1
|
Amrenova A, Ainsbury E, Baudin C, Giussani A, Lochard J, Rühm W, Scholz-Kreisel P, Trott K, Vaillant L, Wakeford R, Zölzer F, Laurier D. Consideration of hereditary effects in the radiological protection system: evolution and current status. Int J Radiat Biol 2024; 100:1240-1252. [PMID: 38190433 DOI: 10.1080/09553002.2023.2295289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE The purpose of this paper is to provide an overview of the methodology used to estimate radiation genetic risks and quantify the risk of hereditary effects as outlined in the ICRP Publication 103. It aims to highlight the historical background and development of the doubling dose method for estimating radiation-related genetic risks and its continued use in radiological protection frameworks. RESULTS This article emphasizes the complexity associated with quantifying the risk of hereditary effects caused by radiation exposure and highlights the need for further clarification and explanation of the calculation method. As scientific knowledge in radiation sciences and human genetics continues to advance in relation to a number of factors including stability of disease frequency, selection pressures, and epigenetic changes, the characterization and quantification of genetic effects still remains a major issue for the radiological protection system of the International Commission on Radiological Protection. CONCLUSION Further research and advancements in this field are crucial for enhancing our understanding and addressing the complexities involved in assessing and managing the risks associated with hereditary effects of radiation.
Collapse
Affiliation(s)
- A Amrenova
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | | | - C Baudin
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - A Giussani
- BfS - Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - J Lochard
- Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - W Rühm
- BfS - Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - P Scholz-Kreisel
- BfS - Federal Office for Radiation Protection, Oberschleißheim, Germany
| | - K Trott
- Deptartment Radiation Oncology, Technical University München, Fontenay-aux-Roses, France
| | | | - R Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, UK
| | - F Zölzer
- Department of Health and Social Sciences, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - D Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| |
Collapse
|
2
|
Sisterna S, Borrell A. Couple screening for recessively inherited disorders. J Med Screen 2022; 30:55-61. [PMID: 36398322 DOI: 10.1177/09691413221137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Couple screening aims to identify couples with an increased risk of having a child affected with an autosomal recessive or X-linked disorder, in order to facilitate informed reproductive decision making. Both expectant parents should be screened as a single entity, instead of individual testing. Carrier testing was typically performed for a few relatively common recessive disorders associated with significant morbidity, reduced life expectancy and often because of a considerably higher carrier frequency in a specific population for certain diseases. However, new genetic testing technologies enable the expansion of screening to multiple conditions, genes and sequence variants. There are multiple reproductive options for screening couples at risk, particularly when genetic traits are detected in the preconception period.
Collapse
Affiliation(s)
- Silvina Sisterna
- Hospital Privado de Comunidad, Obstetrics and Gynaecology, Mar del Plata, Argentina
| | - Antoni Borrell
- Hospital Clínic de Barcelona, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, University of Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Ji HJ, Jang AY, Song JY, Ahn KB, Han SH, Bang SJ, Jung HK, Hur J, Seo HS. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front Immunol 2022; 13:931052. [PMID: 35898510 PMCID: PMC9310569 DOI: 10.3389/fimmu.2022.931052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a leading cause of food-borne diseases in humans worldwide, resulting in severe morbidity and mortality. They are carried asymptomatically in the intestine or gallbladder of livestock, and are transmitted predominantly from animals to humans via the fecal-oral route. Thus, the best preventive strategy is to preemptively prevent transmission to humans by vaccinating livestock. Live attenuated vaccines have been mostly favored because they elicit both cellular and humoral immunity and provide long-term protective immunity. However, developing these vaccines is a laborious and time-consuming process. Therefore, most live attenuated vaccines have been mainly used for phenotypic screening using the auxotrophic replica plate method, and new types of vaccines have not been sufficiently explored. In this study, we used Radiation-Mutation Enhancement Technology (R-MET) to introduce a wide variety of mutations and attenuate the virulence of Salmonella spp. to develop live vaccine strains. The Salmonella Typhimurium, ST454 strain (ST WT) was irradiated with Cobalt60 gamma-irradiator at 1.5 kGy for 1 h to maximize the mutation rate, and attenuated daughter colonies were screened using in vitro macrophage replication capacity and in vivo mouse infection assays. Among 30 candidates, ATOMSal-L6, with 9,961-fold lower virulence than the parent strain (ST454) in the mouse LD50 model, was chosen. This vaccine candidate was mutated at 71 sites, and in particular, lost one bacteriophage. As a vaccine, ATOMSal-L6 induced a Salmonella-specific IgG response to provide effective protective immunity upon intramuscular vaccination of mice. Furthermore, when mice and sows were orally immunized with ATOMSal-L6, we found a strong protective immune response, including multifunctional cellular immunity. These results indicate that ATOMSal-L6 is the first live vaccine candidate to be developed using R-MET, to the best of our knowledge. R-MET can be used as a fast and effective live vaccine development technology that can be used to develop vaccine strains against emerging or serotype-shifting pathogens.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - A-Yeung Jang
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute (DRI), School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok Jin Bang
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
- *Correspondence: Jin Hur, ; Ho Seong Seo,
| |
Collapse
|
4
|
Richardson E, McEwen A, Newton-John T, Manera K, Jacobs C. The Core Outcome DEvelopment for Carrier Screening (CODECS) study: protocol for development of a core outcome set. Trials 2021; 22:480. [PMID: 34294124 PMCID: PMC8296650 DOI: 10.1186/s13063-021-05439-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background Reproductive genetic carrier screening is a type of genetic testing available to those planning a pregnancy, or during their first trimester, to understand their risk of having a child with a severe genetic condition. There is a lack of consensus for ‘what to measure’ in studies on this intervention, leading to heterogeneity in choice of outcomes and methods of measurement. Such outcome heterogeneity has implications for the quality and comparability of these studies and has led to a lack of robust research evidence in the literature to inform policy and decision-making around the offer of this screening. As reproductive genetic carrier screening becomes increasingly accessible within the general population, it is timely to investigate the outcomes of this intervention. Objectives The development of a core outcome set is an established methodology to address issues with outcome heterogeneity in research. We aim to develop a core outcome set for reproductive genetic carrier screening to clarify and standardise outcomes for research and practice. Methods In accordance with guidance from the COMET (Core Outcome Measures in Effectiveness Trials) Initiative, this study will consist of five steps: (i) a systematic review of quantitative studies, using narrative synthesis to identify previously reported outcomes, their definitions, and methods of measurement; (ii) a systematic review of qualitative studies using content analysis to identify excerpts related to patient experience and perspectives that can be interpreted as outcomes; (iii) semi-structured focus groups and interviews with patients who have undertaken reproductive genetic carrier screening to identify outcomes of importance to them; (iv) Delphi survey of key stakeholders, including patients, clinicians, and researchers, to refine and prioritise the list of outcomes generated from the previous steps; and (v) a virtual consensus meeting with a purposive sample of key stakeholders to finalise the core outcome set for reporting. Discussion This protocol outlines the core outcome set development process and its novel application in the setting of genetic testing. This core outcome set will support the standardisation of outcome reporting in reproductive carrier screening research and contribute to an evolving literature on outcomes to evaluate genetic testing and genetic counselling as health interventions. COMET core outcome set registration http://www.comet-initiative.org/Studies/Details/1381.
