1
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Muñoz-Gómez E, Aguilar-Rodríguez M, Mollà-Casanova S, Sempere-Rubio N, Inglés M, Serra-Añó P. A randomized controlled trial on the effectiveness of mirror therapy in improving strength, range of movement and muscle activity, in people with carpal tunnel syndrome. J Hand Ther 2024; 37:534-543. [PMID: 38458950 DOI: 10.1016/j.jht.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND There is little information on the potential effects of mirror therapy (MT) on motor recovery in individuals with Carpal Tunnel Syndrome (CTS). PURPOSE To compare the effectiveness of a MT protocol versus a therapeutic exercise (TE) protocol, in improving strength, range of motion (ROM), muscle activity, pain, and functionality in patients with CTS. STUDY DESIGN Randomized clinical trial. METHODS Thirty-nine participants with unilateral CTS were divided into two groups: (i) MT group (n = 20) that followed an exercise protocol applied to the unaffected hand reflected in a mirror, and (ii) TE group (n = 19) that followed the same exercise protocol using the unaffected hand but without a mirror. Strength, wrist ROM, muscle activity, pain and functionality, were assessed at baseline (T0), after treatment (T1) and one month after treatment (T2). RESULTS At T1, the MT group showed significantly higher wrist flexion-extension ROM compared to TE (p = 0.04, d = 0.8), maintained at T2 (p = 0.02, d = 0.8). No significant changes were observed in ulnar-radius deviation, pronosupination, or fatigue following either MT or TE (p > 0.05). MT exhibited enhanced handgrip strength at T1 (p = 0.001, d = 0.7), as well as an increase in the extensor carpi radialis (ECR) and flexor carpi radialis (FCR) maximum muscle activity (p = 0.04, d = 1.0; p = 0.03, d = 0.4). At T1, both groups decreased pain (p = 0.002, d = 1.1; p = 0.02, d = 0.7), and improved functionality (p < 0.001, d = 0.8; p = 0.01, d = 0.5) (MT and TE respectively). DISCUSSION MT led to enhancements in wrist flexion-extension movement, handgrip strength and functionality unlike TE. MT notably increased muscle activity, particularly in the ECR and FCR muscles. CONCLUSIONS MT is a favorable strategy to improve wrist flexion-extension ROM, handgrip strength, ECR and FCR muscle activity, and functionality in people with unilateral CTS.
Collapse
Affiliation(s)
- Elena Muñoz-Gómez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Sara Mollà-Casanova
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Nuria Sempere-Rubio
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Inglés
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Pilar Serra-Añó
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Huang G, Wang H, Zhao W, Qian Y, Yao Y, Zhang L, Chen Y, Song L, Yang J, Liu Z, Su B, Sun L. Effects of the intermittent theta burst stimulation on gait, balance and lower limbs motor function in stroke: study protocol for a double-blind randomised controlled trial with multimodal neuroimaging assessments. BMJ Open 2024; 14:e082019. [PMID: 39107014 PMCID: PMC11308910 DOI: 10.1136/bmjopen-2023-082019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/03/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Approximately, 50% of stroke survivors experience impaired walking ability 6 months after conventional rehabilitation and standard care. However, compared with upper limb motor function, research on lower limbs rehabilitation through non-invasive neuromodulation like repetitive transcranial magnetic stimulation (rTMS) has received less attention. Limited evidence exists regarding the effectiveness of intermittent theta-burst stimulation (iTBS), an optimised rTMS modality, on lower limbs rehabilitation after stroke. This study aims to evaluate the effects of iTBS on gait, balance and lower limbs motor function in stroke recovery while also exploring the underlying neural mechanisms using longitudinal analysis of multimodal neuroimaging data. METHODS AND ANALYSIS In this double-blinded randomised controlled trial, a total of 46 patients who had a stroke will be randomly assigned in a 1:1 ratio to receive either 15 sessions of leg motor area iTBS consisting of 600 pulses or sham stimulation over the course of 3 weeks. Additionally, conventional rehabilitation therapy will be administered following the (sham) iTBS intervention. The primary outcome measure will be the 10 m walking test. Secondary outcomes include the Fugl-Meyer assessment of the lower extremity, Timed Up and Go Test, Functional Ambulation Category Scale, Berg Balance Scale, modified Barthel Index, Mini-Mental State Examination, montreal cognitive assessment, tecnobody balance assessment encompassing both static and dynamic stability evaluations, surface electromyography recording muscle activation of the lower limbs, three-dimensional gait analysis focusing on temporal and spatial parameters as well as ground reaction force measurements, corticomotor excitability tests including resting motor threshold, motor evoked potential and recruitment curves and multimodal functional MRI scanning. Outcome measures will be collected prior to and after the intervention period with follow-up at 3 weeks. ETHICS AND DISSEMINATION The study has received approval from the Medical Research Ethics Committee of Wuxi Mental Health Center/Wuxi Central Rehabilitation Hospital (no. WXMHCCIRB2023LLky078). Results will be disseminated through peer-reviewed journals and scientific conferences. TRIAL REGISTRATION NUMBER ChiCTR2300077431.
Collapse
Affiliation(s)
- Guilan Huang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Hewei Wang
- Department of Rehabilitation, Huashan Hospital Fudan University, Shanghai, China
| | - WeiWei Zhao
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Yao Qian
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Yu Yao
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Li Zhang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Yating Chen
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Lianxin Song
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Jinyu Yang
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Zhichao Liu
- Department of Rehabilitation, Huashan Hospital Fudan University, Shanghai, China
| | - Bin Su
- Department of Rehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, China
| | - Limin Sun
- Department of Rehabilitation, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
4
|
Bonnal J, Ozsancak C, Prieur F, Auzou P. Video mirror feedback induces more extensive brain activation compared to the mirror box: an fNIRS study in healthy adults. J Neuroeng Rehabil 2024; 21:78. [PMID: 38745322 PMCID: PMC11092069 DOI: 10.1186/s12984-024-01374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION NCT04738851.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France.
- CIAMS, Université Paris-Saclay, Orsay Cedex, 91405, France.
- CIAMS, Université d'Orléans, Orléans, 45067, France.
- SAPRéM, Université d'Orléans, Orléans, France.
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France
- LI2RSO, Université d'Orléans, Orléans, France
| | - Fabrice Prieur
- CIAMS, Université Paris-Saclay, Orsay Cedex, 91405, France
- CIAMS, Université d'Orléans, Orléans, 45067, France
- SAPRéM, Université d'Orléans, Orléans, France
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Universitaire d'Orléans, 14 Avenue de l'Hôpital, Orleans, 45100, France
- LI2RSO, Université d'Orléans, Orléans, France
| |
Collapse
|
5
|
Ko NH, Laine CM, Valero-Cuevas FJ. Task-dependent alteration of beta-band intermuscular coherence is associated with ipsilateral corticospinal tract excitability. Front Sports Act Living 2023; 5:1177004. [PMID: 37576608 PMCID: PMC10416639 DOI: 10.3389/fspor.2023.1177004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Beta-band (15-30 Hz) synchronization between the EMG signals of active limb muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks engaging a single limb often primarily utilize one corticospinal pathway, although bilateral neural circuits can participate in goal-directed actions involving multi-muscle coordination and utilization of feedback. Suboptimal utilization of such circuits after CNS injury can result in unintended mirror movements and activation of pathological synergies. Accordingly, it is important to understand how the actions of one limb (e.g., a less-affected limb after strokes) influence the opposite corticospinal pathway for the rehabilitation target. Certain unimanual actions decrease the excitability of the "unengaged" corticospinal tract, presumably to prevent mirror movement, but there is no direct way to predict the extent to which this will occur. In this study, we tested the hypothesis that task-dependent changes in beta-band drives to muscles of one hand will inversely correlate with changes in the opposite corticospinal tract excitability. Ten participants completed spring pinching tasks known to induce differential 15-30 Hz drive to muscles. During compressions, transcranial magnetic stimulation single pulses to the ipsilateral M1 were delivered to generate motor-evoked potentials in the unengaged hand. The task-induced changes in ipsilateral corticospinal excitability were inversely correlated with associated changes in EMG-EMG coherence of the task hand. These results demonstrate a novel connection between intermuscular coherence and the excitability of the "unengaged" corticospinal tract and provide a springboard for further mechanistic studies of unimanual tasks of varying difficulty and their effects on neural pathways relevant to rehabilitation.
