1
|
Zarei AA, Frederiksen CR, Jensen MB, Oliveira AS. The electrocortical activity of elite Rubik's cube athletes while solving the cube. Exp Brain Res 2025; 243:155. [PMID: 40418363 DOI: 10.1007/s00221-025-07104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/06/2025] [Indexed: 05/27/2025]
Abstract
Solving the Rubik's Cube (RC) swiftly demands intricate cognitive abilities to generate strategic and precise movements, and the electrocortical demands in high-level RC athletes have not been explored. Therefore, we aimed at examining the electrocortical activity associated with planning and executing the RC, alongside tasks assessing planning, fine motor skills, spatial working memory, and visuospatial ability. Thirteen experienced male speed-cubers underwent EEG recordings while performing RC-related tasks (planning and execution), Tower of London (TOL), Judgment of Line Angle and Position-15 (JLAP), Memory Match (MEM), and Fine Motor Skills (FMS). Our results demonstrated that speed-cubers presented similar EEG power spectrum when planning and executing the RC across all frequency bands (p > 0.05). Pearson's correlation demonstrated that Delta-band EEG power spectrum in the occipital lobe exhibited a significant association with RC execution (r = 0.71, p = 0.009), underscoring the importance of visuomotor integration. Similarly, JLAP performance correlated significantly with frontal (r=-0.65, p = 0.022) and occipital EEG power spectrum (r=-0.57, p = 0.048) at the Delta-band, emphasizing the role of visuospatial abilities. Moreover, TOL performance correlated significantly with temporal EEG power spectrum at the Delta- (r=-0.64, p = 0.025) and Theta-band (r = 0.67, p = 0.011), highlighting the role of planning abilities while solving the RC. In conclusion, this study sheds light on the complex neural mechanisms underlying speed-cubing, revealing intricate neural signatures across multiple brain regions associated with RC-related tasks and isolated cognitive activities. Understanding these neurocognitive underpinnings could pave the way for enhanced training protocols in tasks demanding high-level cognitive and motor skills.
Collapse
Affiliation(s)
- Ali Asghar Zarei
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | | - Anderson Souza Oliveira
- Department of Material and Production, Aalborg University, Fibigerstraede 16, building 4, Aalborg Øst, DK-9220, Denmark.
| |
Collapse
|
2
|
Li L, Sun M, Qi M, Li Y, Li D. Neural correlates of emotional working memory predict depression and anxiety. Front Neurosci 2025; 19:1574901. [PMID: 40438625 PMCID: PMC12116434 DOI: 10.3389/fnins.2025.1574901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Emotional working memory (WM) plays a critical role in cognitive functions such as emotion regulation, decision-making, and learning. Understanding how emotional stimuli, particularly negative ones, affect WM performance is crucial for identifying cognitive markers of mental health issues like anxiety and depression. Our objective is to determine whether trait anxiety and depression levels are associated with specific performance outcomes in emotional WM and whether behavioral and neural indicators demonstrate statistically significant correlations with individual anxiety and depression levels in university students. Methods In our research: Experiment 1 (n = 25) tested WM performance with both positive and negative emotional stimuli under different cognitive loads (2 vs. 4 items), while Experiment 2 (n = 34) combined EEG recording to investigate the neural index of anxiety and depression during negative emotional WM. Results Results showed that negative emotional stimuli impaired WM performance, especially under higher cognitive loads, with anxiety level being linked to increased theta activity during encoding and depression level associated with decreased alpha activity during retrieval. Additionally, individuals with higher anxiety exhibited reduced sensitivity to cognitive load differences in WM tasks involving negative emotions. Discussion These results demonstrated that specific EEG patterns during negative emotional WM were significantly associated with individual anxiety and depression levels, suggesting the potential utility of EEG measures for identifying at-risk individuals of anxiety and depression in university student populations. By linking cognitive and neural indicators, the study contributes to the development of personalized interventions for mental health monitoring and treatment.
Collapse
Affiliation(s)
- Leiting Li
- Department of Psychology, Beijing Sport University, Beijing, China
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Meirong Sun
- Department of Psychology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Exercise and Physical Fitness (Beijing Sport University), Ministry of Education, Beijing, China
| | - Mengdi Qi
- Experimental Teaching Platform, Beijing Normal University, Zhuhai, China
| | - Yiwen Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Thomas T, Martin CD, Caffarra S. The impact of speaker accent on discourse processing: A frequency investigation. BRAIN AND LANGUAGE 2025; 260:105509. [PMID: 39657290 DOI: 10.1016/j.bandl.2024.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
Previous studies indicate differences in native and foreign speech processing (Lev-Ari, 2018), with mixed evidence for differences between dialectal and foreign accent processing (Adank, Evans, Stuart-Smith, & Scott, 2009; Floccia et al., 2006, 2009; Girard, Floccia, & Goslin, 2008). Two theories have been proposed: The Perceptual Distance Hypothesis suggests that dialectal accent processing is an attenuated version of foreign accent processing (Clarke & Garrett, 2004), while the Different Processes Hypothesis argues that foreign and dialectal accents are processed via distinct mechanisms (Floccia, Butler, Girard, & Goslin, 2009). A recent single-word ERP study suggested flexibility in these mechanisms (Thomas, Martin, & Caffarra, 2022). The present study deepens this investigation by investigating differences in native, dialectal, and foreign accent processing across frequency bands during extended speech. Electroencephalographic data was recorded from 30 participants who listened to dialogues of approximately six minutes spoken in native, dialectal and foreign accents. Power spectral density estimation (1-35 Hz) was performed. Linear mixed models were done in frequency windows of particular relevance to discourse processing. Frequency bands associated with phoneme [gamma], syllable [theta], and prosody [delta] were considered along with those of general cognitive mechanisms [alpha and beta]. Results show power differences in the Gamma frequency range. While in higher frequency ranges foreign accent processing is differentiated from power amplitudes of native and dialectal accent processing, in low frequencies we do not see any accent-related power amplitude modulations. This suggests that there may be a difference in phoneme processing for native accent types and foreign accent, while we speculate that top-down mechanisms during discourse processing may mitigate the effects observed with short units of speech.
Collapse
Affiliation(s)
- Trisha Thomas
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Harvard University, 50 Church st, Cambridge, MA 02138, USA.
| | - Clara D Martin
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Basque Foundation for Science (Ikerbasque), Spain
| | - Sendy Caffarra
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305 5101, USA; Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA 94305, USA; University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
4
|
Weglage A, Layer N, Meister H, Müller V, Lang-Roth R, Walger M, Sandmann P. Changes in visually and auditory attended audiovisual speech processing in cochlear implant users: A longitudinal ERP study. Hear Res 2024; 447:109023. [PMID: 38733710 DOI: 10.1016/j.heares.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Limited auditory input, whether caused by hearing loss or by electrical stimulation through a cochlear implant (CI), can be compensated by the remaining senses. Specifically for CI users, previous studies reported not only improved visual skills, but also altered cortical processing of unisensory visual and auditory stimuli. However, in multisensory scenarios, it is still unclear how auditory deprivation (before implantation) and electrical hearing experience (after implantation) affect cortical audiovisual speech processing. Here, we present a prospective longitudinal electroencephalography (EEG) study which systematically examined the deprivation- and CI-induced alterations of cortical processing of audiovisual words by comparing event-related potentials (ERPs) in postlingually deafened CI users before and after implantation (five weeks and six months of CI use). A group of matched normal-hearing (NH) listeners served as controls. The participants performed a word-identification task with congruent and incongruent audiovisual words, focusing their attention on either the visual (lip movement) or the auditory speech signal. This allowed us to study the (top-down) attention effect on the (bottom-up) sensory cortical processing of audiovisual speech. When compared to the NH listeners, the CI candidates (before implantation) and the CI users (after implantation) exhibited enhanced lipreading abilities and an altered cortical response at the N1 latency range (90-150 ms) that was characterized by a decreased theta oscillation power (4-8 Hz) and a smaller amplitude in the auditory cortex. After implantation, however, the auditory-cortex response gradually increased and developed a stronger intra-modal connectivity. Nevertheless, task efficiency and activation in the visual cortex was significantly modulated in both groups by focusing attention on the visual as compared to the auditory speech signal, with the NH listeners additionally showing an attention-dependent decrease in beta oscillation power (13-30 Hz). In sum, these results suggest remarkable deprivation effects on audiovisual speech processing in the auditory cortex, which partially reverse after implantation. Although even experienced CI users still show distinct audiovisual speech processing compared to NH listeners, pronounced effects of (top-down) direction of attention on (bottom-up) audiovisual processing can be observed in both groups. However, NH listeners but not CI users appear to show enhanced allocation of cognitive resources in visually as compared to auditory attended audiovisual speech conditions, which supports our behavioural observations of poorer lipreading abilities and reduced visual influence on audition in NH listeners as compared to CI users.
