1
|
Wylenzek F, Bühling KJ, Laakmann E. A systematic review on the impact of nutrition and possible supplementation on the deficiency of vitamin complexes, iron, omega-3-fatty acids, and lycopene in relation to increased morbidity in women after menopause. Arch Gynecol Obstet 2024; 310:2235-2245. [PMID: 38935105 PMCID: PMC11393286 DOI: 10.1007/s00404-024-07555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
A balanced and healthy diet during the menopausal transition and after menopause is crucial for women to reduce the risk for morbidities and chronic diseases due to deficiency of essential nutrients. PURPOSE The objective of this study was to conduct a systematic review of studies that analyzed the impact of vitamin and nutrient deficiencies in postmenopausal women in relation to increased morbidities and chronic conditions. METHODS Observational studies were searched in the databases PubMed, UpToDate, and Google Scholar. RESULTS We searched 122 studies, of which 90 were included in our analysis. The meta-analysis of the data could not be performed because of the heterogeneity of the statistical methods in the included studies. In our study, we focused on the aspects of vitamin B6, vitamin B12, vitamin D, iron, omega-3-fatty acids, and lycopene, belonging to the family of carotenoids. Postmenopausal women with deficiencies of these nutrients are more vulnerable to comorbidities such as cardiovascular and cerebrovascular events, metabolic diseases, osteoporosis, obesity, cancer and neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, depression, cognitive decline, dementia, and stroke. We concluded that women after menopause tend to have a greater probability of suffering from deficiencies in various vitamins and nutrients, and consequently have an increased risk of developing morbidities and chronic diseases. CONCLUSION In conclusion, maintaining optimum serum levels of nutrients and vitamins, either through a balanced and healthy diet consuming fresh fruits, vegetables, and fats or by taking appropriate supplementation, is essential in maintaining optimal health-related quality of life and reducing the risk for women during the menopausal transition and after menopause. Nevertheless, more recent studies need to be assessed to formulate adequate recommendations to achieve positive clinical outcomes.
Collapse
Affiliation(s)
- Friederike Wylenzek
- Department of Gynecological Endocrinology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Kai J Bühling
- Department of Gynecological Endocrinology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Elena Laakmann
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
2
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
3
|
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M, Potkonjak N. Metals on the Menu-Analyzing the Presence, Importance, and Consequences. Foods 2024; 13:1890. [PMID: 38928831 PMCID: PMC11203375 DOI: 10.3390/foods13121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Metals are integral components of the natural environment, and their presence in the food supply is inevitable and complex. While essential metals such as sodium, potassium, magnesium, calcium, iron, zinc, and copper are crucial for various physiological functions and must be consumed through the diet, others, like lead, mercury, and cadmium, are toxic even at low concentrations and pose serious health risks. This study comprehensively analyzes the presence, importance, and consequences of metals in the food chain. We explore the pathways through which metals enter the food supply, their distribution across different food types, and the associated health implications. By examining current regulatory standards for maximum allowable levels of various metals, we highlight the importance of ensuring food safety and protecting public health. Furthermore, this research underscores the need for continuous monitoring and management of metal content in food, especially as global agricultural and food production practices evolve. Our findings aim to inform dietary recommendations, food fortification strategies, and regulatory policies, ultimately contributing to safer and more nutritionally balanced diets.
Collapse
Affiliation(s)
- Vedran Milanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Tasić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Andreja Leskovac
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Sandra Petrović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Miloš Mitić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Mirjana Novković
- Group for Muscle Cellular and Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia;
| | - Nebojša Potkonjak
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| |
Collapse
|
4
|
Forma A, Grunwald A, Zembala P, Januszewski J, Brachet A, Zembala R, Świątek K, Baj J. Micronutrient Status and Breast Cancer: A Narrative Review. Int J Mol Sci 2024; 25:4968. [PMID: 38732186 PMCID: PMC11084730 DOI: 10.3390/ijms25094968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer is one of the most common cancers worldwide, at the same time being one of the most prevalent causes of women's death. Many factors such as alcohol, weight fluctuations, or hormonal replacement therapy can potentially contribute to breast cancer development and progression. Another important factor in breast cancer onset includes micronutrient status. In this narrative review, we analyzed 23 micronutrients and their possible influence on breast cancer onset and progression. Further, the aim of this study was to investigate the impact of micronutrient status on the prevention of breast cancer and its possible influence on various therapeutic pathways. We researched meta-analyses, systemic and narrative reviews, retrospective studies, as well as original studies on human and animal models. The results of these studies indicate a possible correlation between the different levels of micronutrients and a decreased risk of breast cancer as well as a better survival rate. However, further studies are necessary to establish adequate doses of supplementation of the chosen micronutrients and the exact mechanisms of micronutrient impact on breast cancer therapy.
Collapse
Affiliation(s)
- Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Arkadiusz Grunwald
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Patryk Zembala
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (A.G.); (A.B.)
| | - Roksana Zembala
- Faculty of Medicine, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Kamila Świątek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.J.); (K.Ś.); (J.B.)
| |
Collapse
|
5
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
6
|
Dumas E, Grandal Rejo B, Gougis P, Houzard S, Abécassis J, Jochum F, Marande B, Ballesta A, Del Nery E, Dubois T, Alsafadi S, Asselain B, Latouche A, Espie M, Laas E, Coussy F, Bouchez C, Pierga JY, Le Bihan-Benjamin C, Bousquet PJ, Hotton J, Azencott CA, Reyal F, Hamy AS. Concomitant medication, comorbidity and survival in patients with breast cancer. Nat Commun 2024; 15:2966. [PMID: 38580683 PMCID: PMC10997660 DOI: 10.1038/s41467-024-47002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Between 30% and 70% of patients with breast cancer have pre-existing chronic conditions, and more than half are on long-term non-cancer medication at the time of diagnosis. Preliminary epidemiological evidence suggests that some non-cancer medications may affect breast cancer risk, recurrence, and survival. In this nationwide cohort study, we assessed the association between medication use at breast cancer diagnosis and survival. We included 235,368 French women with newly diagnosed non-metastatic breast cancer. In analyzes of 288 medications, we identified eight medications positively associated with either overall survival or disease-free survival: rabeprazole, alverine, atenolol, simvastatin, rosuvastatin, estriol (vaginal or transmucosal), nomegestrol, and hypromellose; and eight medications negatively associated with overall survival or disease-free survival: ferrous fumarate, prednisolone, carbimazole, pristinamycin, oxazepam, alprazolam, hydroxyzine, and mianserin. Full results are available online from an interactive platform ( https://adrenaline.curie.fr ). This resource provides hypotheses for drugs that may naturally influence breast cancer evolution.
Collapse
Affiliation(s)
- Elise Dumas
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France
- INSERM, U900, 75005, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006, Paris, France
| | - Beatriz Grandal Rejo
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France
| | - Paul Gougis
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France
| | - Sophie Houzard
- Health Data and Assessment, Health Survey Data Science and Assessment Division, French National Cancer Institute (Institut National du Cancer INCa), 92100, Boulogne-Billancourt, France
| | - Judith Abécassis
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France
- INRIA, Paris-Saclay University, CEA, Palaiseau, 91120, France
| | - Floriane Jochum
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France
- Department of Gynecology, Strasbourg University Hospital, Strasbourg, France
| | - Benjamin Marande
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France
| | - Annabelle Ballesta
- INSERM UMR-S 900, Institut Curie, MINES ParisTech CBIO, PSL Research University, 92210, Saint-Cloud, France
| | - Elaine Del Nery
- Département de Recherche Translationnelle - Plateforme Biophenics, PICT-IBISA, PSL Research University, Paris, France
| | - Thierry Dubois
- Institut Curie - PSL Research University Translational Research Department Breast Cancer Biology Group 26 rue d'Ulm, 75005, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| | | | - Aurélien Latouche
- INSERM, U900, 75005, Paris, France
- INSERM UMR-S 900, Institut Curie, MINES ParisTech CBIO, PSL Research University, 92210, Saint-Cloud, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Marc Espie
- Breast diseases Center Hôpital saint Louis APHP, Université Paris Cité, Paris, France
| | - Enora Laas
- Department of Surgical Oncology, Université Paris Cité, Institut Curie, 75005, Paris, France
| | - Florence Coussy
- Department of Medical Oncology, Université Paris Cité, Institut Curie, 75005, Paris, France
| | - Clémentine Bouchez
- Breast diseases Center Hôpital saint Louis APHP, Université Paris Cité, Paris, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Université Paris Cité, Institut Curie, 75005, Paris, France
| | - Christine Le Bihan-Benjamin
- Health Data and Assessment, Health Survey Data Science and Assessment Division, French National Cancer Institute (Institut National du Cancer INCa), 92100, Boulogne-Billancourt, France
| | - Philippe-Jean Bousquet
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Équipe Labellisée Ligue Contre le Cancer, 13005, Marseille, France
- Health Survey Data Science and Assessment Division, French National Cancer Institute (Institut National du Cancer INCa), 92100, Boulogne-Billancourt, France
| | | | - Chloé-Agathe Azencott
- INSERM, U900, 75005, Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006, Paris, France
- Institut Curie, PSL Research University, Paris, France
| | - Fabien Reyal
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France.
- Department of Surgical Oncology, Université Paris Cité, Institut Curie, 75005, Paris, France.
- Department of Surgery, Institut Jean Godinot, Reims, France.
