1
|
Davis T, Tabury K, Zhu S, Angeloni D, Baatout S, Benchoua A, Bereiter-Hahn J, Bottai D, Buchheim JI, Calvaruso M, Carnero-Diaz E, Castiglioni S, Cavalieri D, Ceccarelli G, Choukér A, Cialdai F, Ciofani G, Coppola G, Cusella G, Degl'Innocenti A, Desaphy JF, Frippiat JP, Gelinsky M, Genchi G, Grano M, Grimm D, Guignandon A, Hahn C, Hatton J, Herranz R, Hellweg CE, Iorio CS, Karapantsios T, van Loon JJWA, Lulli M, Maier J, Malda J, Mamaca E, Morbidelli L, van Ombergen A, Osterman A, Ovsianikov A, Pampaloni F, Pavezlorie E, Pereda-Campos V, Przybyla C, Puhl C, Rettberg P, Rizzo AM, Robson-Brown K, Rossi L, Russo G, Salvetti A, Santucci D, Sperl M, Tavella S, Thielemann C, Willaert R, Szewczyk N, Monici M. How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms? NPJ Microgravity 2024; 10:16. [PMID: 38341423 DOI: 10.1038/s41526-024-00357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.
Collapse
Affiliation(s)
- Trent Davis
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Kevin Tabury
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shouan Zhu
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Debora Angeloni
- Institute of Biorobotics, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sarah Baatout
- Laboratory of Radiobiology, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | - Juergen Bereiter-Hahn
- Institute for Cell Biology and Neurobiology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Daniele Bottai
- Department Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Judith-Irina Buchheim
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Eugénie Carnero-Diaz
- Institute of Systematics, Evolution, Biodiversity, Sorbonne University, NMNH, CNRS, EPHE, UA, Paris, France
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Alexander Choukér
- Laboratory of "Translational Research, Stress & Immunity", Department of Anesthesiology, LMU University Hospital Munich, Munich, Germany
| | - Francesca Cialdai
- ASAcampus Joint Laboratory, ASA Research Division, DSBSC-University of Florence, Florence, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, 56025, Italy
| | - Giuseppe Coppola
- Institute of Applied Science and Intelligent Systems - CNR, Naples, Italy
| | - Gabriella Cusella
- Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Andrea Degl'Innocenti
- Department of Medical Biotechnologies, University of Siena, Italy and Smart Bio-Interfaces, IIT, Pontedera, PI, Italy
| | - Jean-Francois Desaphy
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Pol Frippiat
- Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, Nancy, France
| | - Michael Gelinsky
- Centre for Translational Bone, Joint & Soft Tissue Research, TU Dresden, Dresden, Germany
| | - Giada Genchi
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, PI, 56025, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University Magdeburg, Germany & Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Alain Guignandon
- SAINBIOSE, INSERM U1059, Université Jean Monnet, Saint-Etienne, F-42000, France
| | | | - Jason Hatton
- European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Christine E Hellweg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | | | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Jeanette Maier
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht & Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Emina Mamaca
- European and International Affairs Department, Ifremer centre Bretagne, Plouzané, France
| | | | | | - Andreas Osterman
- Max von Pettenkofer Institute, Virology, LMU Munich & DZIF, Partner Site Munich, Munich, Germany
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria
| | - Francesco Pampaloni
- Buchmann Inst. for Molecular Life Sciences, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Elizabeth Pavezlorie
- Ludwig Boltzmann Institute for Traumatology, Research Center in Cooperation with AUVA, Vienna, Austria
| | - Veronica Pereda-Campos
- GSBMS/URU EVOLSAN - Medecine Evolutive, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Cyrille Przybyla
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Palavas les Flots, France
| | - Christopher Puhl
- Space Applications NV/SA for European Space Agency, Noordwijk, The Netherlands
| | - Petra Rettberg
- DLR, Institute of Aerospace Medicine, Research Group Astrobiology, Köln, Germany
| | - Angela Maria Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Kate Robson-Brown
- Department of Engineering Mathematics, and Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Santucci
- Center for Behavioural Sciences and Mental Health, Istituto Superiore Sanità, Rome, Italy
| | | | - Sara Tavella
- IRCCS Ospedale Policlinico San Martino and University of Genoa, DIMES, Genoa, Italy
| | | | - Ronnie Willaert
- Research Group NAMI and NANO, Vrije Universiteit Brussels, Brussels, Belgium
| | - Nathaniel Szewczyk
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| | - Monica Monici
- ASAcampus Joint Laboratory, ASA Research Division, DSBSC-University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Ueki M, Suzuki T, Kato Y. Large-scale cultivation of human iPS cells in bioreactor with reciprocal mixing. J Biosci Bioeng 2024; 137:149-155. [PMID: 38185598 DOI: 10.1016/j.jbiosc.2023.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
A substantial number of human iPS cells (hiPSCs) is needed for cell therapy to be successful against various diseases. We previously reported on a bioreactor with reciprocal mixing that produces specific physical properties that differ from those of conventional bioreactors with rotary paddle stirring. Moreover, such reactors not only provide a homogeneous environment but also allow the control of spheroid size by changing the mixing speed. In this study, we applied this bioreactor to the large-scale cultivation of hiPSCs. Approximately 10 billion hiPSCs were obtained from 2.0 L of culture, and the high expression of pluripotency markers was maintained. Our findings indicate that a bioreactor with reciprocal mixing can be used for large-scale hiPSC cultivation.
