1
|
Caswell G, Eshelby B. Skin microbiome considerations for long haul space flights. Front Cell Dev Biol 2022; 10:956432. [PMID: 36158225 PMCID: PMC9493037 DOI: 10.3389/fcell.2022.956432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the human skin microbiome has long been associated with changes to the pH of the skin, dermal immune function and chronic skin conditions. Dermatological issues have been noted as the most prevalent medical presentation in the microgravity environment of space. The change in gravitational forces has been implicated in human immuno-suppression, also impacted by changes in the gastrointestinal-skin axis and its impact on Vitamin D metabolism, altered microbial gene expression in resident flora (leading changes in biofilm formation) and increased virulence factors in potential pathogens. There are also other stressors to the skin microbiome unique to space travel, including increased exposure to radiation, prolonged periods of dry washing technique, air quality and changes in microbe replication and growth parameters. Optimal microbiome health leads to enhanced skin barrier manufacture and maintenance, along with improved skin immune function and healing. In a microgravity environment expected to be experienced during long space flights, disruptions to the skin microbiome, coupled with increased virulence of pathological viruses and bacteria has implications for holistic skin health, astronaut cognitive function and mental health, and is coupled with slowed rates of wound healing. Scenario management for holistic skin health and restoration of microbiome homeostasis on long space flights require consideration.
Collapse
|
2
|
Madrigal P, Singh NK, Wood JM, Gaudioso E, Hernández-Del-Olmo F, Mason CE, Venkateswaran K, Beheshti A. Machine learning algorithm to characterize antimicrobial resistance associated with the International Space Station surface microbiome. MICROBIOME 2022; 10:134. [PMID: 35999570 PMCID: PMC9400218 DOI: 10.1186/s40168-022-01332-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/22/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Antimicrobial resistance (AMR) has a detrimental impact on human health on Earth and it is equally concerning in other environments such as space habitat due to microgravity, radiation and confinement, especially for long-distance space travel. The International Space Station (ISS) is ideal for investigating microbial diversity and virulence associated with spaceflight. The shotgun metagenomics data of the ISS generated during the Microbial Tracking-1 (MT-1) project and resulting metagenome-assembled genomes (MAGs) across three flights in eight different locations during 12 months were used in this study. The objective of this study was to identify the AMR genes associated with whole genomes of 226 cultivable strains, 21 shotgun metagenome sequences, and 24 MAGs retrieved from the ISS environmental samples that were treated with propidium monoazide (PMA; viable microbes). RESULTS We have analyzed the data using a deep learning model, allowing us to go beyond traditional cut-offs based only on high DNA sequence similarity and extending the catalog of AMR genes. Our results in PMA treated samples revealed AMR dominance in the last flight for Kalamiella piersonii, a bacteria related to urinary tract infection in humans. The analysis of 226 pure strains isolated from the MT-1 project revealed hundreds of antibiotic resistance genes from many isolates, including two top-ranking species that corresponded to strains of Enterobacter bugandensis and Bacillus cereus. Computational predictions were experimentally validated by antibiotic resistance profiles in these two species, showing a high degree of concordance. Specifically, disc assay data confirmed the high resistance of these two pathogens to various beta-lactam antibiotics. CONCLUSION Overall, our computational predictions and validation analyses demonstrate the advantages of machine learning to uncover concealed AMR determinants in metagenomics datasets, expanding the understanding of the ISS environmental microbiomes and their pathogenic potential in humans. Video Abstract.
Collapse
Affiliation(s)
- Pedro Madrigal
- Jeffrey Cheah Biomedical Centre, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Present Address: European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Hinxton, CB10 1SD, UK.
