1
|
Tamizh Selvan G, Venkatachalam P. Potentials of cytokinesis blocked micronucleus assay in radiation triage and biological dosimetry. J Genet Eng Biotechnol 2024; 22:100409. [PMID: 39674629 PMCID: PMC11381789 DOI: 10.1016/j.jgeb.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The measurement of micronucleus (MN) in the cytokinesis-block arrested binucleated cells has been extensively used as a biomarker in many radiation biology applications in specific biodosimetry. Following radiation casualties, medical management of exposed individuals begins with triage and biological dosimetry. The cytokinesis blocked micronucleus (CBMN) assay is the alternate for the gold standard dicentric chromosome assay in radiation dose assessment. In recent years, the CBMN assay has become well-validated and emerged as a method of choice for evaluating occupational and accidental exposures scenario. It is feasible due to its cost-effective, simple, and rapid dose assessment rather than a conventional chromosome aberration assay. PubMed search tool was used with keywords of MN, biodosimetry, radiotherapy and restricted to human samples. Since Fenech and Morely developed the assay, it has undergone many technical and technological reforms as a biomarker of various applications. In this review, we have abridged recent developments of the CBMN assay in radiation triage and biodosimetry, focusing on (a) the influence of variables on dose estimation, (b) the importance of baseline frequency and reported dose-response coefficient values among different laboratories, (c) inter-laboratory comparison and (d) its limitations and means to overcome them.
Collapse
Affiliation(s)
- G Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangalore, Karnataka, India.
| | - P Venkatachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| |
Collapse
|
2
|
Fenech M, Holland N, Zeiger E, Chang PW, Kirsch-Volders M, Bolognesi C, Stopper H, Knudsen LE, Knasmueller S, Nersesyan A, Thomas P, Dhillon V, Deo P, Franzke B, Andreassi MG, Laffon B, Wagner KH, Norppa H, da Silva J, Volpi EV, Wilkins R, Bonassi S. Objectives and achievements of the HUMN project on its 26th anniversary. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108511. [PMID: 39233049 DOI: 10.1016/j.mrrev.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Micronuclei (MN) are a nuclear abnormality that occurs when chromosome fragments or whole chromosomes are not properly segregated during mitosis and consequently are excluded from the main nuclei and wrapped within nuclear membrane to form small nuclei. This maldistribution of genetic material leads to abnormal cellular genomes which may increase risk of developmental defects, cancers, and accelerated aging. Despite the potential importance of MN as biomarkers of genotoxicity, very little was known about the optimal way to measure MN in humans, the normal ranges of values of MN in healthy humans and the prospective association of MN with developmental and degenerative diseases prior to the 1980's. In the early 1980's two important methods to measure MN in humans were developed namely, the cytokinesis-block MN (CBMN) assay using peripheral blood lymphocytes and the Buccal MN assay that measures MN in epithelial cells from the oral mucosa. These discoveries greatly increased interest to use MN assays in human studies. In 1997 the Human Micronucleus (HUMN) project was founded to initiate an international collaboration to (i) harmonise and standardise the techniques used to perform the lymphocyte CBMN assay and the Buccal MN assay; (ii) establish and collate databases of MN frequency in human populations world-wide which also captured demographic, lifestyle and environmental genotoxin exposure data and (iii) use these data to identify the most important variables affecting MN frequency and to also determine whether MN predict disease risk. In this paper we briefly describe the achievements of the HUMN project during the period from the date of its foundation on 9th September 1997 until its 26th Anniversary in 2023, which included more than 200 publications and 23 workshops world-wide.
Collapse
Affiliation(s)
- Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), University of California, Berkeley, Berkeley, CA, USA.
| | | | - Peter Wushou Chang
- Show Chwan Memorial Hospital, Changhwa, Taiwan; TUFTS University Medical School, Boston, USA.
| | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg 97080, Germany.
| | - Lisbeth E Knudsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen, Denmark.
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia.
| | - Varinderpal Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia.
| | - Bernhard Franzke
- Department of Nutritional Sciences, University of Vienna, Austria.
| | | | - Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Psicología, Facultad de Ciencias de la Educación, and Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, A Coruña, Spain.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS 92010-000, Brazil; PPGBM, Federal University of Brazil (UFRGS), Porto Alegre 91501-970, Brazil.
| | - Emanuela V Volpi
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W6UW, UK.
| | - Ruth Wilkins
- Environmental and Radiation Health Sciences Directorate, Health Canada 775 Brookfield Rd, Ottawa K1A 1C1, Canada.
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome 00166, Italy.
| |
Collapse
|
3
|
Russo P, Milani F, De Iure A, Proietti S, Limongi D, Prezioso C, Checconi P, Zagà V, Novazzi F, Maggi F, Antonelli G, Bonassi S. Effect of Cigarette Smoking on Clinical and Molecular Endpoints in COPD Patients. Int J Mol Sci 2024; 25:5834. [PMID: 38892022 PMCID: PMC11172087 DOI: 10.3390/ijms25115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cigarette smoking is a primary contributor to mortality risks and is associated with various diseases. Among these, COPD represents a significant contributor to global mortality and disability. The objective of this study is to investigate the effect of smoking on a selected battery of variables, with an emphasis on DNA damage. A total of 87 elderly patients diagnosed with COPD, divided into three groups based on their smoking history (current, former, never-smokers), were evaluated using a cross-sectional approach. Clinical features including mortality and inflammatory/oxidative parameters (Lymphocytes/Monocytes, Neutrophils/Lymphocytes, Platelets/Lymphocytes ratio), SII, MDA, 8-Oxo-dG, and IL6 (ELISA assay), as well as DNA damage (comet assay), were investigated. Virus infection, i.e., influenza A virus subtype H1N1, JC polyomavirus (JCPyV), BK polyomavirus (BKPyV), and Torquetenovirus (TTV), was also tested. Current smokers exhibit higher levels of comorbidity (CIRS; p < 0.001), Platelets/Lymphocytes ratio (p < 0.001), systemic immune inflammation (p < 0.05), and DNA damage (p < 0.001). Former smokers also showed higher values for parameters associated with oxidative damage and showed a much lower probability of surviving over 5 years compared to never- and current smokers (p < 0.0017). This study showed a clear interaction between events which are relevant to the oxidative pathway and cigarette smoking. A category of particular interest is represented by former smokers, especially for lower survival, possibly due to the presence of more health problems. Our findings raise also the attention to other parameters which are significantly affected by smoking and are useful to monitor COPD patients starting a program of pulmonary rehabilitation (DNA damage, inflammation parameters, and selected viral infections).
Collapse
Affiliation(s)
- Patrizia Russo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Clinical and Molecular Epidemiology, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Francesca Milani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Clinical and Molecular Epidemiology, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Antonio De Iure
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Experimental Neurophisiology Lab, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Stefania Proietti
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Clinical and Molecular Epidemiology, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Dolores Limongi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Laboratory of Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Carla Prezioso
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Laboratory of Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Paola Checconi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Laboratory of Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Vincenzo Zagà
- Italian Society of Tabaccology (SITAB), Via G. Scalia 39, 00136 Rome, Italy;
| | - Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, Via Ravasi 2, 21100 Varese, Italy;
| | - Fabrizio Maggi
- Istituto Nazionale Malattie Infettive Lazzaro Spallanzani, Via Portuense 292, 00149 Rome, Italy;
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular Medicine, Sapienza University, Viale Porta Tiburtina 28, 00185 Rome, Italy;
- Microbiology and Virology Unit, Sapienza University Hospital Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy
| | - Stefano Bonassi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; (P.R.); (F.M.); (S.P.); (D.L.); (C.P.); (P.C.); (S.B.)
- Clinical and Molecular Epidemiology, Istituto di Ricovero e Cura a Carattere Scientifico—IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| |
Collapse
|
4
|
Evenden P, Vandoolaeghe Q, Lecluse Y, Gac AC, Delépée R, Weiswald LB, Boutet-Robinet E, Boulanger M, Bonassi S, Lebailly P, Meryet-Figuière M. Agricultural exposures and DNA damage in PBMC of female farmers measured using the alkaline comet assay. Int Arch Occup Environ Health 2024; 97:353-363. [PMID: 38430240 PMCID: PMC10999382 DOI: 10.1007/s00420-024-02049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Several studies investigated the link between agricultural occupational exposures and DNA damage, in an attempt to bring elements of biological plausibility to the increased cancer risk associated with them. However, only a few of these studies focused on females. METHODS The comet assay was performed on PBMC (Peripheral Blood Mononuclear Cells) samples from 245 females working in open field farming and cattle raising, located in the Normandy area of France. Individual questionnaires on tasks performed were administered at the time of sampling to directly assess exposures. Environmental exposures were issued from a questionnaire assessing the farm productions. Linear regression analyses were done using the DNA damage scores. RESULTS Regarding direct exposures, several tasks associated with exposure to potentially harmful chemicals were not associated with DNA damage, but a longer duration of use of herbicide on meadows (p = 0.05) or of cleaning and upkeep of agricultural equipment (p = 0.06) revealed higher DNA damage levels, although the number of exposed women was low. Several indirect and/or environmental exposures were associated with DNA damage in multivariate analyses: a larger surface of meadows (p = 0.006) or the presence of poultry (p = 0.03) was associated with less DNA damage, while the presence of swine (p = 0.01) was associated with higher DNA damage. Smokers and former smokers had less DNA damage than non-smokers (p = 0.0008 and p = 0.03). CONCLUSIONS We report modified levels of DNA damage for those environmentally exposed to meadows, poultry and pig farming, underlining the need for a better knowledge of the potential health risks experienced by females in this setting.
Collapse
Affiliation(s)
- P Evenden
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Q Vandoolaeghe
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Y Lecluse
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - A C Gac
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - R Delépée
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - L B Weiswald
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - M Boulanger
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - S Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - P Lebailly
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - M Meryet-Figuière
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
5
|
Gajski G, Kašuba V, Milić M, Gerić M, Matković K, Delić L, Nikolić M, Pavičić M, Rozgaj R, Garaj-Vrhovac V, Kopjar N. Exploring cytokinesis block micronucleus assay in Croatia: A journey through the past, present, and future in biomonitoring of the general population. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503749. [PMID: 38575251 DOI: 10.1016/j.mrgentox.2024.503749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
In this study, we used the cytokinesis-block micronucleus (CBMN) assay to evaluate the background frequency of cytogenetic damage in peripheral blood lymphocytes of the general population concerning different anthropometric data and lifestyle factors. The background frequency of CBMN assay parameters was analysed in 850 healthy, occupationally non-exposed male and female subjects (average age, 38±11 years) gathered from the general Croatian population from 2000 to 2023. The mean background values for micronuclei (MNi) in the whole population were 5.3±4.3 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 0.7±1.3 and of nuclear buds (NBUDs) 3.1±3.2. The cut-off value, which corresponds to the 95th percentile of the distribution of 850 individual values, was 14 MNi, 3 NPBs, and 9 NBUDs. Results from our database also showed an association of the tested genomic instability parameters with age and sex but also with other lifestyle factors. These findings underscore the importance of considering several anthropometric and lifestyle factors when conducting biomonitoring studies. Overall, the normal and cut-off values attained here present normal values for the general population that can later serve as baseline values for further human biomonitoring studies either in Croatia or worldwide.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Katarina Matković
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Luka Delić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Maja Nikolić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Martina Pavičić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Ružica Rozgaj
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Division of Toxicology, Mutagenesis Unit, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Fenech M, Knasmueller S, Nersesyan A, Bolognesi C, Wultsch G, Schunck C, Volpi E, Bonassi S. The buccal micronucleus cytome assay: New horizons for its implementation in human studies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503724. [PMID: 38432772 DOI: 10.1016/j.mrgentox.2023.503724] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 03/05/2024]
Abstract
In this report we provide a summary of the presentations and discussion of the latest knowledge regarding the buccal micronucleus (MN) cytome assay. This information was presented at the HUMN workshop held in Malaga, Spain, in connection with the 2023 European, Environmental Mutagenesis and Genomics conference. The presentations covered the most salient topics relevant to the buccal MN cytome assay including (i) the biology of the buccal mucosa, (ii) its application in human studies relating to DNA damage caused by environmental exposure to genotoxins, (iii) the association of buccal MN with cancer and a wide range of reproductive, metabolic, immunological, neurodegenerative and other age-related diseases, (iv) the impact of nutrition and lifestyle on buccal MN cytome assay biomarkers; (v) its potential for application to studies of DNA damage in children and obesity, and (vi) the growing prospects of enhancing the clinical utility by automated scoring of the buccal MN cytome assay biomarkers by image recognition software developed using artificial intelligence. The most important knowledge gap is the need of prospective studies to test whether the buccal MN cytome assay biomarkers predict health and disease.
Collapse
Affiliation(s)
- Michael Fenech
- Genome Health Foundation, North Brighton, SA 5048, Australia.