Collapse
Affiliation(s)
- Ebony Richardson
- Graduate School of Health, University of Technology Sydney, Building 20, 100 Broadway, Chippendale, Sydney, NSW, 2008, Australia.
| | - Alison McEwen
- Graduate School of Health, University of Technology Sydney, Building 20, 100 Broadway, Chippendale, Sydney, NSW, 2008, Australia
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Building 20, 100 Broadway, Chippendale, Sydney, NSW, 2008, Australia
| | - Karine Manera
- Sydney School of Public Health, The University of Sydney, Edward Ford Building, A27 Fisher Rd, Sydney, NSW, 2006, Australia
| | - Chris Jacobs
- Graduate School of Health, University of Technology Sydney, Building 20, 100 Broadway, Chippendale, Sydney, NSW, 2008, Australia
| |
Collapse
|
5
|
Quaio CRDC, Chung CH, Perazzio SF, Dutra AP, Moreira CM, Filho GMN, Sacramento-Bobotis PR, Penna MG, de Souza RRF, Cintra VP, Carnavalli JEP, da Silva RA, Paixão D, Baratela WADR, Olivati C, Spolador GM, Santos MNP, Pintao MC, Fornari ARDS, Burger M, Ramalho RF, Pereira OJE, E Ferreira EN, Mitne-Neto M, Kim CA. Frequency of carriers for rare recessive Mendelian diseases in a Brazilian cohort of 320 patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2021; 187:364-372. [PMID: 34269512 DOI: 10.1002/ajmg.c.31932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
Several Mendelian disorders follow an autosomal recessive inheritance pattern. Epidemiological information on many inherited disorders may be useful to guide health policies for rare diseases, but it is often inadequate, particularly in developing countries. We aimed to calculate the carrier frequencies of rare autosomal recessive Mendelian diseases in a cohort of Brazilian patients using whole exome sequencing (WES). We reviewed the molecular findings of WES from 320 symptomatic patients who had carrier status for recessive diseases. Using the Hardy-Weinberg equation, we estimated recessive disease frequencies (q2 ) considering the respective carrier frequencies (2pq) observed in our study. We calculated the sensitivity of carrier screening tests based on lists of genes from five different clinical laboratories that offer them in Brazil. A total of 425 occurrences of 351 rare variants were reported in 278 different genes from 230 patients (71.9%). Almost half (48.8%) were carriers of at least one heterozygous pathogenic/likely pathogenic variant for rare metabolic disorders, while 25.9% of epilepsy, 18.1% of intellectual disabilities, 15.6% of skeletal disorders, 10.9% immune disorders, and 9.1% of hearing loss. We estimated that an average of 67% of the variants would not have been detected by carrier screening panels. The combined frequencies of autosomal recessive diseases were estimated to be 26.39/10,000 (or ~0.26%). This study shows the potential research utility of WES to determine carrier status, which may be a possible strategy to evaluate the clinical and social burden of recessive diseases at the population level and guide the optimization of carrier screening panels.
Collapse
Affiliation(s)
- Caio Robledo D'Angioli Costa Quaio
- Instituto da Crianca (Children's Hospital), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Fleury Medicina e Saúde, São Paulo, Brazil.,Laboratório Clínico, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Sandro Felix Perazzio
- Fleury Medicina e Saúde, São Paulo, Brazil.,Division of Rheumatology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Rafael Alves da Silva
- Fleury Medicina e Saúde, São Paulo, Brazil.,Laboratório de Hepatologia Molecular Aplicada (LHeMA), Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | | | | | - Gustavo Marquezani Spolador
- Instituto da Crianca (Children's Hospital), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Fleury Medicina e Saúde, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Chong Ae Kim
- Instituto da Crianca (Children's Hospital), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Cheng HYH, Wong GCY, Chan YKK, Lee CP, Tang MHY, Ng EHY, Kan ASY. Expanded Carrier Screening in Chinese Population - A Survey on Views and Acceptance of Pregnant and Non-Pregnant Women. Front Genet 2020; 11:594091. [PMID: 33304390 PMCID: PMC7701308 DOI: 10.3389/fgene.2020.594091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
Objective Recessive genetic diseases impose physical and psychological impacts to both newborns and parents who may not be aware of being carriers. Expanded carrier screening (ECS) allows screening for multiple genetic conditions at the same time. Whether or not such non-targeted panethnic approach of genetic carrier screening should replace the conventional targeted approach remains controversial. There is limited data on view and acceptance of ECS in general population, as well as the optimal timing of offering ECS to women. This study assesses views and acceptance of ECS in both pregnant women and non-pregnant women seeking fertility counseling or checkup and their reasons for accepting or declining ECS. Materials and methods This is a questionnaire survey with ECS information in the form of pamphlets distributed from December 2016 to end of 2018. Women were recruited from the antenatal clinics and the assisted reproductive unit at the Department of Obstetrics and Gynaecology, Queen Mary Hospital and the prepregnancy counseling clinic at the Family Planning Association of Hong Kong. Results A total of 923 women were recruited: 623 pregnant women and 300 non-pregnant women. There were significantly more non-pregnant women accepting ECS compared to pregnant women (70.7% vs. 61.2%). Eight hundred and sixty-eight (94%) women perceived ECS as at least as effective as or superior to traditional targeted screening. Significantly more pregnant women have heard about ECS compared with non-pregnant women (42.4% vs. 32.3%, P = 0.0197). Majority of women showed lack of understanding about ECS despite reading pamphlets that were given to them prior to filling in the questionnaires. Cost of ECS was a major reason for declining ECS, 28% (n = 256). Significantly more pregnant women worried about anxiety caused by ECS compared with the non-pregnant group (21.1% vs. 7.4%, P = 0.0006). Conclusion Our study demonstrates that expanded carrier screening was perceived as a better screening by most women. Prepregnancy ECS maybe a better approach than ECS during pregnancy, as it allows more reproductive options and may cause less anxiety. Nevertheless, implementation of universal panethnic ECS will need more patient education, ways to reduce anxiety, and consensus on optimal timing in offering ECS.