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Jason M Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Elena Gaudioso
- Department of Artificial Intelligence, Computer Science School, Universidad Nacional de Educación a Distancia (UNED), 28040, Madrid, Spain
| | - Félix Hernández-Del-Olmo
- Department of Artificial Intelligence, Computer Science School, Universidad Nacional de Educación a Distancia (UNED), 28040, Madrid, Spain
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
3
|
Chi Y, Wang X, Li F, Zhang Z, Tan P. Aerospace Technology Improves Fermentation Potential of Microorganisms. Front Microbiol 2022; 13:896556. [PMID: 35572688 PMCID: PMC9106405 DOI: 10.3389/fmicb.2022.896556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
It is highly possible to obtain high-quality microbial products in appreciable amounts, as aerospace technology is advancing continuously. Genome-wide genetic variations in microorganisms can be triggered by space microgravity and radiation. Mutation rate is high, mutant range is wide, and final mutant character is stable. Therefore, space microorganism breeding is growing to be a new and promising area in microbial science and has greatly propelled the development of fermentation technology. Numerous studies have discovered the following improvements of fermentation potential in microorganisms after exposure to space: (1) reduction in fermentation cycle and increase in growth rate; (2) improvement of mixed fermentation species; (3) increase in bacterial conjugation efficiency and motility; (4) improvement of the bioactivity of various key enzymes and product quality; (5) enhancement of multiple adverse stress resistance; (6) improvement of fermentation metabolites, flavor, appearance, and stability. Aerospace fermentation technology predominantly contributes to bioprocessing in a microgravity environment. Unlike terrestrial fermentation, aerospace fermentation keeps cells suspended in the fluid medium without significant shear forces. Space radiation and microgravity have physical, chemical, and biological effects on mutant microorganisms by causing alternation in fluid dynamics and genome, transcriptome, proteome, and metabolome levels.
Collapse
Affiliation(s)
- Yan Chi
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | - Xuejiang Wang
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | - Feng Li
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | - Zhikai Zhang
- Wuzhoufeng Agricultural Science and Technology Co., Ltd., Yantai, China
| | - Peiwen Tan
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
5
|
Stability of Antimicrobial Drug Molecules in Different Gravitational and Radiation Conditions in View of Applications during Outer Space Missions. Molecules 2021; 26:molecules26082221. [PMID: 33921448 PMCID: PMC8069917 DOI: 10.3390/molecules26082221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
The evolution of different antimicrobial drugs in terrestrial, microgravity and hypergravity conditions is presented within this review, in connection with their implementation during human space exploration. Drug stability is of utmost importance for applications in outer space. Instabilities may be radiation-induced or micro-/hypergravity produced. The antimicrobial agents used in space may have diminished effects not only due to the microgravity-induced weakened immune response of astronauts, but also due to the gravity and radiation-altered pathogens. In this context, the paper provides schemes and procedures to find reliable ways of fighting multiple drug resistance acquired by microorganisms. It shows that the role of multipurpose medicines modified at the molecular scale by optical methods in long-term space missions should be considered in more detail. Solutions to maintain drug stability, even in extreme environmental conditions, are also discussed, such as those that would be encountered during long-duration space exploratory missions. While the microgravity conditions may not be avoided in space, the suggested approaches deal with the radiation-induced modifications in humans, bacteria and medicines onboard, which may be fought by novel pharmaceutical formulation strategies along with radioprotective packaging and storage.
Collapse
|
6
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
7
|
Cortesão M, Schütze T, Marx R, Moeller R, Meyer V. Fungal Biotechnology in Space: Why and How? GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Blue RS, Bayuse TM, Daniels VR, Wotring VE, Suresh R, Mulcahy RA, Antonsen EL. Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. NPJ Microgravity 2019; 5:14. [PMID: 31231676 PMCID: PMC6565689 DOI: 10.1038/s41526-019-0075-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
In order to maintain crew health and performance during long-duration spaceflight outside of low-Earth orbit, NASA and its international partners must be capable of providing a safe and effective pharmacy. Given few directed studies of pharmaceuticals in the space environment, it is difficult to characterize pharmaceutical effectiveness or stability during spaceflight; this in turn makes it challenging to select an appropriate formulary for exploration. Here, we present the current state of literature regarding pharmaceutical stability, metabolism, and effectiveness during spaceflight. In particular, we have attempted to highlight the gaps in current knowledge and the difficulties in translating terrestrial-based drug studies to a meaningful interpretation of drug stability, safety, and effectiveness in space. We hope to identify high-yield opportunities for future research that might better define and mitigate pharmaceutical risk for exploration missions.
