1
|
Rowe LW, Barry ZR, Mackay DD, Lai KE, Ciulla TA. Autoimmune neuro-ophthalmic disorders: pathophysiologic mechanisms and targeted biologic therapies. Expert Opin Biol Ther 2025; 25:1-22. [PMID: 40298278 DOI: 10.1080/14712598.2025.2491603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Autoimmune neuro-ophthalmic disorders encompass a diverse array of conditions, including thyroid eye disease (TED), myasthenia gravis (MG), optic neuropathy due to giant cell arteritis (GCA), and optic neuritis related to multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). While traditional treatments have shown efficacy in managing symptoms, the rapid emergence of biologic therapies has brought forth new avenues for targeted intervention, revolutionizing treatment approaches for these conditions. AREAS COVERED This review highlights the pathophysiologic pathways and FDA-approved biologic therapies utilized in the management of autoimmune neuro-ophthalmic disorders. We explore multiple therapeutic approaches for autoimmune neuro-ophthalmic disorders, including IGF-1 R antagonism, IL-6 inhibition, complement inhibition, FcRn targeting, B-cell depletion and T-cell modulation. Literature from clinical trials, observational studies, and meta-analyses through 2024 was evaluated to assess efficacy, safety, and long-term outcomes. EXPERT OPINION Biologic therapies represent a significant advancement in autoimmune neuro-ophthalmic disorders, offering targeted approaches with improved efficacy and safety profiles compared to traditional treatments. Ongoing developments in biomarker identification and delivery systems suggest an increasingly personalized approach to treatment. Future advances will likely focus on optimizing patient selection, reducing costs, improving accessibility, and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Lucas W Rowe
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary R Barry
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Devin D Mackay
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin E Lai
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Ophthalmology Service, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
- Neuro-Ophthalmology Service, Midwest Eye Institute, Carmel, IN, USA
- Circle City Neuro-Ophthalmology, Carmel, IN, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
- Cincinnati Eye Institute, Cincinnati, OH, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Retina Service, Midwest Eye Institute, Carmel, IN, USA
| |
Collapse
|
2
|
Bergmans B, Roks G, van Puijenbroek E, de Vries E, Murk JL. Progressive multifocal leukoencephalopathy in rheumatoid arthritis and biological therapies: a case report and review of the literature. J Med Case Rep 2025; 19:72. [PMID: 39994658 PMCID: PMC11853195 DOI: 10.1186/s13256-025-05091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy is a rare but potentially fatal disease caused by infection of the central nervous system with John Cunningham polyomavirus. Progressive multifocal leukoencephalopathy mainly occurs in immunocompromised patients, including patients on biological and targeted synthetic therapies, such as multiple sclerosis and rheumatoid arthritis patients. Early diagnosis of progressive multifocal leukoencephalopathy is crucial for patient survival. We describe a case of progressive multifocal leukoencephalopathy with significant diagnostic delay in a rheumatoid arthritis patient using rituximab. Additionally, we give an overview of available literature on progressive multifocal leukoencephalopathy in rheumatoid arthritis patients using biologicals, focusing on the diagnostic difficulties and delays, to raise awareness of this adverse event among physicians treating rheumatoid arthritis patients with immunosuppressants. CASE PRESENTATION A 69-year-old white man of Dutch descent with rheumatoid arthritis treated with rituximab presented to a neurology outpatient clinic, complaining of difficulties in word-finding and reading without problems in visual acuity, several weeks after a mild traumatic head injury (patient's delay). Brain computed tomography-scan showed two hypodense white-matter lesions, initially considered to be of vascular origin (doctor's delay). However, magnetic resonance imaging, performed more than a week later, showed lesions consistent with progressive multifocal leukoencephalopathy. Immunosuppressants were then immediately discontinued. The patient agreed to repeat magnetic resonance imaging and lumbar puncture. Initial John Cunningham polyomavirus polymerase chain reaction on cerebrospinal fluid was negative. However, a subsequent lumbar puncture confirmed the diagnosis. The patient rejected experimental treatment with pembrolizumab and passed away a month after the initial presentation. CONCLUSIONS This case report emphasizes the need for increased awareness and importance of timely recognition of potential progressive multifocal leukoencephalopathy in rheumatoid arthritis patients using immunosuppressive therapies. A total of 26 other cases of rheumatoid arthritis patients using biologicals who developed progressive multifocal leukoencephalopathy were identified from the literature, and we reviewed their cases. Most (24; 92%) cases occurred during rituximab or TNF-alpha inhibitor use. There was a mean delay of 2.5 months between symptom onset and diagnosis. Information on predisposing risk factors such as lymphopenia was often not reported. Physicians and patients should be aware of the symptoms of progressive multifocal leukoencephalopathy, as early diagnosis and immediate withdrawal of immunosuppressants is crucial to improve the chance of survival. This case report highlights the importance of awareness in recognizing progressive multifocal leukoencephalopathy symptoms in nontraditional populations.
Collapse
Affiliation(s)
- Barbara Bergmans
- Tranzo, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands.
- Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
- Laboratory for Microbiology Twente Achterhoek (Labmicta), Hengelo, The Netherlands.
| | - Gerwin Roks
- Department of Neurology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Eugène van Puijenbroek
- Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, The Netherlands
- Groningen Research Institute of Pharmacy, PharmacoTherapy, Epidemiology & Economics, University of Groningen, Groningen, The Netherlands
| | - Esther de Vries
- Tranzo, Tilburg School of Social and Behavioral Sciences, Tilburg University, Tilburg, The Netherlands
- Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Jean-Luc Murk
- Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Microvida, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
3
|
Ayers KN, Lauver MD, Alexander KM, Jin G, Paraiso K, Ochetto A, Garg S, Goetschius DJ, Hafenstein SL, Wang JCY, Lukacher AE. The CD4 T cell-independent IgG response during persistent virus infection favors emergence of neutralization-escape variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629980. [PMID: 39763786 PMCID: PMC11703251 DOI: 10.1101/2024.12.22.629980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
How changes in the quality of anti-viral antibody (Ab) responses due to pre-existing or acquired CD4 T cell insufficiency affect virus evolution during persistent infection are unknown. Using mouse polyomavirus (MuPyV), we found that CD4 T cell depletion before infection results in short-lived plasma cells secreting low-avidity antiviral IgG with limited BCR diversity and weak virus-neutralizing ability. CD4 T cell deficiency during persistent infection incurs a shift from a T-dependent (TD) to T-independent (TI) Ab response, resembling the pre-existing TI Ab response. CD4 T cell loss before infection or during persistent infection is conducive for emergence of Ab-escape variants. Cryo-EM reconstruction of complexes of MuPyV virions with polyclonal IgG directly from infected mice with pre-existing or acquired CD4 T cell deficiency enabled visualization of shortfalls in TI IgG binding. By debilitating the antiviral IgG response, CD4 T cell deficiency sets the stage for outgrowth of variant viruses resistant to neutralization.
Collapse
Affiliation(s)
- Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kalynn M Alexander
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Alyssa Ochetto
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sonal Garg
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Kelly AJ, Long A. Targeting T-cell integrins in autoimmune and inflammatory diseases. Clin Exp Immunol 2024; 215:15-26. [PMID: 37556361 PMCID: PMC10776250 DOI: 10.1093/cei/uxad093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
The recruitment of T cells to tissues and their retention there are essential processes in the pathogenesis of many autoimmune and inflammatory diseases. The mechanisms regulating these processes have become better understood over the past three decades and are now recognized to involve temporally and spatially specific interactions between cell-adhesion molecules. These include integrins, which are heterodimeric molecules that mediate in-to-out and out-to-in signalling in T cells, other leukocytes, and most other cells of the body. Integrin signalling contributes to T-cell circulation through peripheral lymph nodes, immunological synapse stability and function, extravasation at the sites of inflammation, and T-cell retention at these sites. Greater understanding of the contribution of integrin signalling to the role of T cells in autoimmune and inflammatory diseases has focused much attention on the development of therapeutics that target T-cell integrins. This literature review describes the structure, activation, and function of integrins with respect to T cells, then discusses the use of integrin-targeting therapeutics in inflammatory bowel disease, multiple sclerosis, and psoriasis. Efficacy and safety data from clinical trials and post-marketing surveillance are presented for currently approved therapeutics, therapeutics that have been withdrawn from the market, and novel therapeutics currently in clinical trials. This literature review will inform the reader of the current means of targeting T-cell integrins in autoimmune and inflammatory diseases, as well as recent developments in the field.
Collapse
Affiliation(s)
- Aidan J Kelly
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin D08 NHY1, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin D08 NHY1, Ireland
| |
Collapse
|
5
|
Abu Jawdeh BG, Smith ML, Hudson MR, Mour GK, Budhiraja P, Rosenthal JL. Case report: JC polyomavirus nephropathy in simultaneous heart-kidney transplantation: the role of viral-specific in situ hybridization staining. Front Med (Lausanne) 2023; 10:1282827. [PMID: 37928458 PMCID: PMC10622943 DOI: 10.3389/fmed.2023.1282827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction JC polyomavirus (JCPyV) is a ubiquitous virus that can be latent in the brain and the kidney. It is the etiologic agent responsible for progressive multifocal leukoencephalopathy, a fatal, demyelinating disease of the central nervous system, and rarely causes polyomavirus nephropathy in immunocompromised kidney transplant recipients. Case description We present the first case of JCPyV nephropathy in a simultaneous heart-kidney transplant patient, where viral-specific in situ hybridization staining of the kidney tissue was utilized to confirm the diagnosis. The patient was diagnosed 6 years after simultaneous heart-kidney transplantation and was treated with immunosuppression reduction and intravenous immunoglobulin. Discussion JCPyV nephropathy should be considered in the differential diagnosis of kidney allograft injury, particularly, with suggestive light microscopy histologic features in the absence of BK polyomavirus viremia and/or viruria. In addition to obtaining JCPyV PCR in the blood, in situ hybridization staining may have a utility in confirming the diagnosis. To date, we lack effective JCPyV-specific therapies, and prompt initiation of immunosuppression reduction remains the mainstay of treatment.
Collapse
Affiliation(s)
| | - Maxwell L. Smith
- Division of Anatomic Pathology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | | | - Girish K. Mour
- Division of Nephrology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Pooja Budhiraja
- Division of Nephrology, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Julie L. Rosenthal
- Division of Cardiovascular Diseases, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
6
|
Martin TM, Burke SJ, Wasserfall CH, Collier JJ. Islet beta-cells and intercellular adhesion molecule-1 (ICAM-1): Integrating immune responses that influence autoimmunity and graft rejection. Autoimmun Rev 2023; 22:103414. [PMID: 37619906 PMCID: PMC10543623 DOI: 10.1016/j.autrev.2023.103414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet β-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet β-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the β2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet β-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.