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Georg Wultsch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Emanuela Volpi
- School of Life Sciences, University of Westminster, London, UK
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy.
| |
Collapse
|
7
|
Tadin A, Stazic V, Galic N, Zeljezic D. Evaluation of Cytotoxic and Genotoxic Effects in Buccal Mucosal Cells in Non-Smokers and Users of Traditional Combustible Tobacco Products and Non-Combustible Alternatives. J Xenobiot 2024; 14:154-165. [PMID: 38249106 PMCID: PMC10801550 DOI: 10.3390/jox14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
AIMS/OBJECTIVES The aim of this cross-sectional observational study was to investigate cytogenetic damage to the buccal mucosa in non-smokers and consumers of traditional combustible tobacco products and non-combustible alternatives. METHODS A total of 160 participants were divided into four groups according to the type of product used, including non-smokers, users of conventional combustible tobacco (cigarettes), heated tobacco, and electronic, tobacco-free vapor products (e-cigarettes). Buccal mucosa samples were analyzed using the micronucleus cytome assay to assess cytotoxic and genotoxic damage. RESULTS E-cigarette users showed significantly higher values for all tested parameters in the micronucleus test compared to non-smokers (p < 0.05). Similarly, users of tobacco heating products showed an increase in all parameters (p < 0.05), with the exception of the number of cells with micronuclei. Conventional cigarette smokers showed a notable increase in the number of binucleated cells and cells with karyorrhexis and karyolysis (p ≤ 0.05). When assessing the differences between users of traditional combustible tobacco products and non-combustible alternatives, these did not appear to be significant, except for e-cigarette users, who had significantly more cells with condensed chromatin (p ≤ 0.001), while users of tobacco heating products had more pyknotic cells (p ≤ 0.001). CONCLUSION The results of this study underscore the heightened occurrence of cytotoxic and genotoxic damage in users of both conventional combustible tobacco products and non-combustible alternatives compared to non-smokers, emphasizing the detrimental impact of these products on the oral mucosa.
Collapse
Affiliation(s)
- Antonija Tadin
- Department of Restorative Dental Medicine and Endodontics, Study of Dental Medicine, School of Medicine, University of Split, 21000 Split, Croatia
- Department of Maxillofacial Surgery, Clinical Hospital Centre Split, 21000 Split, Croatia
| | - Vinka Stazic
- Health Center of Split-Dalmatia County, 21000 Split, Croatia;
| | - Nada Galic
- Department of Endodontics and Restorative Dental Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Davor Zeljezic
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
Kochanova D, Gulati S, Durdik M, Jakl L, Kosik P, Skorvaga M, Vrobelova K, Vigasova K, Markova E, Salat D, Klepanec A, Belyaev I. Effects of low-dose ionizing radiation on genomic instability in interventional radiology workers. Sci Rep 2023; 13:15525. [PMID: 37726322 PMCID: PMC10509213 DOI: 10.1038/s41598-023-42139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Interventional radiologists are chronically exposed to low-dose ionizing radiation (IR), which may represent a health risk. The aim of the present study was to evaluate genomic instability by analyzing chromosomal aberrations, micronuclei, and 53BP1 DNA repair foci in peripheral blood lymphocytes of radiologists. Based on the IAEA guidelines on biodosimetry using dicentrics, the average protracted whole-body dose in radiologists were estimated. Since preleukemic fusion genes (PFG) are the primary events leading to leukemia, we also studied their presence by RT-qPCR and FISH. No significant difference in 53BP1 foci and incidence of PFG (MLL-AF4, MLL-AF9, AML1-ETO, BCR-ABL p190) was found in cells of interventional radiologists in comparison to controls. However, our results showed an increased frequency of micronuclei and various types of chromosomal aberrations including dicentrics in interventional radiologists. The average protracted whole body estimated dose was defined at 452.63 mGy. We also found a significantly higher amplification of the MLL gene segment and increased RNA expression in cells of interventional radiologists in comparison to controls. In conclusion, our results showed that long-term low-dose IR induces genomic instability in interventional radiologists.
Collapse
Affiliation(s)
- Dominika Kochanova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Vrobelova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Vigasova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Dusan Salat
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Namestie J. Herdu 577/2, 917 01, Trnava, Slovakia
- Institute of Radiation Protection, Ltd., Stanicna 1062/24, 911 05, Trencin, Slovakia
| | - Andrej Klepanec
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Namestie J. Herdu 577/2, 917 01, Trnava, Slovakia
- Faculty of Medicine, Comenius University, Spitalska 24 , 813 72 , Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
9
|
Mousavikia SN, Bahreyni Toossi MT, Khademi S, Soukhtanloo M, Azimian H. Evaluation of micronuclei and antioxidant status in hospital radiation workers occupationally exposed to low-dose ionizing radiation. BMC Health Serv Res 2023; 23:540. [PMID: 37226157 DOI: 10.1186/s12913-023-09516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE There is scientific evidence that ionizing radiation (IR) can be responsible for various health hazards that are one of the concerns in occupational exposure. This study was performed to evaluate DNA damage and antioxidant status in hospital workers who are occupationally exposed to low doses of IR. MATERIALS AND METHODS In this study, twenty occupationally exposed to low doses of IR (CT and angiography) comprising with control groups which matched them. In order to investigate the effects of chronic irradiation of radiation workers, Micronuclei (MN) frequency and the antioxidant activity of Superoxide Dismutase (SOD), Catalase (CAT) and Total Antioxidant Capacity (TAC) were measured. Then, to check adaptation against high challenge dose, the samples (in all groups) were irradiated in vitro and MN frequency was compared. Finally, to investigated the effect of the high dose after the acute and chronic low dose of ionizing radiation, MN frequency was compared in two groups (the control group that was to in-vitro irradiated (acute low dose + high dose) and radiation workers (chronic low dose + high dose)). RESULTS MN frequency in the occupationally exposed group (n = 30) increased significantly when compared to the control group (p-value < 0.0001). However, chronic irradiation of radiation workers could not lead to an adaptive Sresponse, while acute low-doses could produce this effect (p-value ˂ 0.05). In addition, the activity levels of antioxidant enzymes SOD, CAT, and TAC were not statistically different between the radiation workers and the control group (p-value > 0.05). CONCLUSIONS We observed that exposure to low doses of IR leads to increased cytogenetic damage, could not cause an adaptive-response, and improve antioxidant capacity in radiation workers. Controlling healthcare workers' exposure is the first step to improving the health of hospital workers and the quality of patient care, thus decreasing human and economic costs.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Rossnerova A, Elzeinova F, Chvojkova I, Honkova K, Sima M, Milcova A, Pastorkova A, Schmuczerova J, Rossner P, Topinka J, Sram RJ. Effects of various environments on epigenetic settings and chromosomal damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121290. [PMID: 36804881 DOI: 10.1016/j.envpol.2023.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Air pollution is a dominant environmental exposure factor with significant health consequences. Unexpectedly, research in a heavily polluted region of the Czech Republic, with traditional heavy industry, revealed repeatedly the lowest frequency of micronuclei in the season with the highest concentrations of air pollutants including carcinogenic benzo[a]pyrene (B[a]P). Molecular findings have been collected for more than 10 years from various locations of the Czech Republic, with differing quality of ambient air. Preliminary conclusions have suggested adaptation of the population from the polluted locality (Ostrava, Moravian-Silesian Region (MSR)) to chronic air pollution exposure. In this study we utilize the previous findings and, for the first time, investigate micronuclei (MN) frequency by type: (i) centromere positive (CEN+) MN, representing chromosomal losses, and (ii) centromere negative (CEN-) MN representing chromosomal breaks. As previous results indicated differences between populations in the expression of XRCC5, a gene involved in the non-homologous end-joining (NHEJ) repair pathway, possible variations in epigenetic settings in this gene were also investigated. This new research was conducted in two seasons in the groups from two localities with different air quality levels (Ostrava (OS) and Prague (PG)). The obtained new results show significantly lower frequencies of chromosomal breaks in the OS subjects, related to the highest air pollution levels (p < 0.001). In contrast, chromosomal losses were comparable between both groups. In addition, significantly lower DNA methylation was found in 14.3% of the analyzed CpG loci of XRCC5 in the population from OS. In conclusion, the epigenetic adaptation (hypomethylation) in XRCC5 involved in the NHEJ repair pathway in the population from the polluted region, was suggested as a reason for the reduced level of chromosomal breaks. Further research is needed to explore the additional mechanisms, including genetic adaptation.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic; Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Fatima Elzeinova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Anna Pastorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jana Schmuczerova
- Department of Medical Genetics, L. Pasteur University Hospital, Trieda SNP 1, 040 11, Kosice, Slovakia.
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Radim J Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
11
|
Kević Dešić S, Viljetić B, Wagner J. Assessment of the Genotoxic and Cytotoxic Effects of Turpentine in Painters. Life (Basel) 2023; 13:life13020530. [PMID: 36836885 PMCID: PMC9966049 DOI: 10.3390/life13020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Turpentine is a fluid used mainly as a solvent for thinning oil-based paints, obtained by distilling the resin of coniferous trees. Fine art painters use turpentine on a daily basis. The aim of this study was to investigate the genotoxic effect of turpentine and to determine the lymphocyte proliferation index in the peripheral blood of individuals occupationally exposed to turpentine. For this purpose, the cytokinesis-block micronucleus assay (CBMN) was used to determine the total number of micronuclei (MNi), nucleoplasmic bridges (NPB), and nuclear buds (NBUD), as well as the cell proliferation index (CBPI) in the peripheral blood lymphocytes of the subjects. Twenty-two subjects exposed to turpentine daily through their work participated in the study and were compared to twenty subjects in the control group. The results showed a significant increase in the number of micronuclei and other genotoxicity parameters, as well as significant cytotoxicity based on CBPI values. In addition, the genotoxic and cytotoxic effects of turpentine were found to be time-dependent, i.e., the deleterious effects of turpentine on genetic material increase with prolonged exposure. These results strongly suggest that exposure to turpentine vapors may affect genome stability and that occupational safety measures should be taken when using turpentine.
Collapse
Affiliation(s)
- Sara Kević Dešić
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
- Correspondence: (B.V.); (J.W.)
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University, 31000 Osijek, Croatia
- Correspondence: (B.V.); (J.W.)
| |
Collapse
|
12
|
Santos APR, Silva LZ, Freire BM, da Silva Faria MC, Batista BL, Rocha BA, Barbosa F, Rodrigues JL. Artisanal Gem Mining in Brazil: A Source of Genotoxicity and Exposure to Toxic Elements. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2510. [PMID: 36767878 PMCID: PMC9916162 DOI: 10.3390/ijerph20032510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Environmental and occupational exposure to toxic metals has led many people around the world to have serious health problems. Mining activities contribute to an increased risk of exposure to these elements. In this work, a study of environmental biomonitoring and routes of exposure to toxic metals in a region of artisanal mining was performed. This study was carried out in the district of Taquaral de Minas, located in the Jequitinhonha Valley in the state of Minas Gerais. The valley is one of the wealthiest and highest gem-producing areas in Brazil. Five artisanal mines were sampled (Bode, Pirineu, Pinheira, Lajedo, and Marmita). Several potentially toxic metals (Be, Zn, Mn, Ba Cd, Hg, and U) were investigated in the soils and dust over the rocks and the soils. Samples from 22 individuals occupationally exposed and 17 unexposed persons, who formed the reference group, were analyzed for trace elements by an inductively coupled plasma mass spectrometer. The genotoxicity was evaluated by the micronucleus test in buccal mucosa epithelial cells, where the following changes were scored: micronuclei (MN) binucleate (BN) cells and kariolytic (KL) cells. The MN test showed significantly increased frequencies in all alterations of exposed individuals compared to the controls (p < 0.05, Student's t-test). The urine analysis showed levels of Cr, Ni Ba, Pb, and As in the blood, which were higher than the ATSDR recommended levels. The association between the MN test and the trace element concentrations found in the blood and urine was significant (p < 0.05). The higher the number of years of working, the higher the concentrations in the blood were, due to chronic exposure. The results of the present study indicate environmental contamination and a potential risk to the health of miners, suggesting an intervention.