Collapse
Affiliation(s)
- Anna Weglage
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany.
| | - Natalie Layer
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany
| | - Hartmut Meister
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany; Jean-Uhrmacher-Institute for Clinical ENT Research, University of Cologne, Germany
| | - Verena Müller
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany
| | - Ruth Lang-Roth
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany
| | - Martin Walger
- Head and Neck Surgery, Audiology and Pediatric Audiology, Cochlear Implant Centre, University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Otorhinolaryngology, Germany; Jean-Uhrmacher-Institute for Clinical ENT Research, University of Cologne, Germany
| | - Pascale Sandmann
- Department of Otolaryngology, Head and Neck Surgery, Carl von Ossietzky University of Oldenburg, Germany; Research Center Neurosensory Science University of Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Germany
| |
Collapse
|
5
|
Eskikurt G, Duru AD, Ermutlu N, İşoğlu-Alkaç Ü. Evaluation of Brain Electrical Activity of Visual Working Memory with Time-Frequency Analysis. Clin EEG Neurosci 2024:15500594231224014. [PMID: 38225169 DOI: 10.1177/15500594231224014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The term visual working memory (VWM) refers to the temporary storage of visual information. In electrophysiological recordings during the change detection task which relates to VWM, contralateral negative slow activity was detected. It was found to occur during the information is kept in memory and it was called contralateral delay activity. In this study, the characteristics of electroencephalogram frequencies of the contralateral and ipsilateral responses in the retention phase of VWM were evaluated by using time-frequency analysis (discrete wavelet transform [DWT]) in the change detection task. Twenty-six volunteers participated in the study. Event-related brain potentials (ERPs) were examined, and then a time-frequency analysis was performed. A statistically significant difference between contralateral and ipsilateral responses was found in the ERP. DWT showed a statistically significant difference between contralateral and ipsilateral responses in the delta and theta frequency bands range. When volunteers were grouped as either high or low VWM capacity the time-frequency analysis between these groups revealed that high memory capacity groups have a significantly higher negative coefficient in alpha and beta frequency bands. This study showed that during the retention phase delta and theta bands may relate to visual memory retention and alpha and beta bands may reflect individual memory capacity.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Faculty of Humanities and Social Sciences, Department of Psychology, Istinye University, Istanbul, Turkey
| | - Adil Deniz Duru
- Faculty of Sport Sciences, Department of Physical Education and Sports Teaching, Marmara University, Marmara University, Istanbul, Turkey
| | - Numan Ermutlu
- Faculty of Medicine, Department of Physiology, Istanbul Sağlık ve Teknoloji University, Istanbul, Turkey
| | - Ümmühan İşoğlu-Alkaç
- Istanbul Faculty of Medicine, Department of Physiology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Żygierewicz J, Janik RA, Podolak IT, Drozd A, Malinowska U, Poziomska M, Wojciechowski J, Ogniewski P, Niedbalski P, Terczynska I, Rogala J. Decoding working memory-related information from repeated psychophysiological EEG experiments using convolutional and contrastive neural networks. J Neural Eng 2022; 19. [PMID: 35985292 DOI: 10.1088/1741-2552/ac8b38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Extracting reliable information from EEG signals is difficult because the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical analyses. However, recent advances in explainable machine learning open a new strategy to address this problem. APPROACH The current study evaluates this approach using results from the classification and decoding of electrical brain activity associated with information retention. We designed four neural network models differing in architecture, training strategies, and input representation to classify single experimental trials of a working memory task. MAIN RESULTS Our best models achieved an accuracy of 65.29$±0.76 and Matthews correlation coefficient of 0.288±0.018, outperforming the reference model trained on the same data. The highest correlation between classification score and behavioral performance was 0.36 (p=0.0007). Using analysis of input perturbation, we estimated the importance of EEG channels and frequency bands in the task at hand. The set of essential features identified for each network varies. We identified a subset of features common to all models that identified brain regions and frequency bands consistent with current neurophysiological knowledge of the processes critical to attention and working memory. Finally, we proposed sanity checks to examine further the robustness of each model's set of features. SIGNIFICANCE Our results indicate that explainable deep learning is a powerful tool for decoding information from EEG signals. It is crucial to train and analyze a range of models to identify stable and reliable features. Our results highlight the need for explainable modeling as the model with the highest accuracy appeared to use residual artifactual activity.
Collapse
Affiliation(s)
- Jarosław Żygierewicz
- Biomedical Physics, University of Warsaw Faculty of Physics, Pasteura 5, Warszawa, 02-093, POLAND
| | - Romuald A Janik
- Institute of Theoretical Physics, Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 6, Krakow, Małopolskie, 30-348, POLAND
| | - Igor T Podolak
- Faculty of Mathematics and Computer Science, Jagiellonian University in Krakow, Łojasiewicza 6, Krakow, Małopolska, 30-348, POLAND
| | - Alan Drozd
- Nencki Institute of Experimental Biology PAS, Pasteura 3, Warszawa, Mazowieckie, 02-093, POLAND
| | - Urszula Malinowska
- Nencki Institute of Experimental Biology PAS, Pasteura 3, Warszawa, Mazowieckie, 02-093, POLAND
| | - Martyna Poziomska
- University of Warsaw Faculty of Physics, Pasteura 5, Warszawa, 02-093, POLAND
| | - Jakub Wojciechowski
- Nencki Institute of Experimental Biology PAS, Pasteura 3, Warszawa, Mazowieckie, 02-093, POLAND
| | - Paweł Ogniewski
- ELMIKO BIOSIGNALS LTD, Sportowa 3, Milanowek, 05-822, POLAND
| | | | - Iwona Terczynska
- Institute of Mother and Child, Kasprzaka 17A, Warszawa, 01-211, POLAND
| | - Jacek Rogala
- Nencki Institute of Experimental Biology PAS, Pasteura 3, Warszawa, Mazowieckie, 02-093, POLAND
| |
Collapse
|
7
|
Paoletti P, Leshem R, Pellegrino M, Ben-Soussan TD. Tackling the Electro-Topography of the Selves Through the Sphere Model of Consciousness. Front Psychol 2022; 13:836290. [PMID: 35664179 PMCID: PMC9161303 DOI: 10.3389/fpsyg.2022.836290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the current hypothesis paper, we propose a novel examination of consciousness and self-awareness through the neuro-phenomenological theoretical model known as the Sphere Model of Consciousness (SMC). Our aim is to create a practical instrument to address several methodological issues in consciousness research. We present a preliminary attempt to validate the SMC via a simplified electrophysiological topographic map of the Self. This map depicts the gradual shift from faster to slower frequency bands that appears to mirror the dynamic between the various SMC states of Self. In order to explore our hypothesis that the SMC's different states of Self correspond to specific frequency bands, we present a mini-review of studies examining the electrophysiological activity that occurs within the different states of Self and in the context of specific meditation types. The theoretical argument presented here is that the SMC's hierarchical organization of three states of the Self mirrors the hierarchical organization of Focused Attention, Open Monitoring, and Non-Dual meditation types. This is followed by testable predictions and potential applications of the SMC and the hypotheses derived from it. To our knowledge, this is the first integrated electrophysiological account that combines types of Self and meditation practices. We suggest this electro-topographic framework of the Selves enables easier, clearer conceptualization of the connections between meditation types as well as increased understanding of wakefulness states and altered states of consciousness.
Collapse
Affiliation(s)
- Patrizio Paoletti
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Rotem Leshem
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| |
Collapse
|
8
|
Moyne M, Legendre G, Arnal L, Kumar S, Sterpenich V, Seeck M, Grandjean D, Schwartz S, Vuilleumier P, Domínguez-Borràs J. Brain reactivity to emotion persists in NREM sleep and is associated with individual dream recall. Cereb Cortex Commun 2022; 3:tgac003. [PMID: 35174329 PMCID: PMC8844542 DOI: 10.1093/texcom/tgac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
The waking brain efficiently detects emotional signals to promote survival. However, emotion detection during sleep is poorly understood and may be influenced by individual sleep characteristics or neural reactivity. Notably, dream recall frequency has been associated with stimulus reactivity during sleep, with enhanced stimulus-driven responses in high vs. low recallers. Using electroencephalography (EEG), we characterized the neural responses of healthy individuals to emotional, neutral voices, and control stimuli, both during wakefulness and NREM sleep. Then, we tested how these responses varied with individual dream recall frequency. Event-related potentials (ERPs) differed for emotional vs. neutral voices, both in wakefulness and NREM. Likewise, EEG arousals (sleep perturbations) increased selectively after the emotional voices, indicating emotion reactivity. Interestingly, sleep ERP amplitude and arousals after emotional voices increased linearly with participants' dream recall frequency. Similar correlations with dream recall were observed for beta and sigma responses, but not for theta. In contrast, dream recall correlations were absent for neutral or control stimuli. Our results reveal that brain reactivity to affective salience is preserved during NREM and is selectively associated to individual memory for dreams. Our findings also suggest that emotion-specific reactivity during sleep, and not generalized alertness, may contribute to the encoding/retrieval of dreams.
Collapse
Affiliation(s)
- Maëva Moyne
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Guillaume Legendre
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Luc Arnal
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Samika Kumar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, USA
| | - Virginie Sterpenich
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Margitta Seeck
- Department of Clinical Neuroscience, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Didier Grandjean
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Psychology, University of Geneva, Uni Mail, bd du Pont-d’Arve 40, CH-1211 Geneva, Switzerland
| | - Sophie Schwartz
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| | - Patrik Vuilleumier
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| | - Judith Domínguez-Borràs
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| |
Collapse
|
9
|
Maimon NB, Bez M, Drobot D, Molcho L, Intrator N, Kakiashvilli E, Bickel A. Continuous Monitoring of Mental Load During Virtual Simulator Training for Laparoscopic Surgery Reflects Laparoscopic Dexterity: A Comparative Study Using a Novel Wireless Device. Front Neurosci 2022; 15:694010. [PMID: 35126032 PMCID: PMC8811150 DOI: 10.3389/fnins.2021.694010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Cognitive Load Theory (CLT) relates to the efficiency with which individuals manipulate the limited capacity of working memory load. Repeated training generally results in individual performance increase and cognitive load decrease, as measured by both behavioral and neuroimaging methods. One of the known biomarkers for cognitive load is frontal theta band, measured by an EEG. Simulation-based training is an effective tool for acquiring practical skills, specifically to train new surgeons in a controlled and hazard-free environment. Measuring the cognitive load of young surgeons undergoing such training can help to determine whether they are ready to take part in a real surgery. In this study, we measured the performance of medical students and interns in a surgery simulator, while their brain activity was monitored by a single-channel EEG. Methods A total of 38 medical students and interns were divided into three groups and underwent three experiments examining their behavioral performances. The participants were performing a task while being monitored by the Simbionix LAP MENTOR™. Their brain activity was simultaneously measured using a single-channel EEG with novel signal processing (Aurora by Neurosteer®). Each experiment included three trials of a simulator task performed with laparoscopic hands. The time retention between the tasks was different in each experiment, in order to examine changes in performance and cognitive load biomarkers that occurred during the task or as a result of nighttime sleep consolidation. Results The participants’ behavioral performance improved with trial repetition in all three experiments. In Experiments 1 and 2, delta band and the novel VC9 biomarker (previously shown to correlate with cognitive load) exhibited a significant decrease in activity with trial repetition. Additionally, delta, VC9, and, to some extent, theta activity decreased with better individual performance. Discussion In correspondence with previous research, EEG markers delta, VC9, and theta (partially) decreased with lower cognitive load and higher performance; the novel biomarker, VC9, showed higher sensitivity to lower cognitive load levels. Together, these measurements may be used for the neuroimaging assessment of cognitive load while performing simulator laparoscopic tasks. This can potentially be expanded to evaluate the efficacy of different medical simulations to provide more efficient training to medical staff and measure cognitive and mental loads in real laparoscopic surgeries.