Collapse
Affiliation(s)
- Masashi Ueki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshikazu Kato
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Multimix Corporation, 60 Niizo, Toda, Saitama 335-0021, Japan
| |
Collapse
|
3
|
Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA, Lelkes PI. Bioreactor Technologies for Enhanced Organoid Culture. Int J Mol Sci 2023; 24:11427. [PMID: 37511186 PMCID: PMC10380004 DOI: 10.3390/ijms241411427] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
An organoid is a 3D organization of cells that can recapitulate some of the structure and function of native tissue. Recent work has seen organoids gain prominence as a valuable model for studying tissue development, drug discovery, and potential clinical applications. The requirements for the successful culture of organoids in vitro differ significantly from those of traditional monolayer cell cultures. The generation and maturation of high-fidelity organoids entails developing and optimizing environmental conditions to provide the optimal cues for growth and 3D maturation, such as oxygenation, mechanical and fluidic activation, nutrition gradients, etc. To this end, we discuss the four main categories of bioreactors used for organoid culture: stirred bioreactors (SBR), microfluidic bioreactors (MFB), rotating wall vessels (RWV), and electrically stimulating (ES) bioreactors. We aim to lay out the state-of-the-art of both commercial and in-house developed bioreactor systems, their benefits to the culture of organoids derived from various cells and tissues, and the limitations of bioreactor technology, including sterilization, accessibility, and suitability and ease of use for long-term culture. Finally, we discuss future directions for improvements to existing bioreactor technology and how they may be used to enhance organoid culture for specific applications.
Collapse
Affiliation(s)
- Joseph P Licata
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Kyle H Schwab
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yah-El Har-El
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Jonathan A Gerstenhaber
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Zhao Y, Richardson K, Yang R, Bousraou Z, Lee YK, Fasciano S, Wang S. Notch signaling and fluid shear stress in regulating osteogenic differentiation. Front Bioeng Biotechnol 2022; 10:1007430. [PMID: 36277376 PMCID: PMC9581166 DOI: 10.3389/fbioe.2022.1007430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, United States
| | - Kiarra Richardson
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Rui Yang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Zoe Bousraou
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Yoo Kyoung Lee
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, United States
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- *Correspondence: Shue Wang,
| |
Collapse
|
5
|
Guzzeloni V, Veschini L, Pedica F, Ferrero E, Ferrarini M. 3D Models as a Tool to Assess the Anti-Tumor Efficacy of Therapeutic Antibodies: Advantages and Limitations. Antibodies (Basel) 2022; 11:antib11030046. [PMID: 35892706 PMCID: PMC9326665 DOI: 10.3390/antib11030046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are an emerging and very active frontier in clinical oncology, with hundred molecules currently in use or being tested. These treatments have already revolutionized clinical outcomes in both solid and hematological malignancies. However, identifying patients who are most likely to benefit from mAbs treatment is currently challenging and limiting the impact of such therapies. To overcome this issue, and to fulfill the expectations of mAbs therapies, it is urgently required to develop proper culture models capable of faithfully reproducing the interactions between tumor and its surrounding native microenvironment (TME). Three-dimensional (3D) models which allow the assessment of the impact of drugs on tumors within its TME in a patient-specific context are promising avenues to progressively fill the gap between conventional 2D cultures and animal models, substantially contributing to the achievement of personalized medicine. This review aims to give a brief overview of the currently available 3D models, together with their specific exploitation for therapeutic mAbs testing, underlying advantages and current limitations to a broader use in preclinical oncology.