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, Université Paris Cité, F-75005, Paris, France
- Department of Medical Oncology, Université Paris Cité, Institut Curie, 75005, Paris, France
| |
Collapse
|
7
|
Yu X, Peng Y, Nie T, Sun W, Zhou Y. Diabetes and two kinds of primary tumors in a patient with thalassemia: a case report and literature review. Front Oncol 2023; 13:1207336. [PMID: 37637036 PMCID: PMC10455928 DOI: 10.3389/fonc.2023.1207336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background Thalassemia is a group of common genetic hematologic disorders characterized by deficient synthesis of the hemoglobin chain. Due to effective blood transfusion and optimization of chelate therapy, the survival of thalassemia patients and their overall quality of life have improved noticeably in the past few decades. As a consequence, the longer life expectancy has led to the manifestation of several concomitant morbidities, including heart disease, infections, cirrhosis, endocrine abnormalities, various malignancies, and so on. In this context, the probability and updated literature about some malignancy cases in patients with thalassemia build new scenarios for the next few years. We describe the first report of a thalassemic patient developing diabetes and head and neck cancer and try to summarize the possible predisposing factors and mechanisms behind their phenomenon. Case presentation The current case report describes a 50-year-old Asian man who has been diagnosed with thalassemia since childhood. In early 2017, he was also diagnosed with diabetes and started on insulin-hypoglycemic treatment. The patient was then diagnosed with primary non-keratinizing undifferentiated carcinoma of the nasopharynx in late February 2013. A biopsy of the left tongue revealed squamous cell carcinoma (SCC) in late March 2019. Conclusions We report the first case of a thalassemic patient developing diabetes and squamous cell carcinoma of the head and neck and discuss the possibility of a link between the three diseases. This specific case should alert physicians to the possibility of endocrinopathy and malignancy in thalassemic patients.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Peng
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Nie
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjia Sun
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yajuan Zhou
- Department of Radiotherapy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Al Khamees M, Alqurain AA, Alsaleh AA, Alhashem YA, AlSaffar N, Alibrahim NN, Aljunibi FA, Alradwan Z, Almohammade N, AlAlwan B. Prevalence of Iron Deficiency and its Association With Breast Cancer in Premenopausal Compared to Postmenopausal Women in Al Ahsa, Saudi Arabia. Cancer Inform 2023; 22:11769351231172589. [PMID: 37223318 PMCID: PMC10201173 DOI: 10.1177/11769351231172589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Iron is an essential cofactor needed for normal functions of various enzymes and its depletion lead to increase DNA damage, genomic instability, deteriorate innate, adaptive immunity, and promote tumor development. It is also linked to tumorigenesis of breast cancer cells through enhancing mammary tumor growth and metastasis. There is insufficient data describing this association in Saudi Arabia. This study aims to determine the prevalence of iron deficiency and its association with breast cancer among premenopausal and postmenopausal women referred for breast cancer screening center in Al Ahsa, Eastern Province of Saudi Arabia. Age, hemoglobin level, iron level, history of anemia, or iron deficiency were collected from patients' medical records. The included participants were grouped based on their age into premenopausal (<50 years) or postmenopausal (⩾50 years). The definition of low Hb implemented (Hb below 12 g/dL) and low total serum Iron levels (below 8 μmol/L). Logistic regression test was used to compute the association between having a positive cancer screening test (radiological or histocytological) and participant's lab results. The results are presented as odds ratios and 95% confidence intervals. Thrree hundred fifty-seven women were included, 77% (n = 274) of them were premenopausal. This group cases had more history of iron deficiency (149 [60%] vs 25 (30%), P = .001) compared to those in the postmenopausal group. The risk of having a positive radiological cancer screening test was associated with age (OR = 1.04, 95% CI 1.02-1.06), but negatively was associated with iron level (OR = 0.9, 95% CI 0.86-0.97) among the entire cohort. This study is the first to propose an association between iron deficiency and breast cancer among Saudi young females. This could suggest iron level as a new risk factor that may be used by clinicians to assess breast cancer risk.
Collapse
Affiliation(s)
- Mohammad Al Khamees
- Clinical Laboratory Department, King
Fahad Hospital Hoffuf, Hoffuf, Saudi Arabia
| | - Aymen A Alqurain
- Department of Pharmacy, Mohammed
Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Medical Laboratory Science Department,
Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Yousef A Alhashem
- Medical Laboratory Science Department,
Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Nida AlSaffar
- Medical Laboratory Science Department,
Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Noura N Alibrahim
- Medical Laboratory Science Department,
Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Fardus A Aljunibi
- Medical Laboratory Science Department,
Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Zaheda Alradwan
- Medical Laboratory Science Department,
Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Nesreen Almohammade
- Foundation Year Department, Mohammed
Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Bader AlAlwan
- Medical Laboratory Science Department,
Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Li X, Duan X, Tan D, Zhang B, Xu A, Qiu N, Chen Z. Iron deficiency and iron overload in men and woman of reproductive age, and pregnant women. Reprod Toxicol 2023; 118:108381. [PMID: 37023911 DOI: 10.1016/j.reprotox.2023.108381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Iron is an essential micronutrient for human biology and health, but high iron levels can be dangerous. Both iron deficiency and iron overload have been linked to reproductive health. This review summarizes the effects of iron deficiency and iron overload on men of reproductive age, women of reproductive age, and pregnant women. In addition, appropriate iron levels and the need for iron and nutritional supplements at different stages of life and pregnancy are discussed. In general, men should be aware of the risk of iron overload at any stage of life; women should take appropriate iron supplements before menopause; postmenopausal women should pay attention to the risk of iron overload; and pregnant women should receive reasonable iron supplementation in middle and late pregnancy. By summarizing evidence on the relationship between iron and reproductive health, this review aims to promote the development of strategies to optimize reproductive capacity from the perspective of nutrition. However, additional detailed experimental investigations and clinical studies are needed to assess the underlying causes and mechanisms of the observed associations between iron and reproductive health.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xuexia Duan
- Physical Examination Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Dongmei Tan
- Traditional Chinese Medicine Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Bin Zhang
- Department of Ophthalmology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Anran Xu
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Ningning Qiu
- Department of Anesthesiology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China.
| | - Zhaowen Chen
- Obstetrics Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China.
| |
Collapse
|
10
|
Chang VC, Cotterchio M, Kotsopoulos J, Bondy SJ. Iron Status and Associated Factors among Canadian Women: Results from the Canadian Health Measures Survey. J Nutr 2023; 153:781-797. [PMID: 36788041 DOI: 10.1016/j.tjnut.2022.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Iron deficiency and overload may negatively impact women's health. There has been limited assessment of iron status and its associated factors among Canadian women. OBJECTIVES This study investigated associations of various sociodemographic, lifestyle, medication, and dietary factors with body iron stores among pre- and postmenopausal women in Canada. METHODS Analyses were conducted using cross-sectional, nationally representative survey and biomarker data from women aged 20-79 y (n = 6362) in the Canadian Health Measures Survey (2009-2017). Body iron stores were assessed by measuring serum concentrations of ferritin (SF). Information on potential correlates was collected during an in-home interview. Multivariable linear regression analyses were performed to evaluate associations with SF concentration, and logistic regression was used to estimate associations with iron deficiency (SF <15 μg/L) or elevated iron stores (SF >150 μg/L). RESULTS Geometric mean SF concentrations were significantly higher in postmenopausal than in premenopausal women (73.2 versus 33.8 μg/L; P < 0.001). The prevalence of iron deficiency among pre- and postmenopausal women was 16.0% and 4.0%, respectively, whereas that of elevated iron stores was 2.7% and 21.0%, respectively. After simultaneous adjustment for multiple factors, including high-sensitivity CRP (inflammation marker), we found that age, East/Southeast Asian (versus White) race/ethnicity, alcohol, and red meat consumption were positively associated with SF concentration among pre- and postmenopausal women. In addition, aspirin use and dairy consumption were inversely associated with SF concentration among postmenopausal women only. Similar patterns were observed for associations with elevated iron stores among postmenopausal women, whereas higher grain consumption was associated with an increased prevalence of iron deficiency among premenopausal women. CONCLUSIONS Sociodemographic, lifestyle, medication, and dietary factors are correlated with iron status determined by SF concentration among Canadian women. The findings may have implications for intervention strategies aimed at optimizing body iron stores in pre- and postmenopausal women.
Collapse
Affiliation(s)
- Vicky C Chang
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Prevention and Cancer Control, Ontario Health (Cancer Care Ontario), Toronto, ON, Canada.
| | - Michelle Cotterchio
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Prevention and Cancer Control, Ontario Health (Cancer Care Ontario), Toronto, ON, Canada
| | - Joanne Kotsopoulos
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Susan J Bondy
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
12
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
13
|
Ivanova TI, Klabukov ID, Krikunova LI, Poluektova MV, Sychenkova NI, Khorokhorina VA, Vorobyev NV, Gaas MY, Baranovskii DS, Goryainova OS, Sachko AM, Shegay PV, Kaprin AD, Tillib SV. Prognostic Value of Serum Transferrin Analysis in Patients with Ovarian Cancer and Cancer-Related Functional Iron Deficiency: A Retrospective Case-Control Study. J Clin Med 2022; 11:jcm11247377. [PMID: 36555993 PMCID: PMC9786287 DOI: 10.3390/jcm11247377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: There are no reliable and widely available markers of functional iron deficiency (FID) in cancer. The aim of the study was to evaluate the role of transferrin (Tf) as a marker of cancer of the ovary (CrO) and related FID. (2) Methods: The study groups consisted of 118 patients with CrO and 69 control females. Blood serum iron status was determined on a Beckman Coulter AU (USA) analyzer. Tf quantification was performed by immunoturbidimetry. The relative contents of apo- and holo-Tf (iron-free and iron-saturated Tf, respectively) were determined in eight patients and a control female by immunochromatographic analysis based on the use of monoclonal single-domain antibodies (nanobodies). (3) Results: Four groups of patients with different iron statuses were selected according to ferritin and transferrin saturation values: absolute iron deficiency (AID) (n = 42), FID (n = 70), iron overload (n = 4), normal iron status (n = 2). The groups differed significantly in Tf values (p < 0.0001). Lower values of Tf were associated with FID. Furthermore, FID is already found in the initial stages of CrO (26%). Immunosorbents based on nanobodies revealed the accumulation of apo-Tf and the decrease in holo-Tf in patients with CrO. (4) Conclusions: Tf may be a promising tool for diagnosing both CrO and associated FID.
Collapse
Affiliation(s)
- Tatiana I. Ivanova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| | - Ilya D. Klabukov
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
- Correspondence:
| | - Ludmila I. Krikunova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Marina V. Poluektova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Natalia I. Sychenkova
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Vera A. Khorokhorina
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
| | - Nikolay V. Vorobyev
- Department of Oncology, Radiotherapy and Plastic Surgery, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, 119991 Moscow, Russia
- P.A. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, 2nd Botkinsky Proezd 3, 125284 Moscow, Russia
| | - Margarita Ya. Gaas
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Denis S. Baranovskii
- A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Zhukova Str. 10, 249030 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| | - Anastasiya M. Sachko
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| | - Peter V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia
| |
Collapse
|
14
|
Islam S, Hoque N, Nasrin N, Hossain M, Rizwan F, Biswas K, Asaduzzaman M, Rahman S, Hoskin DW, Sultana S, Lehmann C. Iron Overload and Breast Cancer: Iron Chelation as a Potential Therapeutic Approach. Life (Basel) 2022; 12:963. [PMID: 35888054 PMCID: PMC9317809 DOI: 10.3390/life12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer has historically been one of the leading causes of death for women worldwide. As of 2020, breast cancer was reported to have overtaken lung cancer as the most common type of cancer globally, representing an estimated 11.3% of all cancer diagnoses. A multidisciplinary approach is taken for the diagnosis and treatment of breast cancer that includes conventional and targeted treatments. However, current therapeutic approaches to treating breast cancer have limitations, necessitating the search for new treatment options. Cancer cells require adequate iron for their continuous and rapid proliferation. Excess iron saturates the iron-binding capacity of transferrin, resulting in non-transferrin-bound iron (NTBI) that can catalyze free-radical reactions and may lead to oxidant-mediated breast carcinogenesis. Moreover, excess iron and the disruption of iron metabolism by local estrogen in the breast leads to the generation of reactive oxygen species (ROS). Therefore, iron concentration reduction using an iron chelator can be a novel therapeutic strategy for countering breast cancer development and progression. This review focuses on the use of iron chelators to deplete iron levels in tumor cells, specifically in the breast, thereby preventing the generation of free radicals. The inhibition of DNA synthesis and promotion of cancer cell apoptosis are the targets of breast cancer treatment, which can be achieved by restricting the iron environment in the body. We hypothesize that the usage of iron chelators has the therapeutic potential to control intracellular iron levels and inhibit the breast tumor growth. In clinical settings, iron chelators can be used to reduce cancer cell growth and thus reduce the morbidity and mortality in breast cancer patients.