Collapse
Affiliation(s)
- Hiu Yee Heidi Cheng
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | | | | | - Chin Peng Lee
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Mary Hoi Yin Tang
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Ernest Hung-Yu Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Anita Sik-Yau Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| |
Collapse
|
7
|
Nijmeijer SCM, Conijn T, Lakeman P, Henneman L, Wijburg FA, Haverman L. Attitudes of relatives of mucopolysaccharidosis type III patients toward preconception expanded carrier screening. Eur J Hum Genet 2020; 28:1331-1340. [PMID: 32483342 PMCID: PMC7609293 DOI: 10.1038/s41431-020-0648-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
Preconception expanded carrier screening (ECS) aims to detect carrier couples of autosomal recessive (AR) disorders before pregnancy in order to increase reproductive autonomy of prospective parents. Genetic knowledge and knowledge gained from experience influence decision making on participation in genetic testing and understanding carrier test results. In this study we assessed whether parents and relatives of patients with the severe AR condition mucopolysaccharidosis type III (MPS III), who are expected to have genetic and experiential knowledge, have more positive attitudes toward ECS than the Dutch reference group. Parents of all MPS III patients known to the Dutch expert center were invited to participate and asked to invite first and second degree relatives. The online questionnaire started with an educational text, and assessed attitudes toward ECS, genetic knowledge and perceived MPS III severity. Results were compared with the Dutch population. Parents and relatives of MPS III patients (n = 159) scored higher on the genetic knowledge test and perceived MPS III as more severe compared with the general Dutch population (n = 781). Parents and relatives reported to be more likely to participate in ECS (84.3% and 62.5%, respectively) compared with the public (31%) (p < 0.001). Being a relative of a MPS III patient was the strongest variable in the regression analyses for intended ECS participation. Our results show that genetic knowledge influences ECS decision making. Therefore, appropriate information on ECS and genetic counseling is needed to enable prospective parents from the general population, including relatives of patients with severe hereditary disorders, to make informed decisions.
Collapse
Affiliation(s)
- Stephanie C M Nijmeijer
- Amsterdam UMC, Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx", University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thirsa Conijn
- Amsterdam UMC, Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx", University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam UMC, Psychosocial Department, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, Department of Clinical Genetics, Amsterdam Reproduction and Development Research Institute, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lidewij Henneman
- Amsterdam UMC, Department of Clinical Genetics, Amsterdam Reproduction and Development Research Institute, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Frits A Wijburg
- Amsterdam UMC, Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center "Sphinx", University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Lotte Haverman
- Amsterdam UMC, Psychosocial Department, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Development of Oxytolerant Salmonella typhimurium Using Radiation Mutation Technology (RMT) for Cancer Therapy. Sci Rep 2020; 10:3764. [PMID: 32111878 PMCID: PMC7048768 DOI: 10.1038/s41598-020-60396-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/05/2020] [Indexed: 02/02/2023] Open
Abstract
A critical limitation of Salmonella typhimurium (S. typhimurium) as an anti-cancer agent is the loss of their invasive or replicative activities, which results in no or less delivery of anti-cancer agents inside cancer cells in cancer therapy. Here we developed an oxytolerant attenuated Salmonella strain (KST0650) from the parental KST0649 (ΔptsIΔcrr) strain using radiation mutation technology (RMT). The oxytolerant KST0650 strain possessed 20-times higher replication activity in CT26 cancer cells and was less virulent than KST0649. Furthermore, KST0650 migrated effectively into tumor tissues in mice. KST0650 was further equipped with a plasmid harboring a spliced form of the intracellular pro-apoptotic protein sATF6, and the expression of sATF6 was controlled by the radiation-inducible recN promoter. The new strain was named as KST0652, in which sATF6 protein expression was induced in response to radiation in a dose-dependent manner. This strain was effectively delivered inside cancer cells and tumor tissues via the Salmonella type III secretion system (T3SS). In addition, combination treatment with KST0652 and radiation showed a synergistic anti-tumor effect in murine tumor model with complete inhibition of tumor growth and protection against death. In conclusion, we showed that RMT can be used to effectively develop an anti-tumor Salmonella strain for delivering anti-cancer agents inside tumors.