Collapse
Affiliation(s)
- Ana Paula Rufino Santos
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Lucas Zeferino Silva
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Bruna Moreira Freire
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
| | - Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe s/no, Ribeirao Preto 14040-903, SP, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| |
Collapse
|
13
|
Ramadhani D, Purnami S, Tetriana D, Sugoro I, Suvifan VA, Rahadjeng N, Wanandi SI, Wibowo H, Kashiwakura I, Miura T, Syaifudin M. Chromosome aberrations, micronucleus frequency, and catalase concentration in a population chronically exposed to high levels of radon. Int J Radiat Biol 2022; 99:1188-1203. [PMID: 35930491 DOI: 10.1080/09553002.2022.2110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
PURPOSE To deepen our knowledge on the effects of high levels of indoor radon exposure, we assessed the frequencies of unstable and stable chromosome aberrations and micronucleus (MN), as well as the concentration of an endogenous antioxidant (catalase, CAT), in blood samples of individuals chronically exposed to high indoor radon concentrations in Indonesia (Tande-Tande sub-village, Mamuju, West Sulawesi). Moreover, we also investigated the occurrence of a radio-adaptive response (RAR) in Tande-Tande sub-village inhabitants using the G2 MN assay. MATERIALS AND METHODS The frequencies of dicentric (DC), acentric (AF), ring (R), and translocation (Tr) chromosomes in Tande-Tande inhabitants were compared to those in people living in a reference area with low levels of indoor radon levels (Topoyo village, Indonesia). The number of MN per 1000 binucleated cells (BNC) and CAT concentration per total protein was quantified and compared between groups. Lastly, we irradiated (2 Gy) phytohemagglutinin-stimulated samples in vitro and measured the frequency of MN to verify the occurrence of a RAR in Tande-Tande sub-village inhabitants. RESULTS AND CONCLUSION The frequencies of DC, AF, and Tr did not differ between Tande-Tande inhabitants and control subjects (p = 0.350, 0.521, 0.597). The frequency of MN in Tande-Tande inhabitants was significantly lower than that in the control group (p = 0.006). Similarly, CAT concentration in Tande-Tande inhabitants was also significantly lower than that in the control population (p < 0.001). Significant negative correlations were identified for MN number and CAT concentration versus indoor radon concentration, annual effective dose, or cumulative dose both within groups and when all data were analyzed together. Our findings indicate that, despite the high indoor radon levels, Tande-Tande inhabitants are not under oxidative stress, since this group had lower CAT concentration and MN frequency than those in the control group. The negative correlation between MN frequency and indoor radon concentration, annual effective dose, and cumulative dose suggests the occurrence of an RAR phenomenon in Tande-Tande sub-village inhabitants. This interpretation is also supported by the results of the G2 MN assay, which revealed lower MN frequencies after in vitro irradiation of samples from Tande-Tande sub-village inhabitants than those in samples from the control group (p = 0.0069, for cumulative MN frequency; p = 0.0146, for radiation-induced MN only).
Collapse
Affiliation(s)
- Dwi Ramadhani
- Doctoral Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| | - Sofiati Purnami
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| | - Devita Tetriana
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| | - Irawan Sugoro
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| | - Viria Agesti Suvifan
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| | - Nastiti Rahadjeng
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ikuo Kashiwakura
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Tomisato Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Mukh Syaifudin
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia
| |
Collapse
|
14
|
Hamed KA, El-Fiky SA, Gawish AM, Khalil WKB, Mohamed HRH. Alleviation of nicotine-induced reproductive disorder, clastogenicity, and histopathological alterations by fenugreek saponin bulk and nanoparticles in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47488-47501. [PMID: 35182342 PMCID: PMC9232449 DOI: 10.1007/s11356-022-19123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Nicotine is the most abundant ingredient in cigarette smoking and has serious side effects on the lung, heart, reproductive system, and many other human organs. Saponins extracted from many plants exhibit multiple biological actions such as anti-cancer effects. Therefore, the possible protective effect of fenugreek saponin (FS) and nanofenugreek saponin (NFS) against nicotine-induced toxicity in male rats was investigated in this study. Animals were divided into a control group and the nicotine (1.5 mg/kg/day), FS (25, 50, and 100 mg/kg/day), or/and NFS (20, 40, and 80 mg/kg/day) administered groups. Micronucleus assay, histopathological, and sperm abnormality examinations as well as measurement of the acetylcholinesterase (AChE) gene expression were conducted. Our findings revealed that nicotine treatment induced significant increases in the incidence of micronucleus, sperm abnormalities, and expression levels of AChE in addition to inducing histopathological changes in rat testis. On the other hand, administration of FS or NFS with nicotine significantly decreased the incidence of micronuclei and the percentage of sperm abnormalities as well as the expression levels of AChE gene. Moreover, nicotine-induced histological alterations were reduced by given FS or NFS with nicotine. In conclusion, nicotine-induced sperm abnormalities, chromosomal damage, and histological injuries were mitigated by administration of FS or NFS with nicotine, and thus, FS and NFS could be used as ameliorating agents against nicotine toxicity.
Collapse
Affiliation(s)
- Karima A Hamed
- Department of Cell Biology, National Research Centre, 33 El-Bohous StDokki, P.O. 12622, Giza, 12622, Egypt
| | - Samia A El-Fiky
- Department of Cell Biology, National Research Centre, 33 El-Bohous StDokki, P.O. 12622, Giza, 12622, Egypt
| | - Azza M Gawish
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, 33 El-Bohous StDokki, P.O. 12622, Giza, 12622, Egypt
| | - Hanan R H Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
15
|
Bankoglu EE, Mukama T, Katzke V, Stipp F, Johnson T, Kühn T, Seyfried F, Godschalk R, Collins A, Kaaks R, Stopper H. Short- and long-term reproducibility of the COMET assay for measuring DNA damage biomarkers in frozen blood samples of the EPIC-Heidelberg cohort. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503442. [PMID: 35151425 DOI: 10.1016/j.mrgentox.2022.503442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The comet assay is widely used for quantification of genomic damage in humans. Peripheral blood derived mononuclear cells (PBMCs) are the most often used cell type for this purpose. Since the comet assay can be performed in an enhanced throughput format, it can be applied to large sample collections such as biobanks. The European Prospective Investigation into Cancer and Nutrition (EPIC) study is one of the largest existing prospective cohort studies, and the German Cancer Research Institute (DKFZ) in Heidelberg is a participating center with 25.000 frozen blood samples stored from around 25 years ago, enabling retrospective assessment of disease risk factors. However, experience with decades long frozen samples in the comet assay is so far missing. In Heidelberg, 800 study participants were re-invited twice between 2010 and 2012 to donate further blood samples. Here, we analyzed 299 Heidelberg-EPIC samples, compiled from frozen PBMC and buffy coat preparations selected from the different sampling time points. In addition, 47 frozen PBMC samples from morbidly obese individuals were included. For buffy coat samples, we observed a poor correlation between DNA damage in the same donors assessed at two sampling time points. Additionally, no correlation between DNA damage in buffy coat samples and PBMCs was found. For PBMCs, a good correlation was observed between samples of the same donors at the two time points. DNA damage was not affected by age and smoking status, but high BMI (>30; obesity) was associated with increased DNA damage in PBMCs. There was no indication for a threshold of a certain BMI for increased DNA damage. In conclusion, while 25 year-long stored buffy coat preparations may require adaptation of certain experimental parameters such as cell density and electrophoresis conditions, frozen PBMC biobank samples can be analyzed in the comet assay even after a decade of storage.
Collapse
Affiliation(s)
- Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Trasias Mukama
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franzisca Stipp
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Florian Seyfried
- Department of General, Vascular, Visceral and Paediatric Surgery, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Roger Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
16
|
Nersesyan A, Kundi M, Fenech M, Stopper H, da Silva J, Bolognesi C, Mišík M, Knasmueller S. Recommendations and quality criteria for micronucleus studies with humans. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108410. [PMID: 35690413 DOI: 10.1016/j.mrrev.2021.108410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
Micronucleus (MN) analyses in peripheral blood lymphocytes and exfoliated cells from different organs (mouth, nose, bladder and cervix) are at present the most widely used approaches to detect damage of genetic material in humans. MN are extranuclear DNA-containing bodies, which can be identified microscopically. They reflect structural and numerical chromosomal aberrations and are formed as a consequence of exposure to occupational, environmental and lifestyle genotoxins. They are also induced as a consequence of inadequate intake of certain trace elements and vitamins. High MN rates are associated with increased risk of cancer and a range of non-cancer diseases in humans. Furthermore, evidence is accumulating that measurements of MN could be a useful tool for the diagnosis and prognosis of different forms of cancer and other diseases (inflammation, infections, metabolic disorders) and for the assessment of the therapeutic success of medical treatments. Recent reviews of the current state of knowledge suggest that many clinical studies have methodological shortcomings. This could lead to controversial findings and limits their usefulness in defining the impact of exposure concentrations of hazardous chemicals, for the judgment of remediation strategies, for the diagnosis of diseases and for the identification of protective or harmful dietary constituents. This article describes important quality criteria for human MN studies and contains recommendations for acceptable study designs. Important parameters that need more attention include sufficiently large group sizes, adequate duration of intervention studies, the exclusion of confounding factors which may affect the results (sex, age, body mass index, nutrition, etc.), the evaluation of appropriate cell numbers per sample according to established scoring criteria as well as the use of proper stains and adequate statistical analyses.
Collapse
Affiliation(s)
- A Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - M Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - M Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; Universiti Kebangsaan Malaysia, Selangor, Malaysia; Genome Health Foundation, North Brighton, SA, Australia
| | - H Stopper
- Institute of Pharmacology and Toxicology, Wuerzburg University, Wuerzburg, Germany
| | - J da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) & LaSalle University (UniLaSalle), Canoas, RS, Brazil
| | - C Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - M Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - S Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Tools used to assay genomic instability in cancers and cancer meiomitosis. J Cell Commun Signal 2021; 16:159-177. [PMID: 34841477 DOI: 10.1007/s12079-021-00661-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022] Open
Abstract
Genomic instability is a defining characteristic of cancer and the analysis of DNA damage at the chromosome level is a crucial part of the study of carcinogenesis and genotoxicity. Chromosomal instability (CIN), the most common level of genomic instability in cancers, is defined as the rate of loss or gain of chromosomes through successive divisions. As such, DNA in cancer cells is highly unstable. However, the underlying mechanisms remain elusive. There is a debate as to whether instability succeeds transformation, or if it is a by-product of cancer, and therefore, studying potential molecular and cellular contributors of genomic instability is of high importance. Recent work has suggested an important role for ectopic expression of meiosis genes in driving genomic instability via a process called meiomitosis. Improving understanding of these mechanisms can contribute to the development of targeted therapies that exploit DNA damage and repair mechanisms. Here, we discuss a workflow of novel and established techniques used to assess chromosomal instability as well as the nature of genomic instability such as double strand breaks, micronuclei, and chromatin bridges. For each technique, we discuss their advantages and limitations in a lab setting. Lastly, we provide detailed protocols for the discussed techniques.
Collapse
|
18
|
Da Correggio KS, Silveira SK, May Feuerschuette OH, Maraslis FT, Pinheiro K, Machado MJ, Maluf SW, Casimiro Onofre AS. DNA damage analysis in newborns and their mothers related to pregnancy and delivery characteristics. Placenta 2021; 115:139-145. [PMID: 34624566 DOI: 10.1016/j.placenta.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Increased DNA damage is associated with early events in carcinogenesis. The foetus may be more susceptible to effects of environment by transplacental exposure. We aimed to evaluate DNA damage in cells from umbilical cord (arteries and vein) and maternal blood from pregnant women. METHODS Fifty eight pregnant women and their offspring were included in this study. They were submitted to an interview to obtain information about personal history, clinical history, and lifestyle habits. Other Information was obtained from medical records. The samples were prepared for Single Cell Gel/Comet assay and Cytokinesis-block Micronucleus Cytome (CBMN-Cyt) assay. RESULTS Correlation between DNA damage frequency by Comet assay from newborns and their mothers was statistically significant and was significantly associated with nulliparity and more than 1 h of second stage of labour (umbilical vein and maternal blood). A positive MNi relationship was noticed for age (mother's blood) and inappropriate birth weight for gestational age (maternal blood). When multivariate statistical analyses were applied to measure the degree of association between variables that influenced DNA damage markers in the first evaluation, inadequate birth weight and pregnant weight gain were associated with MNi frequency in maternal and newborns blood, respectively. DISCUSSION Significant associations between DNA damage in newborns and pregnant women, and birth and pregnancy events suggest molecular evidence of transplacental genotoxic effects. However, a potentially increased risk of degenerative diseases, such as cancers, in this population should be carefully investigated by further prospective cohort studies.