Collapse
Affiliation(s)
- Sufia Islam
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Nazia Hoque
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Nishat Nasrin
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Mehnaz Hossain
- Department of Political Science and Global Governance, Balsillie School of International Affairs, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Farhana Rizwan
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Kushal Biswas
- Department of Pharmacy, East West University, A/2, Jahurul Islam Avenue, Jahurul Islam City, Aftabnagar, Dhaka 1212, Bangladesh; (N.H.); (N.N.); (F.R.); (K.B.)
| | - Muhammad Asaduzzaman
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Sabera Rahman
- Department of Pharmacy, City University, Dhaka 1215, Bangladesh;
| | - David W. Hoskin
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Saki Sultana
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (S.S.); (C.L.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (S.S.); (C.L.)
| |
Collapse
|
15
|
Evaluation of the Concentration of Selected Elements in Patients with Cancer of the Reproductive Organs with Respect to Treatment Stage-Preliminary Study. Nutrients 2022; 14:nu14122368. [PMID: 35745098 PMCID: PMC9230810 DOI: 10.3390/nu14122368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: The aim of this study was to assess the concentrations of selected elements in female patients with cancer of the reproductive organs, taking into account the stage of treatment. (2) Methods: The study sample consisted of 51 patients with advanced endometrial cancer and ovarian cancer, undergoing chemotherapy. The median age of the studied patients with endometrial cancer was 66.0 years (IQR: from 60.75 to 70.25), and with ovarian cancer―60.0 years (IQR: from 49.0 to 64.0). Each of the qualified women, after consent to participate in the study, had her blood drawn several times (before surgery, the first course of chemotherapy, the third course of chemotherapy, and the sixth course of chemotherapy) in order to determine serum levels of macro- and micronutrients (Na, Mg, Ca, Zn, P, Cu, Fe, Cd, Ni, and Sr). (3) Results: In the study group of patients with cancer of the reproductive tract, the concentrations of iron (<0.001), magnesium (0.038), sodium (0.014), and nickel (0.037) varied significantly over the course of the study. The analysis showed that the interaction between the stage of chemotherapy and the type of cancer had an effect on the concentrations of magnesium and cadmium (p < 0.05). (4) Conclusions: In the studied group of patients with ovarian and endometrial cancer, the applied chemotherapy significantly changed the concentrations of Fe, Na, and Ni, regardless of the type of tumor. Changes in Mg and Cd concentrations resulted from the interaction between the stage of chemotherapy and the type of cancer. The results of serum concentrations of selected elements in women with cancer of the reproductive organs may help understand the physiological changes resulting from the applied chemotherapy.
Collapse
|
16
|
Role of Iron in Aging Related Diseases. Antioxidants (Basel) 2022; 11:antiox11050865. [PMID: 35624729 PMCID: PMC9137504 DOI: 10.3390/antiox11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Iron progressively accumulates with age and can be further exacerbated by dietary iron intake, genetic factors, and repeated blood transfusions. While iron plays a vital role in various physiological processes within the human body, its accumulation contributes to cellular aging in several species. In its free form, iron can initiate the formation of free radicals at a cellular level and contribute to systemic disorders. This is most evident in high iron conditions such as hereditary hemochromatosis, when accumulation of iron contributes to the development of arthritis, cirrhosis, or cardiomyopathy. A growing body of research has further identified iron’s contributory effects in neurodegenerative diseases, ocular disorders, cancer, diabetes, endocrine dysfunction, and cardiovascular diseases. Reducing iron levels by repeated phlebotomy, iron chelation, and dietary restriction are the common therapeutic considerations to prevent iron toxicity. Chelators such as deferoxamine, deferiprone, and deferasirox have become the standard of care in managing iron overload conditions with other potential applications in cancer and cardiotoxicity. In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.
Collapse
|
17
|
He XC, Chen HY, Qiu Y, Tian L, Bao BS, Hao XP, Chen YH. Associations of iron status with breast cancer risk factors in adult women: Findings from National Health and Nutrition Examination Survey 2017-2018. J Trace Elem Med Biol 2021; 68:126867. [PMID: 34592676 DOI: 10.1016/j.jtemb.2021.126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study examined the association between iron status and a set of breast cancer risk factors among U.S. adult women aged 20-80 years. METHODS Data from National Health and Nutrition Examination Survey (2017-2018) were used to examine the relation between serum ferritin, serum iron and transferrin saturation with a set of breast cancer risk factors [body mass index (BMI), waist circumference, glycosylated hemoglobin (HbA1c), fasting plasma glucose, insulin and HOMA-IR]. The multivariable linear regressions were used controlling for age, race/ethnicity, menopause status, education level, smoking status, alcohol consumption, physical activity, high-sensitivity C-reactive protein (hsCRP) and total energy intake. RESULTS HbA1c, BMI and waist circumference data were available for 1902 women with a fasting sample (n = 913) for fasting plasma glucose, insulin and HOMA-IR. Transferrin saturation had significant, inverse associations with BMI, waist circumference and HbA1c. The size of difference observed were that participants in the fourth quartile of transferrin saturation had a 4.50 kg/m2 smaller BMI, a 9.36 cm smaller waist circumference and a 0.1 % lower HbA1c level than participants in the first quartile. Similarly, serum iron concentrations were inversely associated with BMI and waist circumference. In addition, serum iron had significant, inverse associations with insulin and HOMA-IR. Sensitivity analyses among men gave similar results. For serum ferritin, there was a trend towards a positive association between waist circumference, HbA1c and fasting plasma glucose with serum ferritin. However, the associations did not reach statistical significance among women. CONCLUSIONS Iron status may impact breast cancer risk via effects on adiposity or glucose metabolism. The findings should be confirmed with further prospective data.
Collapse
Affiliation(s)
- Xiao-Chong He
- Department of Nursing Administration, Army Medical University, Chongqing, 400038, China.
| | - Hong-Ye Chen
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yue Qiu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Lin Tian
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Bao-Shi Bao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiao-Peng Hao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Yu-Hui Chen
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
18
|
Thompson HJ, Neil ES, McGinley JN. Pre-Clinical Insights into the Iron and Breast Cancer Hypothesis. Biomedicines 2021; 9:biomedicines9111652. [PMID: 34829880 PMCID: PMC8615831 DOI: 10.3390/biomedicines9111652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 01/06/2023] Open
Abstract
Population studies, systematic reviews, and meta-analyses have revealed no relationship between iron status and breast cancer, a weak positive association, or a small protective effect of low iron status. However, in those studies, the authors concluded that further investigation was merited. The set of experiments reported here used preclinical models to assess the likely value of further investigation. The effects of iron status on the initiation and promotion stage of mammary carcinogenesis are reported. Using the classical model of cancer initiation in the mammary gland, 7,12 dimethyl-benz[α]anthracene-induced carcinogenesis was unaffected by iron status. Similarly, excess iron intake showed no effect on the promotion stage of 1-methyl-1-nitrosurea-induced mammary carcinogenesis, though iron deficiency exerted a specific inhibitory effect on the carcinogenic process. Though iron-mediated cellular oxidation is frequently cited as a potential mechanism for effects on breast cancer, no evidence of increased oxidative damage to DNA attributable to excess iron intake was found. The reported preclinical data fail to provide convincing evidence that the further evaluation of the iron–breast cancer risk hypotheses is warranted and underscore the value of redefining the referent group in population-based studies of iron–cancer hypotheses in other tissues.
Collapse
|
19
|
Skrajnowska D, Tokarz A, Makowska J, Bobrowska-Korczak B. Changes in the Mineral Composition of Rat Tissues Induced by Breast Cancer and Dietary Supplementation. In Vivo 2021; 35:259-266. [PMID: 33402472 DOI: 10.21873/invivo.12254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM The aim of the study was to determine the effect of various diets with zinc or zinc in combination with resveratrol or genistein on mineral contents of the serum, urine, liver, kidney and heart in rats with chemically-induced mammary carcinoma. MATERIALS AND METHODS The manuscript presents the tissues and body fluids content of iron, calcium, zinc, magnesium and copper in control rats or rats treated with 7,12-dimethyl-1,2-benz[a]anthracene to induce mammary carcinogenesis, under four dietary conditions: standard feed, Zn supplemented feed (6.9 mg Zn/ml), Zn and resveratrol (0.2 mg/kg body) supplemented feed, or Zn and genistein (0.2 mg/kg body) supplemented feed. RESULTS The content of calcium and copper highly varied depending on the tissue and the type of dietary supplement (no change for zinc and magnesium). Irrespective of the diet used, the chemical induction of mammary cancer caused a decrease in iron concentration in most samples analysed. Only supplementation of the rats' diet with zinc and genistein induced no changes in iron distribution in the serum, urine, liver, kidney and heart. CONCLUSION Further research using various levels of zinc and genistein in the diet should be conducted to determine how the development and progression of cancer is linked to iron content in cells and its ability to accumulate in tumour tissue.