Collapse
Affiliation(s)
- Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, United States of America
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
7
|
Angeletti A, Bruschi M, Kajana X, La Porta E, Spinelli S, Caridi G, Lugani F, Verrina EE, Ghiggeri GM. Biologics in steroid resistant nephrotic syndrome in childhood: review and new hypothesis-driven treatment. Front Immunol 2023; 14:1213203. [PMID: 37705972 PMCID: PMC10497215 DOI: 10.3389/fimmu.2023.1213203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Nephrotic syndrome affects about 2-7 per 100,000 children yearly and accounts for less than 15% of end stage kidney disease. Steroids still represent the cornerstone of therapy achieving remission in 75-90% of the cases The remaining part result as steroid resistant nephrotic syndrome, characterized by the elevated risk of developing end stage kidney disease and frequently presenting disease recurrence in case of kidney transplant. The pathogenesis of nephrotic syndrome is still far to be elucidated, however, efficacy of immune treatments provided the basis to suggest the involvement of the immune system in the pathogenesis of the disease. Based on these substrates, more immune drugs, further than steroids, were administered in steroid resistant nephrotic syndrome, such as antiproliferative and alkylating agents or calcineurin inhibitors. However, such treatments failed in inducing a sustained remission. In last two decades, the developments of monoclonal antibodies, including the anti-CD20 rituximab and inhibitor of B7-1 abatacept, represented a valid opportunity of treatment. However, also the effectiveness of biologics resulted limited. We here propose a new hypothesis-driven treatment based on the combining administration of rituximab with the anti-CD38 monoclonal antibody daratumumab (NCT05704400), sustained by the hypothesis to target the entire B-cells subtypes pool, including the long-lived plasmacells.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maurizio Bruschi
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Xhuliana Kajana
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Edoardo La Porta
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Caridi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Lugani
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enrico Eugenio Verrina
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
8
|
Fournier AP, Tastet O, Charabati M, Hoornaert C, Bourbonnière L, Klement W, Larouche S, Tea F, Wang YC, Larochelle C, Arbour N, Ragoussis J, Zandee S, Prat A. Single-Cell Transcriptomics Identifies Brain Endothelium Inflammatory Networks in Experimental Autoimmune Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200046. [PMID: 36446612 PMCID: PMC9709715 DOI: 10.1212/nxi.0000000000200046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by infiltration of immune cells in multifocal areas of the CNS. The specific molecular processes allowing autoreactive immune cells to enter the CNS compartment through the blood-brain barrier remain elusive. METHODS Using endothelial cell (EC) enrichment and single-cell RNA sequencing, we characterized the cells implicated in the neuroinflammatory processes in experimental autoimmune encephalomyelitis, an animal model of MS. Validations on human MS brain sections of the most differentially expressed genes in venous ECs were performed using immunohistochemistry and confocal microscopy. RESULTS We found an upregulation of genes associated with antigen presentation and interferon in most populations of CNS-resident cells, including ECs. Interestingly, instead of transcriptionally distinct profiles, a continuous gradient of gene expression separated the arteriovenous zonation of the brain vasculature. However, differential gene expression analysis presented more transcriptomic alterations on the venous side of the axis, suggesting a prominent role of venous ECs in neuroinflammation. Furthermore, analysis of ligand-receptor interactions identified important potential molecular communications between venous ECs and infiltrated immune populations. To confirm the relevance of our observation in the context of human disease, we validated the protein expression of the most upregulated genes (Ackr1 and Lcn2) in MS lesions. DISCUSSION In this study, we provide a landscape of the cellular heterogeneity associated with neuroinflammation. We also present important molecular insights for further exploration of specific cell processes that promote infiltration of immune cells inside the brain of experimental autoimmune encephalomyelitis mice.
Collapse
Affiliation(s)
- Antoine Philippe Fournier
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Olivier Tastet
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Marc Charabati
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Chloé Hoornaert
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Lyne Bourbonnière
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Wendy Klement
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Sandra Larouche
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Fiona Tea
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Yu Chang Wang
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Catherine Larochelle
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Nathalie Arbour
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Jiannis Ragoussis
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Stephanie Zandee
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Alexandre Prat
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada.
| |
Collapse
|
9
|
Mehmood K, Wilczek MP, DuShane JK, Parent MT, Mayberry CL, Wallace JN, Levasseur FL, Fong TM, Hess ST, Maginnis MS. Dynamics and Patterning of 5-Hydroxytryptamine 2 Subtype Receptors in JC Polyomavirus Entry. Viruses 2022; 14:2597. [PMID: 36560603 PMCID: PMC9782046 DOI: 10.3390/v14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The organization and dynamics of plasma membrane receptors are a critical link in virus-receptor interactions, which finetune signaling efficiency and determine cellular responses during infection. Characterizing the mechanisms responsible for the active rearrangement and clustering of receptors may aid in developing novel strategies for the therapeutic treatment of viruses. Virus-receptor interactions are poorly understood at the nanoscale, yet they present an attractive target for the design of drugs and for the illumination of viral infection and pathogenesis. This study utilizes super-resolution microscopy and related techniques, which surpass traditional microscopy resolution limitations, to provide both a spatial and temporal assessment of the interactions of human JC polyomavirus (JCPyV) with 5-hydroxytrypamine 2 receptors (5-HT2Rs) subtypes during viral entry. JCPyV causes asymptomatic kidney infection in the majority of the population and can cause fatal brain disease, and progressive multifocal leukoencephalopathy (PML), in immunocompromised individuals. Using Fluorescence Photoactivation Localization Microscopy (FPALM), the colocalization of JCPyV with 5-HT2 receptor subtypes (5-HT2A, 5-HT2B, and 5-HT2C) during viral attachment and viral entry was analyzed. JCPyV was found to significantly enhance the clustering of 5-HT2 receptors during entry. Cluster analysis of infected cells reveals changes in 5-HT2 receptor cluster attributes, and radial distribution function (RDF) analyses suggest a significant increase in the aggregation of JCPyV particles colocalized with 5-HT2 receptor clusters in JCPyV-infected samples. These findings provide novel insights into receptor patterning during viral entry and highlight improved technologies for the future development of therapies for JCPyV infection as well as therapies for diseases involving 5-HT2 receptors.