Collapse
Affiliation(s)
- Karine Souza Da Correggio
- Division of Tocogynecology, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sheila Koettker Silveira
- Division of Tocogynecology, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Otto Henrique May Feuerschuette
- Division of Tocogynecology, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Flora Troina Maraslis
- Citogenetics and Genomic Stability Laboratory, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Kamylla Pinheiro
- Citogenetics and Genomic Stability Laboratory, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Marcos José Machado
- Clinical Analysis Department, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sharbel Weidner Maluf
- Citogenetics and Genomic Stability Laboratory, University Hospital Polydoro Ernani de São Thiago, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | |
Collapse
|
19
|
Goh VST, Takebayashi K, Nakayama R, Fujishima Y, Yoshida MA, Kasai K, Ariyoshi K, Miura T. Cytokinesis-block micronucleus assay performed in 0 and 2 Gy irradiated whole blood and isolated PBMCs in a six-well transwell co-culture system. Int J Radiat Biol 2021; 97:1631-1640. [PMID: 34554021 DOI: 10.1080/09553002.2021.1981555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Cytokinesis-block micronucleus (CBMN) assay in cytogenetic biodosimetry uses micronucleus (MN) frequency scored in binucleated cells (BNC) for dose estimation. Cell-cycle progression parameters of nuclear division index (NDI) and percentage of BNC (% BNC) are also evaluated. Whole blood (WB) or peripheral mononuclear cells (PBMCs) isolated from WB can be used for lymphocyte culture. Previously, 2 Gy PBMCs showed higher NDI and lower MN frequency than WB in 15 ml polypropylene tube single cultures. In this follow-up study, we wanted to assess if soluble factors present in WB but absent in PBMCs could increase MN frequency or decrease NDI in PBMCs co-cultured with WB. MATERIALS AND METHODS Peripheral blood from four healthy donors (two males: 25, 51; two females: 23, 26 years old) was irradiated with X-ray at 1 Gy/min. CBMN assay was performed with different combinations of 0 and 2 Gy WB and PBMC (WB, WB-IR, PBMC, PBMC-IR) mono- and co-cultures in a polystyrene six-well plate. Co-cultures were separated by 0.4 µm transwell inserts. Log2 fold changes and values of NDI, % BNC and MN frequency analyzed by three scorers were obtained. RESULTS As upper and lower wells of the same culture condition showed some significant differences, wells of the same level were compared. NDI of PBMCs increased when PBMC or PBMC-IR was co-cultured with WB or WB-IR, respectively, as compared to mono-cultures. There was no increase in PBMC-IR's MN frequency when co-cultured with WB or WB-IR. MN frequency was consistently higher in WB-IR than PBMC-IR in both mono- and co-cultures. NDI, % BNC and MN frequency were similar when WB or PBMC were co-cultured with PBMC-IR or WB-IR, respectively. Significantly lower NDI and % BNC, and higher MN frequency were also seen in some conditions of 15 ml cultures than six-well mono-cultures. CONCLUSIONS Instead of the hypothesized decrease in NDI and increase in MN frequency, our co-culture set-up showed that in the absence of direct cell-cell interaction, soluble factors in WB increased NDI but not MN frequency in PBMCs. Moreover, radiation-induced bystander effects could not be observed. As the type of cell culture (WB, PBMC) and culture vessels could influence NDI and MN frequency, CBMN culture protocols should be kept consistent for dose-response calibration curve construction and dose estimation.
Collapse
Affiliation(s)
- Valerie Swee Ting Goh
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.,Department of Radiobiology, Singapore Nuclear Research and Safety Initiative (SNRSI), Singapore
| | - Kai Takebayashi
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.,Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine (IREM), Hirosaki, Japan
| | - Ryo Nakayama
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.,Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine (IREM), Hirosaki, Japan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine (IREM), Hirosaki, Japan
| | | | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Kentaro Ariyoshi
- Center for Integrated Science and Humanities, Fukushima Medical University, Fukushima, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine (IREM), Hirosaki, Japan
| |
Collapse
|
20
|
Mrdjanović J, Šolajić S, Srđenović-Čonić B, Bogdanović V, Dea KJ, Kladar N, Jurišić V. The Oxidative Stress Parameters as Useful Tools in Evaluating the DNA Damage and Changes in the Complete Blood Count in Hospital Workers Exposed to Low Doses of Antineoplastic Drugs and Ionizing Radiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168445. [PMID: 34444191 PMCID: PMC8394042 DOI: 10.3390/ijerph18168445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/24/2023]
Abstract
Hospital workers at the Oncology Department are occupationally exposed to antineoplastic drugs (ANTNP) or low doses of ionizing radiation (Irrad). Therefore, the aim of this study was to evaluate the level of DNA damage, the oxidative stress parameters and complete blood count (CBC) of hospital workers in order to analyze the negative health effects of ANTNP and low dose Irrad. The frequency of micronuclei (MN) and proliferation index (PI) were analyzed by cytokinesis-block test. The oxidative stress biomarkers evaluated were the level of lipid peroxidation in plasma and catalase activity (CAT) in erythrocytes. A group of 86 hospital workers (35 exposed to ANTPN and 51 to Irrad) had increased MN frequency, CAT activity and level of lipid peroxidation compared to the control group, which consisted of 24 volunteers. The hemoglobin level was lower in the ANTNP group compared to thecontrol group, while a significant difference in RBC was recorded between thecontrol and Irrad groups, and in platelet count betweentheIrrad and ANTNP group. The results showed increased DNA damage, oxidative stress parameters, as well as impairment on complete blood count in hospital workers occupationally exposed to antineoplastic drugs and low-dose ionizing radiation. As this research has shown the importance of oxidative stress, we suggest that in addition to routine methods in periodic medical evaluation, the possibility of applying oxidative stress parameters is considered. Moreover, hospital workers exposed to ANTNP and Irrad in the workplace should undergo not only a more complete health prevention procedure but also have a more appropriate health promotion.
Collapse
Affiliation(s)
- Jasminka Mrdjanović
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia; (J.M.); (S.Š.); (V.B.)
| | - Slavica Šolajić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia; (J.M.); (S.Š.); (V.B.)
| | - Branislava Srđenović-Čonić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.-Č.); (N.K.)
| | - Višnja Bogdanović
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia; (J.M.); (S.Š.); (V.B.)
| | - Karaba-Jakovljević Dea
- Department of Physiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.-Č.); (N.K.)
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Correspondence:
| |
Collapse
|
21
|
Farkas G, Kocsis ZS, Székely G, Dobozi M, Kenessey I, Polgár C, Jurányi Z. Smoking, chromosomal aberrations, and cancer incidence in healthy subjects. Mutat Res 2021; 867:503373. [PMID: 34266629 DOI: 10.1016/j.mrgentox.2021.503373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Chromosomal aberrations (CAs) in peripheral blood lymphocytes can be used as biomarkers of cancer risk. Cytogenetic tests were conducted on 2396 healthy Hungarian individuals and cancer incidence was followed up from 1989 to 2018. Venous blood samples were obtained from the subjects and metaphases from lymphocyte cultures were prepared. We compared the CA frequencies of the various smoking (1-5; 6-10; 11-19; or 20-40 cigarettes/day) and exposure (irradiation; chemical industry; chemical research laboratory) groups. Chromatid break (p = 0.0002), total aberration (p = 0.002), and aberrant cell (p = 0.001) frequencies were higher in smokers than in non-smokers. For very heavy smokers, total CAs were significantly higher than for non-smokers (<0.001) or less intensive smokers (p = 0.003-0.0006). Intensity of smoking was a predictor of chromosomal aberrations, while duration was not. During follow-up, 177 (7.3 %) cancer cases were found. A Cox-regression model showed that subjects with cell values ≥2 CAs developed cancer more frequently (hazard ratio = 1.39; 95 % CI, 1.02-1.90). The relative risks of cancer were 1.06 (95 % CI 0.53-2.06) for light smokers and 1.74 (95 % CI 1.08-2.77) for very heavy smokers. The distributions of cancer sites showed differences between smoker and non-smoker groups: in male smokers, lung cancer, in non-smokers, prostate, and in females (both groups) breast cancer were most common. Cancer incidence correlated with chromosome aberrations; smoking was not a confounder in this relationship.
Collapse
Affiliation(s)
- Gyöngyi Farkas
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Zsuzsa S Kocsis
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Gábor Székely
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Mária Dobozi
- National Institute of Oncology, National Cancer Registry, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - István Kenessey
- National Institute of Oncology, National Cancer Registry, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Csaba Polgár
- National Institute of Oncology, Centre of Radiotherapy, Ráth György u. 7-9, 1122, Budapest, Hungary; Semmelweis University, Department of Oncology, Ráth György u. 7-9, 1122, Budapest, Hungary
| | - Zsolt Jurányi
- National Institute of Oncology, Centre of Radiotherapy, Department of Radiobiology and Diagnostic Onco-Cytogenetics, Ráth György u. 7-9, 1122, Budapest, Hungary.
| |
Collapse
|
22
|
Valencia-Quintana R, López-Durán RM, Milić M, Bonassi S, Ochoa-Ocaña MA, Uriostegui-Acosta MO, Pérez-Flores GA, Gómez-Olivares JL, Sánchez-Alarcón J. Assessment of Cytogenetic Damage and Cholinesterases' Activity in Workers Occupationally Exposed to Pesticides in Zamora-Jacona, Michoacan, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126269. [PMID: 34200547 PMCID: PMC8296030 DOI: 10.3390/ijerph18126269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
Pesticides have been considered as potential chemical mutagens; however, little is known about toxic and genotoxic effects during pesticide application in Zamora-Jacona, Michoacan State in Mexico. This study sought to determine DNA damage and cholinesterase activities inhibitions in 54 agricultural workers exposed to complex mixtures of pesticides vs. control group (26 individuals) using Comet assay in peripheral whole blood, micronucleus (MN) test in oral mucosa cells, Cytokinesis-blocked MN assay in lymphocytes (L-CBMNcyt) and measuring AChE and BChE activities in whole blood and plasma samples, respectively. Exposed subjects demonstrated significantly elevated levels of primary (Comet assay: tail intensity, tail length, tail moment, Olive tail moment) and permanent DNA damage (MN assay: in blood/buccal cells; frequencies of nuclear buds, binucleated cells, cells with condensed chromatin, karyorrhexis, pyknosis, and karyolysis). However, inhibition of cholinesterase activities (AChE and BChE) was not observed in the workers. Confounding factors including sex, age, BMI, working exposure period, protection level, smoking habit (cigarettes per day units), alcohol consumption (weekly), medication, were considered in the analysis. These combined techniques demonstrated usefulness in the health hazards risks pesticide exposure assessment and suggested the need for periodic monitoring together with the education and the training of occupational workers for the safe application of potentially harmful pesticides.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - Rosa María López-Durán
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia;
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Rafaele University, 00166 Rome, Italy;
- Unit of Clinical and Molecular Epidemiology, IRCCS San Rafaele Pisana, 00166 Rome, Italy
| | - Ma. Antonieta Ochoa-Ocaña
- Unidad Académica de Estudios Regionales, Coordinación de Humanidades, UNAM, Jiquilpan 59510, Mexico;
| | | | - Guillermo Alejandro Pérez-Flores
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico;
| | - Juana Sánchez-Alarcón
- Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico; (R.V.-Q.); (G.A.P.-F.)
- Correspondence: (R.M.L.-D.); (J.S.-A.)
| |
Collapse
|
23
|
Vital N, Antunes S, Louro H, Vaz F, Simões T, Penque D, Silva MJ. Environmental Tobacco Smoke in Occupational Settings: Effect and Susceptibility Biomarkers in Workers From Lisbon Restaurants and Bars. Front Public Health 2021; 9:674142. [PMID: 34150711 PMCID: PMC8213454 DOI: 10.3389/fpubh.2021.674142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental tobacco smoke (ETS) has been recognized as a major health hazard by environmental and public health authorities worldwide. In Portugal, smoke-free laws are in force for some years, banning smoking in most indoor public spaces. However, in hospitality venues such as restaurants and bars, owners can still choose between a total smoke-free policy or a partial smoking restriction with designated smoking areas, if adequate reinforced ventilation systems are implemented. Despite that, a previous study showed that workers remained continuously exposed to higher ETS pollution in Lisbon restaurants and bars where smoking was still allowed, comparatively to total smoke-free venues. This was assessed by measurements of indoor PM2.5 and urinary cotinine, a biomarkers of tobacco smoke exposure, demonstrating that partial smoking restrictions do not effectively protect workers from ETS. The aim of the present work was to characterize effect and susceptibility biomarkers in non-smokers from those hospitality venues occupationally exposed to ETS comparatively to non-exposed ones. A group of smokers was also included for comparison. The sister chromatid exchange (SCE), micronucleus (MN) and comet assays in whole peripheral blood lymphocytes (PBLs) and the micronucleus assay in exfoliated buccal cells, were used as biomarkers of genotoxicity. Furthermore, a comet assay after ex vivo challenge of leukocytes with an alkylating agent, ethyl methanesulfonate (EMS), was used to analyze the repair capacity of those cells. Genetic polymorphisms in genes associated with metabolism and DNA repair were also included. The results showed no clear association between occupational exposure to ETS and the induction of genotoxicity. Interestingly, the leukocytes from non-smoking ETS-exposed individuals displayed lower DNA damage levels in response to the ex vivo EMS challenge, in comparison to those from non-exposed workers, suggesting a possible adaptive response. The contribution of individual susceptibility to the effect biomarkers studied was unclear, deserving further investigation.