Collapse
Affiliation(s)
| | - Andrzej Tokarz
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Makowska
- Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
20
|
Ying JF, Lu ZB, Fu LQ, Tong Y, Wang Z, Li WF, Mou XZ. The role of iron homeostasis and iron-mediated ROS in cancer. Am J Cancer Res 2021; 11:1895-1912. [PMID: 34094660 PMCID: PMC8167679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023] Open
Abstract
As an important trace element, iron plays an essential role in many biology processes like cell proliferation, metabolism, and mitochondrial function. However, the disruption of iron homeostasis tends to cells death and human diseases due to it servers as mediator to promote the production of reactive oxygen species (ROS). In this review, first we introduced the mechanism of complex iron-mediated ROS involved in apoptosis, necroptosis, ferroptosis and pyroptosis. Next, we discussed the controversial role of excess iron and iron deficiency in tumor. Finally, we discussed the anti-cancer effects of iron on both sides, and novel iron-related strategies. This review outlined the mechanisms and regulation of iron homeostasis and iron-mediated ROS in tumors, and discussed the iron-related treatments.
Collapse
Affiliation(s)
- Jia-Fu Ying
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
- Key Laboratory of Molecular Animal Nutrition of The Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang UniversityHangzhou 310058, Zhejiang Province, P. R. China
| | - Ze-Bei Lu
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, P. R. China
| | - Luo-Qin Fu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| | - Yu Tong
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| | - Zhen Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| | - Wei-Fen Li
- Key Laboratory of Molecular Animal Nutrition of The Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang UniversityHangzhou 310058, Zhejiang Province, P. R. China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical CollegeHangzhou 310014, Zhejiang Province, P. R. China
| |
Collapse
|
21
|
Khongsti K, Pasupuleti BG, Das B, Bez G. 1,2,3-Triazole tethered 1,2,4‑trioxane trimer induces apoptosis in metastatic cancer cells and inhibits their proliferation, migration and invasion. Bioorg Chem 2021; 112:104952. [PMID: 33971565 DOI: 10.1016/j.bioorg.2021.104952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Artemisinin (ART) has been in use against different cancer cells and its derivatives and conjugates are more cytotoxic to iron-rich cancer cells. It is desirable to develop easily achievable synthetic 1,2,4-trioxanes having the same pharmacophore as that of ART. To explore more efficient compounds, a 1,2,3-triazole tethered 1,2,4‑trioxane trimer (4T) was synthesized and the anti-cancer effects of ART and 4T on MDA-MB-435 and MDA-MB-231 cells were investigated concerning regulation of osteopontin (OPN) expression, which is associated with cancer progression and malignancy. 1H NMR and 13C NMR, oxidative stress analysis, flow cytometry, western blot, Real-Time PCR, transfections, luciferase assay, cell viability, proliferation, migration and chemotactic invasion assays were used in this study. It was observed that the 4T induced apoptosis by inhibiting Bcl-2 (~0.6-fold) and cleavage of caspase-3 (intrinsic pathway) in these metastatic cancer cells, and also reduced colony formation, migration and invasion of these cancer cells. The treatment of 4T decreased the reduced glutathione level and increased the activities of glucose-6-phosphate dehydrogenase and glutathione reductase in the 4T treated cancer cells as compared to their respective controls. Further, the expression of OPN was diminished (~0.5-fold) by the 4T in these cell lines. It was also observed that the key mitogen-activated protein kinase pathway proteins, mitogen-activated protein kinase kinase1/2 (~1.8-fold) and extracellular signal-regulated kinase1/2 (~16-fold), were also activated following the treatment of the 4T. However, the phosphorylated c-Jun level, a component of activator protein-1, was significantly reduced in these cancer cells upon 4T treatment. Taken together, we hypothesize that 4T may be useful for controlling cancer progression and malignancy.
Collapse
Affiliation(s)
- Kitboklang Khongsti
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | | | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
22
|
Iron at the Interface of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22084097. [PMID: 33921027 PMCID: PMC8071427 DOI: 10.3390/ijms22084097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer incidence and mortality are rapidly growing, with liver cancer being the sixth most diagnosed cancer worldwide and the third leading cause of cancer death in 2020. A number of risk factors have been identified that trigger the progression to hepatocellular carcinoma. In this review, we focus on iron as a potential risk factor for liver carcinogenesis. Molecules involved in the regulation of iron metabolism are often upregulated in cancer cells, in order to provide a supply of this essential trace element for all stages of tumor development, survival, proliferation, and metastasis. Thus, cellular and systemic iron levels must be tightly regulated to prevent or delay liver cancer progression. Disorders associated with dysregulated iron metabolism are characterized with increased susceptibility to hepatocellular carcinoma. This review discusses the association of iron with metabolic disorders such as hereditary hemochromatosis, non-alcoholic fatty liver disease, obesity, and type 2 diabetes, in the background of hepatocellular carcinoma.
Collapse
|
23
|
Iron intake with the risk of breast cancer among Chinese women: a case-control study. Public Health Nutr 2021; 24:5743-5755. [PMID: 33618790 DOI: 10.1017/s1368980021000471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The current study evaluated the associations between different forms and sources of Fe and breast cancer risk in Southern Chinese women. DESIGN Case-control study. We collected data on the consumption of Fe from different forms and food sources by using a validated FFQ. Multivariable logistic regression and restricted cubic spline (RCS) analysis was used to reveal potential associations between Fe intake and breast cancer risk. SETTING A case-control study of women at three major hospitals in Guangzhou, China. PARTICIPANTS From June 2007 to March 2019, 1591 breast cancer cases and 1622 age-matched controls were recruited. RESULTS In quartile analyses, Fe from plants and Fe from white meat intake were inversely associated with breast cancer risk, with OR of 0·65 (95 % CI 0·47, 0·89, Ptrend = 0·006) and 0·76 (95 % CI 0·61, 0·96, Ptrend = 0·014), respectively, comparing the highest with the lowest quartile. No associations were observed between total dietary Fe, heme or non-heme Fe, Fe from meat or red meat and breast cancer risk. RCS analysis demonstrated J-shaped associations between total dietary Fe, non-heme Fe and breast cancer, and reverse L-shaped associations between heme Fe, Fe from meat and Fe from red meat and breast cancer. CONCLUSION Fe from plants and white meat were inversely associated with breast cancer risk. Significant non-linear J-shaped associations were found between total dietary Fe, non-heme Fe and breast cancer risk, and reverse L-shaped associations were found between heme Fe, Fe from meat or red meat and breast cancer risk.
Collapse
|
24
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
25
|
Shibabaw T, Teferi B, Molla MD, Ayelign B. Inflammation Mediated Hepcidin-Ferroportin Pathway and Its Therapeutic Window in Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2020; 12:165-180. [PMID: 33116818 PMCID: PMC7585830 DOI: 10.2147/bctt.s276404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Experimental and clinical data strongly support that iron is an essential element which plays a big role in cancer biology. Thus, hepcidin (Hp) and ferroportin (Fpn) are molecules that regulate and maintain the metabolism of iron. A peptide hormone hepcidin limits recycled and stored iron fluxes in macrophage and hepatic hepatocyte, respectively, to the blood stream by promoting degradation of the only iron exporter, Fpn, in the target cells. Moreover, the inflammatory microenvironment of breast cancer and altered hepcidin/ferroportin pathway is intimately linked. Breast cancer exhibits an iron seeking phenotype that is accomplished by tumor-associated macrophage (TAM). Because macrophages contribute to breast cancer growth and progression, this review will discuss TAM with an emphasis on describing how TAM (M2Ф phenotypic) interacts with their surrounding microenvironment and results in dysregulated Hp/Fpn and pathologic accumulation of iron as a hallmark of its malignant condition. Moreover, the underlying stroma or tumor microenvironment releases significant inflammatory cytokines like IL-6 and bone morphogenetic proteins like BMP-2 and 6 leading in aberrant Hp/Fpn pathways in breast cancer. Inflammation is primarily associated with the high intracellular iron levels, deregulated hepcidin/ferroportin pathway, and its upstream signaling in breast cancer. Subsequently, scholars have been reported that reducing iron level and manipulating the signaling molecules involved in iron metabolism can be used as a promising strategy of tumor chemotherapy. Here, we review the key molecular aspects of iron metabolism and its regulatory mechanisms of the hepcidin/ferroportin pathways and its current therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
26
|
Li M, Wang X, Lu S, He C, Wang C, Wang L, Wang X, Ge P, Song D. Erastin triggers autophagic death of breast cancer cells by increasing intracellular iron levels. Oncol Lett 2020; 20:57. [PMID: 32793311 PMCID: PMC7418505 DOI: 10.3892/ol.2020.11918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Erastin is a small molecular compound that induces ferroptosis by binding to voltage-dependent anion-selective channel protein (VDAC)2, VDAC3 and solute carrier family 7 member 5 inhibiting the cystine/glutamate antiporter. However, to the best of our knowledge, the mechanism of erastin-induced breast cancer cell death remains unclear. In present study aimed to explore the underlying mechanisms of the antitumor effects of erastin on breast cancer cells. Cellular viability was assessed using an MTT assay, a lactate dehydrogenase cytotoxicity assay kit was used to determine the cell death rate, the intracellular Fe2+ levels were determined using an iron colorimetric assay kit and western blotting was used to estimate the changes of autophagy-associated proteins levels. The present study demonstrated that erastin inhibited the viability of breast cancer cells and induced breast cancer cell death in a dose-dependent manner. Additionally, autophagy was activated by erastin, as demonstrated by upregulated expression levels of autophagy-associated proteins in breast cancer cells. Bafilomycin A1, 3-methyladenine and knockdown of autophagy related (ATG)5 with small interfering RNA prevented erastin-induced breast cancer cell death and inhibited the erastin-induced changes in the expression levels of the autophagy-associated proteins beclin1, ATG5, ATG12, microtubule-associated proteins 1A/1B light chain 3B (LC3B) and P62. Furthermore, erastin-induced breast cancer cell death was inhibited by an iron chelator, deferoxamine, which inhibited the increases of erastin-induced iron levels and inhibited the erastin-induced changes in the expression levels of the autophagy-related proteins beclin1, ATG5, ATG12, LC3B and P62. In summary, erastin triggered autophagic death in breast cancer cells by increasing intracellular iron levels.