Collapse
Affiliation(s)
- Rebecca S Blue
- 1Aerospace Medicine and Vestibular Research Laboratory, The Mayo Clinic Arizona, Scottsdale, AZ 85054 USA.,2GeoControl Systems, Inc, Houston, TX 77058 USA
| | | | | | - Virginia E Wotring
- 4Department of Pharmacology and Chemical Biology and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - Rahul Suresh
- 5Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555-1110 USA
| | - Robert A Mulcahy
- 6National Aeronautics and Space Administration (NASA), Johnson Space Center, Houston, TX 77058 USA
| | - Erik L Antonsen
- 6National Aeronautics and Space Administration (NASA), Johnson Space Center, Houston, TX 77058 USA.,7Department of Emergency Medicine and Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
9
|
Zhang B, Bai P, Zhao X, Yu Y, Zhang X, Li D, Liu C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China's Shenzhou-11 spacecraft. Microbiologyopen 2019; 8:e00833. [PMID: 30912318 PMCID: PMC6741137 DOI: 10.1002/mbo3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
China launched the Tiangong-2 space laboratory in 2016 and will eventually build a basic space station by the early 2020s. These spaceflight missions require astronauts to stay on the space station for more than 6 months, and they inevitably carry microbes into the space environment. It is known that the space environment affects microbial behavior, including growth rate, biofilm formation, virulence, drug resistance, and metabolism. However, the mechanisms of these alternations have not been fully elucidated. Therefore, it is beneficial to monitor microorganisms for preventing infections among astronauts in a space environment. Salmonella enteritidis is a Gram-negative bacterial pathogen that commonly causes acute gastroenteritis in humans. In this study, to better understand the effects of the space environment on S. enteritidis, a S. enteritidis strain was taken into space by the Shenzhou-11 spacecraft from 17 October 2016 to 18 November 2016, and a ground simulation with similar temperature conditions was simultaneously performed as a control. It was found that the flight strain displayed an increased growth rate, enhanced amikacin resistance, and some metabolism alterations compared with the ground strain. Enrichment analysis of proteome revealed that the increased growth rate might be associated with differentially expressed proteins involved in transmembrane transport and energy production and conversion assembly. A combined transcriptome and proteome analysis showed that the amikacin resistance was due to the downregulation of the oppA gene and oligopeptide transporter protein OppA. In conclusion, this study is the first systematic analysis of the phenotypic, genomic, transcriptomic, and proteomic variations in S. enteritidis during spaceflight and will provide beneficial insights for future studies on space microbiology.
Collapse
Affiliation(s)
- Bin Zhang
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xian Zhao
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Gan L, Chao Y, Su H, Ren Y, Yin S, Han L. Altered Promoter and G-Box Binding Factor for 1-Deoxy-d-Xylulose-5-Phosphate Synthase Gene Grown from Poa pratensis Seeds after Spaceflight. Int J Mol Sci 2019; 20:ijms20061398. [PMID: 30901811 PMCID: PMC6471272 DOI: 10.3390/ijms20061398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
In plant cells, the nucleus DNA is considered the primary site of injury by the space environment, which could generate genetic alteration. As the part of genomic mutation, genetic variation in the promoter region could regulate gene expression. In the study, it is observed that there is a deletion in the upstream regulatory region of the 1-deoxy-d-xylulose-5-phosphate synthase 1 gene (PpDXS1) of Poa pratensis dwarf mutant and the PpDXS1 transcript abundance is lower in the dwarf mutant. It is indicated that the deletion in the promoter region between wild type and dwarf mutant could be responsible for the regulation of PpDXS1 gene expression. The PpDXS1 promoter of dwarf mutant shows a lower activity as determined by dual luciferase assay in Poa pratensis protoplast, as well as the GUS activity is lower in transgenic Poa pratensis plant. To further investigate the effect of the deletion in the promoter region on PpDXS1 transcript accumulation, the transient assay and yeast one-hybrid experiment demonstrate that the deletion comprises a motif which is a target of G-box binding factor (GBF1), and the motif correlates with an increase in transactivation by GBF1 protein. Taken together, these results indicate that the deletion in the promoter of PpDXS1 isolated from dwarf mutant is sufficient to account for the decrease in PpDXS1 transcript level and GBF1 can regulate the PpDXS1 gene expression, and subsequently affect accumulation of various isoprenoids throughout the plant.