Collapse
|
9
|
Padmanabhan VT, Sugunan AP, Brahmaputhran CK, Nandini K, Pavithran K. Heritable Anomalies among the Inhabitants of Regions of Normal and High Background Radiation in Kerala: Results of a Cohort Study, 1988–1994. INTERNATIONAL JOURNAL OF HEALTH SERVICES 2016; 34:483-515. [PMID: 15346682 DOI: 10.2190/3xye-qjpu-01bf-8yke] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a genetic epidemiological and fertility survey among 70,000 inhabitants in a high-background radiation region (HBRR) and normal radiation region (NRR) in Kerala, India, 985 persons were found to have heritable anomalies. Suggested etiologies for the anomalies were chromosomal and Mendelian, 15 percent; multifactorial, 60 percent; and congenital, 25 percent. There was a statistically significant increase of Down syndrome, autosomal dominant anomalies, and multifactorial diseases and an insignificant increase of autosomal recessive and X-linked recessive anomalies in the HBRR. The total fertility rate was 3.85 per couple; 9 percent of live-born children were reported dead. The rate of untoward pregnancy outcome—death of the offspring or presence of an anomaly in a living child—was 6.4 percent among the unrelated couples in the NRR, with one spouse born outside the area of current residence (“migrant”). Considering this as the base, the excess relative risks in the other groups are: “NRR-nonmigrant,” 35 percent; “HBRR-nonmigrant,” 69 percent; “NRR-consanguineous,” 76 percent; and “NBRR-consanguineous,” 157 percent. Ionizing radiation, consanguinity, and nearness of birthplace of the spouse are risk factors for the death of offspring and for anomalies. The higher risk among the “nonmigrant” couples may be due to geographic inbreeding. The findings are suggestive of an autosomal recessive etiology for the majority of the multifactorial anomalies.
Collapse
|
10
|
Henneman L, Borry P, Chokoshvili D, Cornel MC, van El CG, Forzano F, Hall A, Howard HC, Janssens S, Kayserili H, Lakeman P, Lucassen A, Metcalfe SA, Vidmar L, de Wert G, Dondorp WJ, Peterlin B. Responsible implementation of expanded carrier screening. Eur J Hum Genet 2016; 24:e1-e12. [PMID: 26980105 PMCID: PMC4867464 DOI: 10.1038/ejhg.2015.271] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023] Open
Abstract
This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.
Collapse
Affiliation(s)
- Lidewij Henneman
- Department of Clinical Genetics, Section Community Genetics and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Pascal Borry
- Centre for Biomedical Ethics and Law, University of Leuven, Leuven, Belgium
| | - Davit Chokoshvili
- Centre for Biomedical Ethics and Law, University of Leuven, Leuven, Belgium
- Centre for Medical Genetics Ghent, University Hospital Ghent, Ghent, Belgium
| | - Martina C Cornel
- Department of Clinical Genetics, Section Community Genetics and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Carla G van El
- Department of Clinical Genetics, Section Community Genetics and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | - Heidi C Howard
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - Sandra Janssens
- Centre for Medical Genetics Ghent, University Hospital Ghent, Ghent, Belgium
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Anneke Lucassen
- Department of Clinical Ethics and Law (CELS), University of Southampton and Wessex Clinical Genetic Service, Southampton, UK
| | - Sylvia A Metcalfe
- Murdoch Children's Research Institute and Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Lovro Vidmar
- Clinical Institute of Medical Genetics, Ljubljana University Medical Centre, Ljubljana, Slovenia
| | - Guido de Wert
- Department of Health, Ethics & Society, Research Schools CAPHRI and GROW, Maastricht University, Maastricht, The Netherlands
| | - Wybo J Dondorp
- Department of Health, Ethics & Society, Research Schools CAPHRI and GROW, Maastricht University, Maastricht, The Netherlands
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, Ljubljana University Medical Centre, Ljubljana, Slovenia
| |
Collapse
|
11
|
Mathijssen IB, Henneman L, van Eeten-Nijman JMC, Lakeman P, Ottenheim CPE, Redeker EJW, Ottenhof W, Meijers-Heijboer H, van Maarle MC. Targeted carrier screening for four recessive disorders: high detection rate within a founder population. Eur J Med Genet 2015; 58:123-8. [PMID: 25641760 DOI: 10.1016/j.ejmg.2015.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022]
Abstract
In a genetically isolated community in the Netherlands four severe recessive genetic disorders occur at relatively high frequency (pontocerebellar hypoplasia type 2 (PCH2), fetal akinesia deformation sequence (FADS), rhizomelic chondrodysplasia punctata type 1 (RCDP1), and osteogenesis imperfecta (OI) type IIB/III. Over the past decades multiple patients with these disorders have been identified. This warranted the start of a preconception outpatient clinic, in 2012, aimed at couples planning a pregnancy. The aim of our study was to evaluate the offer of targeted genetic carrier screening as a method to identify high-risk couples for having affected offspring in this high-risk subpopulation. In one year, 203 individuals (92 couples and 19 individuals) were counseled. In total, 65 of 196 (33.2%) tested individuals were carriers of at least one disease, five (7.7%) of them being carriers of two diseases. Carrier frequencies of PCH2, FADS, RCDP1, and OI were 14.3%, 11.2%, 6.1%, and 4.1% respectively. In individuals with a positive family history for one of the diseases, the carrier frequency was 57.8%; for those with a negative family history this was 25.8%. Four PCH2 carrier-couples were identified. Thus, targeted (preconception) carrier screening in this genetically isolated population in which a high prevalence of specific disorders occurs detects a high number of carriers, and is likely to be more effective compared to cascade genetic testing. Our findings and set-up can be seen as a model for carrier screening in other high-risk subpopulations and contributes to the discussion about the way carrier screening can be offered and organized in the general population.