Collapse
Affiliation(s)
- Na-hyeon Ko
- Department of Physical Therapy, California State University, Fresno, CA, United States
| | - Christopher M. Laine
- Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Francisco J. Valero-Cuevas
- Brain Body Dynamics Lab, Division of Biokinesiology and Physical Therapy, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Betti S, Zani G, Guerra S, Granziol U, Castiello U, Begliomini C, Sartori L. When Corticospinal Inhibition Favors an Efficient Motor Response. BIOLOGY 2023; 12:biology12020332. [PMID: 36829607 PMCID: PMC9953307 DOI: 10.3390/biology12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/25/2022] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Many daily activities involve responding to the actions of other people. However, the functional relationship between the motor preparation and execution phases still needs to be clarified. With the combination of different and complementary experimental techniques (i.e., motor excitability measures, reaction times, electromyography, and dyadic 3-D kinematics), we investigated the behavioral and neurophysiological signatures characterizing different stages of a motor response in contexts calling for an interactive action. Participants were requested to perform an action (i.e., stirring coffee or lifting a coffee cup) following a co-experimenter's request gesture. Another condition, in which a non-interactive gesture was used, was also included. Greater corticospinal inhibition was found when participants prepared their motor response after observing an interactive request, compared to a non-interactive gesture. This, in turn, was associated with faster and more efficient action execution in kinematic terms (i.e., a social motor priming effect). Our results provide new insights on the inhibitory and facilitatory drives guiding social motor response generation. Altogether, the integration of behavioral and neurophysiological indexes allowed us to demonstrate that a more efficient action execution followed a greater corticospinal inhibition. These indexes provide a full picture of motor activity at both planning and execution stages.
Collapse
Affiliation(s)
- Sonia Betti
- Department of Psychology, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Correspondence:
| | - Giovanni Zani
- School of Psychology, Victoria University of Wellington, Kelburn Parade 20, Wellington 6012, New Zealand
| | - Silvia Guerra
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Umberto Granziol
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padua Center for Network Medicine, University of Padova, Via Francesco Marzolo 8, 35131 Padova, Italy
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| | - Luisa Sartori
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Giuseppe Orus 2, 35131 Padova, Italy
| |
Collapse
|
7
|
Tanrıverdi U, Gündüz A, Hatice Kumru, Kızıltan ME. Cutaneous silent period modulation by tooth clenching, tonic and phasic limb movements in healthy subjects. Exp Brain Res 2022; 240:2783-2789. [DOI: 10.1007/s00221-022-06455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
|
8
|
Scano A, Guanziroli E, Mira RM, Brambilla C, Molinari Tosatti L, Molteni F. Biomechanical assessment of the ipsilesional upper limb in post-stroke patients during multi-joint reaching tasks: A quantitative study. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:943397. [PMID: 36189026 PMCID: PMC9397945 DOI: 10.3389/fresc.2022.943397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022]
Abstract
In hemiplegic patients with stroke, investigating the ipsilesional limb may shed light on the upper limb motor control, impairments and mechanisms of functional recovery. Usually investigation of motor impairment and rehabilitative interventions in patients are performed only based on the contralesional limb. Previous studies found that also the ipsilesional limb presents motor deficits, mostly evaluated with clinical scales which could lack of sensibility. To quantitatively evaluate the performance of the ipsilesional limb in patient with stroke, we conducted an observational study in which 49 hemiplegic patients were enrolled, divided in subgroups based on the severity of impairment of the contralesional limb, and assessed with a kinematic, dynamic and motor control evaluation protocol on their ipsilesional upper limb during reaching movements. Measurements were repeated in the acute and subacute phases and compared to healthy controls. Our results showed that the ipsilesional limb presented lower kinematic and dynamic performances with respect to the healthy controls. Patients performed the movements slower and with a reduced range of motion, indicating a difficulty in controlling the motion of the arm. The energy and the power outputs were lower in both shoulder and elbow joint with a high significance level, confirming the limitation found in kinematics. Moreover, we showed that motor deficits were higher in the acute phase with respect to the subacute one and we found higher significant differences in the group with a more severe contralesional limb impairment. Ipsilesional upper limb biomechanics adds significant and more sensible measures for assessments based on multi-joints dynamics, providing a better insight on the upper limb motor control after stroke. These results could have clinical implications while evaluating and treating ipsilesional and contralesional upper limb impairments and dysfunctions in patients with stroke.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
- *Correspondence: Alessandro Scano
| | | | - Robert M. Mira
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
| | - Cristina Brambilla
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), Italian National Research Council (CNR), Milan-Lecco, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Costa Masnaga, Italy
| |
Collapse
|
9
|
McInnes AN, Nguyen AT, Carroll TJ, Lipp OV, Marinovic W. Engagement of the contralateral limb can enhance the facilitation of motor output by loud acoustic stimuli. J Neurophysiol 2022; 127:840-855. [PMID: 35264005 DOI: 10.1152/jn.00235.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When intense sound is presented during light muscle contraction, inhibition of the corticomotoneuronal pathway is observed. During action preparation, this effect is reversed, with sound resulting in excitation of the corticomotoneuronal pathway. We investigated how combined maintenance of a muscle contraction during preparation for a ballistic action impacts the magnitude of the facilitation of motor output by a loud acoustic stimulus (LAS) - a phenomenon known as the StartReact effect. Participants executed ballistic wrist flexion movements and a LAS was presented simultaneously with the imperative signal in a subset of trials. We examined whether the force level or muscle used to maintain a contraction during preparation for the ballistic response impacted reaction time and/or the force of movements triggered by the LAS. These contractions were sustained either ipsilaterally or contralaterally to the ballistic response. The magnitude of facilitation by the LAS was greatest when low force flexion contractions were maintained in the limb contralateral to the ballistic response during preparation. There was little change in facilitation when contractions recruited the contralateral extensor muscle, or when they were sustained in the same limb that executed the ballistic response. We conclude that a larger network of neurons which may be engaged by a contralateral sustained contraction prior to initiation may be recruited by the LAS, further contributing to the motor output of the response. These findings may be particularly applicable in stroke rehabilitation where engagement of the contralesional side may increase the benefits of a LAS to the functional recovery of movement.
Collapse
Affiliation(s)
- Aaron N McInnes
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia.,Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - An T Nguyen
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia
| | - Timothy John Carroll
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Welber Marinovic
- School of Population Health, Discipline of Psychology, Curtin University, Perth, Australia
| |
Collapse
|
10
|
Merrick CM, Dixon TC, Breska A, Lin J, Chang EF, King-Stephens D, Laxer KD, Weber PB, Carmena J, Thomas Knight R, Ivry RB. Left hemisphere dominance for bilateral kinematic encoding in the human brain. eLife 2022; 11:e69977. [PMID: 35227374 PMCID: PMC8887902 DOI: 10.7554/elife.69977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Neurophysiological studies in humans and nonhuman primates have revealed movement representations in both the contralateral and ipsilateral hemispheres. Inspired by clinical observations, we ask if this bilateral representation differs for the left and right hemispheres. Electrocorticography was recorded in human participants during an instructed-delay reaching task, with movements produced with either the contralateral or ipsilateral arm. Using a cross-validated kinematic encoding model, we found stronger bilateral encoding in the left hemisphere, an effect that was present during preparation and was amplified during execution. Consistent with this asymmetry, we also observed better across-arm generalization in the left hemisphere, indicating similar neural representations for right and left arm movements. Notably, these left hemisphere electrodes were centered over premotor and parietal regions. The more extensive bilateral encoding in the left hemisphere adds a new perspective to the pervasive neuropsychological finding that the left hemisphere plays a dominant role in praxis.
Collapse
Affiliation(s)
- Christina M Merrick
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Tanner C Dixon
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
| | - Assaf Breska
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
| | - Jack Lin
- Department of Neurology, University of California at IrvineIrvineUnited States
| | - Edward F Chang
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Kenneth D Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Peter B Weber
- Department of Neurology and Neurosurgery, California Pacific Medical CenterSan FranciscoUnited States
| | - Jose Carmena
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Electrical Engineering and Computer Sciences, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Robert Thomas Knight
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Department of Neurological Surgery, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
11
|
Development of Laterality and Bimanual Interference of Fine Motor Movements in Childhood and Adolescence. Motor Control 2021; 25:587-615. [PMID: 34489369 DOI: 10.1123/mc.2020-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/20/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
Drawing and handwriting are fine motor skills acquired during childhood. We analyzed the development of laterality by comparing the performance of the dominant with the nondominant hand and the effect of bimanual interference in kinematic hand movement parameters (speed, automation, variability, and pressure). Healthy subjects (n = 187, 6-18 years) performed drawing tasks with both hands on a digitizing tablet followed by performance in the presence of an interfering task of the nondominant hand. Age correlated positively with speed, automation, and pressure, and negatively with variability for both hands. As task complexity increased, differences between both hands were less pronounced. Playing an instrument had a positive effect on the nondominant hand. Speed and automation showed a strong association with lateralization. Bimanual interference was associated with an increase of speed and variability. Maturation of hand laterality and the extent of bimanual interference in fine motor tasks are age-dependent processes.