Collapse
Affiliation(s)
- Lu Gan
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Yuehui Chao
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Haotian Su
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Yujing Ren
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Shuxia Yin
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Senatore G, Mastroleo F, Leys N, Mauriello G. Effect of microgravity & space radiation on microbes. Future Microbiol 2018; 13:831-847. [PMID: 29745771 DOI: 10.2217/fmb-2017-0251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the new challenges facing humanity is to reach increasingly further distant space targets. It is therefore of upmost importance to understand the behavior of microorganisms that will unavoidably reach the space environment together with the human body and equipment. Indeed, microorganisms could activate their stress defense mechanisms, modifying properties related to human pathogenesis. The host-microbe interactions, in fact, could be substantially affected under spaceflight conditions and the study of microorganisms' growth and activity is necessary for predicting these behaviors and assessing precautionary measures during spaceflight. This review gives an overview of the effects of microgravity and space radiation on microorganisms both in real and simulated conditions.
Collapse
Affiliation(s)
- Giuliana Senatore
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Felice Mastroleo
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
12
|
Characterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station. mSphere 2016; 1:mSphere00227-16. [PMID: 27830189 PMCID: PMC5082629 DOI: 10.1128/msphere.00227-16] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/01/2016] [Indexed: 01/02/2023] Open
Abstract
One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspergillus fumigatus collected from the ISS and a comparison to the experimentally established clinical isolates Af293 and CEA10. Whole-genome sequencing of ISSFT-021 and IF1SW-F4 showed 54,960 and 52,129 single nucleotide polymorphisms, respectively, compared to Af293, which is consistent with observed genetic heterogeneity among sequenced A. fumigatus isolates from diverse clinical and environmental sources. Assessment of in vitro growth characteristics, secondary metabolite production, and susceptibility to chemical stresses revealed no outstanding differences between ISS and clinical strains that would suggest special adaptation to life aboard the ISS. Virulence assessment in a neutrophil-deficient larval zebrafish model of invasive aspergillosis revealed that both ISSFT-021 and IF1SW-F4 were significantly more lethal than Af293 and CEA10. Taken together, these genomic, in vitro, and in vivo analyses of two A. fumigatus strains isolated from the ISS provide a benchmark for future investigations of these strains and for continuing research on specific microbial isolates from manned space environments. IMPORTANCE As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions.
Collapse
|
13
|
Guo Y, Li J, Liu J, Wang T, Li Y, Yuan Y, Zhao J, Chang D, Fang X, Li T, Wang J, Dai W, Fang C, Liu C. Effects of Space Environment on Genome, Transcriptome, and Proteome of Klebsiella pneumoniae. Arch Med Res 2015; 46:609-18. [DOI: 10.1016/j.arcmed.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023]
|
14
|
Abstract
Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit.
Collapse
|
15
|
|
16
|
Genes required for survival in microgravity revealed by genome-wide yeast deletion collections cultured during spaceflight. BIOMED RESEARCH INTERNATIONAL 2015; 2015:976458. [PMID: 25667933 PMCID: PMC4309212 DOI: 10.1155/2015/976458] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
Spaceflight is a unique environment with profound effects on biological systems including tissue redistribution and musculoskeletal stresses. However, the more subtle biological effects of spaceflight on cells and organisms are difficult to measure in a systematic, unbiased manner. Here we test the utility of the molecularly barcoded yeast deletion collection to provide a quantitative assessment of the effects of microgravity on a model organism. We developed robust hardware to screen, in parallel, the complete collection of ~4800 homozygous and ~5900 heterozygous (including ~1100 single-copy deletions of essential genes) yeast deletion strains, each carrying unique DNA that acts as strain identifiers. We compared strain fitness for the homozygous and heterozygous yeast deletion collections grown in spaceflight and ground, as well as plus and minus hyperosmolar sodium chloride, providing a second additive stressor. The genome-wide sensitivity profiles obtained from these treatments were then queried for their similarity to a compendium of drugs whose effects on the yeast collection have been previously reported. We found that the effects of spaceflight have high concordance with the effects of DNA-damaging agents and changes in redox state, suggesting mechanisms by which spaceflight may negatively affect cell fitness.