Collapse
Affiliation(s)
- Mengxin Li
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuanzhong Wang
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shan Lu
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chuan He
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chongcheng Wang
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Wang
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130022, P.R. China
| | - Pengfei Ge
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dong Song
- Department of Breast Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Haghpanah S, Pishdad P, Zarei T, Shahsavani A, Amirmoezi F, Ilkhanipoor H, Ilkhanipoor H, Safaei S, Setoodegan F, De Sanctis V, Karimi M. Frequency of thyroid nodules in patients with β-thalassemias in Southern Iran. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:68-73. [PMID: 32685041 DOI: 10.4183/aeb.2020.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Although thyroid nodules are a common finding in the general population, determining the clinically important nodules is essential. We investigated thyroid nodules or cysts by thyroid ultrasonography (US) in patients with β-thalassemia major (β-TM) and intermedia (β-TI). We also report a β-TI patient who was diagnosed with thyroid cancer six months before our screening. Methods In this cross-sectional study, 178 patients with β-thalassemias referred to the Thalassemia Clinic in a tertiary hospital affiliated to Shiraz University of Medical Sciences were investigated, from January to June 2016, by US. Results Thyroid nodules or cysts were detected in 11 patients [total: 6.17 %; 8 patients with β-TM (8.2%) and 3 patients with β-TI (3.7%)]. All nodules were < 1 cm in diameter and were not suspicious of malignancy. All patients, after 1 year of thyroid US follow-up, did not show any significant change in favor of malignancy. Conclusion Based on our results, the frequency of thyroid nodules was similar to what was reported in the general population. However, a long-term follow-up of these patients is recommended because of the potential carcinogenic effects of iron and hepatitis C infection (HCV). To achieve more precise information, collaborative multicenter studies should be considered.
Collapse
Affiliation(s)
- S Haghpanah
- Shiraz University of Medical Sciences, Hematology Research Center - Shiraz, Iran
| | - P Pishdad
- Shiraz University of Medical Sciences, Medical Imaging Research Center - Shiraz, Iran
| | - T Zarei
- Shiraz University of Medical Sciences, Hematology Research Center - Shiraz, Iran
| | - A Shahsavani
- Shiraz University of Medical Sciences, Hematology Research Center - Shiraz, Iran
| | - F Amirmoezi
- Shiraz University of Medical Sciences, Hematology Research Center - Shiraz, Iran
| | - H Ilkhanipoor
- Shiraz University of Medical Sciences, Pediatric Endocrinologist, Shiraz, Iran
| | - H Ilkhanipoor
- Shiraz University of Medical Sciences, Medical Imaging Research Center - Shiraz, Iran
| | - S Safaei
- Shiraz University of Medical Sciences, Hematology Research Center - Shiraz, Iran
| | - F Setoodegan
- Shiraz University of Medical Sciences, Hematology Research Center - Shiraz, Iran
| | - V De Sanctis
- Quisisana Hospital, Pediatric and Adolescent Outpatient Clinics, Ferrara, Italy
| | - M Karimi
- Shiraz University of Medical Sciences, Hematology Research Center - Shiraz, Iran
| |
Collapse
|
28
|
Chang VC, Cotterchio M, Bondy SJ, Kotsopoulos J. Iron intake, oxidative stress‐related genes and breast cancer risk. Int J Cancer 2020; 147:1354-1373. [DOI: 10.1002/ijc.32906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Vicky C. Chang
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
- Prevention and Cancer Control Cancer Care Ontario, Ontario Health Toronto ON Canada
| | - Michelle Cotterchio
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
- Prevention and Cancer Control Cancer Care Ontario, Ontario Health Toronto ON Canada
| | - Susan J. Bondy
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
| | - Joanne Kotsopoulos
- Dalla Lana School of Public Health University of Toronto Toronto ON Canada
- Women's College Research Institute, Women's College Hospital Toronto ON Canada
| |
Collapse
|
29
|
Corte-Rodríguez M, Blanco-González E, Bettmer J, Montes-Bayón M. Quantitative Analysis of Transferrin Receptor 1 (TfR1) in Individual Breast Cancer Cells by Means of Labeled Antibodies and Elemental (ICP-MS) Detection. Anal Chem 2019; 91:15532-15538. [DOI: 10.1021/acs.analchem.9b03438] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
- Institute of Sanitary Research of Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Elisa Blanco-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
- Institute of Sanitary Research of Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Jörg Bettmer
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
- Institute of Sanitary Research of Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
- Institute of Sanitary Research of Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
30
|
Darwish AM, Fouly HA, Saied WH, Farah E. Lactoferrin plus health education versus total dose infusion (TDI) of low-molecular weight (LMW) iron dextran for treating iron deficiency anemia (IDA) in pregnancy: a randomized controlled trial. J Matern Fetal Neonatal Med 2019; 32:2214-2220. [PMID: 29338568 DOI: 10.1080/14767058.2018.1429396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Iron deficiency anemia (IDA) is one of the most common medical disorder disturbing pregnancies particularly in low resources countries, and contributes significantly to morbidities and mortalities. Thus, early diagnosis and prompt management of IDA is highly recommended. AIM To Test the efficacy and safety of oral lactoferrin plus health education provided by a nurse versus total dose infusion (TDI) of low-molecular weight (LMW) iron dextran for treating IDA in the second and third trimester of pregnancy. DESIGN A prospective interventional, randomized, parallel-group, single-center longitudinal study. SETTING Woman's Health Assiut University Hospital, Assiut, Egypt, at the outpatient clinic and inpatient unit. It comprised 120 cases divided into two groups as pineapple flavored lactoferrin oral sachets 100 mg twice daily with health education (group A) and TDI of LMW iron dextran (group B). MAIN OUTCOME MEASURES The primary efficacy parameter was clinical improvement and the amount of increase in hemoglobin concentration by 4 weeks after therapy, secondary outcome measures included measurement of the rest of RBC, and iron indices, the adverse effects related to iron therapy and the patient compliance to the treatment. RESULTS There was insignificant difference between both groups regarding sociodemographic data, parity and mean gestational age. Both groups showed a significant clinical improvement of anemia 4 weeks post-therapy. There was no statistically significant difference in mean Hb level improvement in both groups after 1 month of therapy. However, mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) improved significantly more in group B than A while iron indices (serum iron and serum ferritin) were significantly more in group A than group B. CONCLUSIONS Pineapple flavored lactoferrin oral sachets plus health education can be widely used as an alternative to TDI iron dextran supplementation due to clinical as well as laboratory improvement of IDA during pregnancy after 1 month of treatment. Proper health education of the pregnant women with nurse recommendations of balanced diet containing good sources of iron would increase awareness of pregnant women and help eradicate IDA with its serious sequel during pregnancy.
Collapse
Affiliation(s)
- A M Darwish
- a Department of Obstetrics and Gynecology, Faculty of Medicine , Woman's Health University Hospital , Assiut , Egypt
| | - H A Fouly
- b Faculty of Nursing , Assiut University , Assiut , Egypt
| | - W H Saied
- b Faculty of Nursing , Assiut University , Assiut , Egypt
| | - E Farah
- c Department of Clinical Pathology , Faculty of Medicine, Aswan University , Assiut , Egypt
| |
Collapse
|
31
|
Chang VC, Cotterchio M, Khoo E. Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer 2019; 19:543. [PMID: 31170936 PMCID: PMC6555759 DOI: 10.1186/s12885-019-5642-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Iron has been shown to promote breast carcinogenesis in animal models through generation of oxidative stress and interaction with estrogen. Heme iron, which is found exclusively in animal-sourced foods, is suggested to have a more detrimental effect. Epidemiological evidence of the association between iron and breast cancer risk remains inconclusive and has not been comprehensively summarized. This systematic review and meta-analysis evaluated associations between both iron intake and body iron status and breast cancer risk. METHODS Four electronic databases (MEDLINE, EMBASE, CINAHL, and Scopus) were searched up to December 2018 for studies assessing iron intake and/or biomarkers of iron status in relation to breast cancer risk. Using random-effects meta-analyses, pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated comparing the highest vs. lowest category of each iron measure. Dose-response meta-analyses were also performed to investigate linear and nonlinear associations. RESULTS A total of 27 studies were included in the review, of which 23 were eligible for meta-analysis of one or more iron intake/status measures. Comparing the highest vs. lowest category, heme iron intake was significantly associated with increased breast cancer risk, with a pooled RR of 1.12 (95% CI: 1.04-1.22), whereas no associations were found for dietary (1.01, 95% CI: 0.89-1.15), supplemental (1.02, 95% CI: 0.91-1.13), or total (0.97, 95% CI: 0.82-1.14) iron intake. Associations of iron status indicators with breast cancer risk were generally in the positive direction; however, a significant pooled RR was found only for serum/plasma levels (highest vs. lowest) of iron (1.22, 95% CI: 1.01-1.47), but not for ferritin (1.13, 95% CI: 0.78-1.62), transferrin saturation (1.16, 95% CI: 0.91-1.47), or total iron-binding capacity (1.10, 95% CI: 0.97-1.25). In addition, a nonlinear dose-response was observed for heme iron intake and serum iron (both Pnonlinearity < 0.05). CONCLUSIONS Heme iron intake and serum iron levels may be positively associated with breast cancer risk. Although associations were modest, these findings may have public health implications given the widespread consumption of (heme) iron-rich foods. In light of methodological and research gaps identified, further research is warranted to better elucidate the relationship between iron and breast cancer risk.
Collapse
Affiliation(s)
- Vicky C Chang
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6th Floor, Toronto, ON, M5T 3M7, Canada. .,Prevention and Cancer Control, Cancer Care Ontario, 620 University Avenue, Toronto, ON, M5G 2L7, Canada.