Collapse
|
12
|
Tekeoglu Tosun A, Ipek Y, Razak Ozdincler A, Saip S. The efficiency of mirror therapy on drop foot in Multiple Sclerosis Patients. Acta Neurol Scand 2021; 143:545-553. [PMID: 33270229 DOI: 10.1111/ane.13385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Although the effectiveness of mirror therapy (MT) has been proved in stroke persons, there is no scientific evidence about the results in people with multiple sclerosis. The aim was to investigate whether adding MT to exercise training and neuromuscular electrical stimulation (NMES) has any effect on clinical measurements, mobility, and functionality in people with multiple sclerosis (MS). METHODS Ambulatory people with MS, with unilateral drop foot, were included. MT group (n = 13) applied bilateral ankle exercise program with mirror following NMES for 3 days a week at hospital and exercise program for 2 days a week at home. Control group (n = 13) performed same treatment without mirror box (6 weeks). The later 6 weeks both groups performed only exercise program. Clinical measurements included proprioception, muscle tone of plantar flexor muscles (MAS), muscle strength of dorsiflexor, ankle angular velocity, and range of motion (ROM) of ankle. Functionality (Functional Independence Measurement-FIM), mobility (Rivermead Mobility Index-RMI), ambulation (Functional Ambulation Scale-FAS), duration of stair climb test, and 25-foot walking velocity were assessed at the beginning, in 6th and 12th weeks. RESULTS More positive improvements were obtained in MT group than control group in terms of range of motion (0.012), muscle strength (0.008), proprioception (0.001), 25 feet walking duration (0.015), step test duration (0.001), FAS (0.005), RMI (0.001), and FIM (0.001) after 6 weeks treatment. It was seen that this improvement maintained to 12th week on all clinical and functional measurements (p < .05). CONCLUSION The trial revealed that adding MT to exercise training and NMES has more beneficial effects on clinical measurements, mobility, and functionality in people with multiple sclerosis with unilateral drop foot.
Collapse
Affiliation(s)
- Anıl Tekeoglu Tosun
- Division of Physiotherapy and Rehabilitation Faculty of Health Sciences Fenerbahce University Istanbul Turkey
| | - Yeldan Ipek
- Division of Physiotherapy and Rehabilitation Faculty of Health Sciences Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Arzu Razak Ozdincler
- Division of Physiotherapy and Rehabilitation Faculty of Health Sciences Biruni University Istanbul Turkey
| | - Sabahattin Saip
- Department of Neurology Medical School of Cerrahpasa Istanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
13
|
Tian D, Izumi SI, Suzuki E. Modulation of Interhemispheric Inhibition between Primary Motor Cortices Induced by Manual Motor Imitation: A Transcranial Magnetic Stimulation Study. Brain Sci 2021; 11:brainsci11020266. [PMID: 33669827 PMCID: PMC7923080 DOI: 10.3390/brainsci11020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Imitation has been proven effective in motor development and neurorehabilitation. However, the relationship between imitation and interhemispheric inhibition (IHI) remains unclear. Transcranial magnetic stimulation (TMS) can be used to investigate IHI. In this study, the modification effects of IHI resulting from mirror neuron system (MNS) activation during different imitations are addressed. We measured IHI between homologous primary motor cortex (M1) by analyzing the ipsilateral silent period (iSP) evoked by single-pulse focal TMS during imitation and analyzed the respective IHI modulation during and after different patterns of imitation. Our main results showed that throughout anatomical imitation, significant time-course changes of iSP duration through the experiment were observed in both directions. iSP duration declined from the pre-imitation time point to the post-imitation time point and did not return to baseline after 30 min rest. We also observed significant iSP reduction from the right hemisphere to the left hemisphere during anatomical and specular imitation, compared with non-imitative movement. Our findings indicate that using anatomical imitation in action observation and execution therapy promotes functional recovery in neurorehabilitation by regulating IHI.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Correspondence:
| | - Shin-ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Eizaburo Suzuki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata 990-2212, Japan
| |
Collapse
|
14
|
Matsumoto T, Watanabe T, Kuwabara T, Yunoki K, Chen X, Kubo N, Kirimoto H. Excitability of the Ipsilateral Primary Motor Cortex During Unilateral Goal-Directed Movement. Front Hum Neurosci 2021; 15:617146. [PMID: 33679346 PMCID: PMC7925409 DOI: 10.3389/fnhum.2021.617146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous transcranial magnetic stimulation (TMS) studies have revealed that the activity of the primary motor cortex ipsilateral to an active hand (ipsi-M1) plays an important role in motor control. The aim of this study was to investigate whether the ipsi-M1 excitability would be influenced by goal-directed movement and laterality during unilateral finger movements. Method Ten healthy right-handed subjects performed four finger tapping tasks with the index finger: (1) simple tapping (Tap) task, (2) Real-word task, (3) Pseudoword task, and (4) Visually guided tapping (VT) task. In the Tap task, the subject performed self-paced simple tapping on a touch screen. In the real-word task, the subject tapped letters displayed on the screen one by one to create a Real-word (e.g., apple). Because the action had a specific purpose (i.e., creating a word), this task was considered to be goal-directed as compared to the Tap task. In the Pseudoword task, the subject tapped the letters to create a pseudoword (e.g., gdiok) in the same manner as in the Real-word task; however, the word was less meaningful. In the VT task, the subject was required to touch a series of illuminated buttons. This task was considered to be less goal-directed than the Pseudoword task. The tasks were performed with the right and left hand, and a rest condition was added as control. Single- and paired-pulse TMS were applied to the ipsi-M1 to measure corticospinal excitability and short- and long-interval intracortical inhibition (SICI and LICI) in the resting first dorsal interosseous (FDI) muscle. Results We found the smaller SICI in the ipsi-M1 during the VT task compared with the resting condition. Further, both SICI and LICI were smaller in the right than in the left M1, regardless of the task conditions. Discussion We found that SICI in the ipsi-M1 is smaller during visual illumination-guided finger movement than during the resting condition. Our finding provides basic data for designing a rehabilitation program that modulates the M1 ipsilateral to the moving limb, for example, for post-stroke patients with severe hemiparesis.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kuwabara
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Xiaoxiao Chen
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nami Kubo
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Corticospinal excitability of untrained side depends on the type of motor task and degree of improvement in motor function. Brain Cogn 2021; 148:105691. [PMID: 33515865 DOI: 10.1016/j.bandc.2021.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Unimanual motor tasks change the corticospinal excitability of the trained and untrained side. However, whether the motor task type influences the modulation of the corticospinal excitability of the untrained side remains unclear. This study aimed to clarify the effects of motor tasks on the corticospinal excitability of the untrained side and the relationship between the excitability and motor function. In Experiment I, we measured the corticospinal excitability of the untrained side and motor function after 10 min of motor training in two conditions (gripping task and ball rotation task). The gripping task decreased the excitability. In contrast, excitability remained unchanged after the ball rotation task; further, the modulation of excitability and motor function showed a correlation. In Experiment II, we measured the corticospinal excitability of the untrained side and motor function after two sessions of the ball rotation task. The excitability increased, but motor function remained unchanged after the first session, whereas the excitability decreased to the level observed before training, and motor function improved after the second session. We suggest that the training condition modulates the corticospinal excitability of the untrained side and that this is related to the modulation of motor function.
Collapse
|
16
|
Gomez IN, Ormiston K, Greenhouse I. Response preparation involves a release of intracortical inhibition in task-irrelevant muscles. J Neurophysiol 2020; 125:523-532. [PMID: 33356901 DOI: 10.1152/jn.00390.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action preparation involves widespread modulation of motor system excitability, but the precise mechanisms are unknown. In this study, we investigated whether intracortical inhibition changes in task-irrelevant muscle representations during action preparation. We used transcranial magnetic stimulation (TMS) combined with electromyography in healthy human adults to measure motor-evoked potentials (MEPs) and cortical silent periods (CSPs) in task-irrelevant muscles during the preparatory period of simple delayed response tasks. In experiment 1, participants responded with the left index finger in one task condition and the right index finger in another task condition, whereas MEPs and CSPs were measured from the contralateral nonresponding and tonically contracted index finger. During experiment 2, participants responded with the right pinky finger whereas MEPs and CSPs were measured from the tonically contracted left index finger. In both experiments, MEPs and CSPs were compared between the task preparatory period and a resting intertrial baseline. The CSP duration during response preparation decreased from baseline in every case. A laterality difference was also observed in experiment 1, with a greater CSP reduction during the preparation of left finger responses compared to right finger responses. Despite reductions in CSP duration, consistent with a release of intracortical inhibition, MEP amplitudes were smaller during action preparation when accounting for background levels of muscle activity, consistent with earlier studies that reported decreased corticospinal excitability. These findings indicate that intracortical inhibition associated with task-irrelevant muscles is transiently released during action preparation and implicate a novel mechanism for the controlled and coordinated release of motor cortex inhibition.NEW & NOTEWORTHY In this study, we observed the first evidence of a release of intracortical inhibition in task-irrelevant muscle representations during response preparation. We applied transcranial magnetic stimulation to elicit cortical silent periods in task-irrelevant muscles during response preparation, and observed a consistent decrease in the silent period duration relative to a resting baseline. These findings address the question of whether cortical mechanisms underlie widespread modulation in motor excitability during response preparation.