Collapse
Affiliation(s)
- Neta B. Maimon
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Neurosteer Ltd, Herzliya, Israel
- *Correspondence: Neta B. Maimon,
| | - Maxim Bez
- Medical Corps, Israel Defense Forces, Ramat Gan, Israel
| | - Denis Drobot
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
- Department of Surgery A, Galilee Medical Center, Nahariyya, Israel
| | | | - Nathan Intrator
- Neurosteer Ltd, Herzliya, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Eli Kakiashvilli
- Department of Surgery A, Galilee Medical Center, Nahariyya, Israel
| | - Amitai Bickel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
- Department of Surgery A, Galilee Medical Center, Nahariyya, Israel
| |
Collapse
|
10
|
Study of EEG characteristics while solving scientific problems with different mental effort. Sci Rep 2021; 11:23783. [PMID: 34893689 PMCID: PMC8664921 DOI: 10.1038/s41598-021-03321-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/24/2021] [Indexed: 11/11/2022] Open
Abstract
Studying the mental effort in problem-solving is important to the understanding of how the brain allocates cognitive resources to process information. The electroencephalogram is a promising physiological approach to assessing the online mental effort. In this study, we investigate the EEG indicators of mental effort while solving scientific problems. By manipulating the complexity of the scientific problem, the level of mental effort also changes. With the increase of mental effort, theta synchronization in the frontal region and lower alpha desynchronization in the parietal and occipital regions significantly increase. Also, upper alpha desynchronization demonstrates a widespread enhancement across the whole brain. According to the functional topography of brain activity in the theta and alpha frequency, our results suggest that the mental effort while solving scientific problems is related to working memory, visuospatial processing, semantic processing and magnitude manipulation. This study suggests the reliability of EEG to evaluate the mental effort in an educational context and provides valuable insights into improving the problem-solving abilities of students in educational practice.
Collapse
|
11
|
Ricci S, Tatti E, Nelson AB, Panday P, Chen H, Tononi G, Cirelli C, Ghilardi MF. Extended Visual Sequence Learning Leaves a Local Trace in the Spontaneous EEG. Front Neurosci 2021; 15:707828. [PMID: 34335178 PMCID: PMC8322764 DOI: 10.3389/fnins.2021.707828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
We have previously demonstrated that, in rested subjects, extensive practice in a motor learning task increased both electroencephalographic (EEG) theta power in the areas involved in learning and improved the error rate in a motor test that shared similarities with the task. A nap normalized both EEG and performance changes. We now ascertain whether extensive visual declarative learning produces results similar to motor learning. Thus, during the morning, we recorded high-density EEG in well rested young healthy subjects that learned the order of different visual sequence task (VSEQ) for three one-hour blocks. Afterward, a group of subjects took a nap and another rested quietly. Between each VSEQ block, we recorded spontaneous EEG (sEEG) at rest and assessed performance in a motor test and a visual working memory test that shares similarities with VSEQ. We found that after the third block, VSEQ induced local theta power increases in the sEEG over a right temporo-parietal area that was engaged during the task. This local theta increase was preceded by increases in alpha and beta power over the same area and was paralleled by performance decline in the visual working memory test. Only after the nap, VSEQ learning rate improved and performance in the visual working memory test was restored, together with partial normalization of the local sEEG changes. These results suggest that intensive learning, like motor learning, produces local theta power increases, possibly reflecting local neuronal fatigue. Sleep may be necessary to resolve neuronal fatigue and its effects on learning and performance.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States.,Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Elisa Tatti
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Aaron B Nelson
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Priya Panday
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Henry Chen
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - M Felice Ghilardi
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Abstract
This study investigated emoji semantic processing by measuring changes in event-related electroencephalogram (EEG) power. The last segment of experimental sentences was designed as either words or emojis consistent or inconsistent with the sentential context. The results showed that incongruent emojis led to a conspicuous increase of theta power (4–7 Hz), while incongruent words induced a decrease. Furthermore, the theta power increase was observed at midfrontal, occipital and bilateral temporal lobes with emojis. This suggests a higher working memory load for monitoring errors, difficulty of form recognition and concept retrieval in emoji semantic processing. It implies different neuro-cognitive processes involved in the semantic processing of emojis and words.
Collapse
|
13
|
Heinrichs-Graham E, Walker EA, Eastman JA, Frenzel MR, Joe TR, McCreery RW. The impact of mild-to-severe hearing loss on the neural dynamics serving verbal working memory processing in children. Neuroimage Clin 2021; 30:102647. [PMID: 33838545 PMCID: PMC8056458 DOI: 10.1016/j.nicl.2021.102647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022]
Abstract
Children with hearing loss (CHL) exhibit delays in language function relative to children with normal hearing (CNH). However, evidence on whether these delays extend into other cognitive domains such as working memory is mixed, with some studies showing decrements in CHL and others showing CHL performing at the level of CNH. Despite the growing literature investigating the impact of hearing loss on cognitive and language development, studies of the neural dynamics that underlie these cognitive processes are notably absent. This study sought to identify the oscillatory neural responses serving verbal working memory processing in CHL compared to CNH. To this end, participants with and without hearing loss performed a verbal working memory task during magnetoencephalography. Neural oscillatory responses associated with working memory encoding and maintenance were imaged separately, and these responses were statistically evaluated between CHL and CNH. While CHL performed as well on the task as CNH, CHL exhibited significantly elevated alpha-beta activity in the right frontal and precentral cortices during encoding relative to CNH. In contrast, CHL showed elevated alpha maintenance-related activity in the right precentral and parieto-occipital cortices. Crucially, right superior frontal encoding activity and right parieto-occipital maintenance activity correlated with language ability across groups. These data suggest that CHL may utilize compensatory right-hemispheric activity to achieve verbal working memory function at the level of CNH. Neural behavior in these regions may impact language function during crucial developmental ages.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA; Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, NE, USA.
| | - Elizabeth A Walker
- Wendell Johnson Speech and Hearing Center, Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA; Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital (BTNRH), Omaha, NE, USA; Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Timothy R Joe
- Center for Magnetoencephalography (MEG), University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Ryan W McCreery
- Audibility, Perception, and Cognition Laboratory, BTNRH, Omaha, NE, USA
| |
Collapse
|
14
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Guo J, Luo X, Li B, Chang Q, Sun L, Song Y. Abnormal modulation of theta oscillations in children with attention-deficit/hyperactivity disorder. NEUROIMAGE-CLINICAL 2020; 27:102314. [PMID: 32615476 PMCID: PMC7330615 DOI: 10.1016/j.nicl.2020.102314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/26/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
We study frontal theta ERS and posterior theta lateralization in ADHD children. ADHD children show increased frontal theta ERS and posterior theta lateralization. Midfrontal theta ERS connects with right posterior theta modulation in ADHD children. Right posterior theta modulation is linked with RT variability in ADHD children.
Previous studies have found that theta activities exhibit posterior lateralized modulation as well as midfrontal event-related synchronization (ERS) during covert visual attention in adults. The present study investigated whether these theta modulations existed in children and whether they were associated with attentional problems in attention-deficit/hyperactivity disorder (ADHD). Electroencephalography signals were recorded from typically developing (TD) children and children with ADHD (TD: n = 24; ADHD: n = 22) while they performed a cued covert visual attention task. The participants responded to a target following a cue designed as human eyes that gazed to the left or right visual field (70% validity). Compared with the TD children, the children with ADHD showed increased midfrontal theta ERS and significant posterior theta lateralization in response to the cues. More importantly, we found that the stronger posterior theta lateralization in the right hemisphere exhibited a positive trial-based correlation with the larger midfrontal theta ERS and predicted lower RT variability at the trial level in the children with ADHD. We suggest that ADHD may be associated with some enhanced systems in the frontal and posterior areas via theta oscillations, which may be involved in the compensatory maturation for their attention deficits in childhood, thereby promoting the stability of behavioral responses.