Collapse
Affiliation(s)
- Virginia Guzzeloni
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Lorenzo Veschini
- Academic Centre of Reconstructive Science, Faculty of Dentistry Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Federica Pedica
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
- Correspondence:
| |
Collapse
|
6
|
Ueki M, Tansho N, Sato M, Kanamori H, Kato Y. Improved cultivation of Chinese hamster ovary cells in bioreactor with reciprocal mixing. J Biosci Bioeng 2021; 132:531-536. [PMID: 34474981 DOI: 10.1016/j.jbiosc.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
We have constructed a new bioreactor with reciprocal mixing that is better suited for the cultivation of delicate animal cells. In-silico simulation (computational fluid dynamics) suggested both maximum and average shear stresses in the bioreactor with reciprocal mixing to be remarkably lower than in a conventional bioreactor with rotary mixing. Although we could not find any difference in growth speed and cell density between the bioreactors with reciprocal and rotary mixing, we did find cell viability in the reciprocal-mixing bioreactor to be retained longer than in the rotary-paddle bioreactor. This implied that cell culture in a bioreactor with reciprocal mixing could be prolonged for the production of target proteins. Leakage of lactate dehydrogenase activity into the culture medium was suppressed much more in the reciprocal-mixing bioreactor than in the rotary-paddle one. Production of human tissue plasminogen activator in the former system was also observed to be much higher than in the latter. Therefore, a bioreactor with reciprocal mixing was concluded to be better suited for the cultivation of animal cells and efficient production of proteins, such as antibody drugs and various growth factors.
Collapse
Affiliation(s)
- Masashi Ueki
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Noriyuki Tansho
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Makoto Sato
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Hisayuki Kanamori
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| | - Yoshikazu Kato
- Animal Cell Incubator Laboratory, RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Mixing Technology Laboratory, Satake Chemical Equipment Mfg., Ltd., 60 Niizo, Toda, Saitama 335-0021, Japan
| |
Collapse
|
7
|
Pandya M, Lyu H, Luan X, Diekwisch TG. Polarized, Amelogenin Expressing Ameloblast-Like Cells from Cervical Loop/Dental Pulp Cocultures in Bioreactors. Stem Cells Dev 2021; 30:797-805. [PMID: 34060920 PMCID: PMC8390775 DOI: 10.1089/scd.2021.0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023] Open
Abstract
The growth of long and polarized ameloblast-like cells has long been heralded as a major prerequisite for enamel tissue engineering. In this study, we have designed three-dimensional bioreactor/scaffold microenvironments to propagate and assess the ability of cervical loop derivatives to become long and polarized ameloblast-like cells. Our studies demonstrated that cervical loop/periodontal progenitor coculture in a growth-factor-enriched medium resulted in the formation of ameloblast-like cells expressing high levels of amelogenin and ameloblastin. Coculture of cervical loop cells with dental pulp cells on tailored collagen scaffolds enriched with leucine-rich amelogenin peptide (LRAP) and early enamel matrix resulted in singular, elongated, and polarized ameloblast-like cells that expressed and secreted ameloblastin and amelogenin enamel proteins. Bioreactor microenvironments enriched with enamel matrix and LRAP also proved advantageous for the propagation of HAT-7 cells, resulting in a ∼20-fold higher expression of amelogenin and ameloblastin enamel proteins compared with controls growing on plain scaffolds. Together, studies presented here highlight the benefits of microgravity culture systems combined with ameloblast-specific microenvironments and tailored scaffolds for the growth of ameloblast-like cells.
Collapse
Affiliation(s)
- Mirali Pandya
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, Texas, USA
| | - Huling Lyu
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, Texas, USA
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xianghong Luan
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, Texas, USA
| | - Thomas G.H. Diekwisch
- Center for Craniofacial Research and Diagnosis, Texas A&M University, Dallas, Texas, USA
| |
Collapse
|
8
|
A Simulated Microgravity Environment Causes a Sustained Defect in Epithelial Barrier Function. Sci Rep 2019; 9:17531. [PMID: 31772208 PMCID: PMC6879622 DOI: 10.1038/s41598-019-53862-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Intestinal epithelial cell (IEC) junctions constitute a robust barrier to invasion by viruses, bacteria and exposure to ingested agents. Previous studies showed that microgravity compromises the human immune system and increases enteropathogen virulence. However, the effects of microgravity on epithelial barrier function are poorly understood. The aims of this study were to identify if simulated microgravity alters intestinal epithelial barrier function (permeability), and susceptibility to barrier-disrupting agents. IECs (HT-29.cl19a) were cultured on microcarrier beads in simulated microgravity using a rotating wall vessel (RWV) for 18 days prior to seeding on semipermeable supports to measure ion flux (transepithelial electrical resistance (TER)) and FITC-dextran (FD4) permeability over 14 days. RWV cells showed delayed apical junction localization of the tight junction proteins, occludin and ZO-1. The alcohol metabolite, acetaldehyde, significantly decreased TER and reduced junctional ZO-1 localization, while increasing FD4 permeability in RWV cells compared with static, motion and flask control cells. In conclusion, simulated microgravity induced an underlying and sustained susceptibility to epithelial barrier disruption upon removal from the microgravity environment. This has implications for gastrointestinal homeostasis of astronauts in space, as well as their capability to withstand the effects of agents that compromise intestinal epithelial barrier function following return to Earth.