Collapse
Affiliation(s)
- Isaac N Gomez
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Kara Ormiston
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
17
|
Wilson R, Thomas A, Mayhew SD. Spatially congruent negative BOLD responses to different stimuli do not summate in visual cortex. Neuroimage 2020; 218:116891. [DOI: 10.1016/j.neuroimage.2020.116891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
|
18
|
Cabibel V, Hordacre B, Perrey S. Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: the cross-activation phenomenon. J Neurophysiol 2020; 123:2090-2098. [DOI: 10.1152/jn.00064.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Voluntary force production requires that the brain produces and transmits a motor command to the muscles. It is widely acknowledged that motor commands are executed from the primary motor cortex (M1) located in the contralateral hemisphere. However, involvement of M1 located in the ipsilateral hemisphere during moderate to high levels of unilateral muscle contractions (>30% of the maximum) has been disclosed in recent years. This phenomenon has been termed cross-activation. The activation of the ipsilateral M1 relies on complex inhibitory and excitatory interhemispheric interactions mediated via the corpus callosum and modulated according to the contraction level. The regulatory mechanisms underlying these interhemispheric interactions, especially excitatory ones, remain vague, and contradictions exist in the literature. In addition, very little is known regarding the possibility that other pathways could also mediate the cross-activation. In the present review, we will therefore summarize the concept of cross-activation during unilateral voluntary muscle contraction and explore the associated mechanisms and other nervous system pathways underpinning this response. A broader knowledge of these mechanisms would consequently allow a better comprehension of the motor system as a whole, as distant brain networks working together to produce the motor command.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
19
|
Bundy DT, Leuthardt EC. The Cortical Physiology of Ipsilateral Limb Movements. Trends Neurosci 2019; 42:825-839. [PMID: 31514976 PMCID: PMC6825896 DOI: 10.1016/j.tins.2019.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Whereas voluntary movements have long been understood to derive primarily from the cortical hemisphere contralateral to a moving limb, substantial cortical activations also occur in the same-sided, or ipsilateral, cortical hemisphere. These ipsilateral motor activations have recently been shown to be useful to decode specific movement features. Furthermore, in contrast to the classical understanding that unilateral limb movements are solely driven by the contralateral hemisphere, it appears that the ipsilateral hemisphere plays an active and specific role in the planning and execution of voluntary movements. Here we review the movement-related activations observed in the ipsilateral cortical hemisphere, interpret this evidence in light of the potential roles of the ipsilateral hemisphere in the planning and execution of movements, and describe the implications for clinical populations.
Collapse
Affiliation(s)
- David T Bundy
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Neurological Surgery, Washington University, St. Louis, MO, USA; Center of Innovation in Neuroscience and Technology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
20
|
Eldeeb S, Akcakaya M, Sybeldon M, Foldes S, Santarnecchi E, Pascual-Leone A, Sethi A. EEG-based functional connectivity to analyze motor recovery after stroke: A pilot study. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Jegatheeswaran G, Vesia M, Isayama R, Gunraj C, Chen R. Increases in motor cortical excitability during mirror visual feedback of a precision grasp is influenced by vision and movement of the opposite limb. Neurosci Lett 2018; 681:31-36. [DOI: 10.1016/j.neulet.2018.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
22
|
AuYong N, Malekmohammadi M, Ricks-Oddie J, Pouratian N. Movement-Modulation of Local Power and Phase Amplitude Coupling in Bilateral Globus Pallidus Interna in Parkinson Disease. Front Hum Neurosci 2018; 12:270. [PMID: 30038563 PMCID: PMC6046436 DOI: 10.3389/fnhum.2018.00270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/11/2018] [Indexed: 12/01/2022] Open
Abstract
There is converging evidence that bilateral basal ganglia motor networks jointly support normal movement behaviors including unilateral movements. The extent and manner in which these networks interact during lateralized movement remains unclear. In this study, simultaneously recorded bilateral Globus Pallidus interna (GPi) local field potentials (LFP) were examined from 19 subjects with idiopathic Parkinson disease (PD), while undergoing awake deep brain stimulation (DBS) implantation. Recordings were carried out during two behavioral states; rest and cued left hand movement (finger tapping). The state-dependent effects on α- β oscillatory power and β phase-encoded phase amplitude coupling (PAC), including symmetrical and assymetrical changes between hemispheres, were identified. Unilateral hand movement resulted in symmetrical oscillatory power suppression within bilateral GPi at α (8-12 Hz) and high β (21-35 Hz) and increase in power of high frequency oscillations (HFO, 200-300 Hz) frequency bands. Asymmetrical attenuation was also observed at both low β (13-20 Hz) and low γ (40-80 Hz) bands within the contralateral GPi (P = 0.009). In addition, unilateral movement effects on PAC were confined to the contralateral GPi with attenuation of both low β-low γ and β-HFO PAC (P < 0.05). Further analysis showed that the lateralized attenuation of low β and low γ power did not correlate with low β-low γ PAC changes. The overall coherence between bilateral GPi was not significantly altered with unilateral movement, however the preferred phase difference in the high β range increased from 0.23 (±1.31) radians during rest to 1.99 (±0.78) radians during movement execution. Together, the present results suggest that unilateral motor control involves bilateral basal ganglia networks with movement features differentially encoded by distinct frequency bands. The lateralization of low β and low γ attenuation with movement suggests that these frequency bands are specific to the motor act whereas symmetrical expression of α, high β, and HFO oscillations best correspond to motor state. The restriction of movement-related PAC modulation to the contralateral GPi indicates that cross-frequency interactions appear to be associated with lateralized movements. Despite no significant movement-related changes in the interhemispheric coherence, the increase in phase difference suggests that the communication between bilateral GPi is altered with unilateral movement.
Collapse
Affiliation(s)
- Nicholas AuYong
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joni Ricks-Oddie
- Institute for Digital Research and Education, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nader Pouratian
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Doix ACM, Wachholz F, Marterer N, Immler L, Insam K, Federolf PA. Is the cross-over effect of a unilateral high-intensity leg extension influenced by the sex of the participants? Biol Sex Differ 2018; 9:29. [PMID: 29954447 PMCID: PMC6022493 DOI: 10.1186/s13293-018-0188-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/13/2018] [Indexed: 12/02/2022] Open
Abstract
Background While performing a unilateral muscle contraction, electrical muscle activity also arises in the contralateral homologous muscle, muscle group, or limb. When the muscle contraction induces muscle fatigue, females show not only a greater resistance than males but also a reduced contralateral muscle activation. The study aimed at investigating whether, during a high-intensity 30-s unilateral maximal effort isometric leg extension exercise, the contralateral non-exercising limb (NEL) knee extensor muscle activation would differ between females and males. Methods Twenty participants, 11 females (23.80 ± 2.15 years old) and 9 males (26.50 ± 2.45 years old), performed a unilateral 30-s exercise while surface electromyography (sEMG) was measured from the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) on both limbs. The maximal voluntary contraction (MVC) was measured for both the exercising limb (EL) and the NEL before (MVC PRE) and after (MVC POST) the 30-s exercise to assess muscle fatigue. Results While both females and males exhibited muscle fatigue in the EL (p = 0.015), females exhibited a lower MVC reduction than males (p = 0.042), suggesting that females were less fatigued than males. Although no muscle fatigue, i.e., no MVC force reduction was found in the NEL for either group before and after the 30-s exercise, the muscle activity of the VL was found to be of greater magnitude during the MVC POST only for females (p = 0.047) while it remained unchanged for males. During the 30-s exercise, the force output of the EL decreased only for males (p = 0.029) while females showed a preservation of the force output (p > 0.05). The sEMG activity of the NEL during the 30-s unilateral exercise increased for both groups in all measured muscles (all p-values < 0.03). Conclusions Likely, different underlying muscle fatigue mechanisms occurred in the EL between females and males. Yet, our findings suggest that the cross-over effect to the NEL during the 30-s exercise occurred in a similar fashion in both groups. The current study suggests that the contralateral muscle activation seen with a unilateral exercise is independent of the sex of individuals. Therefore, unilateral training or rehabilitation-based protocols would similarly impact females and males.