Collapse
Affiliation(s)
- Nádia Vital
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Susana Antunes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Henriqueta Louro
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fátima Vaz
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Tânia Simões
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Deborah Penque
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Pajic J, Rovcanin B, Rakic B. Evaluation of Genetic Damage in Persons Occupationally Exposed to Antineoplastic Drugs in Serbian Hospitals. Ann Work Expo Health 2021; 65:307-318. [PMID: 33886965 DOI: 10.1093/annweh/wxaa100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Although useful in the treatment of malignant cells, antineoplastic drugs (ANPDs) as chemical genotoxic agents, can interfere with normal cell physiology causing genetic damage and unfavourable health effects, especially in occupationally exposed persons. The Cytokinesis-block Micronucleus (CBMN) Cytome assay has been widely used in human biomonitoring studies as a reliable biomarker of chemical genotoxic exposure. OBJECTIVES Our comprehensive research was conducted in order to evaluate micronuclei as a marker for preventive medical screening purposes for persons occupationally exposed to ANPDs. METHODS Using the CBMN Cytome test, peripheral blood lymphocytes of 201 control and 222 exposed subjects were screened for genetic damage. RESULTS Age and gender influenced micronucleus (MN) frequency, but smoking habit did not. The mean micronuclei frequencies and other parameters of the CBMN Cytome test [numbers of binuclear lymphocytes with one (MN1) or two (MN2) micronuclei] were significantly higher in the group of exposed persons. Positive correlation between duration of occupational exposure and MN frequency was revealed. CONCLUSIONS The results of our study performed on a large sample confirmed the capacity of the CBMN Cytome assay to serve as a reliable biomarker of long-term ANPD exposure.
Collapse
Affiliation(s)
- Jelena Pajic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Radiation protection department, Deligradska 29,Belgrade, Serbia
| | - Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, Belgrade, Serbia
| | - Boban Rakic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Radiation protection department, Deligradska 29,Belgrade, Serbia
| |
Collapse
|
25
|
Milić M, Ceppi M, Bruzzone M, Azqueta A, Brunborg G, Godschalk R, Koppen G, Langie S, Møller P, Teixeira JP, Alija A, Anderson D, Andrade V, Andreoli C, Asllani F, Bangkoglu EE, Barančoková M, Basaran N, Boutet-Robinet E, Buschini A, Cavallo D, Costa Pereira C, Costa C, Costa S, Da Silva J, Del Boˊ C, Dimitrijević Srećković V, Djelić N, Dobrzyńska M, Duračková Z, Dvořáková M, Gajski G, Galati S, García Lima O, Giovannelli L, Goroshinskaya IA, Grindel A, Gutzkow KB, Hernández A, Hernández C, Holven KB, Ibero-Baraibar I, Ottestad I, Kadioglu E, Kažimirová A, Kuznetsova E, Ladeira C, Laffon B, Lamonaca P, Lebailly P, Louro H, Mandina Cardoso T, Marcon F, Marcos R, Moretti M, Moretti S, Najafzadeh M, Nemeth Z, Neri M, Novotna B, Orlow I, Paduchova Z, Pastor S, Perdry H, Spremo-Potparević B, Ramadhani D, Riso P, Rohr P, Rojas E, Rossner P, Safar A, Sardas S, Silva MJ, Sirota N, Smolkova B, Staruchova M, Stetina R, Stopper H, Surikova EI, Ulven SM, Ursini CL, Valdiglesias V, Valverde M, Vodicka P, Volkovova K, Wagner KH, Živković L, Dušinská M, Collins AR, Bonassi S. The hCOMET project: International database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108371. [PMID: 34083035 PMCID: PMC8525632 DOI: 10.1016/j.mrrev.2021.108371] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/11/2023]
Abstract
The alkaline comet assay, or single cell gel electrophoresis, is one of the most popular methods for assessing DNA damage in human population. One of the open issues concerning this assay is the identification of those factors that can explain the large inter-individual and inter-laboratory variation. International collaborative initiatives such as the hCOMET project - a COST Action launched in 2016 - represent a valuable tool to meet this challenge. The aims of hCOMET were to establish reference values for the level of DNA damage in humans, to investigate the effect of host factors, lifestyle and exposure to genotoxic agents, and to compare different sources of assay variability. A database of 19,320 subjects was generated, pooling data from 105 studies run by 44 laboratories in 26 countries between 1999 and 2019. A mixed random effect log-linear model, in parallel with a classic meta-analysis, was applied to take into account the extensive heterogeneity of data, due to descriptor, specimen and protocol variability. As a result of this analysis interquartile intervals of DNA strand breaks (which includes alkali-labile sites) were reported for tail intensity, tail length, and tail moment (comet assay descriptors). A small variation by age was reported in some datasets, suggesting higher DNA damage in oldest age-classes, while no effect could be shown for sex or smoking habit, although the lack of data on heavy smokers has still to be considered. Finally, highly significant differences in DNA damage were found for most exposures investigated in specific studies. In conclusion, these data, which confirm that DNA damage measured by the comet assay is an excellent biomarker of exposure in several conditions, may contribute to improving the quality of study design and to the standardization of results of the comet assay in human populations.
Collapse
Affiliation(s)
- Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marcello Ceppi
- Biostatistics Unit, San Martino Policlinic Hospital, Genoa, Italy
| | - Marco Bruzzone
- Biostatistics Unit, San Martino Policlinic Hospital, Genoa, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, C/Irunlarrea 3, 31008, Pamplona, Spain
| | - Gunnar Brunborg
- Department of Environmental Health, Section of Molecular Toxicology, Norwegian Institute of Public Health (NIPH), Lovisenberggt 6, 0456, Oslo, Norway
| | - Roger Godschalk
- School of Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology, University of Maastricht, Universiteitssingel 50, 6200 MD, Maastricht, the Netherlands
| | - Gudrun Koppen
- Flemish Institute of Technological Research, Environmental Risk and Health unit VITO - BIOMo, Belgium
| | - Sabine Langie
- School of Nutrition and Translational Research in Metabolism, Department of Pharmacology and Toxicology, University of Maastricht, Universiteitssingel 50, 6200 MD, Maastricht, the Netherlands
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Oster Farimagsgade 5A, DK-1014, Copenhagen, Denmark
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal
| | - Avdulla Alija
- Department of Biology, University of Prishtina, George Bush, N.N., 10000, Prishtina, Kosovo
| | - Diana Anderson
- Biomedical Sciences Department, University of Bradford, Richmond Road Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Vanessa Andrade
- Laboratory of Translational Biomedicine, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Fisnik Asllani
- Department of Biology, University of Prishtina, George Bush, N.N., 10000, Prishtina, Kosovo
| | - Ezgi Eyluel Bangkoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, VersbacherStrasse 9, 97078, Wuerzburg, Germany
| | - Magdalena Barančoková
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Nursen Basaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene (DiMEILA), Italian Workers' Compensation Authority (INAIL), Via Fontana Candida 1, 00078, Monte Porzio Catone(Rome), Italy
| | - Cristiana Costa Pereira
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal
| | - Solange Costa
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22/Sala 22, 92425-900, Canoas, RS, Brazil
| | - Cristian Del Boˊ
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Vesna Dimitrijević Srećković
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Disease, University of Belgrade, Dr Subotića 13, Belgrade, Serbia
| | - Ninoslav Djelić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Oslobodjenja Blvd 18, 11000, Belgrade, Serbia
| | - Malgorzata Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland
| | - Zdenka Duračková
- Institute for Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, Bratislava, Slovakia
| | - Monika Dvořáková
- Institute for Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, Bratislava, Slovakia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Serena Galati
- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze 11A, 43124, Parma, Italy
| | - Omar García Lima
- Center for RadiationProtection and Hygiene, Calle 20, No 4113, e/41 y 47. Playa. C.P. 11300, La Habana, A.P. 6195, C.P. 10600, Habana, Cuba
| | - Lisa Giovannelli
- Department NEUROFARBA, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Irina A Goroshinskaya
- Laboratory for the Study of the Pathogenesis of Malignant Tumors, National Medical Research Center for Oncology, 14 line 63, 344037, Rostov-on-Don, Russia
| | - Annemarie Grindel
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Kristine B Gutzkow
- Department of Environmental Health, Section of Molecular Toxicology, Norwegian Institute of Public Health (NIPH), Lovisenberggt 6, 0456, Oslo, Norway
| | - Alba Hernández
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029, Madrid, Spain
| | - Carlos Hernández
- Department of Biochemistry, Instituto de Ciencias Básicas y Preclínicas "Victoria de Giron", 146 St. and 31 Ave, No 3102, Playa, Habana, Cuba
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Idoia Ibero-Baraibar
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Navarra, Spain
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Ela Kadioglu
- Toxicology Department, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Alena Kažimirová
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Elena Kuznetsova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Institutskaya 3, Pushchino, Moscow Region, Russia
| | - Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Blanca Laffon
- Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Universidade da Coruña, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Palma Lamonaca
- IRCCS San Raffaele Pisana, Unit of Clinical and Molecular Epidemiology, Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, 247., 00161, Rome, Italy
| | - Pierre Lebailly
- ANTICIPE Unit, INSERM &University of Caen-Normandie Centre François Baclesse, Avenue du Général Harris 14076, Caen Cedex 05, France
| | - Henriqueta Louro
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal; ToxOmics, NMS, NOVA University of Lisbon, Lisbon, Portugal
| | - Tania Mandina Cardoso
- Center for RadiationProtection and Hygiene, Calle 20, No 4113, e/41 y 47. Playa. C.P. 11300, La Habana, A.P. 6195, C.P. 10600, Habana, Cuba
| | - Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029, Madrid, Spain
| | - Massimo Moretti
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122, Perugia, Italy
| | - Silvia Moretti
- Department of Health Sciences, University of Florence, Division of Dermatology, Palagi Hospital, Viale Michelangelo 41, Florence, Italy
| | - Mojgan Najafzadeh
- Biomedical Sciences Department, University of Bradford, Richmond Road Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Zsuzsanna Nemeth
- Department of Non-ionizing Radiation, National Public Health Center, Anna Street 5, 1221, Budapest, Hungary
| | - Monica Neri
- IRCCS San Raffaele Pisana, Unit of Clinical and Molecular Epidemiology, Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, 247., 00161, Rome, Italy
| | - Bozena Novotna
- Department of Nanotoxicolgy and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Irene Orlow
- Memorial Sloan Kettering Cancer Center, Epidemiology and Biostatistics, New York, New York, 10065, USA
| | - Zuzana Paduchova
- Institute for Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, Bratislava, Slovakia
| | - Susana Pastor
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès (Barcelona), Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029, Madrid, Spain
| | | | - Biljana Spremo-Potparević
- Center of Biological Research, Faculty of Pharmacy, University of Belgrade, VojvodeStepe, 450, Belgrade, Serbia
| | - Dwi Ramadhani
- Center for Radiation Safety Technology and Metrology, National Nuclear Energy Agency of Indonesia, Jl. LebakBulus Raya No. 49, Kotak Pos 7043 JKSKL JakartaSelatan, 12440, Jakarta, Indonesia
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Paula Rohr
- Laboratory of Translational Biomedicine, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Emilio Rojas
- Genomic Medicine and EnvironmentalToxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico
| | - Pavel Rossner
- Department of Nanotoxicolgy and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Anna Safar
- Department of Non-ionizing Radiation, National Public Health Center, Anna Street 5, 1221, Budapest, Hungary
| | - Semra Sardas
- Toxicology Department, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal; ToxOmics, NMS, NOVA University of Lisbon, Lisbon, Portugal
| | - Nikolay Sirota
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Institutskaya 3, Pushchino, Moscow Region, Russia
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Marta Staruchova
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Rudolf Stetina
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, VersbacherStrasse 9, 97078, Wuerzburg, Germany
| | - Ekaterina I Surikova
- Laboratory for the Study of the Pathogenesis of Malignant Tumors, National Medical Research Center for Oncology, 14 line 63, 344037, Rostov-on-Don, Russia
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene (DiMEILA), Italian Workers' Compensation Authority (INAIL), Via Fontana Candida 1, 00078, Monte Porzio Catone(Rome), Italy
| | - Vanessa Valdiglesias
- Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071, A Coruña, Spain
| | - Mahara Valverde
- Genomic Medicine and EnvironmentalToxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CU, Mexico
| | - Pavel Vodicka
- Experimental Medicine, Molecular Biology of Cancer, IEM AVCR, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Katarina Volkovova
- Institute of Biology, Medical Faculty, Slovak Medical University, Limbova 12, 83303, Bratislava, Slovakia
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Lada Živković
- Center of Biological Research, Faculty of Pharmacy, University of Belgrade, VojvodeStepe, 450, Belgrade, Serbia
| | | | - Andrew R Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Stefano Bonassi
- IRCCS San Raffaele Pisana, Unit of Clinical and Molecular Epidemiology, Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, 247., 00161, Rome, Italy.
| |
Collapse
|
26
|
Pajic J, Rovcanin B. Ionizing radiation-induced genotoxic and oxidative damage in peripheral lymphocytes and plasma of healthy donors. Mutat Res 2021; 863-864:503313. [PMID: 33678245 DOI: 10.1016/j.mrgentox.2021.503313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022]
Abstract
Biological dosimetry of ionizing radiation (IR) exposure relies on validated cytogenetic tests measuring the frequencies of micronuclei (MN) and dicentric chromosomes (DC). IR also causes oxidative damage of biomolecules, including DNA. We evaluated IR-induced genotoxic and oxidative damage in a carefully defined cohort of healthy donors, reducing confounding factors as much as possible. Frequencies of MN and DC (peripheral blood lymphocyte cultures) and oxidative stress parameters (plasma) were quantified. We observed dose dependence of both cytogenetic and biochemical endpoints, independent of age, sex, and smoking habits. Oxidative stress parameters, especially oxidative stress index, malondialdehyde, advanced oxidation protein products, and catalase, may be used confidently to assess IR-induced damage, if cytogenetic results are unavailable.