Collapse
Affiliation(s)
- Kashif Mehmood
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Michael P. Wilczek
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Jeanne K. DuShane
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Matthew T. Parent
- Department of Physics & Astronomy, The University of Maine, Orono, ME 04469, USA
| | - Colleen L. Mayberry
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Jaqulin N. Wallace
- Department of Physics & Astronomy, The University of Maine, Orono, ME 04469, USA
| | - Francois L. Levasseur
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Tristan M. Fong
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
| | - Samuel T. Hess
- Department of Physics & Astronomy, The University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, USA
| | - Melissa S. Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Science and Engineering, The University of Maine, Orono, ME 04469, USA
| |
Collapse
|
10
|
Fournier AP, Zandee S, Charabati M, Peelen E, Tastet O, Alvarez JI, Kebir H, Bourbonnière L, Larouche S, Lahav B, Klement W, Tea F, Bouthillier A, Moumdjian R, Cayrol R, Duquette P, Girard M, Larochelle C, Arbour N, Prat A. CLMP Promotes Leukocyte Migration Across Brain Barriers in Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/6/e200022. [PMID: 36241608 PMCID: PMC9465835 DOI: 10.1212/nxi.0000000000200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives In multiple sclerosis (MS), peripheral immune cells use various cell trafficking molecules to infiltrate the CNS where they cause damage.The objective of this study was to investigate the involvement of coxsackie and adenovirus receptor–like membrane protein (CLMP) in the migration of immune cells into the CNS of patients with MS. Methods Expression of CLMP was measured in primary cultures of human brain endothelial cells (HBECs) and human meningeal endothelial cells (HMECs), postmortem brain samples, and peripheral blood mononuclear cells (PBMCs) from patients with MS and controls by RNA sequencing, quantitative PCR, immunohistochemistry, and flow cytometry. In vitro migration assays using HBECs and HMECs were performed to evaluate the function of CLMP. Results Using bulk RNA sequencing of primary cultures of human brain and meningeal endothelial cells (ECs), we have identified CLMP as a new potential cell trafficking molecule upregulated in inflammatory conditions. We first confirmed the upregulation of CLMP at the protein level on TNFα-activated and IFNγ-activated primary cultures of human brain and meningeal ECs. In autopsy brain specimens from patients with MS, we demonstrated an overexpression of endothelial CLMP in active MS lesions when compared with normal control brain tissue. Flow cytometry of human PBMCs demonstrated an increased frequency of CLMP+ B lymphocytes and monocytes in patients with MS, when compared with that in healthy controls. The use of a blocking antibody against CLMP reduced the migration of immune cells across the human brain and meningeal ECs in vitro. Finally, we found CLMP+ immune cell infiltrates in the perivascular area of parenchymal lesions and in the meninges of patients with MS. Discussion Collectively, our data demonstrate that CLMP is an adhesion molecule used by immune cells to access the CNS during neuroinflammatory disorders such as MS. CLMP could represent a target for a new treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Antoine Philippe Fournier
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Stephanie Zandee
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Marc Charabati
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Evelyn Peelen
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Olivier Tastet
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Jorge Ivan Alvarez
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Hania Kebir
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Lyne Bourbonnière
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Sandra Larouche
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Boaz Lahav
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Wendy Klement
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Fiona Tea
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Alain Bouthillier
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Robert Moumdjian
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Romain Cayrol
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Pierre Duquette
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Marc Girard
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Catherine Larochelle
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Nathalie Arbour
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada
| | - Alexandre Prat
- From the Neuroimmunology Research Laboratory (A.P.F., S.Z., M.C., E.P., O.T., J.I.A., H.K., L.B., S.L., B., W.K., F.T., P.D., C.L., N.A., M.D.,P.D.A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., S.Z., M.C., E.P., F.T., C.L., N.A., M.D.,P.D.A.P.), Faculty of Medicine, Université de Montréal; Department of Microbiology (H.K.), Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (B., P.D., M.G., C.L., N.A., M.D.,P.D.A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Division of Neurosurgery (A.B., R.M.), Université de Montréal & CHUM; and Department of Pathology (R.C.), Université de Montréal & CHUM, Quebec, Canada.
| |
Collapse
|
11
|
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nat Rev Nephrol 2022; 18:663-676. [PMID: 35902775 PMCID: PMC9968399 DOI: 10.1038/s41581-022-00600-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
Transplantation is the only curative treatment for patients with kidney failure but it poses unique immunological challenges that must be overcome to prevent allograft rejection and ensure long-term graft survival. Alloreactive T cells are important contributors to graft rejection, and a clearer understanding of the mechanisms by which these cells recognize donor antigens - through direct, indirect or semi-direct pathways - will facilitate their therapeutic targeting. Post-T cell priming rejection responses can also be modified by targeting pathways that regulate T cell trafficking, survival cytokines or innate immune activation. Moreover, the quantity and quality of donor-reactive memory T cells crucially shape alloimmune responses. Of note, many fundamental concepts in transplant immunology have been derived from models of infection. However, the programmed differentiation of allograft-specific T cell responses is probably distinct from that of pathogen-elicited responses, owing to the dearth of pathogen-derived innate immune activation in the transplantation setting. Understanding the fundamental (and potentially unique) immunological pathways that lead to allograft rejection is therefore a prerequisite for the rational development of therapeutics that promote transplantation tolerance.