Collapse
Affiliation(s)
- Aude-Clémence M Doix
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria.
| | - Felix Wachholz
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Natalie Marterer
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Lorenz Immler
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Kathrin Insam
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| | - Peter A Federolf
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020, Innsbruck, Austria
| |
Collapse
|
24
|
Gálvez-García G, Peña J, Albayay J, Cohen H. Hand Switching Costs are not Uniform Across Response Components. J Mot Behav 2018; 51:239-244. [PMID: 29634407 DOI: 10.1080/00222895.2018.1454399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the extent to which a complex finger sequence impacts on hand switching costs in a sequential action. Response component latencies (premotor, motor, and movement) were compared in no-switch (same finger performed the action of pressing and reaching) and switch conditions (pressing with one finger and completing the reaching action with the homologous finger from the other hand). Results showed that the switch condition presented longer latency for premotor and movement components. For the motor component, however, switch condition was faster. This expands the previous literature investigating switching costs using simple finger movements in more complex tasks. A mechanical explanation of the interplay between response subcomponents is provided to explain the inversion of response pattern for the motor component.
Collapse
Affiliation(s)
- Germán Gálvez-García
- a Departamento de Psicología , Universidad de La Frontera , Temuco , Chile.,b Département de Psychologie Cognitive and Neuropsychologie , Institut de Psychologie, Laboratoire d'Étude des Mécanismes Cognitifs , Université Lyon 2, Lyon , France
| | - Javiera Peña
- a Departamento de Psicología , Universidad de La Frontera , Temuco , Chile
| | - Javier Albayay
- a Departamento de Psicología , Universidad de La Frontera , Temuco , Chile.,c Dipartimento di Psicologia Generale , Università di Padova , Padova , Italy
| | - Henri Cohen
- d Department of Psychology and Cognitive Science Institute , Université du Québec à Montréal , Montreal , Canada
| |
Collapse
|
25
|
The ipsilateral corticospinal responses to cross-education are dependent upon the motor-training intervention. Exp Brain Res 2018; 236:1331-1346. [PMID: 29511785 DOI: 10.1007/s00221-018-5224-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023]
Abstract
This study aimed to identify the ipsilateral corticospinal responses of the contralateral limb following different types of unilateral motor-training. Three groups performing unilateral slow-paced strength training (SPST), non-paced strength training (NPST) or visuomotor skill training (VT) were compared to a control group. It was hypothesised that 4 weeks of unilateral SPST and VT, but not NPST, would increase ipsilateral corticospinal excitability (CSE) and reduce short-interval cortical inhibition (SICI), resulting in greater performance gains of the untrained limb. Tracking error of the untrained limb reduced by 29 and 41% following 2 and 4 weeks of VT. Strength of the untrained limb increased by 8 and 16% following 2 and 4 weeks of SPST and by 6 and 13% following NPST. There was no difference in cross-education of strength or tracking error. For the trained limb, SPST and NPST increased strength (28 and 26%), and VT improved by 47 and 58%. SPST and VT increased ipsilateral CSE by 89 and 71% at 2 weeks. Ipsilateral CSE increased 105 and 81% at 4 weeks following SPST and VT. The NPST group and control group showed no changes at 2 and 4 weeks. SPST and VT reduced ipsilateral SICI by 45 and 47% at 2 weeks; at 4 weeks, SPST and VT reduced SICI by 48 and 38%. The ipsilateral corticospinal responses are determined by the type of motor-training. There were no differences in motor performance between SPST, NPST and VT. The data suggests that the corticospinal responses to cross-education are different and determined by the type of motor-training.
Collapse
|
26
|
Garcia‐Gorro C, de Diego‐Balaguer R, Martínez‐Horta S, Pérez‐Pérez J, Kulisevsky J, Rodríguez‐Dechicha N, Vaquer I, Subira S, Calopa M, Muñoz E, Santacruz P, Ruiz‐Idiago J, Mareca C, Caballol N, Camara E. Reduced striato-cortical and inhibitory transcallosal connectivity in the motor circuit of Huntington's disease patients. Hum Brain Mapp 2018; 39:54-71. [PMID: 28990240 PMCID: PMC6866479 DOI: 10.1002/hbm.23813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder which is primarily associated with striatal degeneration. However, the alterations in connectivity of this structure in HD have been underinvestigated. In this study, we analyzed the functional and structural connectivity of the left putamen, while participants performed a finger-tapping task. Using fMRI and DW-MRI, 30 HD gene expansion carriers (HDGEC) and 29 healthy participants were scanned. Psychophysiological interaction analysis and DTI-based tractography were employed to examine functional and structural connectivity, respectively. Manifest HDGEC exhibited a reduced functional connectivity of the left putamen with the left and the right primary sensorimotor areas (SM1). Based on this result, the inhibitory functional connectivity between the left SM1 and the right SM1 was explored, appearing to be also decreased. In addition, the tract connecting these areas (motor corpus callosum), and the tract connecting the left putamen with the left SM1 appeared disrupted in HDGEC compared to controls. Significant correlations were found between measures of functional and structural connectivity of the motor corpus callosum, showing a coupling of both types of alterations in this tract. The observed reduction of functional and structural connectivity was associated with worse motor scores, which highlights the clinical relevance of these results. Hum Brain Mapp 39:54-71, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Garcia‐Gorro
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| | - Ruth de Diego‐Balaguer
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
- The Institute of Neurosciences of the University of BarcelonaBarcelonaSpain
- ICREA (Catalan Institute for Research and Advanced Studies)BarcelonaSpain
| | - Saul Martínez‐Horta
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jesus Pérez‐Pérez
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
- Universidad Autónoma de BarcelonaBarcelonaSpain
| | | | - Irene Vaquer
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
| | - Susana Subira
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Department of Clinical and Health PsychologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Matilde Calopa
- Movement Disorders Unit, Neurology Service, Hospital Universitari de Bellvitge, L'Hospitalet de LlobregatBarcelonaSpain
| | - Esteban Muñoz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer)BarcelonaSpain
- Facultat de medicina, University of BarcelonaBarcelonaSpain
| | - Pilar Santacruz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
| | | | | | - Nuria Caballol
- Hospital de Sant Joan Despí Moisès Broggi, Sant Joan DespíBarcelonaSpain
| | - Estela Camara
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
27
|
Zhou R, Alvarado L, Kim S, Chong SL, Mushahwar VK. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury. J Neurophysiol 2017; 118:2507-2519. [PMID: 28701544 PMCID: PMC5646203 DOI: 10.1152/jn.00663.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
The spinal cervico-lumbar interaction during rhythmic movements in humans has recently been studied; however, the role of arm movements in modulating the corticospinal drive to the legs is not well understood. The goals of this study were to investigate the effect of active rhythmic arm movements on the corticospinal drive to the legs (study 1) and assess the effect of simultaneous arm and leg training on the corticospinal pathway after incomplete spinal cord injury (iSCI) (study 2). In study 1, neurologically intact (NI) participants or participants with iSCI performed combinations of stationary and rhythmic cycling of the arms and legs while motor evoked potentials (MEPs) were recorded from the vastus lateralis (VL) muscle. In the NI group, arm cycling alone could facilitate the VL MEP amplitude, suggesting that dynamic arm movements strongly modulate the corticospinal pathway to the legs. No significant difference in VL MEP between conditions was found in participants with iSCI. In study 2, participants with iSCI underwent 12 wk of electrical stimulation-assisted cycling training: one group performed simultaneous arm and leg (A&L) cycling and the other legs-only cycling. MEPs in the tibialis anterior (TA) muscle were compared before and after training. After training, only the A&L group had a significantly larger TA MEP, suggesting increased excitability in the corticospinal pathway. The findings demonstrate the importance of arm movements in modulating the corticospinal drive to the legs and suggest that active engagement of the arms in lower limb rehabilitation may produce better neural regulation and restoration of function.NEW & NOTEWORTHY This study aimed to demonstrate the importance of arm movements in modulating the corticospinal drive to the legs. It provides direct evidence in humans that active movement of the arms could facilitate corticospinal transmission to the legs and, for the first time, shows that facilitation is absent after spinal cord injury. Active engagement of the arms in lower limb rehabilitation increased the excitability of the corticospinal pathway and may produce more effective improvement in leg function.