Collapse
|
9
|
High-order TRAIL oligomer formation in TRAIL-coated lipid nanoparticles enhances DR5 cross-linking and increases antitumour effect against colon cancer. Cancer Lett 2016; 383:250-260. [DOI: 10.1016/j.canlet.2016.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 02/02/2023]
|
10
|
Gardner JK, Herbst-Kralovetz MM. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions. Viruses 2016; 8:v8110304. [PMID: 27834891 PMCID: PMC5127018 DOI: 10.3390/v8110304] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022] Open
Abstract
The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies.
Collapse
Affiliation(s)
- Jameson K Gardner
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|
11
|
De Miguel D, Gallego-Lleyda A, Ayuso JM, Erviti-Ardanaz S, Pazo-Cid R, del Agua C, Fernández LJ, Ochoa I, Anel A, Martinez-Lostao L. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells. NANOTECHNOLOGY 2016; 27:185101. [PMID: 27001952 DOI: 10.1088/0957-4484/27/18/185101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. METHODS/PATIENTS LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. RESULTS LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. CONCLUSION The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Diego De Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells. Int J Mol Sci 2016; 17:526. [PMID: 27070587 PMCID: PMC4848982 DOI: 10.3390/ijms17040526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis.
Collapse
|
13
|
Validation of Bioreactor and Human-on-a-Chip Devices for Chemical Safety Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:299-316. [PMID: 27671728 DOI: 10.1007/978-3-319-33826-2_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Equipment and device qualification and test assay validation in the field of tissue engineered human organs for substance assessment remain formidable tasks with only a few successful examples so far. The hurdles seem to increase with the growing complexity of the biological systems, emulated by the respective models. Controlled single tissue or organ culture in bioreactors improves the organ-specific functions and maintains their phenotypic stability for longer periods of time. The reproducibility attained with bioreactor operations is, per se, an advantage for the validation of safety assessment. Regulatory agencies have gradually altered the validation concept from exhaustive "product" to rigorous and detailed process characterization, valuing reproducibility as a standard for validation. "Human-on-a-chip" technologies applying micro-physiological systems to the in vitro combination of miniaturized human organ equivalents into functional human micro-organisms are nowadays thought to be the most elaborate solution created to date. They target the replacement of the current most complex models-laboratory animals. Therefore, we provide here a road map towards the validation of such "human-on-a-chip" models and qualification of their respective bioreactor and microchip equipment along a path currently used for the respective animal models.
Collapse
|
14
|
Yang Y, Liu C, Lei X, Wang H, Su P, Ru Y, Ruan X, Duan E, Feng S, Han M, Xu Y, Shi L, Jiang E, Zhou J. Integrated Biophysical and Biochemical Signals Augment Megakaryopoiesis and Thrombopoiesis in a Three-Dimensional Rotary Culture System. Stem Cells Transl Med 2015; 5:175-85. [PMID: 26702125 DOI: 10.5966/sctm.2015-0080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of the platelet supply limits the care of patients. Although derivation of clinical-scale platelets in vitro could provide a new source for transfusion, the devices and procedures for deriving scalable platelets for clinical applications have not been established. In the present study, we found that a rotary cell culture system (RCCS) can potentiate megakaryopoiesis and significantly improve the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the RCCS improved platelet generation efficiency by as much as ∼3.7-fold compared with static conditions. Shear force, simulated microgravity, and better diffusion of nutrients and oxygen from the RCCS, altogether, might account for the improved efficient platelet generation. The cost-effective and highly controllable strategy and methodology represent an important step toward large-scale platelet production for future biomedical and clinical applications. Significance: Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of platelet supply limits the care of patients. Thus, derivation of clinical-scale platelets in vitro would provide a new source for transfusion. The present study evaluated a rotary suspension cell culture system that was able to potentiate megakaryopoiesis and significantly improved the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the three-dimensional system improved platelet generation efficiency compared with the static condition. The three-dimensional device and the strategy developed in the present study should markedly improve the generation of large-scale platelets for use in future biomedical and clinical settings.