Collapse
Affiliation(s)
- Charlotte Duneton
- Paediatric Nephrology, Robert Debré Hospital, Paris, France
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela D Winterberg
- Paediatric Nephrology, Emory University Department of Paediatrics and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Li R, Wu X, Xue K, Li J. ITGAL infers adverse prognosis and correlates with immunity in acute myeloid leukemia. Cancer Cell Int 2022; 22:268. [PMID: 35999614 PMCID: PMC9400260 DOI: 10.1186/s12935-022-02684-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Integrin subunit alpha L (ITGAL) was found aberrantly expressed in multiple cancer types, suggesting its essential role in tumorigenesis. Hence, we aimed to explore its definite role in acute myeloid leukemia and emphasize its associations with immunity. Here, we found ITGAL was highly expressed in AML patients and elevated expression was associated with poor prognosis. ITGAL was associated with age and cytogenetic risk classifications, but not relevant to AML driver gene mutations. Univariate and multivariate Cox regression analyses determined ITGAL as an independent prognostic factor. The nomogram integrating ITGAL and clinicopathologic variables was constructed to predict 1-, 3- and 5-year overall survival (OS). Functional analyses revealed that ITGAL was mainly responsible for the production and metabolic process of cytokine. As for immunity, ITGAL was positively associated with MDSCs including iDCs, and macrophages in the TCGA-LAML cohort. We also found that ITGAL was positively associated with most immune checkpoint genes and cytokines. In addition, we found that ITGAL knockdown caused substantial inhibition of cell growth and significant induction of early apoptosis in AML cells. The xenograft study indicated that ITGAL knockdown prolonged the survival of recipient mice. Overall, ITGAL is an independent prognostic factor and is closely related to the number of MDSCs and cytokine production.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Wu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Understanding the Role of LFA-1 in Leukocyte Adhesion Deficiency Type I (LAD I): Moving towards Inflammation? Int J Mol Sci 2022; 23:ijms23073578. [PMID: 35408940 PMCID: PMC8998723 DOI: 10.3390/ijms23073578] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
LFA-1 (Lymphocyte function-associated antigen-1) is a heterodimeric integrin (CD11a/CD18) present on the surface of all leukocytes; it is essential for leukocyte recruitment to the site of tissue inflammation, but also for other immunological processes such as T cell activation and formation of the immunological synapse. Absent or dysfunctional expression of LFA-1, caused by mutations in the ITGB2 (integrin subunit beta 2) gene, results in a rare immunodeficiency syndrome known as Leukocyte adhesion deficiency type I (LAD I). Patients suffering from severe LAD I present with recurrent infections of the skin and mucosa, as well as inflammatory symptoms complicating the clinical course of the disease before and after allogeneic hematopoietic stem cell transplantation (alloHSCT); alloHSCT is currently the only established curative treatment option. With this review, we aim to provide an overview of the intrinsic role of inflammation in LAD I.
Collapse
|
14
|
Bennett CL, Witherspoon B, Carson KR. Rituximab-Associated Progressive Multifocal Leukoencephalopathy: A Twenty-Year Update. Cancer Treat Res 2022; 184:103-111. [PMID: 36449191 DOI: 10.1007/978-3-031-04402-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a John-Cunningham virus-related central nervous system that is rarely observed in persons treated with the anti-CD20 monoclonal antibody, rituximab.
Collapse
Affiliation(s)
- Charles L Bennett
- SONAR (Southern Network on Adverse Reactions) Program, University of South Carolina College of Pharmacy, Columbia, SC, 29208, USA
| | - Bartlett Witherspoon
- SONAR (Southern Network on Adverse Reactions) Program, University of South Carolina College of Pharmacy, Columbia, SC, 29208, USA
| | - Kenneth R Carson
- SONAR (Southern Network on Adverse Reactions) Program, University of South Carolina College of Pharmacy, Columbia, SC, 29208, USA.
| |
Collapse
|
15
|
Hashimoto Y, Tashiro T, Ogawa R, Nakamichi K, Saijo M, Tateishi T. Therapeutic Experience of Progressive Multifocal Leukoencephalopathy Development during Ofatumumab Therapy for Chronic Lymphocytic Leukemia. Intern Med 2021; 60:3991-3993. [PMID: 34176829 PMCID: PMC8758456 DOI: 10.2169/internalmedicine.6723-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 79-year-old man experienced cognitive impairment and visual field defects during ofatumumab therapy for chronic lymphocytic leukemia refractory to combination chemotherapy. Magnetic resonance imaging revealed T1-weighted low-intensity and T2-weighted high-intensity lesions with patchy gadolinium enhancement in the subcortical white matter. A diagnosis of progressive multifocal leukoencephalopathy was made after the detection of John Cunningham virus (JCV) DNA in his cerebrospinal fluid (CSF). Following plasma exchange and the administration of mirtazapine and mefloquine, the JCV DNA levels in the CSF decreased. However, the patient died 55 days after treatment was initiated. Ofatumumab treatment appears to be associated with the development of progressive multifocal leukoencephalopathy.
Collapse
Affiliation(s)
- Yu Hashimoto
- Department of Neurology, Japan Community Health Care Organization Kyushu Hospital, Japan
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takumi Tashiro
- Department of Neurology, Japan Community Health Care Organization Kyushu Hospital, Japan
| | - Ryosuke Ogawa
- Department of Hematology, Japan Community Health Care Organization Kyushu Hospital, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Takahisa Tateishi
- Department of Neurology, Japan Community Health Care Organization Kyushu Hospital, Japan
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Japan
| |
Collapse
|
16
|
Vishnevetsky A, Anand P. Approach to Neurologic Complications in the Immunocompromised Patient. Semin Neurol 2021; 41:554-571. [PMID: 34619781 DOI: 10.1055/s-0041-1733795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurologic complications are common in immunocompromised patients, including those with advanced human immunodeficiency virus, transplant recipients, and patients on immunomodulatory medications. In addition to the standard differential diagnosis, specific pathogens and other conditions unique to the immunocompromised state should be considered in the evaluation of neurologic complaints in this patient population. A thorough understanding of these considerations is critical to the inpatient neurologist in contemporary practice, as increasing numbers of patients are exposed to immunomodulatory therapies. In this review, we provide a chief complaint-based approach to the clinical presentations and diagnosis of both infectious and noninfectious complications particular to immunocompromised patients.