Collapse
Affiliation(s)
- Jialiang Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangsheng Luo
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Bingkun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qinyuan Chang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
16
|
Goyal A, Miller J, Qasim SE, Watrous AJ, Zhang H, Stein JM, Inman CS, Gross RE, Willie JT, Lega B, Lin JJ, Sharan A, Wu C, Sperling MR, Sheth SA, McKhann GM, Smith EH, Schevon C, Jacobs J. Functionally distinct high and low theta oscillations in the human hippocampus. Nat Commun 2020; 11:2469. [PMID: 32424312 PMCID: PMC7235253 DOI: 10.1038/s41467-020-15670-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/23/2020] [Indexed: 11/08/2022] Open
Abstract
Based on rodent models, researchers have theorized that the hippocampus supports episodic memory and navigation via the theta oscillation, a ~4-10 Hz rhythm that coordinates brain-wide neural activity. However, recordings from humans have indicated that hippocampal theta oscillations are lower in frequency and less prevalent than in rodents, suggesting interspecies differences in theta's function. To characterize human hippocampal theta, we examine the properties of theta oscillations throughout the anterior-posterior length of the hippocampus as neurosurgical subjects performed a virtual spatial navigation task. During virtual movement, we observe hippocampal oscillations at multiple frequencies from 2 to 14 Hz. The posterior hippocampus prominently displays oscillations at ~8-Hz and the precise frequency of these oscillations correlates with the speed of movement, implicating these signals in spatial navigation. We also observe slower ~3 Hz oscillations, but these signals are more prevalent in the anterior hippocampus and their frequency does not vary with movement speed. Our results converge with recent findings to suggest an updated view of human hippocampal electrophysiology. Rather than one hippocampal theta oscillation with a single general role, high- and low-frequency theta oscillations, respectively, may reflect spatial and non-spatial cognitive processes.
Collapse
Affiliation(s)
- Abhinav Goyal
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jonathan Miller
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Salman E Qasim
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Honghui Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cory S Inman
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Jui-Jui Lin
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 9107, USA
- Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 9107, USA
| | - Michael R Sperling
- Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guy M McKhann
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
17
|
The Relation between Alpha/Beta Oscillations and the Encoding of Sentence induced Contextual Information. Sci Rep 2019; 9:20255. [PMID: 31882830 PMCID: PMC6934725 DOI: 10.1038/s41598-019-56600-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/04/2019] [Indexed: 11/08/2022] Open
Abstract
Pre-stimulus alpha (8-12 Hz) and beta (16-20 Hz) oscillations have been frequently linked to the prediction of upcoming sensory input. Do these frequency bands serve as a neural marker of linguistic prediction as well? We hypothesized that if pre-stimulus alpha and beta oscillations index language predictions, their power should monotonically relate to the degree of predictability of incoming words based on past context. We expected that the more predictable the last word of a sentence, the stronger the alpha and beta power modulation. To test this, we measured neural responses with magnetoencephalography of healthy individuals during exposure to a set of linguistically matched sentences featuring three levels of sentence context constraint (high, medium and low constraint). We observed fluctuations in alpha and beta power before last word onset, and modulations in M400 amplitude after last word onset. The M400 amplitude was monotonically related to the degree of context constraint, with a high constraining context resulting in the strongest amplitude decrease. In contrast, pre-stimulus alpha and beta power decreased more strongly for intermediate constraints, followed by high and low constraints. Therefore, unlike the M400, pre-stimulus alpha and beta dynamics were not indexing the degree of word predictability from sentence context.
Collapse
|
18
|
The Role of Physical Fitness in Cognitive-Related Biomarkers in Persons at Genetic Risk of Familial Alzheimer's Disease. J Clin Med 2019; 8:jcm8101639. [PMID: 31591322 PMCID: PMC6832576 DOI: 10.3390/jcm8101639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Introduction: Nondemented people with a family history of Alzheimer’s disease (ADFH) and the ApoE-4 allele have been demonstrated to show a trend for a higher probability of cognitive decline and aberrant levels of cognitive-related biomarkers. However, the potential interactive effects on physical fitness have not been investigated. Purpose: The primary purpose of this study was to determine whether ADFH individuals with the ApoE-4 genotype show deviant brain event-related neural oscillatory performance and cognitively-related molecular indices. A secondary purpose was to examine the interactive effects on physical fitness. Methods: Blood samples were provided from 110 individuals with ADFH to assess molecular biomarkers and the ApoE genotype for the purpose of dividing them into an ApoE-4 group (n = 16) and a non-ApoE-4 group (n = 16) in order for them to complete a visuospatial working memory task while simultaneously recording electroencephalographic signals. They also performed a senior functional physical fitness (SFPF) test. Results: While performing the cognitive task, the ApoE-4 relative to non-ApoE-4 group showed worse accuracy rates (ARs) and brain neural oscillatory performance. There were no significant between-group differences with regard to any molecular biomarkers (e.g., IL-1β, IL-6, IL-8, BDNF, Aβ1-40, Aβ1-42). VO2max was significantly correlated with the neuropsychological performance (i.e., ARs and RTs) in the 2-item and 4-item conditions in the ApoE-4 group and across the two groups. However, the electroencephalogram (EEG) oscillations during visuospatial working memory processing in the two conditions were not correlated with any SFPF scores or cardiorespiratory tests in the two groups. Conclusions: ADFH individuals with the ApoE-4 genotype only showed deviant neuropsychological (e.g., ARs) and neural oscillatory performance when performing the cognitive task with a higher visuospatial working memory load. Cardiorespiratory fitness potentially played an important role in neuropsychological impairment in this group.
Collapse
|
19
|
Gladwin TE, Figner B, Vink M. Anticipation-specific reliability and trial-to-trial carryover of anticipatory attentional bias for threat. JOURNAL OF COGNITIVE PSYCHOLOGY 2019. [DOI: 10.1080/20445911.2019.1659801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Thomas E. Gladwin
- Department of Psychology & Counselling, University of Chichester. College Lane, Chichester, UK
| | - Bernd Figner
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - Matthijs Vink
- Department of Psychiatry, Brain Center Rudolf Magnus, Utrecht University Medical Center, Utrecht, The Netherlands
- Departments of Developmental and Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Li F, Egawa N, Yoshimoto S, Mizutani H, Kobayashi K, Tachibana N, Takahashi R. Potential Clinical Applications and Future Prospect of Wireless and Mobile Electroencephalography on the Assessment of Cognitive Impairment. Bioelectricity 2019; 1:105-112. [PMID: 34471813 DOI: 10.1089/bioe.2019.0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Electroencephalography (EEG) systems have been used for assessing cognitive function in dementia for several decades. Studies have demonstrated that EEG in Alzheimer's disease (AD) patients is generally characterized by significant and specific increases in delta and theta power, a decrease in alpha power, and a decrease in the coherence of the fast bands between different brain areas linked by long corticocortical fibers. Posterior EEG characteristics in dementia with Lewy bodies (DLB) allowed discrimination of DLB from AD and controls with high accuracy. Traditional EEG systems require a long application time and discomfort, which limited its use in dementia patients. Alternative tools for assessing cognition may be simple, low-cost, and mobile medical devices such as wireless and mobile EEG (wmEEG) sensor platforms with flexible electronics and stretchable electrode sheets that could be compatible with long-term EEG monitoring even in dementia patients. In this study, we review the utility of EEG in reflecting cognitive function and the prospects for clinical application of wmEEG monitoring for detecting early dementia and discriminating subtypes of dementia effectively and objectively assessing longitudinal cognitive changes. Repeated and longitudinal documentation of EEG using wmEEG will contribute to detection of specific sleep/wake EEG patterns for patients with sleep and wake-related problems related to dementia.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naohiro Egawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoko Tachibana
- Department of Neurology, Center for Sleep-Related Disorders, Kansai Electric Power Hospital, Osaka, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
21
|
Molina E, Sanabria D, Jung TP, Correa Á. Electroencephalographic and peripheral temperature dynamics during a prolonged psychomotor vigilance task. ACCIDENT; ANALYSIS AND PREVENTION 2019; 126:198-208. [PMID: 29061281 DOI: 10.1016/j.aap.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Attention lapses and fatigue are a main source of impaired performance that can lead to accidents. This study analyzed electroencephalographic (EEG) dynamics and body skin temperature as markers of attentional fluctuations in non-sleep deprived subjects during a 45min Psychomotor Vigilance Task (PVT). Independent Component Analysis and time-frequency analysis were used to evaluate the EEG data. Results showed a positive association between distal and distal-to-proximal gradient (DPG) temperatures and reaction time (RT); increments in EEG power in alpha-, theta- and beta-band frequencies in parieto-occipital, central-medial and frontal components, were associated with poor performance (slower RT) in the task. This generalized power increment fits with an increased activity in the default mode network, associated with attention lapses. This study highlights the potential use of the PVT as a tool to obtain individual physiological indices of vigilance and fatigue that could be applied to other vigilance tasks typically performed in occupational settings.
Collapse
Affiliation(s)
- Enrique Molina
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain.
| | - Daniel Sanabria
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain.
| | - Tzyy-Ping Jung
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, CA, USA.
| | - Ángel Correa
- Centro de Investigación Mente, Cerebro y Comportamiento, University of Granada, Campus de Cartuja, s/n, 18071, Granada, Spain.
| |
Collapse
|
22
|
Henz D, Schöllhorn WI. Dynamic Office Environments Improve Brain Activity and Attentional Performance Mediated by Increased Motor Activity. Front Hum Neurosci 2019; 13:121. [PMID: 31031610 PMCID: PMC6473162 DOI: 10.3389/fnhum.2019.00121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Current research demonstrates beneficial effects of physical activity on brain functions and cognitive performance. To date, less is known on the effects of gross motor movements that do not fall into the category of sports-related aerobic or anaerobic exercise. In previous studies, we found beneficial effects of dynamic working environments, i.e., environments that encourage movements during cognitive task performance, on cognitive performance and corresponding brain activity. Aim of the present study was to examine the effects of working in a dynamic and a static office environment on attentional and vigilance performance, and on the corresponding electroencephalographic (EEG) brain oscillatory patterns. In a 2-week intervention study, participants worked either in a dynamic or a static office. In each intervention group, 12 subjects performed attentional and vigilance tasks. Spontaneous EEG was measured from 19 electrodes continuosly before, during, and immediately after each experimental condition at the first, and at the last intervention session. Results showed differences in EEG brain activity in the dynamic compared to the static office at the beginning as well as at the end of the intervention. EEG theta power increased in the vigilance task in anterior regions, alpha power in central and parietal regions in the dynamic compared to the static office. Further, increases in beta activity in the attention and vigilance task were shown in frontal and central regions in the dynamic office. Gamma power increased in the attention task in frontal and central regions. After 2 weeks, effects on brain activity increased in the attentional and vigilance task in the dynamic office. Increased theta and alpha oscillations were obtained in anterior areas with higher activity in the beta band in anterior and central areas in the dynamic compared to the static office. EEG oscillatory patterns indicate beneficial effects of dynamic office environments on attentional and vigilance performance that are mediated by increased motor activity. We discuss the obtained patterns of EEG oscillations in terms of the close interrelations between the attentional and the motor system.