Collapse
Affiliation(s)
- Inge B Mathijssen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands.
| | - Lidewij Henneman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Cecile P E Ottenheim
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Egbert J W Redeker
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Winnie Ottenhof
- Waterland Oost Midwifery Practice, Volendam, The Netherlands
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands; Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Merel C van Maarle
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Samuels ME. Saturation of the human phenome. Curr Genomics 2011; 11:482-99. [PMID: 21532833 PMCID: PMC3048311 DOI: 10.2174/138920210793175886] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 12/26/2022] Open
Abstract
The phenome is the complete set of phenotypes resulting from genetic variation in populations of an organism. Saturation of a phenome implies the identification and phenotypic description of mutations in all genes in an organism, potentially constrained to those encoding proteins. The human genome is believed to contain 20-25,000 protein coding genes, but only a small fraction of these have documented mutant phenotypes, thus the human phenome is far from complete. In model organisms, genetic saturation entails the identification of multiple mutant alleles of a gene or locus, allowing a consistent description of mutational phenotypes for that gene. Saturation of several model organisms has been attempted, usually by targeting annotated coding genes with insertional transposons (Drosophila melanogaster, Mus musculus) or by sequence directed deletion (Saccharomyces cerevisiae) or using libraries of antisense oligonucleotide probes injected directly into animals (Caenorhabditis elegans, Danio rerio). This paper reviews the general state of the human phenome, and discusses theoretical and practical considerations toward a saturation analysis in humans. Throughout, emphasis is placed on high penetrance genetic variation, of the kind typically asociated with monogenic versus complex traits.
Collapse
Affiliation(s)
- Mark E Samuels
- Centre de Recherche de Ste-Justine, 3175, Côte Ste-Catherine, Montréal QC H3T 1C5, Canada
| |
Collapse
|
13
|
Elespuru RK. Assessment of heritable genetic effects using new genetic tools and sentinels in an era of personalized medicine. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:253-263. [PMID: 21472782 DOI: 10.1002/em.20637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/07/2010] [Indexed: 05/30/2023]
Abstract
The challenge of estimating human health effects from damage to the germ line may be met in the genomic era. Understanding the genetic, as opposed to postconception developmental basis of birth defects is critical to their use in monitoring heritable genetic damage. The causes of common birth defects are analyzed here: mendelian genetic, multigenic, developmental, inherited, or combinational. Only a small fraction of these (noninherited, mendelian genetic) are likely to be informative relative to germ cell mutagenesis, and these won't be discernible against the general background of birth defects. Targeted genetic testing as part of personalized medicine could be integrated into a strategy for assessing germ cell alterations in populations. Thus, "sentinel mutations," as originally proposed by Mulvihill and Ceizel, need not be restricted to X-linked or dominant mutations or conditions visible at birth. Several new sentinels related to personalized medicine are proposed, based on health impact (likelihood of monitoring), frequency, and genetic target suitability (responsiveness to diverse mutational mechanisms). Candidates could include CYP genes (related to metabolism of xenobiotics) important in optimizing drug doses and avoiding adverse reactions. High frequency LDLR mutations (related to familial high cholesterol) predict myocardial infarction in approximately50% of individuals. The more common recessive genetic diseases (cystic fibrosis, phenylketonuria, and others) monitored in newborn screening programs could be informative given parental analysis. New opportunities for genetic analyses need to be coupled with epidemiological studies on environmental exposures. These could focus on adverse outcomes related to tobacco, the mostubiquitous and potent environmental mutagen.
Collapse
Affiliation(s)
- Rosalie K Elespuru
- Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
14
|
Marchetti F, Coleman MA, Jones IM, Wyrobek AJ. Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 2009; 82:605-39. [PMID: 17050475 DOI: 10.1080/09553000600930103] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To conduct a literature review of candidate protein biomarkers for individual radiation biodosimetry of exposure to ionizing radiation. MATERIALS AND METHODS Reviewed approximately 300 publications (1973 - April 2006) that reported protein effects in mammalian systems after either in vivo or in vitro radiation exposure. RESULTS We found 261 radiation-responsive proteins including 173 human proteins. Most of the studies used high doses of ionizing radiation (>4 Gy) and had no information on dose- or time-responses. The majority of the proteins showed increased amounts or changes in phosphorylation states within 24 h after exposure (range: 1.5- to 10-fold). Of the 47 proteins that are responsive at doses of 1 Gy and below, 6 showed phosphorylation changes at doses below 10 cGy. Proteins were assigned to 9 groups based on consistency of response across species, dose- and time-response information and known role in the radiation damage response. CONCLUSIONS ATM (Ataxia telengiectasia mutated), H2AX (histone 2AX), CDKN1A (Cyclin-dependent kinase inhibitor 1A), and TP53 (tumor protein 53) are top candidate radiation protein biomarkers. Furthermore, we recommend a panel of protein biomarkers, each with different dose and time optima, to improve individual radiation biodosimetry for discriminating between low-, moderate-, and high-dose exposures. Our findings have applications for early triage and follow-up medical assessments.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | | | | | |
Collapse
|
15
|
Sankaranarayanan K, Wassom J. Reflections on the impact of advances in the assessment of genetic risks of exposure to ionizing radiation on international radiation protection recommendations between the mid-1950s and the present. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2008; 658:1-27. [DOI: 10.1016/j.mrrev.2007.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
16
|
Kondrashov AS. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat 2003; 21:12-27. [PMID: 12497628 DOI: 10.1002/humu.10147] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
I estimate per nucleotide rates of spontaneous mutations of different kinds in humans directly from the data on per locus mutation rates and on sequences of de novo nonsense nucleotide substitutions, deletions, insertions, and complex events at eight loci causing autosomal dominant diseases and 12 loci causing X-linked diseases. The results are in good agreement with indirect estimates, obtained by comparison of orthologous human and chimpanzee pseudogenes. The average direct estimate of the combined rate of all mutations is 1.8x10(-8) per nucleotide per generation, and the coefficient of variation of this rate across the 20 loci is 0.53. Single nucleotide substitutions are approximately 25 times more common than all other mutations, deletions are approximately three times more common than insertions, complex mutations are very rare, and CpG context increases substitution rates by an order of magnitude. There is only a moderate tendency for loci with high per locus mutation rates to also have higher per nucleotide substitution rates, and per nucleotide rates of deletions and insertions are statistically independent on the per locus mutation rate. Rates of different kinds of mutations are strongly correlated across loci. Mutational hot spots with per nucleotide rates above 5x10(-7) make only a minor contribution to human mutation. In the next decade, direct measurements will produce a rather precise, quantitative description of human spontaneous mutation at the DNA level.