Collapse
Affiliation(s)
- Anastasia Vishnevetsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pria Anand
- Department of Neurology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
17
|
Johansen KH, Golec DP, Thomsen JH, Schwartzberg PL, Okkenhaug K. PI3K in T Cell Adhesion and Trafficking. Front Immunol 2021; 12:708908. [PMID: 34421914 PMCID: PMC8377255 DOI: 10.3389/fimmu.2021.708908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kδ, the dominant PI3K isoform in T cells, has been extensively characterised using PI3Kδ mutant mouse models and PI3K inhibitors. Furthermore, characterisation of patients with Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kδ have shed light on how increased PI3Kδ activity affects T cell functions. An important function of PI3Kδ is that it acts downstream of TCR stimulation to activate the major T cell integrin, LFA-1, which controls transendothelial migration of T cells as well as their interaction with antigen-presenting cells. PI3Kδ also suppresses the cell surface expression of CD62L and CCR7 which controls the migration of T cells across high endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress. Therefore, PI3Kδ can control both entry and exit of T cells from lymph nodes as well as the recruitment to and retention of T cells within inflamed tissues. This review will focus on the regulation of adhesion receptors by PI3Kδ and how this contributes to T cell trafficking and localisation. These findings are relevant for our understanding of how PI3Kδ inhibitors may affect T cell redistribution and function.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Dominic P Golec
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Julie H Thomsen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
18
|
Immune Reconstitution Inflammatory Syndrome with Recurrent Paradoxical Cerebellar HIV-Associated Progressive Multifocal Leukoencephalopathy. Pathogens 2021; 10:pathogens10070813. [PMID: 34203265 PMCID: PMC8308763 DOI: 10.3390/pathogens10070813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML), presenting as immune reconstitution inflammatory syndrome (IRIS), is a known complication of antiretroviral therapy (ART) in people living with HIV (PLWH). Typically preceded by ART initiation, IRIS may appear simultaneously/unmasked (PML-s-IRIS) or as a delayed/worsening/paradoxical (PML-d-IRIS) presentation of known PML disease. Primary cerebellar tropism continues to be a rare presentation, and paradoxical cerebellar involvement of PML-IRIS syndrome can be a challenge for both diagnosis and management. Steroids have been suggested as a possible therapy in severe cases but the duration of steroid therapy remain elusive. Our case is that of a 34-year-old man with newly diagnosed HIV simultaneously found to have cerebellar PML. His PML lesions however worsened after initiation of ART (PML-d-IRIS) with evidence of increased intracranial pressure. Despite initial favorable response to a short duration of steroids, he had multiple recurrence of his PML lesions after steroids were discontinued. The presence of predominant cerebellar lesions and the question of how long steroids should be provided to prevent or minimize PML recurrence is the highlight of our case. This report emphasizes the need for more controlled studies to assist clinicians in the optimal diagnosis and management of PML-IRIS in PLWH.
Collapse
|
19
|
Baccile JA, Voorhees PJ, Chillo AJ, Berry M, Morgenstern R, Schwertfeger TJ, Rossi FM, Nelson CDS. Site-Specific Small Molecule Labeling of an Internal Loop in JC Polyomavirus Pentamers Using the π-Clamp-Mediated Cysteine Conjugation. Chembiochem 2021; 22:3037-3041. [PMID: 34018291 DOI: 10.1002/cbic.202100188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Indexed: 12/21/2022]
Abstract
The major capsid protein VP1 of JC Polyomavirus assembles into pentamers that serve as a model for studying viral entry of this potentially severe human pathogen. Previously, labeling of viral proteins utilized large fusion proteins or non-specific amine- or cysteine-functionalization with fluorescent dyes. Imaging of these sterically hindered fusion proteins or heterogeneously labeled virions limits reproducibility and could prevent the detection of subtle trafficking phenomena. Here we advance the π-clamp-mediated cysteine conjugation for site-selective fluorescent labeling of VP1-pentamers. We demonstrate a one-step synthesis of a probe consisting of a bio-orthogonal click chemistry handle bridged to a perfluoro-biphenyl π-clamp reactive electrophile by a polyethylene glycol linker. We expand the scope of the π-clamp conjugation by demonstrating selective labeling of an internal, surface exposed loop in VP1. Thus, the π-clamp conjugation offers a general method to selectively bioconjugate tags-of-interest to viral proteins without impeding their ability to bind and enter cells.
Collapse
Affiliation(s)
- Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Peter J Voorhees
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, 13045, USA
| | - Anthony J Chillo
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, 13045, USA
| | - Madeline Berry
- Department of Chemistry, SUNY Cortland, Cortland, NY, 13045, USA
| | | | | | - Francis M Rossi
- Department of Chemistry, SUNY Cortland, Cortland, NY, 13045, USA
| | | |
Collapse
|
20
|
Bang NV, Xuan NT, Trung ND, Thu NT, Nam NQ, Hai VA, Hang DTT, Quyen LTB, Thuong LTH, Lam NQ, Thong NH, Phuong NM, Linh NT, Tu HV, Cuong LM, Su HX. Prevalence and genotype distribution of JC polyomavirus in urine from patients with hematological malignancies in Vietnam. J Med Virol 2021; 93:5193-5198. [PMID: 33974279 DOI: 10.1002/jmv.27078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/10/2021] [Accepted: 05/05/2021] [Indexed: 11/11/2022]
Abstract
JC virus (JCV) causes progressive multifocal leukoencephalopathy in immunocompromised patients. The prevalence and genotype patterns of JCV vary between different geographical regions. This study was done to investigate the prevalence and genotype distribution of JCV in patients with hematological malignancies in Vietnam. A total of 48 urine samples were collected from patients with hematological malignancies. DNA was extracted and detection of JCV was by nested-polymerase chain reaction. Sequence analysis was obtained and a phylogenetic tree was constructed for genotyping of JCV. Twenty-seven (56.25%) urine samples tested positive for JCV. JCV genotype 7 was only observed in this study. Subtype analysis showed that JCV subtype 7A was the most commonly prevalent, followed by 7B1 and 7C1. Other subtypes were not detected in this population. There were no significant differences associated with age, gender, and biochemical parameters between patients with JCV and without JCV excretion in urine. The present study showed a high prevalence of JCV in the urine of patients with hematologic malignancies. The most common genotype found in this population was JCV subtype 7A.