Collapse
Affiliation(s)
- R Zhou
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - L Alvarado
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S Kim
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S L Chong
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - V K Mushahwar
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada;
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Mason J, Frazer AK, Horvath DM, Pearce AJ, Avela J, Howatson G, Kidgell DJ. Ipsilateral corticomotor responses are confined to the homologous muscle following cross-education of muscular strength. Appl Physiol Nutr Metab 2017; 43:11-22. [PMID: 28829918 DOI: 10.1139/apnm-2017-0457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cross-education of strength occurs when strength-training 1 limb increases the strength of the untrained limb and is restricted to the untrained homologous muscle. Cortical circuits located ipsilateral to the trained limb might be involved. We used transcranial magnetic stimulation (TMS) to determine the corticomotor responses from the untrained homologous (biceps brachii) and nonhomologous (flexor carpi radialis) muscle following strength-training of the right elbow flexors. Motor evoked potentials were recorded from the untrained left biceps brachii and flexor carpi radialis during a submaximal contraction from 20 individuals (10 women, 10 men; aged 18-35 years; training group, n = 10; control group, n = 10) before and after 3 weeks of strength-training the right biceps brachii at 80% of 1-repetition maximum. Recruitment-curves for corticomotor excitability and inhibition of the untrained homologous and nonhomologous muscle were constructed and assessed by examining the area under the recruitment curve. Strength-training increased strength of the trained elbow flexors (29%), resulting in an 18% increase in contralateral strength of the untrained elbow flexors (P < 0.0001). The trained wrist flexors increased by 19%, resulting in a 12% increase in strength of the untrained wrist flexors (P = 0.005). TMS showed increased corticomotor excitability and decreased corticomotor inhibition for the untrained homologous muscle (P < 0.05); however, there were no changes in the untrained nonhomologous muscle (P > 0.05). These findings show that the cross-education of muscular strength is spatially distributed; however, the neural adaptations are confined to the motor pathway ipsilateral to the untrained homologous agonist.
Collapse
Affiliation(s)
- Joel Mason
- a Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3155, Australia
| | - Ashlyn K Frazer
- a Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3155, Australia
| | - Deanna M Horvath
- b Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| | - Alan J Pearce
- c Discipline of Sport & Exercise Science, School of Allied Health, La Trobe University, Melbourne 3086, Australia
| | - Janne Avela
- d Department of Biology and Physical Activity, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Glyn Howatson
- e Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK.,f Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| | - Dawson J Kidgell
- a Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3155, Australia
| |
Collapse
|
29
|
Independent Causal Contributions of Alpha- and Beta-Band Oscillations during Movement Selection. J Neurosci 2017; 36:8726-33. [PMID: 27535917 DOI: 10.1523/jneurosci.0868-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz) and beta (15-25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection. SIGNIFICANCE STATEMENT This study shows dissociable effects of 10 Hz and 20 Hz tACS on the duration of movement selection. These observations have two elements of general relevance. First, the finding that alpha- and beta-band oscillations contribute independently to movement selection provides insight in how oscillations orchestrate motor behavior, which is key to understand movement selection deficits in neurodegenerative disorders. Second, the findings highlight the potential of 10 Hz stimulation as a neurophysiologically grounded intervention to enhance human performance. In particular, this intervention can potentially be exploited to boost rehabilitation after neural damage by targeting the unaffected hemisphere.
Collapse
|
30
|
Yarossi M, Manuweera T, Adamovich SV, Tunik E. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability. Front Hum Neurosci 2017; 11:242. [PMID: 28553218 PMCID: PMC5425477 DOI: 10.3389/fnhum.2017.00242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability.
Collapse
Affiliation(s)
- Mathew Yarossi
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health SciencesNewark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Thushini Manuweera
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health SciencesNewark, NJ, USA.,Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Sergei V Adamovich
- Department of Biomedical Engineering, New Jersey Institute of TechnologyNewark, NJ, USA.,Department of Rehabilitation and Movement Sciences, Rutgers Biomedical Health SciencesNewark, NJ, USA
| | - Eugene Tunik
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern UniversityBoston, MA, USA.,Department of Bioengineering, Northeastern UniversityBoston, MA, USA.,Department of Biology, Northeastern UniversityBoston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern UniversityBoston, MA, USA
| |
Collapse
|
31
|
Ciechanski P, Zewdie E, Kirton A. Developmental profile of motor cortex transcallosal inhibition in children and adolescents. J Neurophysiol 2017; 118:140-148. [PMID: 28381485 DOI: 10.1152/jn.00076.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
Transcallosal fibers facilitate interhemispheric networks involved in motor tasks. Despite their clinical relevance, interhemispheric motor control systems have not been completely defined in the developing brain. The objective of this study was to examine the developmental profile of transcallosal inhibition in healthy children and adolescents. Nineteen typically developing right-handed participants were recruited. Two transcranial magnetic stimulation (TMS) paradigms assessed transcallosal inhibition: ipsilateral silent periods (iSP) and paired-pulse interhemispheric inhibition (IHI). TMS was applied to the motor hotspot of the first dorsal interosseous muscle. Resting motor threshold (RMT), iSP latency, duration and suppression strength, and paired-pulse IHI were measured from both hemispheres. The Purdue Pegboard Test assessed unimanual motor function. Hemispheric differences were evident for RMT and iSP latency and suppression strength, where the left hemisphere had a lower RMT, prolonged latency, and greater suppression strength. iSP duration showed hemispheric symmetry. RMT and iSP latency decreased with age, whereas iSP suppression strength increased. Girls showed shorter iSP latency. Children typically displayed IHI, although hemispheric differences were observed. iSP suppression strength was uniquely associated with IHI within individuals. iSP duration correlated with motor performance. TMS can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, sex, and motor performance. Establishing this developmental profile of interhemispheric interactions may advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy.NEW & NOTEWORTHY Here we demonstrate that transcranial magnetic stimulation can characterize transcallosal inhibition in normal children and adolescents with effects of age, directionality, handedness, and motor performance. Interestingly, we also demonstrated sex effects, possibly related to the differing developmental profiles of boys and girls. Establishing this developmental profile of interhemispheric interactions may advance understanding and therapeutic strategies for pediatric motor disorders such as cerebral palsy.
Collapse
Affiliation(s)
- Patrick Ciechanski
- Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; and
| | - Ephrem Zewdie
- Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; and
| | - Adam Kirton
- Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; and .,Departments of Pediatrics and Clinical Neurosciences, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Neuroscience 2016; 340:477-486. [PMID: 27826108 DOI: 10.1016/j.neuroscience.2016.10.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/09/2016] [Accepted: 10/30/2016] [Indexed: 01/07/2023]
Abstract
Equivocal evidence indicates that high-intensity muscle contractions can affect the corticospinal responses in muscles not directly involved in the task. In the present study, the responsiveness of corticomotor pathway innervating non-dominant biceps brachii was measured in eleven healthy participants before and after: (i) two 100-s isometric unilateral knee extension maximal voluntary contractions (MVCs) on dominant leg (FATIGUE) and (ii) rest (CONTROL). Transcranial magnetic stimulation, transmastoid electrical and brachial plexus electrical stimulation were used to evoke motor evoked potential (MEP), cervicomedullary motor evoked potential (CMEP) and compound muscle action potential (Mmax) in biceps brachii muscle. The three stimuli were elicited at 2, 3.5 and 5s while participants were performing 6-s elbow flexion contractions at 100, 50, and 5% of MVC interspersed with 10-s rest. The results demonstrated opposing behaviors of MEP responses at 100% (23% higher, p=0.08) and 5% MVC (34% lower, p=0.019) following FATIGUE compared to CONTROL. Similarly, MEP·CMEP-1 ratio changes indicated that the supraspinal motor response was significantly higher during 100% (42%, p=0.027) but lower during 5% MVC (28%, p=0.009) following FATIGUE. Yet, the elbow flexor MVC force did not exhibit any difference between FATIGUE and CONTROL conditions. These results suggest that the upper limb muscles' corticomotor pathway responsiveness recorded during voluntary contractions were modulated by lower limbs fatiguing contractions and this modulation depends on the force produced during testing, i.e. level of central motor drive. However, these changes have little effect on upper limb muscle maximal performance.
Collapse
|
33
|
Turesky TK, Turkeltaub PE, Eden GF. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults. Front Aging Neurosci 2016; 8:238. [PMID: 27799910 PMCID: PMC5065996 DOI: 10.3389/fnagi.2016.00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders.