Collapse
Affiliation(s)
- J Pajic
- Serbian Institute of Occupational Health "Dr Dragomir Karajovic", Deligradska 29, Belgrade, Serbia.
| | - B Rovcanin
- Branislav Rovcanin, Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Koste Todorovica 8, Belgrade, Serbia
| |
Collapse
|
27
|
Dhillon VS, Deo P, Bonassi S, Fenech M. Lymphocyte micronuclei frequencies in skin, haematological, prostate, colorectal and esophageal cancer cases: A systematic review and meta-analysis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108372. [PMID: 34083057 DOI: 10.1016/j.mrrev.2021.108372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/17/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Micronucleus (MN) assay has been widely used as a biomarker of DNA damage, chromosomal instability, cancer risk and accelerated aging in many epidemiological studies. In this narrative review and meta-analysis we assessed the association between lymphocyte micronuclei (MNi) and cancers of the skin, blood, digestive tract, and prostate. The review identified nineteen studies with 717 disease subjects and 782 controls. Significant increases in MRi for MNi were observed in the following groups: subjects with blood cancer (MRi = 3.98; 95 % CI: 1.98-7.99; p = 0.000) and colorectal cancer (excluding IBD) (MRi = 2.69; 95 % CI: 1.82-3.98, p < 0.000). The results of this review suggest that lymphocyte MNi are a biomarker of DNA damage and chromosomal instability in people with haematological or colorectal cancers. However, the MRi for lymphocyte MNi in subjects with cancers of skin, prostate, esophagus was not significantly increased. More case-control and prospective studies are warranted to further verify the observed trends and to better understand the role of lymphocyte MNi as a biomarker of cancer risk in blood, skin, digestive tract and prostate.
Collapse
Affiliation(s)
- Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia.
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy; Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia; Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K. Protective roles of grape seed (Vitis vinifera L.) extract against cobalt(II) nitrate stress in Allium cepa L. root tip cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:270-279. [PMID: 32809124 DOI: 10.1007/s11356-020-10532-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Excessive doses of toxic metals such as cobalt may cause detrimental hazards to exposed organisms. Six groups of onion bulbs were formed to investigate the therapeutic effects of grape seed extract (GSE) against cobalt(II) nitrate (Co(NO3)2) exposure in Allium cepa L. root tips. Control group was irrigated with tap water, while the latter groups were exposed to 150 mg/L GSE, 300 mg/L GSE, 5.5 ppm Co(NO3)2, 5.5 ppm Co(NO3)2 + 150 mg/L GSE and 5.5 ppm Co(NO3)2 + 300 mg/L GSE, respectively. Co(NO3)2 treatment seriously inhibited the root growth, germination and weight gain of the bulbs. Mitotic index was significantly decreased, whereas the chromosomal aberrations and micronuclei incidence exhibited a remarkable increase. In addition, Co(NO3)2 induced a variety of anatomical disorders in onion roots. Lipid peroxidation levels of the cellular membranes were assessed measuring the malondialdehyde content (MDA). MDA amount in Co(NO3)2-treated group reached the highest level among all groups. Co(NO3)2 treatment enhanced the activity of superoxide dismutase and catalase. The addition of GSE to Co(NO3)2 solution substantially suppressed the negative effects of Co(NO3)2 in a dose-dependent manner by strengthening the antioxidant defence system and reducing the cytotoxicity. Moreover, there was a significant recovery in growth parameters following the grape seed addition to Co(NO3)2. GSE had a remarkable reduction in genotoxicity when treated as a mixture with Co(NO3)2. Overall data obtained from this investigation proved that GSE, as a promising functional by-product, had a protective effect on Allium cepa L. against the toxic effects of Co(NO3)2.
Collapse
Affiliation(s)
- Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey
| | - Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, 28400, Giresun, Turkey.
| | - Emine Yalçın
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
29
|
Wultsch G, Setayesh T, Kundi M, Kment M, Nersesyan A, Fenech M, Knasmüller S. Induction of DNA damage as a consequence of occupational exposure to crystalline silica: A review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108349. [PMID: 34083037 DOI: 10.1016/j.mrrev.2020.108349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
About 40 million workers are occupationally exposed to crystalline silica (CS) which was classified as a human carcinogen by the IARC. It is assumed that damage of the genetic material via inflammation and reactive oxygen species by CS lead to formation of malignant cells. We conducted a systematic literature search to find out if inhalation of CS containing dusts at workplaces causes damage of the genetic material. Thirteen studies were found eligible for this review, in most of them (n = 9) micronuclei (MN) which reflect structural/numerical chromosomal aberrations were monitored in lymphocytes and/or in exfoliated buccal cells. In 5 investigations DNA damage was measured in blood cells in single cell gel electrophoresis (comet) experiments. Frequently studied groups were potters, stone cutters, miners and construction workers. Results of meta-analyses show that exposure to CS causes formation of MN and DNA breaks, the overall ratio values were in exposed workers 2.06- and 1.96-fold higher than in controls, respectively. Two studies reported increased levels of oxidized guanine, and higher levels of DNA adducts with malondialdehyde indicating that exposure to CS leads to oxidative damage. The exposure of the workers to CS was quantified only in two studies, information concerning the size and chemical structures of the particles is lacking in most investigations. Therefore, it is not possible to use the results to derive occupational exposure limits of workers to CS which vary strongly in different countries. Nevertheless, the evaluation of the current state of knowledge shows that biomonitoring studies in which damage of the genetic material is measured in CS exposed workers can contribute to assess adverse health effects as consequence of DNA instability in specific occupations.
Collapse
Affiliation(s)
- Georg Wultsch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Kment
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
30
|
Genomic instability in chronic obstructive pulmonary disease and lung cancer: A systematic review and meta-analysis of studies using the micronucleus assay. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108344. [PMID: 34083053 DOI: 10.1016/j.mrrev.2020.108344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022]
Abstract
Respiratory tissues are highly susceptible to diseases due to the constant exposure to physical and chemical airborne pollutants. Chronic obstructive pulmonary disease (COPD) and lung cancer are among the most common causes of serious illness and death worldwide. The inflammatory environment associated with these respiratory diseases has long been accepted as the major player in the development of airway abnormalities. The presence and relevance of DNA damage and genomic instability makes the micronucleus assay a suitable candidate to quantitatively estimate these early pathogenetic events. A systematic review and meta-analysis were planned to determine underlying common mechanisms that can explain the relationships between COPD and lung cancer. A total of 17 studies from Jan 1999 to Dec 2019 comparing micronucleus frequency in patients affected by respiratory diseases vs healthy controls were analysed. Our results confirmed the presence of significant association between MN frequency and the diseases investigated, and suggested a circle of events linking inflammation induced oxidative stress to the risk of disease through genomic instability and hypoxia. Therefore, using non-invasive, robust and cost effective genomic instability assays such as the micronucleus assay, would allow us to capture unique phenotypic and biological changes that would allow the identification of subjects at high risk of developing lung diseases and improve early detection strategies.
Collapse
|
31
|
Nikitaki Z, Pariset E, Sudar D, Costes SV, Georgakilas AG. In Situ Detection of Complex DNA Damage Using Microscopy: A Rough Road Ahead. Cancers (Basel) 2020; 12:E3288. [PMID: 33172046 PMCID: PMC7694657 DOI: 10.3390/cancers12113288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Complexity of DNA damage is considered currently one if not the primary instigator of biological responses and determinant of short and long-term effects in organisms and their offspring. In this review, we focus on the detection of complex (clustered) DNA damage (CDD) induced for example by ionizing radiation (IR) and in some cases by high oxidative stress. We perform a short historical perspective in the field, emphasizing the microscopy-based techniques and methodologies for the detection of CDD at the cellular level. We extend this analysis on the pertaining methodology of surrogate protein markers of CDD (foci) colocalization and provide a unique synthesis of imaging parameters, software, and different types of microscopy used. Last but not least, we critically discuss the main advances and necessary future direction for the better detection of CDD, with important outcomes in biological and clinical setups.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| | - Eloise Pariset
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
- Universities Space Research Association (USRA), Mountain View, CA 94043, USA
| | - Damir Sudar
- Life Sciences Department, Quantitative Imaging Systems LLC, Portland, OR 97209, USA;
| | - Sylvain V. Costes
- Space Biosciences Division, Radiation Biophysics Laboratory, NASA Ames Research Center, Moffett Field, CA 94035, USA; (E.P.); (S.V.C.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, DNA Damage Laboratory, National Technical University of Athens (NTUA), 15780 Zografou, Athens, Greece
| |
Collapse
|
32
|
Lawrence R, Haboubi H, Williams L, Doak S, Jenkins G. Dietary and lifestyle factors effect erythrocyte PIG-A mutant frequency in humans. Mutagenesis 2020; 35:geaa025. [PMID: 33043963 DOI: 10.1093/mutage/geaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
It is well understood that poor diet and lifestyle choices can increase the risk of cancer. It is also well documented that cancer is a disease of DNA mutations, with mutations in key genes driving carcinogenesis. Measuring these mutations in a minimally invasive way may be informative as to which exposures are harmful and thus allow us to introduce primary preventative measures, in a bid to reduce cancer incidences. Here, we have measured mutations in the phosphatidylinositol glycan class A (PIG-A) gene in erythrocytes from healthy volunteers (n = 156) and from non-cancer patients attending the local endoscopy department (n = 144). The X-linked PIG-A gene encodes an enzyme involved in glycosylphosphatidylinositol (GPI) anchor synthesis. A silencing mutation in which leads to the absence of GPI anchors on the extracellular surface which can be rapidly assessed using flow cytometry. The background level of PIG-A mutant erythrocytes was 2.95 (95% CI: 2.59-3.67) mutant cells (10-6). Older age increased mutant cell frequency (P < 0.001). There was no difference in mutant cell levels between males and females (P = 0.463) or smokers and non-smokers (P = 0.186). In the endoscopy group, aspirin users had lower mutant frequencies (P = 0.001). Further information on diet and exercise was available for the endoscopy patient group alone, where those with a higher health promotion index score had lower mutant frequencies (P = 0.011). Higher dietary intake of vegetables reduced mutant cell levels (P = 0.022). Participants who exercised for at least 1 h a week appeared to have reduced mutant frequencies than those who did not exercise, although this was not statistically significant (P = 0.099). This low background level of mutant erythrocytes in a population makes this assay an attractive tool to monitor exposures such as those associated with lifestyles and diet, as demonstrated here.
Collapse
Affiliation(s)
| | | | - Lisa Williams
- Department of Endoscopy, Swansea Bay University Health Board, Swansea, UK
| | | | | |
Collapse
|
33
|
Çobanoğlu H, Coşkun M, Coşkun M, Çayır A. Different working conditions shift the genetic damage levels of pesticide-exposed agriculture workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31750-31759. [PMID: 32504430 DOI: 10.1007/s11356-020-09463-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
In the current study, we had two main purposes. Firstly, we aimed to compare genetic damages in the agricultural workers of two different types of environmental conditions including the greenhouse and open fields. Secondly, we aimed to compare genetic damages in the total agricultural workers as the exposed group (greenhouse and open field workers) (n = 114) and the non-exposed control group (n = 98) living in the same area in Canakkale, Turkey. For these purposes, we investigated the incidence of micronucleus (MN), nucleoplasmic bridges (NPBs), and nuclear buds (NBUDs) in peripheral blood lymphocytes. We observed that the frequencies of MN, NPB, and NBUD obtained for the greenhouse workers were statistically significantly higher than those obtained for the open field workers. When the results of the control group were compared with those of the total workers, there were statistically significant differences in terms of MN and NBUD frequencies. We found that age and MN were correlated at a significant level in both the agricultural workers and the control group. The MN frequency of the female workers was 1.5 times greater than that of the male workers, and it was a significant level in the agricultural workers.