Collapse
Affiliation(s)
- Diana Henz
- Institute of Sports Science, Faculty of Social Sciences, Media and Sport, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wolfgang I Schöllhorn
- Institute of Sports Science, Faculty of Social Sciences, Media and Sport, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
23
|
Rondina II R, Olsen RK, Li L, Meltzer JA, Ryan JD. Age-related changes to oscillatory dynamics during maintenance and retrieval in a relational memory task. PLoS One 2019; 14:e0211851. [PMID: 30730952 PMCID: PMC6366750 DOI: 10.1371/journal.pone.0211851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
In aging, structural and/or functional brain changes may precede changes in cognitive performance. We previously showed that despite having hippocampal volumes similar to those of younger adults, older adults showed oscillatory changes during the encoding phase of a short-delay visuospatial memory task that required spatial relations among objects to be bound across time (Rondina et al., 2016). The present work provides a complementary set of analyses to examine age-related changes in oscillatory activity during maintenance and retrieval of those spatial relations in order to provide a comprehensive examination of the neural dynamics that support memory function in aging. Participants were presented with three study objects sequentially. Following a delay (maintenance phase), the objects were re-presented simultaneously and participants had to determine whether the relative spatial relations among the objects had been maintained (retrieval phase). Older adults had similar task accuracy, but slower response times, compared to younger adults. Both groups showed a decrease in theta (2-7Hz), alpha (9-14Hz), and beta (15-30Hz) power during the maintenance phase. During the retrieval phase, younger adults showed theta and beta power increases that predicted greater task accuracy, whereas older adults showed a widespread decrease in each of the three frequency ranges that predicted longer response latencies. Older adults also showed distinct patterns of behaviour-related activity depending on whether the analysis was time-locked to the onset of the stimulus or to the onset of the response during the test phase. These findings suggest that older adults may experience declines in relational binding and/or comparison processes that are reflected in oscillatory changes prior to structural decline.
Collapse
Affiliation(s)
- Renante Rondina II
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (RR); (JDR)
| | | | - Lingqian Li
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, Ryerson University, Toronto, Ontario, Canada
| | - Jed A. Meltzer
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer D. Ryan
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (RR); (JDR)
| |
Collapse
|
24
|
Neuroelectric responses of sportsmen and sedentaries under cognitive stress. Cogn Neurodyn 2018; 12:295-301. [PMID: 29765478 DOI: 10.1007/s11571-018-9478-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/28/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022] Open
Abstract
Stress and anxiety are states which sportsmen are continuously exposed to. Our study aimed to evaluate neuroelectrical peripheral and central nervous system responses of sportsmen (SPR) and sedentary individuals (SED) during concentration grid test (CGT) employed under time pressure. Forty three SPR and 33 SED participated in the study. Neuroelectrical responses were simultaneously obtained during baseline and CGT. All responses were observed to increase under stress in both SED and SPR. The SPR's stress related peripheral responses were lower than SED's. When central values were evaluated a stress related increase according to baseline was observed in all frequency powers in all of the participants. Statistical comparison of increase rates revealed a significantly greater increase in beta in SED compared to SPR. Beta has been associated to alertness and cortical arousal. As SED exhibit greater beta increase under stress compared to SPR their state of cortical arousal and alertness may be interpreted to be higher than SPR. However the SPR's weak increase in beta and their lower peripheral responses taken together may imply that they are better in stress management. In fact according to their performance scores the SPR's higher level of performance under stress compared to SED shows that they are better at maintaining and focusing their attention under stress than SED.
Collapse
|
25
|
Wang L, Gan JQ, Zhang L, Wang H. Differential recruitment of brain networks in single-digit addition and multiplication: Evidence from EEG oscillations in theta and lower alpha bands. Int J Psychophysiol 2018; 128:81-92. [PMID: 29673650 DOI: 10.1016/j.ijpsycho.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/05/2018] [Accepted: 04/08/2018] [Indexed: 11/26/2022]
Abstract
Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - John Q Gan
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China; School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Li Zhang
- Department of Medical Imaging, Bengbu Medical College, Bengbu, Anhui 233030, PR China; Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China; School of Mathematics and Big Data, Foshan University, Foshan, Guangdong 528000, PR China.
| |
Collapse
|
26
|
Henz D, John A, Merz C, Schöllhorn WI. Post-task Effects on EEG Brain Activity Differ for Various Differential Learning and Contextual Interference Protocols. Front Hum Neurosci 2018; 12:19. [PMID: 29445334 PMCID: PMC5797795 DOI: 10.3389/fnhum.2018.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/15/2018] [Indexed: 01/16/2023] Open
Abstract
A large body of research has shown superior learning rates in variable practice compared to repetitive practice. More specifically, this has been demonstrated in the contextual interference (CI) and in the differential learning (DL) approach that are both representatives of variable practice. Behavioral studies have indicate different learning processes in CI and DL. Aim of the present study was to examine immediate post-task effects on electroencephalographic (EEG) brain activation patterns after CI and DL protocols that reveal underlying neural processes at the early stage of motor consolidation. Additionally, we tested two DL protocols (gradual DL, chaotic DL) to examine the effect of different degrees of stochastic fluctuations within the DL approach with a low degree of fluctuations in gradual DL and a high degree of fluctuations in chaotic DL. Twenty-two subjects performed badminton serves according to three variable practice protocols (CI, gradual DL, chaotic DL), and a repetitive learning protocol in a within-subjects design. Spontaneous EEG activity was measured before, and immediately after each 20-min practice session from 19 electrodes. Results showed distinguishable neural processes after CI, DL, and repetitive learning. Increases in EEG theta and alpha power were obtained in somatosensory regions (electrodes P3, P7, Pz, P4, P8) in both DL conditions compared to CI, and repetitive learning. Increases in theta and alpha activity in motor areas (electrodes C3, Cz, C4) were found after chaotic DL compared to gradual DL, and CI. Anterior areas (electrodes F3, F7, Fz, F4, F8) showed increased activity in the beta and gamma bands after CI. Alpha activity was increased in occipital areas (electrodes O1, O2) after repetitive learning. Post-task EEG brain activation patterns suggest that DL stimulates the somatosensory and motor system, and engages more regions of the cortex than repetitive learning due to a tighter stimulation of the motor and somatosensory system during DL practice. CI seems to activate specifically executively controlled processing in anterior brain areas. We discuss the obtained patterns of post-training EEG traces as evidence for different underlying neural processes in CI, DL, and repetitive learning at the early stage of motor learning.
Collapse
Affiliation(s)
- Diana Henz
- Institute of Sport Science, University of Mainz, Mainz, Germany
| | - Alexander John
- Institute of Sport Science, University of Mainz, Mainz, Germany
| | - Christian Merz
- Institute of Sport Science, University of Mainz, Mainz, Germany
| | | |
Collapse
|
27
|
Stavropoulos KKM, Carver LJ. Oscillatory rhythm of reward: anticipation and processing of rewards in children with and without autism. Mol Autism 2018; 9:4. [PMID: 29423131 PMCID: PMC5789641 DOI: 10.1186/s13229-018-0189-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental condition, and multiple theories have emerged concerning core social deficits. While the social motivation hypothesis proposes that deficits in the social reward system cause individuals with ASD to engage less in social interaction, the overly intense world hypothesis (sensory over-responsivity) proposes that individuals with ASD find stimuli to be too intense and may have hypersensitivity to social interaction, leading them to avoid these interactions. Methods EEG was recorded during reward anticipation and reward processing. Reward anticipation was measured using alpha asymmetry, and post-feedback theta was utilized to measure reward processing. Additionally, we calculated post-feedback alpha suppression to measure attention and salience. Participants were 6- to 8-year-olds with (N = 20) and without (N = 23) ASD. Results Children with ASD showed more left-dominant alpha suppression when anticipating rewards accompanied by nonsocial stimuli compared to social stimuli. During reward processing, children with ASD had less theta activity than typically developing (TD) children. Alpha activity after feedback showed the opposite pattern: children with ASD had greater alpha suppression than TD children. Significant correlations were observed between behavioral measures of autism severity and EEG activity in both the reward anticipation and reward processing time periods. Conclusions The findings provide evidence that children with ASD have greater approach motivation prior to nonsocial (compared to social) stimuli. Results after feedback suggest that children with ASD evidence less robust activity thought to reflect evaluation and processing of rewards (e.g., theta) compared to TD children. However, children with ASD evidence greater alpha suppression after feedback compared to TD children. We hypothesize that post-feedback alpha suppression reflects general cognitive engagement-which suggests that children with ASD may experience feedback as overly intense. Taken together, these results suggest that aspects of both the social motivation hypothesis and the overly intense world hypothesis may be occurring simultaneously.