| | - Michelle Cotterchio
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6th Floor, Toronto, ON, M5T 3M7, Canada.,Prevention and Cancer Control, Cancer Care Ontario, 620 University Avenue, Toronto, ON, M5G 2L7, Canada
| | - Edwin Khoo
- Analytics and Informatics, Cancer Care Ontario, Toronto, ON, Canada
| |
Collapse
|
32
|
Alonso-García FJ, Blanco-González E, Montes-Bayón M. An inductively coupled plasma-mass spectrometry (ICP-MS) linked immunoassay by means of iodinated antibodies for transferrin quantitative analysis in breast cancer cell lines. Talanta 2019; 194:336-342. [DOI: 10.1016/j.talanta.2018.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022]
|
33
|
Bajbouj K, Shafarin J, Hamad M. High-Dose Deferoxamine Treatment Disrupts Intracellular Iron Homeostasis, Reduces Growth, and Induces Apoptosis in Metastatic and Nonmetastatic Breast Cancer Cell Lines. Technol Cancer Res Treat 2018; 17:1533033818764470. [PMID: 29562821 PMCID: PMC5865460 DOI: 10.1177/1533033818764470] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mounting evidence suggest that iron overload enhances cancer growth and metastasis; hence, iron chelation is being increasingly used as part of the treatment regimen in patients with cancer. Now whether iron chelation depletes intracellular iron and/or disrupts intracellular iron homeostasis is yet to be fully addressed. MCF-7 and MDA-MB-231 breast cancer cells treated with increasing concentrations of the iron chelator deferoxamine were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, cell viability, growth potential, and apoptosis at different time points following treatment. Treatment with deferoxamine at 1, 5, or 10 μM for 24 or 48 hours, while not leading to significant changes in intracellular labile iron content, upregulated the expression of hepcidin, ferroportin, and transferrin receptors 1 and 2. In contrast, deferoxamine at 30, 100, or 300 μM for 24 hours induced a significant decrease in intracellular labile iron, which was associated with increased expression of hepcidin, ferritin, and transferrin receptors 1 and 2. At 48 hours, there was an increase in intracellular labile iron, which was associated with a significant reduction in hepcidin and ferritin expression and a significant increase in ferroportin expression. Although low-dose deferoxamine treatment resulted in a low to moderate decrease in MCF-7 cell growth, high-dose treatment resulted in a significant and precipitous decrease in cell viability and growth, which was associated with increased expression of phosphorylated Histone 2A family member X and near absence of survivin. High-dose deferoxamine treatment also resulted in a very pronounced reduction in wound healing and growth in MDA-MB-231 cells. These findings suggest that high-dose deferoxamine treatment disrupts intracellular iron homeostasis, reduces cell viability and growth, and enhances apoptosis in breast cancer cells. This is further evidence to the potential utility of iron chelation as an adjunctive therapy in iron-overloaded cancers.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- 1 Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- 1 Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- 1 Sharjah Institute for Medical Research, Sharjah, United Arab Emirates.,2 Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
34
|
Ahmed I, Manno FAM, Manno SHC, Liu Y, Zhang Y, Lau C. Detection of lithium in breast milk and in situ elemental analysis of the mammary gland. BIOMEDICAL OPTICS EXPRESS 2018; 9:4184-4195. [PMID: 30615726 PMCID: PMC6157784 DOI: 10.1364/boe.9.004184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 05/08/2023]
Abstract
Breast feeding provides considerable benefits to the infant and mother. However, a lithium-based psychiatric medication may cause side effects in the child. Using laser induced breakdown spectroscopy (LIBS), trace lithium levels were observed in the breast milk of lactating rats administered with lithium treatment postpartum. Subsequently, the mammary glands of female rats were analyzed using LIBS, energy dispersive X-ray fluorescence spectroscopy, and inductively coupled plasma mass spectrometry. Key biological elements iron, magnesium, cobalt, calcium, phosphorus, sodium, iodine, potassium, sulfur, chlorine and zinc were observed. Lithium at 1.06 µg/g was measured in the mammary glands of treated subjects, but was below the limit of detection in controls. Lithium also increased iodine content in the glands. Lithium is present in the breast milk and mammary glands of lithium treated female subjects and this is the likely route of entry to breast-fed infants.
Collapse
Affiliation(s)
- Irfan Ahmed
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | | | - Sinai H. C. Manno
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yuanchao Liu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Zohora F, Bidad K, Pourpak Z, Moin M. Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutr Cancer 2018; 70:546-556. [PMID: 29697284 DOI: 10.1080/01635581.2018.1460685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron Deficiency Anemia (IDA) is a universal health problem and a risk factor for the development of cancer. IDA changes the microenvironment of the human body by affecting both the biological and immunological systems. It increases DNA damage and genomic instability by different mechanisms. IDA is one of the leading causes of the imbalance between different antioxidant enzymes as well as enzymes involved in DNA damage and DNA repair systems of the body. It can affect the biogenesis/expression of microRNAs. IDA interrupts the oxidative phosphorylation energy metabolism and intestinal Cytochrome-P450 systems. It also disturbs multicellular signaling pathways involved in cell survival and helps in tumor angiogenesis. Moreover, IDA is also responsible for the functional deterioration of innate and adaptive immune systems that lead to immunological dysfunctions against invading pathogens. Genomic instability and immunological dysfunctions are the hallmarks of cancer development. In this review, we will review the evidence linking IDA to increased cancer risk.
Collapse
Affiliation(s)
- Fatema Zohora
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Katayoon Bidad
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Zahra Pourpak
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Mostafa Moin
- a Immunology, Asthma & Allergy Research Institute (IAARI), Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| |
Collapse
|
36
|
Lipid accumulation in human breast cancer cells injured by iron depletors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:75. [PMID: 29615075 PMCID: PMC5883539 DOI: 10.1186/s13046-018-0737-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Background Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. Methods We examined the morphological, proteomic, and metabolic effects induced by two iron chelators—deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)—on MDA-MB-231 and MDA-MB-157 breast cancer cells. Results These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Conclusions Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer–inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial subjects for future mechanistic and clinical studies. Electronic supplementary material The online version of this article (10.1186/s13046-018-0737-z) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Kumari K, Keshari S, Sengupta D, Sabat SC, Mishra SK. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment. BMC Cancer 2017; 17:858. [PMID: 29246124 PMCID: PMC5732364 DOI: 10.1186/s12885-017-3863-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Well-known anti-malarial drug artemisinin exhibits potent anti-cancerous activities. In-vivo and in-vitro studies showed its anti-tumor and immunomodulatory properties signifying it as a potent drug candidate for study. The studies of mechanisms of cell movement are relevant which can be understood by knowing the involvement of genes in an effect of a drug. Although cytotoxicity and anti-proliferative activity of artemisinin is evident, the genes participating in its anti-migratory and reduced invasive effect are not well studied. The present study reports the alteration in the expression of 84 genes involved in cell motility upon artemisinin treatment in MCF-7 breast cancer cells using pathway focused gene expression PCR array. In addition, the effect of artemisinin on epigenetic modifier HDACs is studied. Methods We checked the functional stimulus of artemisinin on cell viability, migration, invasion and apoptosis in breast cancerous cell lines. Using qRT-PCR and western blot, we validated the altered expression of relevant genes associated with proliferation, migration, invasion, apoptosis and mammary gland development. Results Artemisinin inhibited cell proliferation of estrogen receptor negative breast cancer cells with fewer efficacies in comparison to estrogen receptor positive ones. At the same time, cell viability and proliferation of normal breast epithelial MCF10A cells was un-affected. Artemisinin strongly inhibited cancer cell migration and invasion. Along with orphan nuclear receptors (ERRα, ERRβ and ERRγ), artemisinin altered the ERα/ERβ/PR/Her expression status of MCF-7 cells. The expression of genes involved in the signaling pathways associated with proliferation, migration, invasion and apoptosis was significantly altered which cooperatively resulted into reduced growth promoting activities of breast cancer cells. Interestingly, artemisinin exhibited inhibitory effect on histone deacetylases (HDACs). Conclusions Upregulated expression of tumor suppressor genes along with reduced expression of oncogenes significantly associated with growth stimulating signaling pathways in response to artemisinin treatment suggests its efficacy as an effective drug in breast cancer treatment.
Collapse
Affiliation(s)
- Kanchan Kumari
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | | | | | - Surendra C Sabat
- Molecular biology of abiotic stress, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
38
|
Romaniuk А, Lyndin M, Sikora V, Lyndina Y, Romaniuk S, Sikora K. Heavy metals effect on breast cancer progression. J Occup Med Toxicol 2017; 12:32. [PMID: 29209407 PMCID: PMC5704424 DOI: 10.1186/s12995-017-0178-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Background Breast cancer is the most frequent localization of malignant process in American women and women of European countries. To date it is not possible to control the morbidity growth due to lack of effective ways of primary prevention. Comparing the incidence of breast cancer in developed countries with the countries of Asia and Africa, there is the fact of population predominance lesion in more urbanized countries. This suggests that the environment along with other factors, occupies a significant place in the initiation and progression of breast neoplasia. The impressive rates of industrial development led to the pollution of soil, surface water and, as a consequence, food by heavy metal salts. The purposes of this paper are as follows: the chemical composition determination of neoplastic breast tissue, evaluation of the DNA methylation level, study of prognostic-important receptors expression in the breast cancer cells, establishing linkages between all the derived indicators. Methods In our study we used the following methods: studying of the chemical composition of breast cancer tissue by atomic absorption spectrophotometry and energy-dispersion spectrometer; іmmunohistochemical study of ER, PR, HER2/neu, p53, Ki-67, E-cadherin and MGMT receptors; DNA extraction and investigation by oscillating infrared spectroscopy method. Results The total amount of heavy metals in breast cancer tissue ranged from 51.21 × 10−3 to 84.86 × 10−3 μg/kg. We have got the following results: the growth of heavy metals in neoplastic tissue is accompanied with the increase of HER2/neu, p53, Ki-67, MGMT expression and decrease of ER and PR expression. The increment of pathological DNA methylation is accompanied with the increasing amount of heavy metals in tumor tissue. Conclusions Heavy metals through different pathogenetic links stimulate the progression of breast cancer and reduce its sensitivity to treatment. DNA of tumor tissue has a different level of methylation which changes with the amount of heavy metals in cancer cells. This is displayed on the synthesis of prognostically important receptors in neoplastic tissue.
Collapse
Affiliation(s)
- А Romaniuk
- Department of pathology, Sumy State University, st. Privokzalnaya, 31, Sumy, Postal code 40022 Ukraine
| | - M Lyndin
- Department of pathology, Sumy State University, st. Privokzalnaya, 31, Sumy, Postal code 40022 Ukraine
| | - V Sikora
- Department of pathology, Sumy State University, st. Privokzalnaya, 31, Sumy, Postal code 40022 Ukraine
| | - Y Lyndina
- Department of normal anatomy, Sumy State University, Sumy, Ukraine
| | - S Romaniuk
- Cardiology department of Sumy regional hospital, Sumy, Ukraine
| | - K Sikora
- Sumy Regional Clinical Perinatal Center, Sumy, Ukraine
| |
Collapse
|
39
|
Marques O, Canadas A, Faria F, Oliveira E, Amorim I, Seixas F, Gama A, Lobo-da-Cunha A, Silva BMD, Porto G, Lopes C. Expression of iron-related proteins in feline and canine mammary gland reveals unexpected accumulation of iron. Biotech Histochem 2017; 92:584-594. [PMID: 29172705 DOI: 10.1080/10520295.2017.1369160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dysregulation of cellular iron homeostasis in human breast cancer is reflected by the altered expression of regulatory proteins. The expressions of iron-related proteins in the mammary glands of cats and dogs have not been assessed. We evaluated the expressions of ferritin, ferroportin, hepcidin and transferrin receptor 1 in benign and malignant mammary gland lesions in cats and dogs. Iron deposition was detected using Perls' Prussian blue staining. We found no major differences in the expression of iron-related proteins between benign and malignant mammary gland lesions in either cats or dogs; however, these species exhibited accumulation of iron in benign lesions. Our findings provide an explanation for the absence of higher iron requirements by tumor cells in these animals. Further investigation of local iron homeostasis in cats and dogs and differences in their physiology compared to human breast cancer is required.