Collapse
Affiliation(s)
- Alexey S Kondrashov
- National Center for Biotechnology Information, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
17
|
Abstract
Two assumptions are commonly made in the estimation of genetic risk: (1) that the seven specific loci in the mouse constitute a suitable basis for extrapolation to genetic disease in humans, and (2) that mutations are induced by radiation damage (energy-loss events leading to double-stranded damage) occurring within the gene and are induced linearly with dose, at least at low doses. Recent evidence on the mutability of repeat sequences is reviewed that suggests that neither of these assumptions is as well founded as we like to think. Repeat sequences are common in the human genome, and alterations in them may have health consequences. Many of them are unstable, both spontaneously and after irradiation. The fact that changes in DNA repeat sequences can clearly arise as a result of radiation damage outside the sequence concerned and the likely involvement of some sort of signal transduction process mean that the nature of the radiation dose response cannot be assumed. While the time has not come to abandon the current paradigms, it would seem sensible to invest more effort in exploring the induction of changes in repeat sequences after irradiation and the consequences of such changes for health.
Collapse
Affiliation(s)
- B A Bridges
- MRC Cell Mutation Unit, University of Sussex, Brighton, BN1 9RR, England, UK.
| |
Collapse
|
18
|
Abrahamson S, Tawn EJ. Risk of stillbirth in offspring of men exposed to ionising radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2001; 21:133-144. [PMID: 11430514 DOI: 10.1088/0952-4746/21/2/303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Radiation genetic risk models are employed to predict the frequency of radiation-related stillbirths to partners of occupationally exposed male workers, using the incidence data recently reported by Parker et al from an epidemiological study of Cumbrian births. Expanding on previously developed conservative risk estimates suggests that, of the 130 observed stillbirths to partners of male radiation workers, 0.3 cases would be attributable to paternal preconceptional irradiation, in contrast to the 17.5 (95% confidence interval: 3.1 to 31.9) cases predicted by Parker et al from their preferred dose-response model. The incompatibility of the results reported by Parker et al with those from other investigations, both epidemiological and experimental, and the inability of the study to consider a number of factors which might affect stillbirth rates, particularly those relating to the mother, make it difficult to accept that paternal irradiation received occupationally could have contributed to a detectable increase in stillbirths.
Collapse
Affiliation(s)
- S Abrahamson
- Department of Zoology, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
19
|
Sankaranarayanan K. Estimation of the hereditary risks of exposure to ionizing radiation: history, current status, and emerging perspectives. HEALTH PHYSICS 2001; 80:363-369. [PMID: 11281204 DOI: 10.1097/00004032-200104000-00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper provides a brief overview of the advances in the field of the estimation of the genetic risks of exposure of human populations to ionizing radiation from the early 1950's to the present and of the developments that are anticipated in the coming years. The latter are based on the view that the insights gained from human genetics, especially human molecular genetics, will be increasingly applied to address problems in risk estimation. Owing to the paucity of human data on radiation-induced mutations, mouse data on radiation-induced mutations are used to predict the risk of genetic diseases in humans using the doubling dose method. With this method, the risk per unit dose is expressed as a product of three quantities, i.e., P x 1/DD x MC where P is the baseline frequency of genetic diseases, 1/DD (the relative mutation risk per unit dose; DD refers to the doubling dose, i.e., the radiation dose required to produce as many mutations as those that occur spontaneously in a generation) and MC is the disease class-specific mutation component (a measure of the relative increase in disease frequency per unit relative increase in mutation rate). The five important changes that are now introduced in genetic risk estimation include (1) an upward revision of the baseline frequency of Mendelian diseases to 2.4% (from 1.25% used until the early 1990's); (2) a reversion to the conceptual basis for DD calculations used in the 1972 BEIR report of the U.S. National Academy of Sciences, namely, the use of human data on spontaneous mutation rates and mouse data on induced mutation rates (instead of the use of mouse data for both these rates as has been the case from mid-1970's until the early 1990's); (3) the fuller development and use of the MC concept for predicting the responsiveness of Mendelian and multifactorial diseases to increases in mutation rate; (4) the introduction of a new disease-class-specific quantity called the "potential recoverability correction factor" or PRCF in the risk equation to bridge the gap between the rates of induced mutations in mice and the risk of inducible genetic diseases in humans; and (5) the introduction of the concept that multisystem developmental abnormalities are likely to be among the principal phenotypes of radiation induced genetic damage in humans. All these advances now permit, for the first time in 40 y, the estimation of risks for all classes of genetic diseases. For a population exposed to low-LET, chronic or low-dose irradiation, the risks predicted for the first generation progeny are the following (all estimates are per million live born progeny per gray of parental irradiation): autosomal dominant and x-linked diseases, approximately 750 to 1,500 cases; autosomal recessive, nearly zero; chronic multifactorial diseases, approximately 250 to 1,200 cases; and congenital abnormalities, approximately 2000 cases. The total risk per gray is of the order of approximately 3,000 to 4,700 cases, which represent approximately 0.4 to 0.6% of the baseline frequency of these diseases (738,000 per million) in the population. The advances anticipated in the coming years are likely to permit the estimation of genetic risks of radiation with greater precision than is now possible.
Collapse
Affiliation(s)
- K Sankaranarayanan
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, The Netherlands.
| |
Collapse
|
20
|
Abstract
There is a strong genetic component for schizophrenia risk, but it is unclear how the illness is maintained in the population given the significantly reduced fertility of those with the disorder. One possibility is that new mutations occur in schizophrenia vulnerability genes. If so, then those with schizophrenia may have older fathers, because advancing paternal age is the major source of new mutations in humans. This review describes several neurodevelopmental disorders that have been associated with de novo mutations in the paternal germ line and reviews data linking increased schizophrenia risk with older fathers. Several genetic mechanisms that could explain this association are proposed, including paternal germ line mutations, trinucleotide repeat expansions, and alterations in genetic imprinting in one or several genes involved in neurodevelopment. Animal models may be useful in exploring these and other explanations for the paternal age effect and they may provide a novel approach for gene identification. Finally, it is proposed that environmental exposures of the father, as well as those of the mother and developing fetus, may be relevant to the etiology of schizophrenia.