Collapse
Affiliation(s)
- Yiqing Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China Faculty of Laboratory Medical Science, Hebei North University, Zhangjiakou, People's Republic of China
| | - CuiCui Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, Beijing, People's Republic of China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Xinhua Ruan
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, Beijing, People's Republic of China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| |
Collapse
|
15
|
Yang Y, Liu C, Lei X, Wang H, Su P, Ru Y, Ruan X, Duan E, Feng S, Han M, Xu Y, Shi L, Jiang E, Zhou J. Integrated Biophysical and Biochemical Signals Augment Megakaryopoiesis and Thrombopoiesis in a Three-Dimensional Rotary Culture System. Stem Cells Transl Med 2015. [DOI: dx.doi.org/10.5966/sctm.2015-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of the platelet supply limits the care of patients. Although derivation of clinical-scale platelets in vitro could provide a new source for transfusion, the devices and procedures for deriving scalable platelets for clinical applications have not been established. In the present study, we found that a rotary cell culture system (RCCS) can potentiate megakaryopoiesis and significantly improve the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the RCCS improved platelet generation efficiency by as much as ∼3.7-fold compared with static conditions. Shear force, simulated microgravity, and better diffusion of nutrients and oxygen from the RCCS, altogether, might account for the improved efficient platelet generation. The cost-effective and highly controllable strategy and methodology represent an important step toward large-scale platelet production for future biomedical and clinical applications.
Significance
Platelet transfusion has been widely used in patients undergoing chemotherapy or radiotherapy; however, the shortage of platelet supply limits the care of patients. Thus, derivation of clinical-scale platelets in vitro would provide a new source for transfusion. The present study evaluated a rotary suspension cell culture system that was able to potentiate megakaryopoiesis and significantly improved the efficiency of platelet generation. When used with chemical compounds and growth factors identified via small-scale screening, the three-dimensional system improved platelet generation efficiency compared with the static condition. The three-dimensional device and the strategy developed in the present study should markedly improve the generation of large-scale platelets for use in future biomedical and clinical settings.
Collapse
Affiliation(s)
- Yiqing Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
- Faculty of Laboratory Medical Science, Hebei North University, Zhangjiakou, People's Republic of China
| | - CuiCui Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, Beijing, People's Republic of China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Yongxin Ru
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Xinhua Ruan
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, CAS, Beijing, People's Republic of China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng 2015; 43:2361-73. [PMID: 25777294 DOI: 10.1007/s10439-015-1298-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022]
Abstract
Current in vitro models for tumor growth and metastasis are poor facsimiles of in vivo cancer physiology and thus, are not optimal for anti-cancer drug development. Three dimensional (3D) tissue organoid systems, which utilize human cells in a tailored microenvironment, have the potential to recapitulate in vivo conditions and address the drawbacks of current tissue culture dish 2D models. In this study, we created liver-based cell organoids in a rotating wall vessel bioreactor. The organoids were further inoculated with colon carcinoma cells in order to create liver-tumor organoids for in vitro modeling of liver metastasis. Immunofluorescent staining revealed notable phenotypic differences between tumor cells in 2D and inside the organoids. In 2D they displayed an epithelial phenotype, and only after transition to the organoids did the cells present with a mesenchymal phenotype. The cell surface marker expression results suggested that WNT pathway might be involved in the phenotypic changes observed between cells in 2D and organoid conditions, and may lead to changes in cell proliferation. Manipulating the WNT pathway with an agonist and antagonist showed significant changes in sensitivity to the anti-proliferative drug 5-fluoruracil. Collectively, the results show the potential of in vitro 3D liver-tumor organoids to serve as a model for metastasis growth and for testing the response of tumor cells to current and newly discovered drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA.