Collapse
Affiliation(s)
- O Marques
- a Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,b Pathology and Molecular Immunology Department , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,c Basic and Clinical Research on Iron Biology, Molecular and Cell Biology Institute (IBMC) University of Porto , Porto.,d Institute for Research and Innovation in Health Sciences (i3S), University of Porto , Porto
| | - A Canadas
- b Pathology and Molecular Immunology Department , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto
| | - F Faria
- b Pathology and Molecular Immunology Department , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto
| | - E Oliveira
- a Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,e Laboratory of Cell Biology, Department of Microscopy , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto
| | - I Amorim
- b Pathology and Molecular Immunology Department , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,d Institute for Research and Innovation in Health Sciences (i3S), University of Porto , Porto.,f Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto , Porto
| | - F Seixas
- g Centre of Animal and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (CECAV-UTAD) , Vila Real
| | - A Gama
- g Centre of Animal and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (CECAV-UTAD) , Vila Real
| | - A Lobo-da-Cunha
- a Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,e Laboratory of Cell Biology, Department of Microscopy , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto
| | - B Martins da Silva
- a Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,b Pathology and Molecular Immunology Department , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto
| | - G Porto
- b Pathology and Molecular Immunology Department , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,c Basic and Clinical Research on Iron Biology, Molecular and Cell Biology Institute (IBMC) University of Porto , Porto.,d Institute for Research and Innovation in Health Sciences (i3S), University of Porto , Porto.,e Laboratory of Cell Biology, Department of Microscopy , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,f Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), University of Porto , Porto.,g Centre of Animal and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (CECAV-UTAD) , Vila Real.,h Hematology Service, Santo António Hospital, Porto Hospital Centre
| | - C Lopes
- b Pathology and Molecular Immunology Department , Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto.,i Department of Pathology , Portuguese Oncology Institute (IPO) , Porto , Portugal
| |
Collapse
|
40
|
Alonso García J, Turiel Fernández D, Añón Álvarez E, Blanco González E, Montes-Bayón M, Sanz-Medel A. Iron speciation, ferritin concentrations and Fe : ferritin ratios in different malignant breast cancer cell lines: on the search for cancer biomarkers. Metallomics 2017; 8:1090-1096. [PMID: 27730247 DOI: 10.1039/c6mt00100a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iron is an essential element for cell growth and division. Recent experiments have linked a deregulation of iron's metabolism with breast cancer progression, aggressiveness and recurrence. In fact, it is conceived that chronic failure in the redox balance due to the presence of a high intracellular concentration of this metal has the potential to modulate specific signaling networks associated with cancer malignancy. Thus, this work has been focused on the comparative evaluation of part of the Fe metallome in two breast cancer cell lines of different malignancies: MCF-7 and MDA-MB-231. Evaluation of the total cytosolic iron content as well as the ultrafiltrable iron content has been conducted using inductively coupled plasma mass spectrometry (ICP-MS) as a Fe selective detector. The obtained results revealed a significantly higher total Fe concentration in the less malignant phenotype. Additionally, Fe-fractionation experiments, conducted by coupling size exclusion chromatography (SEC) to ICP-MS showed a similar Fe distribution (speciation) in both cell phenotypes. However, further specific ferritin measurement using immunochemical based ICP-MS assays showed important differences regarding the total protein content among cell lines and, most importantly, significant differences in the Fe-content of the ferritin molecules between cell lines. This finding points out an iron-storage independent function also associated with ferritin in the most malignant phenotype of the evaluated breast cancer cells that stresses the interest in this molecule as a cancer biomarker.
Collapse
Affiliation(s)
- J Alonso García
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - D Turiel Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - E Añón Álvarez
- Servicio de Bioquímica, Hospital Central Universitario de Asturias (HUCA), Oviedo, Spain
| | - E Blanco González
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - M Montes-Bayón
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - A Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
41
|
Bajbouj K, Shafarin J, Abdalla MY, Ahmad IM, Hamad M. Estrogen-induced disruption of intracellular iron metabolism leads to oxidative stress, membrane damage, and cell cycle arrest in MCF-7 cells. Tumour Biol 2017; 39:1010428317726184. [PMID: 29022497 DOI: 10.1177/1010428317726184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is well established that several forms of cancer associate with significant iron overload. Recent studies have suggested that estrogen (E2) disrupts intracellular iron homeostasis by reducing hepcidin synthesis and maintaining ferroportin integrity. Here, the ability of E2 to alter intracellular iron status and cell growth potential was investigated in MCF-7 cells treated with increasing concentrations of E2. Treated cells were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, oxidative stress, cell survival, growth, and apoptosis. E2 treatment resulted in a significant reduction in hepcidin expression and a significant increase in hypoxia-inducible factor 1 alpha, ferroportin, transferrin receptor, and ferritin expression; a transient decrease in labile iron pool; and a significant increase in total intracellular iron content mainly at 20 nM/48 h E2 dose. Treated cells also showed increased total glutathione and oxidized glutathione levels, increased superoxide dismutase activity, and increased hemoxygenase 1 expression. Treatment with E2 at 20 nM for 48 h resulted in a significant reduction in cell growth (0.35/1 migration rate) and decreased cell survival (<80%) as compared with controls. Survivin expression significantly increased at 24 h post treatment with 5, 10, or 20 nM; however, that of γ-H2AX increased only after survivin levels dropped and only at the 20 nM E2 dose. Minimal upregulation and splitting of caspase 9 was only evident in cells treated with 20 nM E2; no changes in caspase 3 expression were evident. Although Annexin V staining studies showed that E2 treatment did not induce apoptosis, scanning electron microscopy studies showed marked membrane blebbing at 20 nM/48 h of E2. These findings suggest that estrogen treatment disrupts intracellular iron metabolism and precipitates adverse effects concerning cell viability, membrane integrity, and growth potential.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- 1 Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- 1 Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maher Y Abdalla
- 2 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- 3 Department of Medical Imaging and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mawieh Hamad
- 1 Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,4 Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
42
|
G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun 2017; 8:274. [PMID: 28819251 PMCID: PMC5561105 DOI: 10.1038/s41467-017-00350-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023] Open
Abstract
G9a, a H3K9 methyltransferase, shows elevated expression in many types of human cancers, particularly breast cancer. However, the tumorigenic mechanism of G9a is still far from clear. Here we report that G9a exerts its oncogenic function in breast cancer by repressing hephaestin and destruction cellular iron homeostasis. In the case of pharmacological inhibition or short hairpin RNA interference-mediated suppression of G9a, the expression and activity of hephaestin increases, leading to the observed decrease of intracellular labile iron content and the disturbance of breast cancer cell growth in vitro and in vivo. We also provide evidence that G9a interacts with HDAC1 and YY1 to form a multi-molecular complex that contributes to hephaestin silencing. Furthermore, high G9a expression and low hephaestin expression correlate with poor survival of breast cancer are investigated. All these suggest a G9a-dependent epigenetic program in the control of iron homeostasis and tumor growth in breast cancer. G9a is a histone methyltransferase highly expressed in several cancers including breast cancer. Here the authors propose a mechanism through which G9a promotes breast cancer by regulating iron metabolism through the repression of ferroxidase hephaestin.
Collapse
|
43
|
Lee KT, Lu YJ, Mi FL, Burnouf T, Wei YT, Chiu SC, Chuang EY, Lu SY. Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe 2O 4 Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1273-1279. [PMID: 28006093 DOI: 10.1021/acsami.6b13529] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Heterogeneous Fenton reactions have been proven to be an effective and promising selective cancer cell treatment method. The key working mechanism for this method to achieve the critical therapeutic selectivity however remains unclear. In this study, we proposed and demonstrated for the first time the critical role played by catalase in realizing the therapeutic selectivity for the heterogeneous Fenton reaction-driven cancer cell treatment. The heterogeneous Fenton reaction, with the lattice ferric ions of the solid catalyst capable of converting H2O2 to highly reactive hydroxyl radicals, can effectively eradicate cancer cells. In this study, SnFe2O4 nanocrystals, a recently discovered outstanding heterogeneous Fenton catalyst, were applied for selective killing of lung cancer cells. The SnFe2O4 nanocrystals, internalized into the cancer cells, can effectively convert endogenous H2O2 into highly reactive hydroxyl radicals to invoke an intensive cytotoxic effect on the cancer cells. On the other hand, catalase, present at a significantly higher concentration in normal cells than in cancer cells, remarkably can impede the apoptotic cell death induced by the internalized SnFe2O4 nanocrystals. According to the results obtained from the in vitro cytotoxicity study, the relevant oxidative attacks were effectively suppressed by the presence of normal physiological levels of catalase. The SnFe2O4 nanocrystals were thus proved to effect apoptotic cancer cell death through the heterogeneous Fenton reaction and were benign to cells possessing normal physiological levels of catalase. The catalase modulation of the involved heterogeneous Fenton reaction plays the key role in achieving selective cancer cell eradication for the heterogeneous Fenton reaction-driven cancer cell treatment.
Collapse
Affiliation(s)
- Kuan-Ting Lee
- Technology Research Development Department, Plastics Industry Development Center , Taichung 40768, Taiwan ( ROC )
| | - Yu-Jen Lu
- Department of Neurosurgery and ⬡Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital , Tao-Yuan 33302, Taiwan ( ROC )
| | | | | | - Yi-Ting Wei
- Technology Research Development Department, Plastics Industry Development Center , Taichung 40768, Taiwan ( ROC )
| | | | | | - Shih-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan ( ROC )
| |
Collapse
|
44
|
Hossein Davoodi S, Jamshidi-Naeini Y, Esmaeili S, Sohrabvandi S, Mortazavian AM. The Dual Nature of Iron in Relation to Cancer: A Review. IRANIAN JOURNAL OF CANCER PREVENTION 2016. [DOI: 10.17795/ijcp-5494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Brancato B, Munnia A, Cellai F, Ceni E, Mello T, Bianchi S, Catarzi S, Risso GG, Galli A, Peluso MEM. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and other lesions along the coding strand of the exon 5 of the tumour suppressor gene P53 in a breast cancer case-control study. DNA Res 2016; 23:395-402. [PMID: 27260513 PMCID: PMC4991831 DOI: 10.1093/dnares/dsw018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
The next-generation sequencing studies of breast cancer have reported that the tumour suppressor P53 (TP53) gene is mutated in more than 40% of the tumours. We studied the levels of oxidative lesions, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), along the coding strand of the exon 5 in breast cancer patients as well as in a reactive oxygen species (ROS)-attacked breast cancer cell line using the ligation-mediated polymerase chain reaction technique. We detected a significant 'in vitro' generation of 8-oxodG between the codons 163 and 175, corresponding to a TP53 region with high mutation prevalence, after treatment with xanthine plus xanthine oxidase, a ROS-generating system. Then, we evaluated the occurrence of oxidative lesions in the DNA-binding domain of the TP53 in the core needle biopsies of 113 of women undergoing breast investigation for diagnostic purpose. An increment of oxidative damage at the -G- residues into the codons 163 and 175 was found in the cancer cases as compared to the controls. We found significant associations with the pathological stage and the histological grade of tumours. As the major news of this study, this largest analysis of genomic footprinting of oxidative lesions at the TP53 sequence level to date provided a first roadmap describing the signatures of oxidative lesions in human breast cancer. Our results provide evidence that the generation of oxidative lesions at single nucleotide resolution is not an event highly stochastic, but causes a characteristic pattern of DNA lesions at the site of mutations in the TP53, suggesting causal relationship between oxidative DNA adducts and breast cancer.