Collapse
|
17
|
Saei AA, Barzegari A. The microbiome: the forgotten organ of the astronaut’s body – probiotics beyond terrestrial limits. Future Microbiol 2012; 7:1037-46. [DOI: 10.2217/fmb.12.82] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Space medicine research has drawn immense attention toward provision of efficient life support systems during long-term missions into space. However, in extended missions, a wide range of diseases may affect astronauts. In space medicine research, the gastrointestinal microbiome and its role in maintaining astronauts’ health has received little attention. We would like to draw researchers’ attention to the significant role of microbiota. Because of the high number of microorganisms in the human body, man has been called a ‘supra-organism’ and gastrointestinal flora has been referred to as ‘a virtual organ of the human body’. In space, the lifestyle, sterility of spaceship and environmental stresses can result in alterations in intestinal microbiota, which can lead to an impaired immunity and predispose astronauts to illness. This concern is heightened by increase in virulence of pathogens in microgravity. Thus, design of a personal probiotic kit is recommended to improve the health status of astronauts.
Collapse
Affiliation(s)
- Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Astrobiology & Space Medicine Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Astrobiology & Space Medicine Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Huang Y, Gou X, Hu H, Xu Q, Lu Y, Cheng J. Enhanced S-adenosyl-l-methionine production in Saccharomyces cerevisiae by spaceflight culture, overexpressing methionine adenosyltransferase and optimizing cultivation. J Appl Microbiol 2012; 112:683-94. [PMID: 22313745 DOI: 10.1111/j.1365-2672.2012.05251.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS S-adenosyl-l-methionine (SAM) is an important biochemical molecule with great potential in the pharmacological and chemotherapeutic fields. In this study, our aims were to enhance SAM production in Saccharomyces cerevisiae. METHODS AND RESULTS Through spaceflight culture, a SAM-accumulating strain, S. cerevisiae H5M147, was isolated and found to produce 86·89% more SAM than its ground control strain H5. Amplified fragment length polymorphism (AFLP) analysis demonstrated that there were genetic variations between strain H5M147 and its ground control. Through recombinant DNA technology, the heterologous gene encoding methionine adenosyltransferase was integrated into the genome of strain H5M147. The recombinant strain H5MR83 was selected because its SAM production was increased by 42·98% when compared to strain H5M147. Furthermore, cultivation conditions were optimized using the one-factor-at-a-time and Taguchi methods. Under optimal conditions, strain H5MR83 yielded 7·76 g l(-1) of SAM in shake flask, an increase of 536·07% when compared to the strain H5. Furthermore, 9·64 g l(-1) of SAM was produced in fermenter cultivation. CONCLUSIONS A new SAM-accumulating strain, S. cerevisiae H5MR83, was obtained through spaceflight culture and genetic modification. Under optimal conditions, SAM production was increased to a relative high level in our study. SIGNIFICANCE AND IMPACT OF THE STUDY Through comprehensive application of multiple methods including spaceflight culture, genetic modification and optimizing cultivation, the yield of SAM could be increased by 6·4 times compared to that in the control strain H5. The obtained S. cerevisiae H5MR83 produced 7·76 g l(-1) of SAM in the flask cultures, a significant improvement on previously reported results. The SAM production period with S. cerevisiae H5MR83 was 84 h, which is shorter than previously reported results. Saccharomyces cerevisiae H5MR83 has considerable potential for use in industrial applications.
Collapse
Affiliation(s)
- Y Huang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
19
|
Yatagai F, Honma M, Takahashi A, Omori K, Suzuki H, Shimazu T, Seki M, Hashizume T, Ukai A, Sugasawa K, Abe T, Dohmae N, Enomoto S, Ohnishi T, Gordon A, Ishioka N. Frozen human cells can record radiation damage accumulated during space flight: mutation induction and radioadaptation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:125-134. [PMID: 21161544 DOI: 10.1007/s00411-010-0348-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/20/2010] [Indexed: 05/30/2023]
Abstract
To estimate the space-radiation effects separately from other space-environmental effects such as microgravity, frozen human lymphoblastoid TK6 cells were sent to the "Kibo" module of the International Space Station (ISS), preserved under frozen condition during the mission and finally recovered to Earth (after a total of 134 days flight, 72 mSv). Biological assays were performed on the cells recovered to Earth. We observed a tendency of increase (2.3-fold) in thymidine kinase deficient (TK(-)) mutations over the ground control. Loss of heterozygosity (LOH) analysis on the mutants also demonstrated a tendency of increase in proportion of the large deletion (beyond the TK locus) events, 6/41 in the in-flight samples and 1/17 in the ground control. Furthermore, in-flight samples exhibited 48% of the ground-control level in TK(-) mutation frequency upon exposure to a subsequent 2 Gy dose of X-rays, suggesting a tendency of radioadaptation when compared with the ground-control samples. The tendency of radioadaptation was also supported by the post-flight assays on DNA double-strand break repair: a 1.8- and 1.7-fold higher efficiency of in-flight samples compared to ground control via non-homologous end-joining and homologous recombination, respectively. These observations suggest that this system can be used as a biodosimeter, because DNA damage generated by space radiation is considered to be accumulated in the cells preserved frozen during the mission, Furthermore, this system is also suggested to be applicable for evaluating various cellular responses to low-dose space radiation, providing a better understanding of biological space-radiation effects as well as estimation of health influences of future space explores.