Collapse
Affiliation(s)
- Hayal Çobanoğlu
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Münevver Coşkun
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
| | - Mahmut Coşkun
- Faculty of Medicine, Çanakkale Onsekiz Mart University, Terzioglu Campus, 17100, Çanakkale, Turkey
| | - Akın Çayır
- Health Services Vocational College, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey.
| |
Collapse
|
34
|
Mrdjanovic J, Sudji J, Srdjenovic B, Dojcinovic S, Bogdanovic V, Jakovljevic DK, Jurisic V. Accidental Use of Milk With an Increased Concentration of Aflatoxins Causes Significant DNA Damage in Hospital Workers Exposed to Ionizing Radiation. Front Public Health 2020; 8:323. [PMID: 32850577 PMCID: PMC7396628 DOI: 10.3389/fpubh.2020.00323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
The occupational exposure to ionizing radiation (Irad) or associated with mycotoxin-contaminated food may lead to genome damage and contribute to health risk. DNA damage in 80 blood samples of hospital workers occupationally exposed to low-doses of Irad was compared with 80 healthy controls. Among them, 40 participants accidentally consumed milk with increased concentration of Aflatoxin. All participants underwent the testing for micronuclei from blood, and 40 of them 8-OHdG from urine. The frequency of micronuclei (MN) was analyzed by cytokinesis-block peripheral blood lymphocytes and the level of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA. The Irad led to increased frequency of MN (p < 0.05) and 8-OHdG level at exposed hospital workers. The consumption of milk with increased concentration of aflatoxin probably raised MN frequency and 8-OHdG value. Higher consumption of aflatoxin-contaminated milk (≥2 L/monthly) caused significantly increased MN frequency and 8-OHdG value in comparison to lower milk intake (≤0.5 L/monthly). Also, confounding factors, such as age, gender, and smoking status of all participants were included in the study. The obtained results revealed an increased incidence of MN and 8-OHdG level among hospital workers exposed to low-doses of IRad and milk with increased aflatoxin concentration.
Collapse
Affiliation(s)
- Jasminka Mrdjanovic
- Faculty of Medicine, Oncology Institute of Vojvodina, University of Novi Sad, Sremska Kamenica, Serbia
| | - Jan Sudji
- Institute of Occupational Health, Novi Sad, Serbia
| | - Branislava Srdjenovic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Visnja Bogdanovic
- Faculty of Medicine, Oncology Institute of Vojvodina, University of Novi Sad, Sremska Kamenica, Serbia
| | | | - Vladimir Jurisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
35
|
Moshou H, Karakitsou A, Yfanti F, Hela D, Vlastos D, Paschalidou AK, Kassomenos P, Petrou I. Assessment of genetic effects and pesticide exposure of farmers in NW Greece. ENVIRONMENTAL RESEARCH 2020; 186:109558. [PMID: 32361259 DOI: 10.1016/j.envres.2020.109558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The present study aims at evaluating potential genotoxic and cytotoxic effects caused by the occupational exposure of farmers to pesticide mixtures in the Aitoloakarnania Prefecture (Greece). The aforementioned assessment was conducted through in vivo Cytokinesis Block Micronucleus assay (CBMN assay) in peripheral blood lymphocytes, in relation to chemical analysis of pesticide residues in blood samples. The exposure of the farmers' population studied to different combinations of pesticides induced significant differences in the frequencies of micronuclei (MN) compared to those of the control group. Furthermore, our results indicated a possible clastogenic and aneugenic effect of pesticides on the genetic material of the farmers exposed. Five pesticides (trifluralin, chlorpyriphos methyl, metolachlor, fenthion and dimethoate) and three metabolites (fenthion sulfone, fenthion sulfoxide and 4,4' DDE) were detected in the 62.5% of blood samples, with mean concentrations ranging from 0.4 ng/ml to 48 ng/ml. Since the farmers studied probably exhibit detectable levels of systematic exposure to the pesticides applied, continuous educational programs focused on the rational and safe use of pesticides, together with implementation of risk communication strategies among farmers are highly recommended.
Collapse
Affiliation(s)
- H Moshou
- Department of Environmental and Natural Resources Management, University of Patras, GR-30100, Agrinion, Greece
| | - A Karakitsou
- Department of Business Administration of Agricultural and Food Enterprise, University of Patras, GR-30100, Agrinion, Greece
| | - F Yfanti
- Department of Business Administration of Agricultural and Food Enterprise, University of Patras, GR-30100, Agrinion, Greece
| | - D Hela
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece.
| | - D Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100, Agrinion, Greece.
| | - A K Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, GR-68200, Orestiada, Greece
| | - P Kassomenos
- Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece
| | - I Petrou
- Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece
| |
Collapse
|
36
|
Jalali AH, Mozdarani H, Ghanaati H. The genotoxic effects of contrast enhanced abdominopelvic 3-tesla magnetic resonance imaging on human circulating leucocytes. Eur J Radiol 2020; 129:109037. [PMID: 32446124 DOI: 10.1016/j.ejrad.2020.109037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/16/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the effects of contrast enhanced abdominopelvic magnetic resonance imaging (MRI) on DNA damage. METHODS For this study, blood samples of 20 volunteers (15 women and 5 men) with mean age of 43 ± 8 years were assessed. The mean age of women was 41.4 ± 8.9 years and mean age of men was 48.5 ± 4.9 years (P = 0.14). Peripheral blood samples were collected before, 2 and 24 h after MRI in heparin and ethylenediaminetetraacetic acid (EDTA) containing tubes. Heparinized blood was cultured to assess the cytogenetic effects using cytokinesis blocked micronucleus (CBMN) assay. After isolation of mononuclear cells, alterations in genes involved in repair (CHEK2, p21) and apoptosis (BAX, BCL2) were analyzed using real-time polymerase chain reaction (qRT-PCR). RESULTS The mean number of MN in binucleated cells at before, 2 and 24 h after MRI were 17.9 ± 2.9, 18.1 ± 2.4 and 18.3 ± 2.6, respectively (p > 0.05). Results of gene expression according to fold change compared with the baseline were 1.2 ± 0.6 and 1.02 ± 0.5 at 2 and 24 h after MRI for CHEK2, and 1.3 ± 0.7 and 1.7 ± 0.7 for CDKN1A (p21); respectively (p > 0.05). Gene expression based on fold change compared with baseline were 0.9 ± 0.6 and 1.2 ± 0.8 at 2 and 24 h after MRI for BAX, and 1.05 ± 0.3 and 1.1 ± 0.7 for BCL2; respectively (p > 0.05). CONCLUSION Contrast enhanced abdominopelvic MRI showed no adverse effect on DNA in terms of MN formation and alterations in expression levels of some genes involved in repair and apoptosis pathways.
Collapse
Affiliation(s)
- Amir Hossein Jalali
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Soykut B, Erdem O, Yalçın CÖ, Üstündağ A, Duydu Y, Akay C, Pişkin B. Occupational exposure of dental technicians to methyl methacrylate: Genotoxicity assessment. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 852:503159. [DOI: 10.1016/j.mrgentox.2020.503159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/20/2023]
|
38
|
Nersesyan A, Muradyan R, Kundi M, Fenech M, Bolognesi C, Knasmueller S. Smoking causes induction of micronuclei and other nuclear anomalies in cervical cells. Int J Hyg Environ Health 2020; 226:113492. [PMID: 32088596 DOI: 10.1016/j.ijheh.2020.113492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Smoking is an independent cause of cervical cancer, which is the 4th most common malignancy in women. It is currently not known if tobacco consumption causes chromosomal damage (which is a hallmark of human cancer) in cervical cells and if age and the hormonal status have an impact on tobacco induced genetic instability in the cervix. METHODS We conducted a study with pre- and post-menopausal women smokers and never-smokers (25/group). Smokers consumed 30 light/medium cigarettes/day and were matched with the non-smoking group. Cervical cells were analyzed for induction of micronuclei (MN) which are caused by structural/numerical chromosomal aberrations; additionally, other nuclear anomalies reflecting genomic instability and cytotoxicity were scored. Furthermore, the frequencies of basal cells were recorded which reflect the mitotic activity of the mucosa. RESULTS MN and other abnormalities were increased in both groups of smokers. The effects were most pronounced in postmenopausal smokers (i.e. 2-fold higher) compared to premenopausal smokers. Also the number of basal cells (indicative for cell proliferation) was clearly enhanced in older women. Tar and nicotine had no detectable impact on chromosomal damage but a clear association with pack-years was observed. CONCLUSIONS Smoking increased chromosomal instability, cytotoxicity and induced cell divisions in cervical mucosa cells of pre- and post-menopausal women. The effects were more pronounced in the latter group indicating a higher risk for diseases (including cancer) that are causally related to DNA damage.
Collapse
Affiliation(s)
- Armen Nersesyan
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria.
| | | | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria.
| | | | - Claudia Bolognesi
- Environmental Carcinogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy.
| | | |
Collapse
|
39
|
Venugopal V, Krishnamoorthy M, Venkatesan V, Jaganathan V, Shanmugam R, Kanagaraj K, Paul SFD. Association between occupational heat stress and DNA damage in lymphocytes of workers exposed to hot working environments in a steel industry in Southern India. Temperature (Austin) 2020; 6:346-359. [PMID: 31934606 DOI: 10.1080/23328940.2019.1632144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022] Open
Abstract
Occupational heat stress apart from adverse heat-related health consequences also induces DNA damage in workers exposed to high working temperatures. We investigated the association between chronic heat exposures and Micronuclei (MN) frequency in lymphocytes of 120 workers employed in the steel industry. There was a significant increase in the MN-frequency in exposed workers compared to the unexposed workers (X2 = 47.1; p < 0.0001). While exposed workers had higher risk of DNA damage (Adj. OR = 23.3, 95% CI 8.0-70.8) compared to the unexposed workers, among the exposed workers, the odds of DNA damage was much higher for the workers exposed to high-heat levels (Adj. OR = 81.4; 95% CI 21.3-310.1) even after adjusting for confounders. For exposed workers, years of exposure to heat also had a significant association with higher induction of MN (Adj. OR = 29.7; 95% CI 2.8-315.5). Exposures to chronic heat stress is a significant occupational health risk including damages in sub-cellular level, for workers. Developing protective interventions to reduce heat exposures is imperative in the rising temperature scenario to protect millions of workers across the globe.
Collapse
Affiliation(s)
- Vidhya Venugopal
- Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education & Research (DU)
| | - Manikandan Krishnamoorthy
- Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education & Research (DU)
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education & Research (DU), Chennai, India
| | - Vijayalakshmi Jaganathan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education & Research (DU), Chennai, India
| | - Rekha Shanmugam
- Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education & Research (DU)
| | - Karthik Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education & Research (DU), Chennai, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education & Research (DU), Chennai, India
| |
Collapse
|
40
|
Micronuclei and disease - Report of HUMN project workshop at Rennes 2019 EEMGS conference. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 850-851:503133. [PMID: 32247551 DOI: 10.1016/j.mrgentox.2020.503133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
The "Micronuclei and Disease" workshop was organized by the HUMN Project consortium and hosted by the European Environmental Mutagen and Genomics Society at their annual meeting in Rennes, France, on 23 May 2019. The program of the workshop focused on addressing the emerging evidence linking micronucleus (MN) frequency to human disease. The first objective was to review what has been published and evaluate the level and quality of evidence for the connection between MN frequency and various diseases through all life stages. The second objective was to identify the knowledge gaps and what else needs to be done to determine the clinical utility of MN assays as predictors of disease risk and of prognosis when disease is active. Speakers at the workshop discussed the association of MN frequency with inflammation, infertility, pregnancy complications, obesity, diabetes, cardiovascular disease, kidney disease, cervical and bladder cancer, oral head and neck cancer, lung cancer, accelerated ageing syndromes, neurodegenerative diseases, and a road-map on how to utilise this knowledge was proposed. The outcomes of the workshop indicated that there are significant opportunities for translating the application of MN assays into clinical practice to improve disease prevention and risk management and to inform public health policy.
Collapse
|
41
|
Shafiee M, Borzoueisileh S, Rashidfar R, Dehghan M, Jaafarian Sisakht Z. Chromosomal aberrations in C-arm fluoroscopy, CT-scan, lithotripsy, and digital radiology staff. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503131. [PMID: 32087852 DOI: 10.1016/j.mrgentox.2020.503131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 11/16/2022]
Abstract
We have assessed chromosome-type aberrations and micronuclei in the peripheral lymphocytes of personnel working with C-arm fluoroscopy, multi-slice CT-scan, lithotripsy, and digital radiology medical procedures. The study population comprised of 46 exposed workers and 35 controls matched for age, gender, and other confounding factors. Chromosome-type aberrations and micronuclei were analyzed and compared with occupational dosimetry data. The highest frequency of both chromosome aberrations (1.62 CA/100 cells) and MN (MN = 7.47 ± 2.55) was observed in the operating room group. According to occupational dosimetry, surgeons and medical staff received 0-2.99 mSv over the previous year, well below the limit established by the International Committee on Radiation Protection. An increased level of chromosomal aberrations was observed among workers exposed in the operating rooms. We recommend that operating room radiation safety programs be improved and better supervised, in particular for orthopedic surgeons and personnel performing fluoroscopically guided procedures.