| |
Collapse
|
17
|
Qureshi KM, Lee J, Paget MB, Bailey CJ, Curnow SJ, Murray HE, Downing R. Low gravity rotational culture and the integration of immunomodulatory stem cells reduce human islet allo-reactivity. Clin Transplant 2014; 29:90-8. [DOI: 10.1111/ctr.12488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Khalid M. Qureshi
- The Islet Research Laboratory; Worcester Clinical Research Unit; Worcestershire Acute Hospitals NHS Trust; Worcester UK
| | - Jou Lee
- The Islet Research Laboratory; Worcester Clinical Research Unit; Worcestershire Acute Hospitals NHS Trust; Worcester UK
| | - Michelle B. Paget
- The Islet Research Laboratory; Worcester Clinical Research Unit; Worcestershire Acute Hospitals NHS Trust; Worcester UK
| | - Clifford J. Bailey
- Diabetes Research; Aston Pharmacy School; School of Life and Health Sciences; Aston University; Aston Triangle Birmingham UK
| | - S. John Curnow
- Centre for Translational Inflammation Research; College of Medical and Dental Sciences; University of Birmingham Research Laboratories; Queen Elizabeth Hospital Birmingham; Edgbaston Birmingham UK
| | - Hilary E. Murray
- The Islet Research Laboratory; Worcester Clinical Research Unit; Worcestershire Acute Hospitals NHS Trust; Worcester UK
| | - Richard Downing
- The Islet Research Laboratory; Worcester Clinical Research Unit; Worcestershire Acute Hospitals NHS Trust; Worcester UK
| |
Collapse
|
18
|
Zhang S, Zhang B, Chen X, Chen L, Wang Z, Wang Y. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2699-2709. [PMID: 25056199 DOI: 10.1007/s10856-014-5279-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Tissue-engineered liver using primary hepatocytes has been considered a valuable new therapeutic modality as an alternative to whole organ liver transplantation for different liver diseases. The development of clinically feasible liver tissue engineering approaches, however, has been hampered by the poor engraftment efficiency of hepatocytes. We developed a three-dimensional (3D) culture system using a microgravity bioreactor (MB), biodegradable scaffolds and growth-factor-reduced Matrigel to construct a tissue-engineered liver for transplantation into the peritoneal cavity of non-obese diabetic severe combined immunodeficient mice. The number of viable cells in the hepatic tissue constructs was stably maintained in the 3D MB culture system. Hematoxylin-eosin staining and zonula occludens-1 expression revealed that neonatal mouse liver cells were reorganized to form tissue-like structures during MB culture. Significantly upregulated hepatic functions (albumin secretion, urea production and cytochrome P450 activity) were observed in the MB culture group. Post-transplantation analysis indicated that the engraftment efficiency of the hepatic tissue constructs prepared in MB cultures was higher than that of those prepared in the static cultures. Higher level of hepatic function in the implants was confirmed by the expression of albumin. These findings suggest that 3D MB culture systems may offer an improved method for creating tissue-engineered liver because of the higher engraftment efficiency and the reduction of the initial cell function loss.
Collapse
Affiliation(s)
- Shichang Zhang
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China,
| | | | | | | | | | | |
Collapse
|
19
|
Montani C, Steimberg N, Boniotti J, Biasiotto G, Zanella I, Diafera G, Biunno I, Caimi L, Mazzoleni G, Di Lorenzo D. Fibroblasts maintained in 3 dimensions show a better differentiation state and higher sensitivity to estrogens. Toxicol Appl Pharmacol 2014; 280:421-33. [DOI: 10.1016/j.taap.2014.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
|
20
|
Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cells Int 2012; 2012:738910. [PMID: 22550517 PMCID: PMC3328185 DOI: 10.1155/2012/738910] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/29/2011] [Indexed: 01/29/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have core properties of unlimited self-renewal and differentiation potential and have emerged as exciting cell sources for applications in regenerative medicine, drug discovery, understanding of development, and disease etiology. Key among numerous criteria to assess pluripotency includes the in vivo teratoma assay that has been widely proposed as a standard functional assay to demonstrate the pluripotency of hiPSCs. Yet, the lack of reliability across methodologies, lack of definitive clinical significance, and associated expenses bring into question use of the teratoma assay as the “gold standard” for determining pluripotency. We propose use of the in vitro embryoid body (EB) assay as an important alternative to the teratoma assay. This paper summarizes the methodologies for creating EBs from hiPSCs and the subsequent analyses to assess pluripotency and proposes its use as a cost-effective, controlled, and reproducible approach that can easily be adopted to determine pluripotency of generated hiPSCs.