Collapse
Affiliation(s)
- D Malaspina
- Columbia University Department of Psychiatry, New York State Psychiatric Institute, NY 10032, USA.
| |
Collapse
|
21
|
Sankaranarayanan K, Chakraborty R. Ionizing radiation and genetic risks. XIII. Summary and synthesis of papers VI to XII and estimates of genetic risks in the year 2000. Mutat Res 2000; 453:183-97. [PMID: 11024485 DOI: 10.1016/s0027-5107(00)00106-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper recapitulates the advances in the field of genetic risk estimation that have occurred during the past decade and using them as a basis, presents revised estimates of genetic risks of exposure to radiation. The advances include: (i) an upward revision of the estimates of incidence for Mendelian diseases (2.4% now versus 1.25% in 1993); (ii) the introduction of a conceptual change for calculating doubling doses; (iii) the elaboration of methods to estimate the mutation component (i.e. the relative increase in disease frequency per unit relative increase in mutation rate) and the use of the estimates obtained through these methods for assessing the impact of induced mutations on the incidence of Mendelian and chronic multifactorial diseases; (iv) the introduction of an additional factor called the "potential recoverability correction factor" in the risk equation to bridge the gap between radiation-induced mutations that have been recovered in mice and the risk of radiation-inducible genetic disease in human live births and (v) the introduction of the concept that the adverse effects of radiation-induced genetic damage are likely to be manifest predominantly as multi-system developmental abnormalities in the progeny. For all classes of genetic disease (except congenital abnormalities), the estimates of risk have been obtained using a doubling dose of 1 Gy. For a population exposed to low LET, chronic/ low dose irradiation, the current estimates for the first generation progeny are the following (all estimates per million live born progeny per Gy of parental irradiation): autosomal dominant and X-linked diseases, approximately 750-1500 cases; autosomal recessive, nearly zero and chronic multifactorial diseases, approximately 250-1200 cases. For congenital abnormalities, the estimate is approximately 2000 cases and is based on mouse data on developmental abnormalities. The total risk per Gy is of the order of approximately 3000-4700 cases which represent approximately 0.4-0.6% of the baseline frequency of these diseases (738,000 per million) in the population.
Collapse
Affiliation(s)
- K Sankaranarayanan
- Sylvius Laboratories, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Center, Wassenaarseweg 72, 2333, AL Leiden, The Netherlands.
| | | |
Collapse
|
22
|
Sankaranarayanan K, Chakraborty R. Ionizing radiation and genetic risks. XII. The concept of "potential recoverability correction factor" (PRCF) and its use for predicting the risk of radiation-inducible genetic disease in human live births. Mutat Res 2000; 453:129-81. [PMID: 11024484 DOI: 10.1016/s0027-5107(00)00107-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic risks of radiation exposure of humans are generally expressed as expected increases in the frequencies of genetic diseases over those that occur naturally in the population as a result of spontaneous mutations. Since human data on radiation-induced germ cell mutations and genetic diseases remain scanty, the rates derived from the induced frequencies of mutations in mouse genes are used for this purpose. Such an extrapolation from mouse data to the risk of genetic diseases will be valid only if the average rates of inducible mutations in human genes of interest and the average rates of induced mutations in mice are similar. Advances in knowledge of human genetic diseases and in molecular studies of radiation-induced mutations in experimental systems now question the validity of the above extrapolation. In fact, they (i) support the view that only in a limited number of genes in the human genome, induced mutations may be compatible with viability and hence recoverable in live births and (ii) suggest that the average rate of induced mutations in human genes of interest from the disease point of view will be lower than that assumed from mouse results. Since, at present, there is no alternative to the use of mouse data on induced mutation rates, there is a need to bridge the gap between these and the risk of potentially inducible genetic diseases in human live births. In this paper, we advance the concept of what we refer to here as "the potential recoverability correction factor" (PRCF) to bridge the above gap in risk estimation and present a method to estimate PRCF. In developing the concept of PRCF, we first used the available information on radiation-induced mutations recovered in experimental studies to define some criteria for assessing potential recoverability of induced mutations and then applied these to human genes on a gene-by-gene basis. The analysis permitted us to estimate unweighted PRCFs (i.e. the fraction of genes among the total studied that might contribute to recoverable induced mutations) and weighted PRCFs (i.e. PRCFs weighted by the incidences of the respective diseases). The estimates are: 0.15 (weighted) to 0.30 (unweighted) for autosomal dominant and X-linked diseases and 0.02 (weighted) to 0.09 (unweighted) for chronic multifactorial diseases. The PRCF calculations are unnecessary for autosomal recessive diseases since the risks projected for the first few generations even without using PRCFs are already very small. For congenital abnormalities, PRCFs cannot be reliably estimated. With the incorporation of PRCF into the equation used for predicting risk, the risk per unit dose becomes the product of four quantities (risk per unit dose=Px(1/DD)xMCxPRCF) where P is the baseline frequency of the genetic disease, 1/DD is the relative mutation risk per unit dose, MC is the mutation component and PRCF is the disease-class-specific potential recoverability correction factor instead of the first three (as has been the case thus far). Since PRCF is a fraction, it is obvious that the estimate of risk obtained with the revised risk equation will be smaller than previously calculated values.