Collapse
Affiliation(s)
- Ted K Turesky
- Center for the Study of Learning, Georgetown University Medical Center, WashingtonDC, USA; Interdisciplinary Program in Neuroscience, Georgetown University, WashingtonDC, USA
| | - Peter E Turkeltaub
- Center for the Study of Learning, Georgetown University Medical Center, WashingtonDC, USA; Neurology Department, Georgetown University Medical Center, WashingtonDC, USA; Research Division, MedStar National Rehabilitation Hospital, WashingtonDC, USA
| | - Guinevere F Eden
- Center for the Study of Learning, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
34
|
Debnath R, Franz EA. Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex 2016; 81:118-25. [DOI: 10.1016/j.cortex.2016.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/18/2015] [Accepted: 04/20/2016] [Indexed: 11/24/2022]
|
35
|
Stöckel T, Carroll TJ, Summers JJ, Hinder MR. Motor learning and cross-limb transfer rely upon distinct neural adaptation processes. J Neurophysiol 2016; 116:575-86. [PMID: 27169508 DOI: 10.1152/jn.00225.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022] Open
Abstract
Performance benefits conferred in the untrained limb after unilateral motor practice are termed cross-limb transfer. Although the effect is robust, the neural mechanisms remain incompletely understood. In this study we used noninvasive brain stimulation to reveal that the neural adaptations that mediate motor learning in the trained limb are distinct from those that underlie cross-limb transfer to the opposite limb. Thirty-six participants practiced a ballistic motor task with their right index finger (150 trials), followed by intermittent theta-burst stimulation (iTBS) applied to the trained (contralateral) primary motor cortex (cM1 group), the untrained (ipsilateral) M1 (iM1 group), or the vertex (sham group). After stimulation, another 150 training trials were undertaken. Motor performance and corticospinal excitability were assessed before motor training, pre- and post-iTBS, and after the second training bout. For all groups, training significantly increased performance and excitability of the trained hand, and performance, but not excitability, of the untrained hand, indicating transfer at the level of task performance. The typical facilitatory effect of iTBS on MEPs was reversed for cM1, suggesting homeostatic metaplasticity, and prior performance gains in the trained hand were degraded, suggesting that iTBS interfered with learning. In stark contrast, iM1 iTBS facilitated both performance and excitability for the untrained hand. Importantly, the effects of cM1 and iM1 iTBS on behavior were exclusive to the hand contralateral to stimulation, suggesting that adaptations within the untrained M1 contribute to cross-limb transfer. However, the neural processes that mediate learning in the trained hemisphere vs. transfer in the untrained hemisphere appear distinct.
Collapse
Affiliation(s)
- Tino Stöckel
- Human Motor Control Laboratory, School of Medicine, University of Tasmania, Australia; Sport & Exercise Psychology Unit, Department of Sport Science, University of Rostock, Germany;
| | - Timothy J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Medicine, University of Tasmania, Australia; Research Institute for Sports and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom; and
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Medicine, University of Tasmania, Australia
| |
Collapse
|
36
|
Cabib C, Llufriu S, Martinez-Heras E, Saiz A, Valls-Solé J. Enhanced mirror activity in ‘crossed’ reaction time tasks in multiple sclerosis. Clin Neurophysiol 2016; 127:2001-9. [DOI: 10.1016/j.clinph.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
37
|
Abstract
Background: Rehabilitation of subacute stroke patients represents a major challenge. Objective: This study was conducted to examine the effects of mirror therapy on balance ability among subacute stroke patients. Methods: The patients were assigned to a mirror therapy group (n = 17) or a sham therapy group (n = 17). Participants in the experimental group received mirror therapy and conventional rehabilitation therapy for a total of 60 minutes (mirror therapy: 30 minutes; conventional rehabilitation therapy: 30 minutes) per day, with a 10 minute rest period halfway through the session. Participants in the experimental group received training 5 days/week for 4 weeks. Participants in the control group received sham therapy and conventional rehabilitation therapy for a total of 60 minutes (sham therapy: 30 minutes, conventional rehabilitation therapy: 30 minutes) per day on the same day. Balance Index (BI) scores were obtained using a balance measurement system. Results: A significant difference in post-training gains for the overall stability index and medial and lateral stability index was observed between the experimental group and the control group (p < 0.05). Conclusion: We conclude that mirror therapy may be beneficial in improving balance ability among subacute stroke patients.
Collapse
|
38
|
Facilitation of the Lesioned Motor Cortex During Tonic Contraction of the Unaffected Limb Corresponds to Motor Status After Stroke. J Neurol Phys Ther 2016; 40:15-21. [DOI: 10.1097/npt.0000000000000109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Aboodarda SJ, Šambaher N, Behm DG. Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii. Scand J Med Sci Sports 2015; 26:1301-1312. [PMID: 26633736 DOI: 10.1111/sms.12596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
Exercise-induced fatigue can change motor performance in non-exercised muscles. The objective was to investigate unilateral elbow flexion (EF) fatigue effects on the maximal voluntary force (MVC) and corticospinal excitability of contralateral non-exercised biceps brachii (BB). Transcranial magnetic, transmastoid electrical, and brachial plexus electrical stimulation were used to elicit motor evoked potentials (MEP), cervicomedullary motor evoked potentials (CMEP), and compound muscle action potentials in the contralateral non-exercised BB of 12 participants before and after (i) two bouts of 100-s unilateral EF (fatigue) or (ii) control. Three stimuli were evoked every 1.5 s during a series of 6-s isometric EF at 100%, 50%, and 5% of MVC. The non-exercised EF MVC force, electromyographic activity, and voluntary activation were not significantly different between fatigue and control. Non-exercised BB MEP and CMEP amplitudes during 100% MVCs demonstrated significantly higher (P = 0.03) and lower values (P = 0.01), respectively, after fatigue compared with control. There was no difference between the two conditions for MEP and CMEP amplitudes during 50% and 5% MVCs. Unilateral exercise-induced EF fatigue did not lead to cross-over central fatigue to the contralateral homologous muscle but enhanced the supraspinal responsiveness (MEP/CMEP) of the neural circuitries supplying central commands to non-exercised muscles at higher contraction intensity.
Collapse
Affiliation(s)
- S J Aboodarda
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - N Šambaher
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - D G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
40
|
Abstract
UNLABELLED Motor system excitability is transiently inhibited during the preparation of responses. Previous studies have attributed this inhibition to the operation of two mechanisms, one hypothesized to help resolve competition between alternative response options, and the other to prevent premature response initiation. By this view, inhibition should be restricted to task-relevant muscles. Although this prediction is supported in one previous study (Duque et al., 2010), studies of stopping ongoing actions suggest that some forms of motor inhibition may be widespread (Badry et al., 2009). This motivated us to conduct a series of transcranial magnetic stimulation (TMS) experiments to examine in detail the specificity of preparatory inhibition in humans. Motor-evoked potentials were inhibited in task-irrelevant muscles during response preparation, even when the muscles were contralateral and not homologous to the responding effector. Inhibition was also observed in both choice and simple response task conditions, with and without a preparatory interval. Control experiments ruled out that this inhibition is due to expectancy of TMS or a possible need to cancel the prepared response. These findings suggest that motor inhibition during response preparation broadly influences the motor system and likely reflects a process that occurs whenever a response is selected. We propose a reinterpretation of the functional significance of preparatory inhibition, one by which inhibition reduces noise to enhance signal processing and modulates the gain of a selected response. SIGNIFICANCE STATEMENT Motor preparation entails the recruitment of excitatory and inhibitory neural mechanisms. The current experiments address the specificity of inhibitory mechanisms, asking whether preparatory inhibition affects task-irrelevant muscles. Participants prepared a finger movement to be executed at the end of a short delay period. Transcranial magnetic stimulation over primary motor cortex provided an assay of corticospinal excitability. Consistent with earlier work, the agonist muscle for the forthcoming response was inhibited during the preparatory period. Moreover, this inhibition was evident in task-irrelevant muscles, although the magnitude of inhibition depended on whether the response was fixed or involved a choice. These results implicate a broadly tuned inhibitory mechanism that facilitates response preparation, perhaps by lowering background activity before response initiation.
Collapse
|
41
|
Milde C, Rance M, Kirsch P, Trojan J, Fuchs X, Foell J, Bekrater-Bodmann R, Flor H, Diers M. Do mirror glasses have the same effect on brain activity as a mirror box? Evidence from a functional magnetic resonance imaging study with healthy subjects. PLoS One 2015; 10:e0127694. [PMID: 26018572 PMCID: PMC4446290 DOI: 10.1371/journal.pone.0127694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/17/2015] [Indexed: 11/18/2022] Open
Abstract
Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on conceptual differences between MVF devices. However, our findings need to be validated within specific patient groups.