Collapse
|
21
|
Wang Y, An L, Jiang Y, Hang H. Effects of simulated microgravity on embryonic stem cells. PLoS One 2011; 6:e29214. [PMID: 22216215 PMCID: PMC3244445 DOI: 10.1371/journal.pone.0029214] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 11/22/2011] [Indexed: 12/31/2022] Open
Abstract
There have been many studies on the biological effects of simulated microgravity (SMG) on differentiated cells or adult stem cells. However, there has been no systematic study on the effects of SMG on embryonic stem (ES) cells. In this study, we investigated various effects (including cell proliferation, cell cycle distribution, cell differentiation, cell adhesion, apoptosis, genomic integrity and DNA damage repair) of SMG on mouse embryonic stem (mES) cells. Mouse ES cells cultured under SMG condition had a significantly reduced total cell number compared with cells cultured under 1 g gravity (1G) condition. However, there was no significant difference in cell cycle distribution between SMG and 1G culture conditions, indicating that cell proliferation was not impaired significantly by SMG and was not a major factor contributing to the total cell number reduction. In contrast, a lower adhesion rate cultured under SMG condition contributed to the lower cell number in SMG. Our results also revealed that SMG alone could not induce DNA damage in mES cells while it could affect the repair of radiation-induced DNA lesions of mES cells. Taken together, mES cells were sensitive to SMG and the major alterations in cellular events were cell number expansion, adhesion rate decrease, increased apoptosis and delayed DNA repair progression, which are distinct from the responses of other types of cells to SMG.
Collapse
Affiliation(s)
- Yulan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Computational and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lili An
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Computational and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanda Jiang
- Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing, China
| | - Haiying Hang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Computational and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 2011. [PMID: 22096490 DOI: 10.1371/journal.pone.0026603.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.
Collapse
|
23
|
Lei XH, Ning LN, Cao YJ, Liu S, Zhang SB, Qiu ZF, Hu HM, Zhang HS, Liu S, Duan EK. NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 2011; 6:e26603. [PMID: 22096490 PMCID: PMC3212516 DOI: 10.1371/journal.pone.0026603] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022] Open
Abstract
The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a “stimulatory” environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.
Collapse
Affiliation(s)
- Xiao-hua Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-na Ning
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-jing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Shou-bing Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Zhi-fang Qiu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui-min Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Hui-shan Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Shu Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - En-kui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Tang J, Cui J, Chen R, Guo K, Kang X, Li Y, Gao D, Sun L, Xu C, Chen J, Tang Z, Liu Y. A three-dimensional cell biology model of human hepatocellular carcinoma in vitro. Tumour Biol 2010; 32:469-79. [PMID: 21140254 DOI: 10.1007/s13277-010-0140-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/26/2010] [Indexed: 01/26/2023] Open
Abstract
We established an in vitro 3-D model of metastatic hepatocellular carcinoma (HCC) by culturing MHCC97H cells on molecular scaffolds within a rotating wall vessel bioreactor. Morphological and biochemical analyses revealed that the 3-D HCC model mirrored many clinical pathological features of HCC in vivo, including cancer cell morphology, tissue ultrastructure, protein production and secretion, glucose metabolism, tissue-specific gene expression, and apoptosis. Xenografts into livers of nude mice resulted in tumorigenesis and distant metastasis. This 3-D HCC spheroid is a promising model for HCC tumor biology, anticancer drug screening, and for the establishment of HCC animal models.
Collapse
Affiliation(s)
- Jianhua Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Xue Yuan Road, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Skardal A, Sarker SF, Crabbé A, Nickerson CA, Prestwich GD. The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 2010; 31:8426-35. [PMID: 20692703 DOI: 10.1016/j.biomaterials.2010.07.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
With the increasing necessity for functional tissue- and organ equivalents in the clinic, the optimization of techniques for the in vitro generation of organotypic structures that closely resemble the native tissue is of paramount importance. The engineering of a variety of highly differentiated tissues has been achieved using the rotating wall vessel (RWV) bioreactor technology, which is an optimized suspension culture allowing cells to grow in three-dimensions (3-D). However, certain cell types require the use of scaffolds, such as collagen-coated microcarrier beads, for optimal growth and differentiation in the RWV. Removal of the 3-D structures from the microcarriers involves enzymatic treatment, which disrupts the delicate 3-D architecture and makes it inapplicable for potential implantation. Therefore, we designed a microcarrier bead coated with a synthetic extracellular matrix (ECM) composed of a disulfide-crosslinked hyaluronan and gelatin hydrogel for 3-D tissue engineering, that allows for enzyme-free cell detachment under mild reductive conditions (i.e. by a thiol-disulfide exchange reaction). The ECM-coated beads (ECB) served as scaffold to culture human intestinal epithelial cells (Int-407) in the RWV, which formed viable multi-layered cell aggregates and expressed epithelial differentiation markers. The cell aggregates remained viable following dissociation from the microcarriers, and could be returned to the RWV bioreactor for further culturing into bead-free tissue assemblies. The developed ECBs thus offer the potential to generate scaffold-free 3-D tissue assemblies, which could further be explored for tissue replacement and remodeling.