Collapse
Affiliation(s)
- Fumio Yatagai
- The Institute of Physical and Chemical Research (RIKEN), Saitama, 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Guéguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP. Could spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth's orbit? J Leukoc Biol 2009; 86:1027-38. [DOI: 10.1189/jlb.0309167] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Visscher AM, Paul AL, Kirst M, Alling AK, Silverstone S, Nechitailo G, Nelson M, Dempster WF, Van Thillo M, Allen JP, Ferl RJ. Effects of a spaceflight environment on heritable changes in wheat gene expression. ASTROBIOLOGY 2009; 9:359-67. [PMID: 19413505 DOI: 10.1089/ast.2008.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Once it was established that the spaceflight environment was not a drastic impediment to plant growth, a remaining space biology question was whether long-term spaceflight exposure could cause changes in subsequent generations, even if they were returned to a normal Earth environment. In this study, we used a genomic approach to address this question. We tested whether changes in gene expression patterns occur in wheat plants that are several generations removed from growth in space, compared to wheat plants with no spaceflight exposure in their lineage. Wheat flown on Mir for 167 days in 1991 formed viable seeds back on Earth. These seeds were grown on the ground for three additional generations. Gene expression of fourth-generation Mir flight leaves was compared to that of the control leaves by using custom-made wheat microarrays. The data were evaluated using analysis of variance, and transcript abundance of each gene was contrasted among samples with t-tests. After corrections were made for multiple tests, none of the wheat genes represented on the microarrays showed a statistically significant difference in expression between wheat that has spaceflight exposure in their lineage and plants with no spaceflight exposure. This suggests that exposure to the spaceflight environment in low Earth orbit space stations does not cause significant, heritable changes in gene expression patterns in plants.
Collapse
Affiliation(s)
- A M Visscher
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611-0690 , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ohnishi T, Takahashi A, Suzuki H, Omori K, Shimazu T, Ishioka N. Expression of p53-Regulated Genes in Cultured Mammalian Cells After Exposure to A Space Environment. ACTA ACUST UNITED AC 2009. [DOI: 10.2187/bss.23.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Liu HZ, Wang Q, Liu XY, Tan SS. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall. Appl Microbiol Biotechnol 2008; 81:543-50. [DOI: 10.1007/s00253-008-1692-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/24/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
24
|
Taylor PW, Sommer AP. Towards rational treatment of bacterial infections during extended space travel. Int J Antimicrob Agents 2005; 26:183-7. [PMID: 16118047 PMCID: PMC2025679 DOI: 10.1016/j.ijantimicag.2005.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the next 15-30 years, manned space flight to Mars, our planetary neighbour, will become a reality and astronauts are likely to spend at least 2-3 years away from Earth. Time spent in such extreme environments will result in a diminution of immune status and profound changes in the human bacterial microflora. In microgravity, the efficacy of antibiotics is reduced and microbial mutation rates increase dramatically. These factors will impinge on the capacity to treat effectively the infections that will doubtless arise during such long and stressful endeavour. We highlight new rationales for the treatment of infectious disease that may be applicable to therapy in extreme environments such as deep space.