Collapse
|
28
|
Gaoua N, Herrera CP, Périard JD, El Massioui F, Racinais S. Effect of Passive Hyperthermia on Working Memory Resources during Simple and Complex Cognitive Tasks. Front Psychol 2018; 8:2290. [PMID: 29375423 PMCID: PMC5769221 DOI: 10.3389/fpsyg.2017.02290] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to verify the hypothesis that hyperthermia represents a cognitive load limiting available resources for executing concurrent cognitive tasks. Electroencephalographic activity (EEG: alpha and theta power) was obtained in 10 hyperthermic participants in HOT (50°C, 50% RH) conditions and in a normothermic state in CON (25°C, 50% RH) conditions in counterbalanced order. In each trial, EEG was measured over the frontal lobe prior to task engagement (PRE) in each condition and during simple (One Touch Stockings of Cambridge, OTS-4) and complex (OTS-6) cognitive tasks. Core (39.5 ± 0.5 vs. 36.9 ± 0.2°C) and mean skin (39.06 ± 0.3 vs. 31.6 ± 0.6°C) temperatures were significantly higher in HOT than CON (p < 0.005). Theta power significantly increased with task demand (p = 0.017, η2 = 0.36) and was significantly higher in HOT than CON (p = 0.041, η2 = 0.39). The difference between HOT and CON was large (η2 = 0.40) and significant (p = 0.036) PRE, large (η2 = 0.20) but not significant (p = 0.17) during OTS-4, and disappeared during OTS-6 (p = 0.87, η2 = 0.00). Those changes in theta power suggest that hyperthermia may act as an additional cognitive load. However, this load disappeared during OTS-6 together with an impaired performance, suggesting a potential saturation of the available resources.
Collapse
Affiliation(s)
- Nadia Gaoua
- School of Applied Sciences, London South Bank University, London, United Kingdom.,Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Christopher P Herrera
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Department of Kinesiology & Human Performance, Sul Ross State University, Alpine, TX, United States
| | - Julien D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Farid El Massioui
- Cognition Humaine et Artificielle (CHArt), UFR de Psychologie, Université Paris 8, Paris, France
| | - Sebastien Racinais
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
29
|
Pahor A, Jaušovec N. The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology. Front Hum Neurosci 2018; 11:651. [PMID: 29375347 PMCID: PMC5767723 DOI: 10.3389/fnhum.2017.00651] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
A single blind sham-controlled study was conducted to explore the effects of theta and gamma transcranial alternating current stimulation (tACS) on offline performance on working memory tasks. In order to systematically investigate how specific parameters of tACS affect working memory, we manipulated the frequency of stimulation (theta frequency vs. gamma frequency), the type of task (n-back vs. change detection task) and the content of the tasks (verbal vs. figural stimuli). A repeated measures design was used that consisted of three sessions: theta tACS, gamma tACS and sham tACS. In total, four experiments were conducted which differed only with respect to placement of tACS electrodes (bilateral frontal, bilateral parietal, left fronto-parietal and right-fronto parietal). Healthy female students (N = 72) were randomly assigned to one of these groups, hence we were able to assess the efficacy of theta and gamma tACS applied over different brain areas, contrasted against sham stimulation. The pre-post/sham resting electroencephalogram (EEG) analysis showed that theta tACS significantly affected theta amplitude, whereas gamma tACS had no significant effect on EEG amplitude in any of the frequency bands of interest. Gamma tACS did not significantly affect working memory performance compared to sham, and theta tACS led to inconsistent changes in performance on the n-back tasks. Active theta tACS significantly affected P3 amplitude and latency during performance on the n-back tasks in the bilateral parietal and right-fronto parietal protocols.
Collapse
Affiliation(s)
- Anja Pahor
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Norbert Jaušovec
- Department of Psychology, Faculty of Arts, University of Maribor, Maribor, Slovenia
| |
Collapse
|
30
|
Blume C, Del Giudice R, Lechinger J, Wislowska M, Heib DPJ, Hoedlmoser K, Schabus M. Preferential processing of emotionally and self-relevant stimuli persists in unconscious N2 sleep. BRAIN AND LANGUAGE 2017; 167:72-82. [PMID: 27039169 DOI: 10.1016/j.bandl.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Information processing has been suggested to depend on the current state of the brain as well as stimulus characteristics (e.g. salience). We compared processing of salient stimuli (subject's own names [SONs] and angry voice [AV] stimuli) to processing of unfamiliar names (UNs) and neutral voice (NV) stimuli across different vigilance stages (i.e. wakefulness as well as sleep stages N1 and N2) by means of event-related oscillatory responses during wakefulness and a subsequent afternoon nap. Our findings suggest that emotional prosody and self-relevance drew more attentional resources during wakefulness with specifically AV stimuli being processed more strongly. During N1, SONs were more arousing than UNs irrespective of prosody. Moreover, emotional and self-relevant stimuli evoked stronger responses also during N2 sleep suggesting a 'sentinel processing mode' of the brain during this state of naturally occurring unconsciousness. Finally, this initial preferential processing of salient stimuli during N2 sleep seems to be followed by an inhibitory sleep-protecting process, which is reflected by a K-complex-like response.
Collapse
Affiliation(s)
- Christine Blume
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Renata Del Giudice
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Julia Lechinger
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Malgorzata Wislowska
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Dominik P J Heib
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Kerstin Hoedlmoser
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| | - Manuel Schabus
- University of Salzburg, Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, Austria; University of Salzburg, Centre for Cognitive Neuroscience Salzburg (CCNS), Austria.
| |
Collapse
|
31
|
Wang CH, Tseng YT, Liu D, Tsai CL. Neural Oscillation Reveals Deficits in Visuospatial Working Memory in Children With Developmental Coordination Disorder. Child Dev 2017; 88:1716-1726. [DOI: 10.1111/cdev.12708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Xie Y, Feng Z, Xu Y, Bian C, Li M. The different oscillation patterns of alpha band in the early and later stages of working memory maintenance. Neurosci Lett 2016; 633:220-226. [DOI: 10.1016/j.neulet.2016.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|
33
|
Cano ME, Knight RT. Behavioral and EEG Evidence for Auditory Memory Suppression. Front Hum Neurosci 2016; 10:133. [PMID: 27064461 PMCID: PMC4811890 DOI: 10.3389/fnhum.2016.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.
Collapse
Affiliation(s)
- Maya E. Cano
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, USA
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeley, CA, USA
- Department of Psychology, University of California, BerkeleyBerkeley, CA, USA
| |
Collapse
|
34
|
Ardestani A, Shen W, Darvas F, Toga AW, Fuster JM. Modulation of Frontoparietal Neurovascular Dynamics in Working Memory. J Cogn Neurosci 2015; 28:379-401. [PMID: 26679214 DOI: 10.1162/jocn_a_00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our perception of the world is represented in widespread, overlapping, and interactive neuronal networks of the cerebral cortex. A majority of physiological studies on the subject have focused on oscillatory synchrony as the binding mechanism for representation and transmission of neural information. Little is known, however, about the stability of that synchrony during prolonged cognitive operations that span more than just a few seconds. The present research, in primates, investigated the dynamic patterns of oscillatory synchrony by two complementary recording methods, surface field potentials (SFPs) and near-infrared spectroscopy (NIRS). The signals were first recorded during the resting state to examine intrinsic functional connectivity. The temporal modulation of coactivation was then examined on both signals during performance of working memory (WM) tasks with long delays (memory retention epochs). In both signals, the peristimulus period exhibited characteristic features in frontal and parietal regions. Examination of SFP signals over delays lasting tens of seconds, however, revealed alternations of synchronization and desynchronization. These alternations occurred within the same frequency bands observed in the peristimulus epoch, without a specific correspondence between any definite cognitive process (e.g., WM) and synchrony within a given frequency band. What emerged instead was a correlation between the degree of SFP signal fragmentation (in time, frequency, and brain space) and the complexity and efficiency of the task being performed. In other words, the incidence and extent of SFP transitions between synchronization and desynchronization-rather than the absolute degree of synchrony-augmented in correct task performance compared with incorrect performance or in a control task without WM demand. An opposite relationship was found in NIRS: increasing task complexity induced more uniform, rather than fragmented, NIRS coactivations. These findings indicate that the particular features of neural oscillations cannot be linearly mapped to cognitive functions. Rather, information and the cognitive operations performed on it are primarily reflected in their modulations over time. The increased complexity and fragmentation of electrical frequencies in WM may reflect the activation of hierarchically diverse cognits (cognitive networks) in that condition. Conversely, the homogeneity in coherence of NIRS responses may reflect the cumulative vascular reactions that accompany that neuroelectrical proliferation of frequencies and the longer time constant of the NIRS signal. These findings are directly relevant to the mechanisms mediating cognitive processes and to physiologically based interpretations of functional brain imaging.
Collapse
Affiliation(s)
- Allen Ardestani
- University of California, Los Angeles.,Cedars Sinai Medical Center, Los Angeles, CA
| | - Wei Shen
- University of California, Los Angeles
| | | | | | | |
Collapse
|
35
|
Mayer A, Schwiedrzik CM, Wibral M, Singer W, Melloni L. Expecting to See a Letter: Alpha Oscillations as Carriers of Top-Down Sensory Predictions. Cereb Cortex 2015; 26:3146-60. [PMID: 26142463 DOI: 10.1093/cercor/bhv146] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predictions strongly influence perception. However, the neurophysiological processes that implement predictions remain underexplored. It has been proposed that high- and low-frequency neuronal oscillations act as carriers of sensory evidence and top-down predictions, respectively (von Stein and Sarnthein 2000; Bastos et al. 2012). However, evidence for the latter hypothesis remains scarce. In particular, it remains to be shown whether slow prestimulus alpha oscillations in task-relevant brain regions are stronger in the presence of predictions, whether they influence early categorization processes, and whether this interplay indeed boosts perception. Here, we directly address these questions by manipulating subjects' prior expectations about the identity of visually presented letters while collecting magnetoencephalographic recordings. We find that predictions lead to increased prestimulus alpha oscillations in a multisensory network representing grapheme/phoneme associations. Furthermore, alpha power interacts with stimulus degradation and top-down expectations to predict visibility ratings, and correlates with the amplitude of early sensory components (P1/N1m complex), suggesting a role in the selective amplification of predicted information. Our results thus indicate that low-frequency alpha oscillations can serve as a mechanism to carry and test sensory predictions about letters.