Collapse
Affiliation(s)
- Aleksander Skardal
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84108-1257, USA
| | | | | | | | | |
Collapse
|
27
|
Blaber E, Marçal H, Burns BP. Bioastronautics: the influence of microgravity on astronaut health. ASTROBIOLOGY 2010; 10:463-473. [PMID: 20624055 DOI: 10.1089/ast.2009.0415] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For thousands of years different cultures around the world have assigned their own meaning to the Universe. Through research and technology, we have begun to understand the nature and mysteries of the Cosmos. Last year marked the 40(th) anniversary of our first steps on the Moon, and within two decades it is hoped that humankind will have established a settlement on Mars. Space is a harsh environment, and technological advancements in material science, robotics, power generation, and medical equipment will be required to ensure that astronauts survive interplanetary journeys and settlements. The innovative field of bioastronautics aims to address some of the medical issues astronauts encounter during space travel. Astronauts are faced with several health risks during both short- and long-duration spaceflight due to the hostile environment presented in space. Some of these health problems include bone loss, muscle atrophy, cardiac dysrhythmias, and altered orientation. This review discusses the effects of spaceflight on living organisms, in particular, the specific effects of microgravity on the human body and possible countermeasures to these effects.
Collapse
Affiliation(s)
- Elizabeth Blaber
- Australian Centre for Astrobiology, The University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
28
|
Hjelm BE, Berta AN, Nickerson CA, Arntzen CJ, Herbst-Kralovetz MM. Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 2010; 82:617-27. [PMID: 20007410 PMCID: PMC6366157 DOI: 10.1095/biolreprod.109.080408] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 11/17/2009] [Indexed: 11/01/2022] Open
Abstract
We have developed an in vitro human vaginal epithelial cell (EC) model using the innovative rotating wall vessel (RWV) bioreactor technology that recapitulates in vivo structural and functional properties, including a stratified squamous epithelium with microvilli, tight junctions, microfolds, and mucus. This three-dimensional (3-D) vaginal model provides a platform for high-throughput toxicity testing of candidate microbicides targeted to combat sexually transmitted infections, effectively complementing and extending existing testing systems such as surgical explants or animal models. Vaginal ECs were grown on porous, collagen-coated microcarrier beads in a rotating, low fluid-shear environment; use of RWV bioreactor technology generated 3-D vaginal EC aggregates. Immunofluorescence and scanning and transmission electron microscopy confirmed differentiation and polarization of the 3-D EC aggregates among multiple cell layers and identified ultrastructural features important for nutrient absorption, cell-cell interactions, and pathogen defense. After treatment with a variety of toll-like receptor (TLR) agonists, cytokine production was quantified by cytometric bead array, confirming that TLRs 2, 3, 5, and 6 were expressed and functional. The 3-D vaginal aggregates were more resistant to nonoxynol-9 (N-9), a contraceptive and previous microbicide candidate, when compared to two-dimensional monolayers of the same cell line. A dose-dependent production of tumor necrosis factor-related apoptosis-inducing ligand and interleukin-1 receptor antagonist, biomarkers of cervicovaginal inflammation, correlated to microbicide toxicity in the 3-D model following N-9 treatment. These results indicate that this 3-D vaginal model could be used as a complementary tool for screening microbicide compounds for safety and efficacy, thus improving success in clinical trials.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
29
|
Arnold HJ, Müller M, Waldhaus J, Hahn H, Löwenheim H. A Novel Buoyancy Technique Optimizes Simulated Microgravity Conditions for Whole Sensory Organ Culture in Rotating Bioreactors. Tissue Eng Part C Methods 2010; 16:51-61. [DOI: 10.1089/ten.tec.2009.0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Heinz J.P. Arnold
- Department of Otorhinolaryngology—Head and Neck Surgery, Hearing Research Center Tübingen (THRC), University of Tübingen Medical Center, Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology—Head and Neck Surgery, Hearing Research Center Tübingen (THRC), University of Tübingen Medical Center, Tübingen, Germany
| | - Jörg Waldhaus
- Department of Otorhinolaryngology—Head and Neck Surgery, Hearing Research Center Tübingen (THRC), University of Tübingen Medical Center, Tübingen, Germany
| | - Hartmut Hahn
- Department of Otorhinolaryngology—Head and Neck Surgery, Hearing Research Center Tübingen (THRC), University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology—Head and Neck Surgery, Hearing Research Center Tübingen (THRC), University of Tübingen Medical Center, Tübingen, Germany
| |
Collapse
|