Collapse
Affiliation(s)
- Beniamino Brancato
- Senology Unit, ISPO-Cancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Armelle Munnia
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, 50139 Florence, Italy
| | - Filippo Cellai
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, 50139 Florence, Italy
| | - Elisabetta Ceni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 - Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 - Florence, Italy
| | - Simonetta Bianchi
- Pathological Anatomy Unit, Department of Surgery and Translational Medicine, University of Florence - Careggi University Hospital, 50139 - Florence, Italy
| | - Sandra Catarzi
- Senology Unit, ISPO-Cancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Gabriella G Risso
- Senology Unit, ISPO-Cancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 - Florence, Italy
| | - Marco E M Peluso
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, 50139 Florence, Italy
| |
Collapse
|
46
|
Liu P, He K, Song H, Ma Z, Yin W, Xu LX. Deferoxamine-induced increase in the intracellular iron levels in highly aggressive breast cancer cells leads to increased cell migration by enhancing TNF-α-dependent NF-κB signaling and TGF-β signaling. J Inorg Biochem 2016; 160:40-8. [PMID: 27138103 DOI: 10.1016/j.jinorgbio.2016.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Recent studies have suggested that excess iron accumulation may be a risk factor for breast cancer. However the role of iron in breast cancer metastasis has remained unclear. The major goal of our study is to investigate the roles of iron in breast cancer metastasis. We modulated the intracellular iron levels of human breast cancer cells, including the aggressive MDA-MB-231 cells and non-aggressive MCF-7 cells, by using Deferoxamine (DFO) - a most widely used iron chelator. We found that DFO treatment could deplete intracellular iron in MCF-7 cells. In contrast, DFO treatment led to a significant increase in the intracellular iron level in MDA-MB-231 cells. The MDA-MB-231 cells with the increased intracellular iron level exhibited increases in both mesenchymal markers and cell migration. Furthermore, the DFO-treated MDA-MB-231 cells showed increases in both tumor necrosis factor α (TNF-α)-induced nuclear factor kappa B (NF-κB) signaling and transforming growth factor-β (TGF-β) signaling, which could contribute to the enhanced cell migration. Collectively, our study has provided the first evidence suggesting that increased intracellular iron levels could lead to enhanced migration of aggressive breast cancer cells by increasing TNF-α-dependent NF-κB signaling and TGF-β signaling. Our study has also suggested that caution should be taken when DFO is applied for treating breast cancer cells, since DFO could produce differential effects on the intracellular iron levels for aggressive breast cancer cells and non-aggressive breast cancer cells.
Collapse
Affiliation(s)
- Ping Liu
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Kun He
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongjiao Song
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhufeng Ma
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weihai Yin
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lisa X Xu
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Marques O, Porto G, Rêma A, Faria F, Cruz Paula A, Gomez-Lazaro M, Silva P, Martins da Silva B, Lopes C. Local iron homeostasis in the breast ductal carcinoma microenvironment. BMC Cancer 2016; 16:187. [PMID: 26944411 PMCID: PMC4779214 DOI: 10.1186/s12885-016-2228-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/29/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.
Collapse
Affiliation(s)
- Oriana Marques
- Laboratory of Immunogenetics - Autoimmunity and Neurosciences, Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228,Edif 2 Piso 4, P-4050313, Porto, Portugal. .,Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Basic and Clinical Research on Iron Biology, Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal. .,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| | - Graça Porto
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Hematology Service, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal.
| | - Alexandra Rêma
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Fátima Faria
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Arnaud Cruz Paula
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| | - Maria Gomez-Lazaro
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. .,Instituto Nacional de Engenharia Biomédica (INEB), University of Porto, Porto, Portugal.
| | - Paula Silva
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal. .,Faculty of Medicine of University of Porto (FMUP), Porto, Portugal. .,Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.
| | - Berta Martins da Silva
- Laboratory of Immunogenetics - Autoimmunity and Neurosciences, Unit for Multidisciplinary Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228,Edif 2 Piso 4, P-4050313, Porto, Portugal. .,Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| | - Carlos Lopes
- Pathology and Molecular Immunology Department, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute (IPO), Porto, Portugal.
| |
Collapse
|
48
|
Skrajnowska D, Korczak BB, Tokarz A, Kazimierczuk A, Klepacz M, Makowska J, Gadzinski B. The effect of zinc and phytoestrogen supplementation on the changes in mineral content of the femur of rats with chemically induced mammary carcinogenesis. J Trace Elem Med Biol 2015; 32:79-85. [PMID: 26302916 DOI: 10.1016/j.jtemb.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/02/2015] [Accepted: 06/17/2015] [Indexed: 01/15/2023]
Abstract
The aim of this study was to assess skeletal effects of zinc or zinc with phytoestrogen (resveratrol or genistein) supplementation in an animal model of rats with DMBA-induced mammary carcinogenesis. The changes in bone parameters such as the length and mass were examined, as well as the changes in concentrations of selected minerals: calcium, magnesium, zinc, iron and phosphorus. Moreover, the investigations focused on finding the differences between the levels of iron and zinc in other tissues: the liver, spleen and serum of the examined rats. Fifty-six female Sprague-Dawley rats, 40 days old, were divided into four groups, regardless of the diets: standard (77mg Zn kg/food), zinc (4.6mg/mL via gavage), zinc (4.6mg/mL) plus resveratrol (0.2mg/kgbw), and zinc (4.6mg/mL) plus genistein (0.2mg/kgbw) for a period from 40 days until 20 weeks of age. The study rats were also treated with 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) to induce mammary carcinogenesis. The applied diet and the advanced mammary cancer did not affect macrometric parameters of the rats' bones, but they strongly affected their mineral content. It was found that mammary cancer, irrespectively of the applied diet, significantly modified the iron level in the femur, liver, spleen and serum of the examined rats. In addition, zinc supplementation significantly lowered the levels of calcium, magnesium and phosphorus in the femur of rats with mammary cancer as compared with respective levels in the control group. So, it was found that additional supplementation with zinc, which is generally considered to be an antioxidant, with the co-existing mammary carcinoma, increased the unfavorable changes as concerns the stability of bone tissue. The appropriate combination of zinc and phytoestrogens (resveratrol or genistein) could help prevent or slow bone loss associated with a range of skeletal disorders in breast cancer.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | | | - Andrzej Tokarz
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Agata Kazimierczuk
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Marta Klepacz
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Justyna Makowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Blazej Gadzinski
- Division of Rehabilitation, Department of Physiotherapy, 2nd Medical Faculty, Medical University of Warsaw, Poland
| |
Collapse
|
49
|
Sherief LM, Kamal NM, Abdelrahman HM, Hassan BA, Zakaria MM. First report of acute lymphoblastic leukemia in an Egyptian child with β-thalassemia major. Hemoglobin 2015; 39:127-9. [PMID: 25707677 DOI: 10.3109/03630269.2015.1005747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Thalassemia (β-thal) is the most common hereditary anemia in humans. With improvement of treatment protocols, patients are living longer and new complications have emerged. Few articles have reported the occurrence of malignancies among patients with β-thal in different parts of the world. We herein report the first pediatric patient with β-thal major (β-TM), who developed acute lymphoblastic leukemia in Egypt with analysis of the different theories of pathogenesis.
Collapse
Affiliation(s)
- Laila M Sherief
- Department of Pediatrics, Faculty of Medicine, Zagazig University , Egypt
| | | | | | | | | |
Collapse
|
50
|
Qian Y, Yin C, Chen Y, Zhang S, Jiang L, Wang F, Zhao M, Liu S. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element. Cell Signal 2015; 27:934-42. [PMID: 25660146 DOI: 10.1016/j.cellsig.2015.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/31/2015] [Indexed: 12/21/2022]
Abstract
Ferroportin (FPN) is the only known iron exporter in mammalian cells, and is universally expressed in most types of cells. FPN signaling plays a crucial role in maintaining iron homeostasis through governing the level of intracellular iron. Serum iron storage is conversely related with the estrogen level in the female bodies, and women in post-menopause are possibly subjected to iron retention. However, the potential effects of estrogen on iron metabolism are not clearly understood. Here, FPN mRNA transcription in all selected estrogen receptor positive (ER+) cells was significantly reduced upon 17β-estradiol (E2) treatment; and this inhibitory effect could be attenuated by ER antagonist tamoxifen. Likewise, in murine bone marrow-derived macrophages (BMDMs), FPN reduction with elevated intracellular iron (reflected by increased ferritin) was observed in response to E2; however, ferritin level barely responded to E2 in FPN-null BMDMs. The observation of inhibition of FPN mRNA expression was not replicated in ER(-) cells upon E2. A functional estrogen response element (ERE) was identified within the promoter of FPN, and this ERE was responsible for the suppressive effect of E2 on FPN expression. Moreover, ovariectomized (OVX) and sham-operated (SHAM) mice were used to further confirm the in vitro finding. The expression of hepatic FPN was induced in OVX mice, compared to that in the SHAM mice. Taken together, our results demonstrated that estrogen is involved in regulating FPN expression through a functional ERE on its promoter, providing additional insights into a vital role of estrogen in iron metabolism.
Collapse
Affiliation(s)
- Yi Qian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chunyang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shuping Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li Jiang
- Department of Nutrition, School of Public Health, Institute of Nutrition and Food Safety, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fudi Wang
- Department of Nutrition, School of Public Health, Institute of Nutrition and Food Safety, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meirong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|