Collapse
Affiliation(s)
- Nguyen V Bang
- Department of Clinical Hematology, Toxicology, Radiation and Occupational Diseases, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen T Xuan
- Department of Medical Education, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ngo D Trung
- Intensive Care Unit, Military Central Hospital 108, Hanoi, Vietnam
| | - Nguyen T Thu
- Department of Clinical Hematology, Toxicology, Radiation and Occupational Diseases, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Q Nam
- Department of Hepatobiliary and Pancreatic Surgery, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Vu A Hai
- Department of Thoracic Surgery, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Dinh T T Hang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Str. Phung Hung, Ha Dong District, Ha Noi, Vietnam
| | - Le T B Quyen
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Str. Phung Hung, Ha Dong District, Ha Noi, Vietnam
| | - Luong T H Thuong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Str. Phung Hung, Ha Dong District, Ha Noi, Vietnam
| | - Ngo Q Lam
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Str. Phung Hung, Ha Dong District, Ha Noi, Vietnam
| | - Nguyen H Thong
- Department of Rheumatology, Military Hospital 103, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen M Phuong
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen T Linh
- Department of Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang V Tu
- Department of Adult Burn Care, National Hospital of Burn, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le M Cuong
- Vietnam Border Defense Force Academy, Hanoi, Vietnam
| | - Hoang X Su
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, 222 Str. Phung Hung, Ha Dong District, Ha Noi, Vietnam
| |
Collapse
|
21
|
Abstract
The risk of JC polyomavirus encephalopathy varies among biologic classes and among agents within the same class. Of currently used biologics, the highest risk is seen with natalizumab followed by rituximab. Multiple other agents have also been implicated. Drug-specific causality is difficult to establish because many patients receive multiple immunomodulatory medications concomitantly or sequentially, and have other immunocompromising factors related to their underlying disease. As use of biologic therapies continues to expand, further research is needed into pathogenesis, treatment, and prevention of JC polyomavirus encephalopathy such that risk for its development is better understood and mitigated, if not eliminated altogether.
Collapse
|
22
|
Langerbeins P, Eichhorst B. Immune Dysfunction in Patients with Chronic Lymphocytic Leukemia and Challenges during COVID-19 Pandemic. Acta Haematol 2021; 144:508-518. [PMID: 33631756 PMCID: PMC8018219 DOI: 10.1159/000514071] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been first described in December 2019 in Wuhan, China, and has led to a worldwide pandemic ever since. Initial clinical data imply that cancer patients are particularly at risk for a severe course of SARS-CoV-2. In patients with chronic lymphocytic leukemia (CLL), infections are a main contributor to morbidity and mortality driven by an impaired immune system. Treatment initiation is likely to induce immune modulation that further increases the risk for severe infections. This article aims to give an overview on pathogenesis and risk of infectious complications in patients with CLL. In this context, we discuss current data of SARS-CoV-2 infections in patients with CLL and how the pandemic impacts their management.
Collapse
MESH Headings
- COVID-19/complications
- COVID-19/epidemiology
- COVID-19/pathology
- COVID-19/therapy
- COVID-19/virology
- Humans
- Immunization, Passive
- Immunocompromised Host
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Palliative Care
- Pandemics
- Protein Kinase Inhibitors/therapeutic use
- SARS-CoV-2/isolation & purification
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Petra Langerbeins
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Cologne, Germany,
- CLL Study Group, University Hospital Cologne, University of Cologne, Cologne, Germany,
| | - Barbara Eichhorst
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Cologne, Germany
- CLL Study Group, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel 2021; 33:5944198. [PMID: 33128053 DOI: 10.1093/protein/gzaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefania Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
24
|
Engel ER, Walter JE. Rituximab and eculizumab when treating nonmalignant hematologic disorders: infection risk, immunization recommendations, and antimicrobial prophylaxis needs. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:312-318. [PMID: 33275746 PMCID: PMC7727502 DOI: 10.1182/hematology.2020000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rituximab and eculizumab, monoclonal antibodies that deplete most B cells and activate the terminal complement, respectively, are used to treat nonmalignant hematologic disorders (NMHDs), sometimes with unfavorable effects on the immune system. Hypogammaglobulinemia and neutropenia have been reported with variable prevalence in patients treated with rituximab. Neutropenia is mild and transient, and serious infectious complications are uncommon, so treatment is not indicated. Hypogammaglobulinemia is of greater concern. There is a lack of agreement on a standardized definition, and pre- and posttreatment immunoglobulin (Ig) levels are not routinely obtained. The association among low Ig levels, infectious risk, and mortality and morbidity in this population is unclear. There are also no formal guidelines on indication, risk factors, and threshold level of IgG to prompt Ig replacement therapy (IgRT). Among patients with NMHD, preexisting or persistent hypogammaglobulinemia (PH) after treatment with rituximab has been linked to underlying primary immunodeficiency disorders; therefore, a high index of suspicion should be maintained, and immunologic and genetic evaluation should be considered. Overall, important strategies in managing patients who are receiving rituximab include routine monitoring of pre- and posttreatment IgG levels, immune reconstitution (eg, B-cell subsets), assessment of vaccination status and optimization before treatment, and individualized consideration for IgRT. Accordingly, we discuss immunizations. Eculizumab, most commonly used in the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome, poses increased risk of meningococcal infections. To decrease the risk of infection, a meningococcal vaccination series is recommended before initiating therapy, and prophylactic antibiotics are preferred during the course of treatment.