Collapse
Affiliation(s)
- Anna Mayer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Michael Wibral
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Wolf Singer
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Lucia Melloni
- Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt am Main, Germany Columbia University Medical Center, New York, NY, USA NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
36
|
Leiser SC, Pehrson AL, Robichaud PJ, Sanchez C. Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine--a quantitative EEG study in rats. Br J Pharmacol 2015; 171:4255-72. [PMID: 24846338 PMCID: PMC4241092 DOI: 10.1111/bph.12782] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/27/2014] [Accepted: 05/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose EEG studies show that 5-HT is involved in regulation of sleep–wake state and modulates cortical oscillations. Vortioxetine is a 5-HT3, 5-HT7, and 5-HT1D receptor antagonist, 5-HT1B partial agonist, 5-HT1A agonist, and 5-HT transporter inhibitor. Preclinical (animal) and clinical studies with vortioxetine show positive impact on cognitive metrics involving cortical function. Here we assess vortioxetine's effect on cortical neuronal oscillations in actively awake rats. Experimental Approach Telemetric EEG recordings were obtained with the following treatments (mg·kg−1, s.c.): vehicle, vortioxetine (0.1, 1.0, 3.0, 10), 5-HT1A agonist flesinoxan (2.5), 5-HT3 antagonist ondansetron (0.30), 5-HT7 antagonist SB-269970-A (10), escitalopram (2.0), duloxetine (10) and vortioxetine plus flesinoxan. Target occupancies were determined by ex vivo autoradiography. Key Results Vortioxetine dose-dependently increased wakefulness. Flesinoxan, duloxetine, ondansetron, but not escitalopram or SB-269970-A increased wakefulness. Quantitative spectral analyses showed vortioxetine alone and with flesinoxan increased θ (4–8 Hz), α (8–12 Hz) and γ (30–50 Hz) power. Duloxetine had no effect on θ and γ, but decreased α power, while escitalopram produced no changes. Ondansetron and SB-269970 (≈31–35% occupancy) increased θ power. Flesinoxan (≈41% occupancy) increased θ and γ power. Conclusions and Implications Vortioxetine increased wakefulness and increased frontal cortical activity, most likely because of its 5-HT7 and 5-HT3 antagonism and 5-HT1A agonism. Vortioxetine differs from escitalopram and duloxetine by increasing cortical θ, α and γ oscillations. These preclinical findings suggest a role of vortioxetine in modulating cortical circuits known to be recruited during cognitive behaviours and warrant further investigation as to their clinical impact.
Collapse
Affiliation(s)
- S C Leiser
- Department of BioAnalysis & Physiology, Lundbeck Research USA, Inc., Paramus, NJ, USA
| | | | | | | |
Collapse
|
37
|
Butorina A, Prokofyev A, Nazarova M, Litvak V, Stroganova T. The mirror illusion induces high gamma oscillations in the absence of movement. Neuroimage 2014; 103:181-191. [DOI: 10.1016/j.neuroimage.2014.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022] Open
|
38
|
Plank M, Snider J, Kaestner E, Halgren E, Poizner H. Neurocognitive stages of spatial cognitive mapping measured during free exploration of a large-scale virtual environment. J Neurophysiol 2014; 113:740-53. [PMID: 25376779 DOI: 10.1152/jn.00114.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using a novel, fully mobile virtual reality paradigm, we investigated the EEG correlates of spatial representations formed during unsupervised exploration. On day 1, subjects implicitly learned the location of 39 objects by exploring a room and popping bubbles that hid the objects. On day 2, they again popped bubbles in the same environment. In most cases, the objects hidden underneath the bubbles were in the same place as on day 1. However, a varying third of them were misplaced in each block. Subjects indicated their certainty that the object was in the same location as the day before. Compared with bubble pops revealing correctly placed objects, bubble pops revealing misplaced objects evoked a decreased negativity starting at 145 ms, with scalp topography consistent with generation in medial parietal cortex. There was also an increased negativity starting at 515 ms to misplaced objects, with scalp topography consistent with generation in inferior temporal cortex. Additionally, misplaced objects elicited an increase in frontal midline theta power. These findings suggest that the successive neurocognitive stages of processing allocentric space may include an initial template matching, integration of the object within its spatial cognitive map, and memory recall, analogous to the processing negativity N400 and theta that support verbal cognitive maps in humans.
Collapse
Affiliation(s)
- Markus Plank
- Institute for Neural Computation, University of California, San Diego, La Jolla, California
| | - Joseph Snider
- Institute for Neural Computation, University of California, San Diego, La Jolla, California
| | - Erik Kaestner
- Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and
| | - Eric Halgren
- Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and Departments of Radiology, Neurosciences, and Psychiatry, University of California, San Diego, La Jolla, California
| | - Howard Poizner
- Institute for Neural Computation, University of California, San Diego, La Jolla, California; Interdepartmental Neuroscience Program, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
39
|
Gajewski PD, Falkenstein M. Age-Related Effects on ERP and Oscillatory EEG-Dynamics in a 2-Back Task. J PSYCHOPHYSIOL 2014. [DOI: 10.1027/0269-8803/a000123] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is well known that working memory is one of the most vulnerable cognitive functions in elderly. However, little is known about the neuronal underpinnings and temporal dynamics of working memory mechanisms in healthy aging which are necessary to understand the age-related changes. To this end, 36 young and 36 old healthy individuals performed a 2-back task and a 0-back control task, while the electroencephalogram (EEG) was recorded. Participants were instructed to press a response key whenever a target appeared and not to respond in case of nontargets. Expectedly, older participants showed considerably slower RTs and significantly higher rates of omitted targets and false alarms than young participants in the 2-back task, whereas no age-group difference in detection rate was found in the 0-back task. From the EEG event-related potentials as well as time-frequency plots were computed. The ERPs showed a general delay of the frontocentral N2, and an attenuation and delay of both the P3a and P3b in older versus younger adults. Importantly, the frontal P3a was reduced in older adults in the 2-back task. Time-frequency decomposition revealed consistently lower power in frontal theta (6 Hz) and parietal alpha (9–11 Hz) frequency range in older versus younger adults whereas no age-related differences were found in the delta frequency range. Task unspecific reduction of posterior alpha in elderly was paralleled by a reduction of the P3b. In contrast, the older adults had a strongly reduced frontal theta power in the 2-back task, which parallels the P3a reduction in the ERPs. The widespread reduction of alpha may indicate that older adults needed to recruit more attentional resources for successful task performance, whereas reduced frontal theta may indicate that older adults are less able to recruit frontal resources related to top-down control with increasing task demands. This suggests a less efficient fronto-parietal network synchronicity in older individuals that leads to deficits in identification and maintenance of task relevant stimuli.
Collapse
Affiliation(s)
- Patrick D. Gajewski
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael Falkenstein
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
40
|
Eckart C, Fuentemilla L, Bauch EM, Bunzeck N. Dopaminergic stimulation facilitates working memory and differentially affects prefrontal low theta oscillations. Neuroimage 2014; 94:185-192. [DOI: 10.1016/j.neuroimage.2014.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/11/2014] [Accepted: 03/08/2014] [Indexed: 12/25/2022] Open
|
41
|
Kline JE, Poggensee K, Ferris DP. Your brain on speed: cognitive performance of a spatial working memory task is not affected by walking speed. Front Hum Neurosci 2014; 8:288. [PMID: 24847239 PMCID: PMC4021146 DOI: 10.3389/fnhum.2014.00288] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed.
Collapse
Affiliation(s)
- Julia E Kline
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
| | | | - Daniel P Ferris
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA ; School of Kinesiology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
42
|
Gärtner M, Rohde-Liebenau L, Grimm S, Bajbouj M. Working memory-related frontal theta activity is decreased under acute stress. Psychoneuroendocrinology 2014; 43:105-13. [PMID: 24703176 DOI: 10.1016/j.psyneuen.2014.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/19/2022]
Abstract
Acute stress impairs prefrontal cortex (PFC) function and has detrimental effects on working memory (WM) performance. Converging evidence from electrophysiological studies suggests a close link between WM processes and frontal theta (FT) activity (4-8 Hz). However, the effect of stress on WM-related FT activity has not been investigated yet. To shed light on this topic we acquired EEG data from 31 healthy male subjects who underwent a stressful and a neutral control condition. In both conditions, they performed an n-back WM task at two different difficulty levels. Our results showed that WM-related FT activity was decreased under stress. Behaviorally, we found performance impairments under stress in the difficult task condition that were related to FT decreases. Increased cortisol levels indicated a successful moderate stress induction. These findings indicate that FT is a potential neurobiological marker for intact PFC functioning during WM and further supports the recently made assumption that FT acts in the PFC to optimize performance.