Collapse
Affiliation(s)
- K Sankaranarayanan
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333, AL Leiden, The Netherlands.
| | | |
Collapse
|
23
|
Sankaranarayanan K, Chakraborty R. Ionizing radiation and genetic risks. XI. The doubling dose estimates from the mid-1950s to the present and the conceptual change to the use of human data on spontaneous mutation rates and mouse data on induced mutation rates for doubling dose calculations. Mutat Res 2000; 453:107-27. [PMID: 11024483 DOI: 10.1016/s0027-5107(00)00108-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper provides an overview of the concept of doubling dose, changes in the database employed for calculating it over the past 30 years and recent advances in this area. The doubling dose is estimated as a ratio of the average rates of spontaneous and induced mutations in a defined set of genes. The reciprocal of the doubling dose is the relative mutation risk per unit dose and is one of the quantities used in estimating genetic risks of radiation exposures. Most of the doubling dose estimates used thus far have been based on mouse data on spontaneous and induced rates of mutations. Initially restricted to mutations in defined genes (with particular focus on the seven genes at which induced recessive mutations were studied in different laboratories), the doubling dose concept was subsequently expanded to include other endpoints of genetic damage. At least during the past 20 years, the magnitude of the doubling dose has remained unchanged at approximately 1 Gy for chronic low LET radiation exposures. One of the assumptions underlying the use of the doubling dose based on mouse data for predicting genetic risks in humans, namely, that the spontaneous rates of mutations in mouse and human genes are similar, is incorrect; this is because of the fact that, unlike in the mouse, the mutation rate in humans differs between the two sexes (being higher in males than in females) and increases with paternal age. Further, an additional source of uncertainty in spontaneous mutation rate estimates in mice has been uncovered. This is related to the non-inclusion of mutations which arise as germinal mosaics and which result in clusters of identical mutations in the following generation. In view of these reasons, it is suggested that a prudent way forward is to revert to the use of human data on spontaneous mutation rates and mouse data on induced mutation rates for doubling dose calculations as was first done in the 1972 BEIR report of the US National Academy of Sciences. The advantages of this procedure are the following: (i) estimates of spontaneous mutation rates in humans, which are usually presented as sex-averaged rates, automatically include sex differences and paternal age-effects; (ii) since human geneticists count all mutations that arise anew irrespective of whether they are part of a cluster or not, had clusters occurred, they would have been included in mutation rate calculations and (iii) one stays close to the aim of risk estimation, namely, estimation of the risk of genetic diseases in humans. On the basis of detailed analyses of the pertinent data, it is now estimated that the average spontaneous mutation rate of human genes (n=135 genes) is: (2.95+/-0.64)x10(-6) per gene and the average induced mutation rate of mouse genes (n=34) is: (0.36+/-0.10)x10(-5) per gene per Gy for chronic low LET radiation. The resultant doubling dose is (0.82+/-0.29) Gy. The standard error of the doubling dose estimate incorporates sampling variability across loci for estimates of spontaneous and induced mutation rates as well as variability in induced mutation rates in individual mouse experiments on radiation-induced mutations. We suggest the use of a rounded doubling dose value of 1 Gy for estimating genetic risks of radiation. Although this value is the same as that used previously, its conceptual basis is different and the present estimate is based on more extensive data than has so far been the case.
Collapse
Affiliation(s)
- K Sankaranarayanan
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.
| | | |
Collapse
|
24
|
|
25
|
Sankaranarayanan K. Ionizing radiation and genetic risks. X. The potential "disease phenotypes" of radiation-induced genetic damage in humans: perspectives from human molecular biology and radiation genetics. Mutat Res 1999; 429:45-83. [PMID: 10434024 DOI: 10.1016/s0027-5107(99)00100-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Estimates of genetic risks of radiation exposure of humans are traditionally expressed as expected increases in the frequencies of genetic diseases (single-gene, chromosomal and multifactorial) over and above those of naturally-occurring ones in the population. An important assumption in expressing risks in this manner is that gonadal radiation exposures can cause an increase in the frequency of mutations and that this would result in an increase in the frequency of genetic diseases under study. However, despite compelling evidence for radiation-induced mutations in experimental systems, no increases in the frequencies of genetic diseases of concern or other adverse effects (i.e., those which are not formally classified as genetic diseases), have been found in human studies involving parents who have sustained radiation exposures. The known differences between spontaneous mutations that underlie naturally-occurring single-gene diseases and radiation-induced mutations studied in experimental systems now permit us to address and resolve these issues to some extent. The fact that spontaneous mutations (among which are point mutations and DNA deletions generally restricted to the gene) originate through a number of different mechanisms and that the latter are intimately related to the DNA organization of the genes, are now well-documented. Further, spontaneous mutations include those that cause diseases through loss of function as well as gain of function of genes. In contrast, most radiation-induced mutations studied in experimental systems (although identified through the phenotypes of the marker genes) are predominantly multigene deletions which cause loss of function; the recoverability of an induced deletion in a livebirth seems dependent on whether the gene and the genomic region in which it is located can tolerate heterozygosity for the deletion and yet be compatible with viability. In retrospect, the successful mutation test systems (such as the mouse specific locus test) used in radiation studies have involved genes which are non-essential for survival and are also located in genomic regions, likewise non-essential for survival. In contrast, most of the human genes at which induced mutations have been looked for, do not seem to have these attributes. The inference therefore is that the failure to find induced germline mutations in humans is not due to the resistance of human genes to induced mutations but due to the structural and functional constraints associated with their recoverability in livebirths. Since the risk of inducible genetic diseases in humans is estimated using rates of "recovered" mutations in mice, there is a need to introduce appropriate correction factors to bridge the gap between these rates and the rates at which mutations causing diseases are potentially recoverable in humans. Since the whole genome is the "target" for radiation-induced genetic damage, the failure to find increases in the frequencies of specific single-gene diseases of societal concern does not imply that there are no genetic risks of radiation exposures: the problem lies in delineating the phenotypes of recoverable genetic damage that are recognizable in livebirths. Data from studies of naturally-occurring microdeletion syndromes in humans and those from mouse radiation studies are instructive in this regard. They (i) support the view that growth retardation, mental retardation and multisystem developmental abnormalities are likely to be among the quantitatively more important adverse effects of radiation-induced genetic damage than mutations in a few selected genes and (ii) underscore the need to expand the focus in risk estimation from known genetic diseases (as has been the case thus far) to include these induced adverse developmental effects although most of these are not formally classified as "genetic diseases". (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- K Sankaranarayanan
- MGC, Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL, Leiden, Netherlands.
| |
Collapse
|