Collapse
Affiliation(s)
- Christopher Milde
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mariela Rance
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pinar Kirsch
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jörg Trojan
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Biological Psychology, University Koblenz-Landau, Landau, Germany
| | - Xaver Fuchs
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Foell
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, Florida State University, Tallahassee, Florida, United States of America
| | - Robin Bekrater-Bodmann
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Diers
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
42
|
Senna I, Russo C, Parise CV, Ferrario I, Bolognini N. Altered visual feedback modulates cortical excitability in a mirror-box-like paradigm. Exp Brain Res 2015; 233:1921-9. [PMID: 25850405 DOI: 10.1007/s00221-015-4265-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Watching self-generated unilateral hand movements reflected in a mirror-oriented along the midsagittal plane-enhances the excitability of the primary motor cortex (M1) ipsilateral to the moving hand of the observer. Mechanisms detecting sensory-motor conflicts generated by the mirror reflection of such movements might mediate this effect; if so, cortical excitability should be modulated by the magnitude of sensory-motor conflict. To this end, we explored the modulatory effects of an altered visual feedback on M1 excitability in a mirror-box-like paradigm, by increasing or decreasing the speed of the observed movement. Healthy subjects performed movements with their left index finger while watching a video of a hand superimposed to their right static hand, which was hidden from view. The hand observed in the video executed the same movement as the observer's left hand, but at slower, same, or faster paces. Motor evoked potentials (MEPs) induced by transcranial magnetic stimulation were measured from the first dorsal interosseous and the abductor digiti minimi of the participant's hidden resting hand. The excitability of the M1 ipsilateral to the moving hand was systematically modulated by the speed of the observed hand movement: the slower the observed movement, the greater the MEP amplitude from both muscles. This evidence shows that the magnitude of the visual-motor conflicts can be used to adjust the activity of the observer's motor system. Hence, an appropriate alteration of the visual feedback, here the reduction in the movement speed, may be useful to increase its modulatory effect on motor cortical excitability.
Collapse
Affiliation(s)
- Irene Senna
- Department of Psychology, University of Milano Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy,
| | | | | | | | | |
Collapse
|
43
|
Leonard CT, Danna-dos-Santos A, Peters C, Moore M. Corticomotor excitability changes during mirrored or asynergistic wrist movements. Behav Brain Res 2015; 281:199-207. [DOI: 10.1016/j.bbr.2014.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
44
|
Sebastiani V, de Pasquale F, Costantini M, Mantini D, Pizzella V, Romani GL, Della Penna S. Being an agent or an observer: Different spectral dynamics revealed by MEG. Neuroimage 2014; 102 Pt 2:717-28. [DOI: 10.1016/j.neuroimage.2014.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/28/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022] Open
|
45
|
Ji SG, Kim MK. The effects of mirror therapy on the gait of subacute stroke patients: a randomized controlled trial. Clin Rehabil 2014; 29:348-54. [DOI: 10.1177/0269215514542356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: To investigate the effect of mirror therapy on the gait of patients with subacute stroke. Design: Randomized controlled experimental study. Setting: Outpatient rehabilitation hospital. Subjects: Thirty-four patients with stroke were randomly assigned to two groups: a mirror therapy group (experimental) and a control group. Interventions: The stroke patients in the experimental group underwent comprehensive rehabilitation therapy and mirror therapy for the lower limbs. The stroke patients in the control group underwent sham therapy and comprehensive rehabilitation therapy. Participants in both groups received therapy five days per week for four weeks. Main measures: Temporospatial gait characteristics, such as single stance, stance phase, step length, stride, swing phase, velocity, and cadence, were assessed before and after the four weeks therapy period. Results: A significant difference was observed in post-training gains for the single stance (10.32 SD 4.14 vs. 6.54 SD 3.23), step length (8.47 SD 4.12 vs. 4.83 SD 2.14), and stride length (17.03 SD 6.57 vs 10.54 SD 4.34) between the experimental group and the control group ( p < 0.05). However, there were no significant differences between two groups on stance phase, swing phase, velocity, cadence, and step width ( P > 0.05). Conclusion: We conclude that mirror therapy may be beneficial in improving the effects of stroke on gait ability.
Collapse
Affiliation(s)
- Sang Gu Ji
- Department of Physical Therapy, Eulji University Hospital, Daejeon, Republic of Korea
| | - Myoung Kwon Kim
- Department of Physical Therapy, Youngsan University, Kyeongsangnam-do, Republic of Korea
| |
Collapse
|
46
|
Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther 2014; 37:166-75. [PMID: 24232363 DOI: 10.1097/npt.0000000000000017] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patient nonadherence with therapy is a major barrier to rehabilitation. Recovery is often limited and requires prolonged, intensive rehabilitation that is time-consuming, expensive, and difficult. We review evidence for the potential use of video games in rehabilitation with respect to the behavioral, physiological, and motivational effects of gameplay. In this Special Interest article, we offer a method to evaluate effects of video game play on motor learning and their potential to increase patient engagement with therapy, particularly commercial games that can be interfaced with adapted control systems. We take the novel approach of integrating research across game design, motor learning, neurophysiology changes, and rehabilitation science to provide criteria by which therapists can assist patients in choosing games appropriate for rehabilitation. Research suggests that video games are beneficial for cognitive and motor skill learning in both rehabilitation science and experimental studies with healthy subjects. Physiological data suggest that gameplay can induce neuroplastic reorganization that leads to long-term retention and transfer of skill; however, more clinical research in this area is needed. There is interdisciplinary evidence suggesting that key factors in game design, including choice, reward, and goals, lead to increased motivation and engagement. We maintain that video game play could be an effective supplement to traditional therapy. Motion controllers can be used to practice rehabilitation-relevant movements, and well-designed game mechanics can augment patient engagement and motivation in rehabilitation. We recommend future research and development exploring rehabilitation-relevant motions to control games and increase time in therapy through gameplay.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A61) for more insights from the authors.
Collapse
|
47
|
Xun Chen, Wang ZJ, McKeown MJ. A Three-Step Multimodal Analysis Framework for Modeling Corticomuscular Activity With Application to Parkinson’s Disease. IEEE J Biomed Health Inform 2014; 18:1232-41. [DOI: 10.1109/jbhi.2013.2284480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Reissig P, Garry MI, Summers JJ, Hinder MR. Visual feedback-related changes in ipsilateral cortical excitability during unimanual movement: Implications for mirror therapy. Neuropsychol Rehabil 2014; 24:936-57. [PMID: 24894429 DOI: 10.1080/09602011.2014.922889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Provision of a mirror image of a hand undertaking a motor task (i.e., mirror therapy) elicits behavioural improvements in the inactive hand. A greater understanding of the neural mechanisms underpinning this phenomenon is required to maximise its potential for rehabilitation across the lifespan, e.g., following hemiparesis or unilateral weakness. Young and older participants performed unilateral finger abductions with no visual feedback, with feedback of the active or passive hands, or with a mirror image of the active hand. Transcranial magnetic stimulation was used to assess feedback-related changes in two neurophysiological measures thought to be involved in inter-manual transfer of skill, namely corticospinal excitability (CSE) and intracortical inhibition (SICI) in the passive hemisphere. Task performance led to CSE increases, accompanied by decreases of SICI, in all visual feedback conditions relative to rest. However, the changes due to mirror feedback were not significantly different to those observed in the other (more standard) visual conditions. Accordingly, the unimanual motor action itself, rather than modifications in visual feedback, appears more instrumental in driving changes in CSE and SICI. Therefore, changes in CSE and SICI are unlikely to underpin the behavioural benefits of mirror therapy. We discuss implications for rehabilitation and directions of future research.
Collapse
Affiliation(s)
- Paola Reissig
- a Human Motor Control Laboratory, School of Medicine, Faculty of Health , University of Tasmania , Hobart , Australia
| | | | | | | |
Collapse
|
49
|
Primary motor cortex and ipsilateral control: A TMS study. Neuroscience 2014; 270:20-6. [DOI: 10.1016/j.neuroscience.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022]
|
50
|
Chen X, Liu A, McKeown MJ, Poizner H, Wang ZJ. An EEMD-IVA framework for concurrent multidimensional EEG and unidimensional kinematic data analysis. IEEE Trans Biomed Eng 2014; 61:2187-98. [PMID: 24771565 DOI: 10.1109/tbme.2014.2319294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Joint blind source separation (JBSS) is a means to extract common sources simultaneously found across multiple datasets, e.g., electroencephalogram (EEG) and kinematic data jointly recorded during reaching movements. Existing JBSS approaches are designed to handle multidimensional datasets, yet to our knowledge, there is no existing means to examine common components that may be found across a unidimensional dataset and a multidimensional one. In this paper, we propose a simple, yet effective method to achieve the goal of JBSS when concurrent multidimensional EEG and unidimensional kinematic datasets are available, by combining ensemble empirical mode decomposition (EEMD) with independent vector analysis (IVA). We demonstrate the performance of the proposed method through numerical simulations and application to data collected from reaching movements in Parkinson's disease. The proposed method is a promising JBSS tool for real-world biomedical signal processing applications.
Collapse
|