Collapse
Affiliation(s)
- Matti Gärtner
- Cluster of Excellence "Languages of Emotion", Freie Universität Berlin, 14195 Berlin, Germany; Charité CBF, Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, 14050 Berlin, Germany.
| | - Lea Rohde-Liebenau
- Cluster of Excellence "Languages of Emotion", Freie Universität Berlin, 14195 Berlin, Germany
| | - Simone Grimm
- Cluster of Excellence "Languages of Emotion", Freie Universität Berlin, 14195 Berlin, Germany; Charité CBF, Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, 14050 Berlin, Germany; Clinic for Affective Disorders and General Psychiatry, Psychiatric University Hospital Zurich, 8032 Zurich, Switzerland
| | - Malek Bajbouj
- Cluster of Excellence "Languages of Emotion", Freie Universität Berlin, 14195 Berlin, Germany; Charité CBF, Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, 14050 Berlin, Germany
| |
Collapse
|
43
|
Ahmadlou M, Adeli A, Bajo R, Adeli H. Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task. Clin Neurophysiol 2014; 125:694-702. [DOI: 10.1016/j.clinph.2013.08.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 01/25/2023]
|
44
|
Reches A, Laufer I, Ziv K, Cukierman G, McEvoy K, Ettinger M, Knight RT, Gazzaley A, Geva AB. Network dynamics predict improvement in working memory performance following donepezil administration in healthy young adults. Neuroimage 2013; 88:228-41. [PMID: 24269569 DOI: 10.1016/j.neuroimage.2013.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 11/28/2022] Open
Abstract
Attentional selection in the context of goal-directed behavior involves top-down modulation to enhance the contrast between relevant and irrelevant stimuli via enhancement and suppression of sensory cortical activity. Acetylcholine (ACh) is believed to be involved mechanistically in such attention processes. The objective of the current study was to examine the effects of donepezil, a cholinesterase inhibitor that increases synaptic levels of ACh, on the relationship between performance and network dynamics during a visual working memory (WM) task involving relevant and irrelevant stimuli. Electroencephalogram (EEG) activity was recorded in 14 healthy young adults while they performed a selective face/scene working memory task. Each participant received either placebo or donepezil (5mg, orally) on two different visits in a double-blinded study. To investigate the effects of donepezil on brain network dynamics we utilized a novel EEG-based Brain Network Activation (BNA) analysis method that isolates location-time-frequency interrelations among event-related potential (ERP) peaks and extracts condition-specific networks. The activation level of the network modulated by donepezil, reflected in terms of the degree of its dynamical organization, was positively correlated with WM performance. Further analyses revealed that the frontal-posterior theta-alpha sub-network comprised the critical regions whose activation level correlated with beneficial effects on cognitive performance. These results indicate that condition-specific EEG network analysis could potentially serve to predict beneficial effects of therapeutic treatment in working memory.
Collapse
Affiliation(s)
| | | | - K Ziv
- ElMindA Ltd., Herzliya, Israel
| | | | - K McEvoy
- University of California, Los Angeles School of Medicine, Los Angeles, CA, USA
| | | | - R T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, CA, USA
| | - A Gazzaley
- Departments of Neurology, Physiology and Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - A B Geva
- ElMindA Ltd., Herzliya, Israel; Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheba, Israel
| |
Collapse
|
45
|
Time–Frequency Analysis of Event-Related Potentials: A Brief Tutorial. Brain Topogr 2013; 27:438-50. [DOI: 10.1007/s10548-013-0327-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
46
|
Chuang LY, Huang CJ, Hung TM. The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. Int J Psychophysiol 2013; 90:321-8. [PMID: 24126125 DOI: 10.1016/j.ijpsycho.2013.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022]
Abstract
During the preparatory period of motor skill, attention is considered as one of the most vital factors for athletic performance. Electroencephalographic (EEG) indices, such as occipital α, have been employed to explore the psychological state during the preparatory period in elite athletes. The main purpose of this study was to investigate the differences in frontal midline theta (Fm θ) power during the aiming period between successful and unsuccessful basketball free throws. Fifteen skilled male basketball players were recruited and asked to perform free throws. Electroencephalogram (EEG) data were collected 2seconds prior to the initiation of the free throw and segmented into four 0.5-s epochs. The lower theta (θ1, 4-6Hz) and upper theta (θ2, 6-8Hz) power values was contrasted between the successful and unsuccessful throws. Two 2×4×6 (performance×time×electrode) ANOVAs with repeated measures were conducted separately for θ1 and θ2 power. The results indicate that θ1 power at the Fz site and θ2 power at the Fz and the F4 sites fluctuated significantly during the preparatory period for an unsuccessful throw when compared with a successful throw. Additionally, a higher Fm θ2 power was observed at the beginning of the aiming period of a successful throw. This study suggests that a stable arousal and a relatively constant amount of attention to the task prior to motor execution may facilitate athletic performance.
Collapse
Affiliation(s)
- Lan-Ya Chuang
- Department of Physical Education, National Taiwan Normal University, No.162, Sec.1, Heping E. Rd., Da an Dist., Taipei City 106, Taiwan, Republic of China (R.O.C.).
| | | | | |
Collapse
|
47
|
Olvera-Cortés ME, Gutiérrez-Guzmán BE, López-Loeza E, Hernández-Pérez JJ, López-Vázquez MÁ. Serotonergic modulation of hippocampal theta activity in relation to hippocampal information processing. Exp Brain Res 2013; 230:407-26. [DOI: 10.1007/s00221-013-3679-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
48
|
Moisello C, Meziane HB, Kelly S, Perfetti B, Kvint S, Voutsinas N, Blanco D, Quartarone A, Tononi G, Ghilardi MF. Neural activations during visual sequence learning leave a trace in post-training spontaneous EEG. PLoS One 2013; 8:e65882. [PMID: 23799058 PMCID: PMC3683043 DOI: 10.1371/journal.pone.0065882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/29/2013] [Indexed: 11/29/2022] Open
Abstract
Recent EEG studies have shown that implicit learning involving specific cortical circuits results in an enduring local trace manifested as local changes in spectral power. Here we used a well characterized visual sequence learning task and high density-(hd-)EEG recording to determine whether also declarative learning leaves a post-task, local change in the resting state oscillatory activity in the areas involved in the learning process. Thus, we recorded hd-EEG in normal subjects before, during and after the acquisition of the order of a fixed spatial target sequence (VSEQ) and during the presentation of targets in random order (VRAN). We first determined the temporal evolution of spectral changes during VSEQ and compared it to VRAN. We found significant differences in the alpha and theta bands in three main scalp regions, a right occipito-parietal (ROP), an anterior-frontal (AFr), and a right frontal (RFr) area. The changes in frontal theta power during VSEQ were positively correlated with the learning rate. Further, post-learning EEG recordings during resting state revealed a significant increase in alpha power in ROP relative to a pre-learning baseline. We conclude that declarative learning is associated with alpha and theta changes in frontal and posterior regions that occur during the task, and with an increase of alpha power in the occipito-parietal region after the task. These post-task changes may represent a trace of learning and a hallmark of use-dependent plasticity.
Collapse
Affiliation(s)
- Clara Moisello
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, New York, United States of America
| | - Hadj Boumediene Meziane
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, New York, United States of America
| | - Simon Kelly
- Department of Biomedical Engineering, City College of New York, New York, New York, United States of America
| | - Bernardo Perfetti
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, New York, United States of America
| | - Svetlana Kvint
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, New York, United States of America
| | - Nicholas Voutsinas
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, New York, United States of America
| | - Daniella Blanco
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, New York, United States of America
| | - Angelo Quartarone
- Department of Neurosciences, Psychiatry and Anaesthesiological Science, University of Messina, Messina, Italy
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Maria Felice Ghilardi
- Department of Physiology, Pharmacology and Neuroscience, City University of New York Medical School, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Ahmadlou M, Gharib M, Hemmati S, Vameghi R, Sajedi F. Disrupted small-world brain network in children with Down Syndrome. Clin Neurophysiol 2013; 124:1755-64. [PMID: 23583023 DOI: 10.1016/j.clinph.2013.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To explore how the global organization or topology of the functional brain connectivity (FBC) is affected in Down Syndrome (DS). METHODS As the brain is a highly complex network including numerous nonlinearly interacted neuronal areas, the FBCs of typically developing (TD) children and DS patients were computed using a nonlinear synchronization method. Then the differences in global organization of the obtained FBCs of the two groups were analyzed, in all electroencephalogram (EEG) frequency bands, in the framework of Small-Worldness Network (a network with optimum balance between segregation and integration of information). RESULTS The topology of the functional connectivity of DS patients is disrupted in the whole brain in alpha and theta bands, and especially in the left intra-hemispheric brain networks in upper alpha band. CONCLUSIONS The global organization of the DS brain does not resemble a Small-World network, but it works as a random network. SIGNIFICANCE It is the first study on global organization of the FBC in DS.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
50
|
Brown SR. Emergence in the central nervous system. Cogn Neurodyn 2012; 7:173-95. [PMID: 24427200 DOI: 10.1007/s11571-012-9229-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 10/04/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022] Open
Abstract
"Emergence" is an idea that has received much attention in consciousness literature, but it is difficult to find characterizations of that concept which are both specific and useful. I will precisely define and characterize a type of epistemic ("weak") emergence and show that it is a property of some neural circuits throughout the CNS, on micro-, meso- and macroscopic levels. I will argue that possession of this property can result in profoundly altered neural dynamics on multiple levels in cortex and other systems. I will first describe emergent neural entities (ENEs) abstractly. I will then show how ENEs function specifically and concretely, and demonstrate some implications of this type of emergence for the CNS.
Collapse
Affiliation(s)
- Steven Ravett Brown
- Department of Neuroscience, Mt. Sinai School of Medicine, Icahn Medical Institute, 1425 Madison Ave, Rm 10-70E, New York, NY 10029 USA ; 158 W 23rd St, Fl 3, New York, NY 10011 USA
| |
Collapse
|