Collapse
Affiliation(s)
- Peter W Taylor
- Microbiology Group, Department of Pharmaceutics, School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
25
|
Ohnishi K, Ohnishi T. The Biological Effects of Space Radiation during Long Stays in Space. ACTA ACUST UNITED AC 2004; 18:201-5. [PMID: 15858386 DOI: 10.2187/bss.18.201] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many space experiments are scheduled for the International Space Station (ISS). Completion of the ISS will soon become a reality. Astronauts will be exposed to low-level background components from space radiation including heavy ions and other high-linear energy transfer (LET) radiation. For long-term stay in space, we have to protect human health from space radiation. At the same time, we should recognize the maximum permissible doses of space radiation. In recent years, physical monitoring of space radiation has detected about 1 mSv per day. This value is almost 150 times higher than that on the surface of the Earth. However, the direct effects of space radiation on human health are currently unknown. Therefore, it is important to measure biological dosimetry to calculate relative biological effectiveness (RBE) for human health during long-term flight. The RBE is possibly modified by microgravity. In order to understand the exact RBE and any interaction with microgravity, the ISS centrifugation system will be a critical tool, and it is hoped that this system will be in operation as soon as possible.
Collapse
Affiliation(s)
- Ken Ohnishi
- Department of Biology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | | |
Collapse
|
26
|
Ohnishi T, Takahashi A, Ohnishi K. Studies about space radiation promote new fields in radiation biology. JOURNAL OF RADIATION RESEARCH 2002; 43 Suppl:S7-S12. [PMID: 12793723 DOI: 10.1269/jrr.43.s7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astronauts are constantly exposed to space radiation of various types of energy with a low dose-rate during long-term stays in space. Therefore, it is important to determine correctly the biological effects of space radiation on human health. Studies about biological the effects at a low dose and a low dose-rate include various aspects of microbeams, bystander effects, radioadaptive responses and hormesis which are important fields in radiation biology. In addition, space radiations contain high linear energy transfer (LET) particles. In particular, neutrons may cause reverse effectiveness at a low dose-rate in comparison to ionizing radiation. We are also interested in p53-centered signal transduction pathways involved in the cell cycle, DNA repair and apoptosis induced by space radiations. We must also study whether the relative biological effectiveness (RBE) of space radiation is affected by microgravity which is another typical component in space. To confirm this, we must prepare centrifuge systems in an International Space Station (ISS). In addition, we must prepare many types of equipment for space experiments in an ISS, because we cannot use conventional equipment from our laboratories. Furthermore, the research for space radiation might give us valuable information about the birth and evolution of life on the Earth. We can also realize the importance of preventing the ozone layer from depletion by the use of exposure equipment to sunlight in an ISS. For these reasons, we desire to educate space researchers of the next generation based on the consideration of the preservation of the Earth from research about space radiation.
Collapse
Affiliation(s)
- Takeo Ohnishi
- Department of Biology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | | | | |
Collapse
|
27
|
Takahashi A, Ohnishi K, Yokota A, Kumagai T, Nakano T, Ohnishi T. Mutation frequency of plasmid DNA and Escherichia coli following long-term space flight on Mir. JOURNAL OF RADIATION RESEARCH 2002; 43 Suppl:S137-S140. [PMID: 12793747 DOI: 10.1269/jrr.43.s137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To elucidate the biological influence of space radiation, we studied the effects of long-term space flight on mutation of the bacterial ribosomal protein L gene (rpsL). We prepared dried samples of plasmid DNA and repair-deficient and wild type cells of Escherichia (E.) coli. After a 40-day space flight on board the Russian space station Mir, the mutation frequencies of the rpsL gene were estimated by transformation of E. coli and by assessment of conversion of rpsL wild type phenotype (SmS) to its mutant phenotype (SmR). The experimental findings indicate that mutation frequencies of space samples were not significantly different from those of ground control samples in plasmid DNA and both E. coli strains. It may suggest that space radiation did not influence mutation frequency.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Department of Biology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Ohnishi T, Takahashi A, Ohnishi K, Takahashi S, Masukawa M, Sekikawa K, Amano T, Nakano T, Nagaoka S. Alkylating agent (MNU)-induced mutation in space environment. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 28:563-568. [PMID: 11799989 DOI: 10.1016/s0273-1177(01)00392-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.
Collapse
Affiliation(s)
- T Ohnishi
- Department of Biology, Nara Medical University, Kashihara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|