Collapse
Affiliation(s)
- Mohsen Shafiee
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajad Borzoueisileh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Razieh Rashidfar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Dehghan
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | | |
Collapse
|
42
|
Hopf NB, Danuser B, Bolognesi C, Wild P. Age related micronuclei frequency ranges in buccal and nasal cells in a healthy population. ENVIRONMENTAL RESEARCH 2020; 180:108824. [PMID: 31634720 DOI: 10.1016/j.envres.2019.108824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Micronuclei (MNs) are extranuclear DNA-containing bodies and determining MN frequencies is a measure of genomic instability. An age-related increase in MN frequencies in lymphocytes has been quantified, but this effect has not yet been measured in nasal and buccal cells. METHODS We determined the effect of age on the MN frequency distributions in buccal and nasal cells among a sample of a general adult population in Switzerland. To maximize the power to detect an effect of age in our population study, we recruited preferentially younger and older working age adults. We harvested buccal and nasal cells from 32 young (19-36 year) and 33 working age (47-71 years) participants. The collected cells were washed, centrifuged, and stained (Feulgen) before microscopic manual counting in 2000 cells. Based on these results, we developed an age-dependent background MN frequency chart to help interpret an individual's MN frequency score as an early signal for the effect of genotoxic exposure. RESULTS MN frequencies were respectively 0.53‰ and 0.47‰ for buccal and nasal among the younger and 0.87‰ and 1.03‰ in the older working age group. This corresponded to a multiplicative slope of 14% and 20% per 10 years of age for buccal and nasal cells, respectively. CONCLUSION Based on our study results, we are able to propose an approach for interpreting an individual's MN screening results.
Collapse
Affiliation(s)
- Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), Formerly IST, Institute for Work and Health, University of Lausanne, Lausanne, Epalinges, Switzerland.
| | - Brigitta Danuser
- Center for Primary Care and Public Health (Unisanté), Formerly IST, Institute for Work and Health, University of Lausanne, Lausanne, Epalinges, Switzerland.
| | - Claudia Bolognesi
- Environmental Carcinogenesis Unit Ospedale Policlinico San Martino, Genoa, Italy.
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), Formerly IST, Institute for Work and Health, University of Lausanne, Lausanne, Epalinges, Switzerland; INRS, French Institute for Research and Safety, Vandoeuvre, France.
| |
Collapse
|
43
|
Miszczyk J, Rawojć K, Panek A, Gałaś A, Kowalska A, Szczodry A, Brudecki K. Assessment of the nuclear medicine personnel occupational exposure to radioiodine. Eur J Radiol 2019; 121:108712. [PMID: 31683253 DOI: 10.1016/j.ejrad.2019.108712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To physically and cytogenetically screen medical personnel of Department of Endocrinology and Nuclear Medicine, Holy Cross Cancer Center, Kielce, Poland (DENM) who are occupationally exposed to 131I. MATERIALS AND METHODS The exposure was monitored by whole-body and finger ring dosimeters. The thyroid iodine intake was measured by a whole-body spectrometer equipped with two semiconductor gamma radiation detectors. A cytokinesis-block micronucleus assay and the premature chromosome condensation technique were used to assess the aberration score. Cytogenetic analyses were carried out on a group of 29 workers and were compared to 32 controls (healthy donors), matched for gender and age. RESULTS On average, the exposed group showed a significantly higher frequency of genetic damage and a higher proliferation index compared to the control group. Smoking status, age and duration of exposure influenced the observed effects in both groups. No differences in measured biomarkers were observed after stratification of the exposed group into two subgroups based on the measured 131I activity below and above 6 Bq. CONCLUSION The findings suggest that radiation protection principles based on whole-body and finger ring dosimetry, supported by activity measurements with a whole-body spectrometer, may be insufficient to monitor the absorbed dose estimation of the nuclear medicine staff who are occupationally exposed to 131I. Furthermore, their future health risks are influenced by confounders. Direct assessments comparing physical and biological dose estimations on the larger group are needed to accurately monitor occupational radiation exposure.
Collapse
Affiliation(s)
- Justyna Miszczyk
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland.
| | - Kamila Rawojć
- Department of Endocrinology, Nuclear Medicine Unit, The University Hospital, Kraków, Poland
| | - Agnieszka Panek
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| | - Aleksander Gałaś
- Chair of Epidemiology and Preventive Medicine, Department of Epidemiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aldona Kowalska
- Department of Endocrinology and Nuclear Medicine, Holy Cross Cancer Center, Kielce, Poland; The Faculty of Health Sciences, The Jan Kochanowski University, Kielce, Poland
| | - Artur Szczodry
- Department of Endocrinology and Nuclear Medicine, Holy Cross Cancer Center, Kielce, Poland
| | - Kamil Brudecki
- Department of Nuclear Physical Chemistry, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
44
|
Chandirasekar R, Murugan K, Muralisankar T, Uthayakumar V, Jayakumar R, Mohan K, Vasugi C, Mathivanan R, Mekala S, Jagateesh A, Suresh K. Genotoxic effects of tobacco use in residents of hilly areas and foot hills of Western Ghats, Southern India. Sci Rep 2019; 9:14898. [PMID: 31624274 PMCID: PMC6797791 DOI: 10.1038/s41598-019-51275-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/06/2019] [Indexed: 11/20/2022] Open
Abstract
Smoking and smokeless tobacco consumption is a significant risk factor that provokes genetic alterations. The present investigation was to evaluate the biomarkers of genotoxicity including micronucleus (MN), chromosome aberrations (CA) and DNA strand breaks among tobacco consumers and control individuals residing in hilly areas of Western Ghats, Tamilnadu, South India. This study included 268 tobacco consumers with equal number of controls. The tobacco consumers were divided into Group I (<10 years of tobacco consumption with an age range from 15 to 35 years) and group II (>10 years consumption above 35 years of age). Chromosome aberration (CA) and comet assay were performed using blood and micronucleus assay from exfoliated buccal epithelial cells obtained from tobacco consumers and controls. Elevated levels of CA were found in group II (Chromatid type: 2.39 ± 1.13 and chromosome type: 1.44 ± 1.24) exposed subjects, high micronucleus and DNA damage (TL:4.48 ± 1.24 and TM:3.40 ± 1.58) levels were significantly (p < 0.05) observed in both smoking and smokeless tobacco consumers when comparison with group I and controls. This study also observed a lack of awareness among the tobacco consumers about the harmful health effects of tobacco. Tobacco consumption contributes to the significant alteration in genetic materials. In addition, a high rate of spontaneous abortion was also seen in the studied population.
Collapse
Affiliation(s)
- R Chandirasekar
- Human Molecular Genetics Laboratory, PG and Research Department of Zoology, Sri Vasavi College, Erode, 638316, Tamilnadu, India.
| | - K Murugan
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
- Thiruvalluvar University, Serkkadu, Vellore, 632 115, India
| | - T Muralisankar
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - V Uthayakumar
- Human Molecular Genetics Laboratory, PG and Research Department of Zoology, Sri Vasavi College, Erode, 638316, Tamilnadu, India
| | - R Jayakumar
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - K Mohan
- Human Molecular Genetics Laboratory, PG and Research Department of Zoology, Sri Vasavi College, Erode, 638316, Tamilnadu, India
- Centre of Advanced Study in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai, Tamil nadu, 608 502, India
| | - C Vasugi
- Human Molecular Genetics Laboratory, PG and Research Department of Zoology, Sri Vasavi College, Erode, 638316, Tamilnadu, India
| | - R Mathivanan
- Human Molecular Genetics Laboratory, PG and Research Department of Zoology, Sri Vasavi College, Erode, 638316, Tamilnadu, India
| | - S Mekala
- Human Molecular Genetics Laboratory, PG and Research Department of Zoology, Sri Vasavi College, Erode, 638316, Tamilnadu, India
| | - A Jagateesh
- PG & Research Department of Zoology Chikkaiah Naicker College, 638004, Erode, Tamilnadu, India
| | - K Suresh
- Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| |
Collapse
|
45
|
Khowal S, Wajid S. Role of Smoking-Mediated molecular events in the genesis of oral cancers. Toxicol Mech Methods 2019; 29:665-685. [DOI: 10.1080/15376516.2019.1646372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
46
|
Rossnerova A, Pelclova D, Zdimal V, Rossner P, Elzeinova F, Vrbova K, Topinka J, Schwarz J, Ondracek J, Kostejn M, Komarc M, Vlckova S, Fenclova Z, Dvorackova S. The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: a pilot study. Mutagenesis 2019; 34:253-263. [DOI: 10.1093/mutage/gez016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/07/2019] [Indexed: 01/23/2023] Open
Abstract
Abstract
The application of nanomaterials has been rapidly increasing during recent years. Inhalation exposure to nanoparticles (NP) may result in negative toxic effects but there is a critical lack of human studies, especially those related to possible DNA alterations. We analyzed pre-shift and post-shift a group of nanocomposite researchers with a long-term working background (17.8 ± 10.0 years) and matched controls. The study group consisted of 73.2% males and 26.8% females. Aerosol exposure monitoring during a working shift (involving welding, smelting, machining) to assess the differences in exposure to particulate matter (PM) including nanosized fractions <25–100 nm, and their chemical analysis, was carried out. A micronucleus assay using Human Pan Centromeric probes, was applied to distinguish between the frequency of centromere positive (CEN+) and centromere negative (CEN−) micronuclei (MN) in the binucleated cells. This approach allowed recognition of the types of chromosomal damage: losses and breaks. The monitoring data revealed differences in the exposure to NP related to individual working processes, and in the chemical composition of nanofraction. The cytogenetic results of this pilot study demonstrated a lack of effect of long-term (years) exposure to NP (total frequency of MN, P = 0.743), although this exposure may be responsible for DNA damage pattern changes (12% increase of chromosomal breaks—clastogenic effect). Moreover, short-term (daily shift) exposure could be a reason for the increase of chromosomal breaks in a subgroup of researchers involved in welding and smelting processes (clastogenic effect, P = 0.037). The gender and/or gender ratio of the study participants was also an important factor for the interpretation of the results. As this type of human study is unique, further research is needed to understand the effects of long-term and short-term exposure to NP.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Zdimal
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Schwarz
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Ondracek
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Kostejn
- Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Komarc
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenka Fenclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Technical University in Liberec, Liberec, Czech Republic
- Department of Engineering Technology, Technical University in Liberec, Liberec, Czech Republic
- Department of Material Science, Technical University in Liberec, Liberec, Czech Republic
| |
Collapse
|
47
|
El-Benhawy SA, Sadek NA, Behery AK, Issa NM, Ali OK. Chromosomal aberrations and oxidative DNA adduct 8-hydroxy-2-deoxyguanosine as biomarkers of radiotoxicity in radiation workers. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sanaa A. El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nadia A. Sadek
- Hematology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amal K. Behery
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Noha M. Issa
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Osama K. Ali
- Department of Radiology and Medical Imaging, University of 6 October, Cairo, Egypt
| |
Collapse
|
48
|
Barbu LR, Obreja DC, Duliu OG. THE INVESTIGATION OF MICRONUCLEI FREQUENCY DISTRIBUTION FOR EXPOSED AND UNEXPOSED PERSONNEL TO IONIZING RADIATION. RADIATION PROTECTION DOSIMETRY 2019; 183:397-402. [PMID: 30289495 DOI: 10.1093/rpd/ncy155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
To establish at which extent the micronuclei (MN) frequency is influenced by occupational exposure to ionizing radiation, peripheral blood samples collected from 2151 subjects of both genders, smokers and non-smokers were analyzed. Among them, 378 (17.6%) were unexposed while the other 1773 (82.4%) were exposed to ionizing radiation for periods between 1 year and more than 30 years, at levels never overpassing legally regulated limits. The final results showed that for all investigated categories, MN frequency monotonously increases with the age by 1.75 ± 0.17 times in the case of exposed subjects, but independent on gender and smoking habit.
Collapse
Affiliation(s)
- Lucia Raluca Barbu
- University of Bucharet, Faculty of Physics, Doctoral School on Physics, 405, Atomistilor str., Magurele (Ilfov), Romania
| | - Doina Carmen Obreja
- National Institute of Public Health, 1-3, Doctor Leonte Anastasievici str., Bucharest, Romania
| | - O G Duliu
- University of Bucharest, Faculty of Physics, Departament of Structure of Matter, Earth and Atmospheric Physics and Astrophysics, 405, Atomistilor str., Magurele (Ilfov), Romania
| |
Collapse
|
49
|
Lison D, Van Maele-Fabry G, Vral A, Vermeulen S, Bastin P, Haufroid V, Baeyens A. Absence of genotoxic impact assessed by micronucleus frequency in circulating lymphocytes of workers exposed to cadmium. Toxicol Lett 2019; 303:72-77. [DOI: 10.1016/j.toxlet.2018.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
|
50
|
Micronuclei frequency in peripheral blood lymphocytes and levels of anti-p53 autoantibodies in serum of residents of Kowary city regions (Poland) with elevated indoor concentrations of radon. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 838:67-75. [DOI: 10.1016/j.mrgentox.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
|