, published data are summarized with unpublished data and compared with relevant genotoxicity and carcinogenicity data. Because it is clear that no single test is capable of detecting all relevant genotoxic agents, the usual approach should be to carry out a battery of in vitro and in vivo tests for genotoxicity. The conventional micronucleus test in the hematopoietic system is a simple method to assess in vivo clastogenicity of chemicals. Its performance is related to whether a chemical reaches the hematopoietic system. Among 208 chemicals studied (including 165 rodent carcinogens), 54 rodents carcinogens do not induce micronuclei in mouse hematopoietic system despite the positive finding with one or two in vitro tests. Forty-nine of 54 rodent carcinogens that do not induce micronuclei were positive in the comet assay, suggesting that the comet assay can be used as a further in vivo test apart from the cytogenetic assays in hematopoietic cells. In this review, we provide one recommendation for the in vivo comet assay protocol based on our own data.
Collapse
Affiliation(s)
- Y F Sasaki
- Laboratory of Genotoxicity, Faculty of Chemical and Biological Engineering, Hachinohe National College of Technology, Hachinohe, Aomori, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
|