Collapse
Affiliation(s)
- Elissa R. Engel
- Department of Pediatrics, University of South Florida, Tampa, FL
| | - Jolan E. Walter
- Department of Pediatrics, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL; and
- Massachusetts General Hospital for Children, Boston, MA
| |
Collapse
|
25
|
Perro M, Iannacone M, von Andrian UH, Peixoto A. Role of LFA-1 integrin in the control of a lymphocytic choriomeningitis virus (LCMV) infection. Virulence 2020; 11:1640-1655. [PMID: 33251934 PMCID: PMC7714442 DOI: 10.1080/21505594.2020.1845506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Leukocyte function-associated antigen 1 (LFA-1) is the most widely expressed member of the β2 integrin family of cell-cell adhesion molecules. Although LFA-1 is thought to regulate multiple aspects of T cell immunity, its role in the response of CD8+ T cells to viral infections remains unclear. Indeed, compelling clinical evidence shows that loss of LFA-1 function predisposes to infection in humans but animal models show limited to no susceptibility to infection. Here, we addressed this conundrum in a mouse model of infection with lymphocytic choriomeningitis virus (LCMV), where CD8+ T cells are necessary and sufficient to confer protection. To this end, we followed the fate and function of wild-type and LFA-1 deficient virus-specific CD8+ T cells and assessed the effect of blocking anti-LFA-1 monoclonal antibody in the outcome of infection. Our analysis of viral clearance and T cell responses using transcriptome profiling reveals a role for LFA-1 as a gatekeeper of effector T cell survival and dysfunction that when defective can predispose to LCMV infection.
Collapse
Affiliation(s)
- Mario Perro
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Matteo Iannacone
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Ulrich H von Andrian
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Antonio Peixoto
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| |
Collapse
|
26
|
COS-7 cells are a cellular model to monitor polyomavirus JC miR-J1-5p expression. Mol Biol Rep 2020; 47:9201-9205. [PMID: 33085050 DOI: 10.1007/s11033-020-05862-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
Abstract
Polyomavirus JC (JCPyV) is a ubiquitous human neurotropic virus that can cause progressive multifocal leukoencephalopathy (PML), sometimes as a consequence of drug treatment for disabling diseases, including Multiple Sclerosis. JCPyV expresses microRNAs (miRNAs), and in particular miR-J1-5p, but at now we have limited knowledge regarding this aspect. In the present study the expression of JCPyV miR-J1-5p was measured in infected COS-7, to verify if and when this miRNA is expressed in a cell model of JCPyV-MAD-4 strain infection. Results showed that miR-J1-5p expression was relatively constant inside the cells from 11 days to 35 days after infection (mean: 4.13 × 105 copies/μg), and became measurable in supernatants 18 days after infection (mean: 7.20 × 104 copies/μl). miR-J1-5p expression in supernatants peaked (3.76 × 105 copies/μl) 25 days after infection and started to decrease 32 days after infection (7.20 × 104 copies/μl). These data show that COS-7 cells, already used as model for JCPyV replication cycle, can be also utilized to study JCPyV miRNAs expression, potentially opening new research avenues for diseases in which current therapeutic approaches could result in severe adverse effects (e.g. Natalizumab-associated JCPyV reactivation in Multiple Sclerosis patients). In these situations monitoring of miR-J1-5p may shed light on the mechanisms of virus reactivation and may help the clarification of the mechanisms responsible for such severe side effects.
Collapse
|
27
|
Khoy K, Mariotte D, Defer G, Petit G, Toutirais O, Le Mauff B. Natalizumab in Multiple Sclerosis Treatment: From Biological Effects to Immune Monitoring. Front Immunol 2020; 11:549842. [PMID: 33072089 PMCID: PMC7541830 DOI: 10.3389/fimmu.2020.549842] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system (CNS) with an autoimmune component. Among the recent disease-modifying treatments available, Natalizumab, a monoclonal antibody directed against the alpha chain of the VLA-4 integrin (CD49d), is a potent inhibitor of cell migration toward the tissues including CNS. It potently reduces relapses and active brain lesions in the relapsing remitting form of the disease. However, it has also been associated with a severe infectious complication, the progressive multifocal leukoencephalitis (PML). Using the standard protocol with an injection every 4 weeks it has been shown by a close monitoring of the drug that trough levels soon reach a plateau with an almost saturation of the target cell receptor as well as a down modulation of this receptor. In this review, mechanisms of action involved in therapeutic efficacy as well as in PML risk will be discussed. Furthermore the interest of a biological monitoring that may be helpful to rapidly adapt treatment is presented. Indeed, development of anti-NAT antibodies, although sometimes unapparent, can be detected indirectly by normalization of CD49d expression on circulating mononuclear cells and might require to switch to another drug. On the other hand a stable modulation of CD49d expression might be useful to follow the circulating NAT levels and apply an extended interval dose scheme that could contribute to limiting the risk of PML.
Collapse
Affiliation(s)
- Kathy Khoy
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Delphine Mariotte
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Gilles Defer
- Department of Neurology, MS Expert Centre, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Gautier Petit
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France
| | - Olivier Toutirais
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| | - Brigitte Le Mauff
- Laboratory of Immunology, Department of Biology, CHU Caen Normandie, Caen, France.,UMR-S1237, Physiopathology and Imaging of Neurological Disorders, INSERM, Caen, France.,Normandie Université, UNICAEN, Caen, France
| |
Collapse
|
28
|
Ren HM, Kolawole EM, Ren M, Jin G, Netherby-Winslow CS, Wade Q, Shwetank, Rahman ZSM, Evavold BD, Lukacher AE. IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Sci Immunol 2020; 5:5/51/eabb5590. [PMID: 32948671 DOI: 10.1126/sciimmunol.abb5590] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R-/-) fail to become bTRM IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R-/- brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell-deficient and IL21R-/- brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell-depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.
Collapse
Affiliation(s)
- Heather M Ren
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, Uniformed Services University, Bethesda, MD 20814, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Quinn Wade
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Shwetank
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
29
|
Holmes A, Wellings T, Walsh O, Rowlings P. Progressive multifocal leukoencephalopathy associated with a lymphoproliferative disorder treated with pembrolizumab. J Neurovirol 2020; 26:961-963. [DOI: 10.1007/s13365-020-00899-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
|
30
|
Rogers DL, Ruiz JC, Baze WB, McClure GB, Smith C, Urbanowski R, Boston T, Simmons JH, Williams L, Abee CR, Vanchiere JA. Epidemiological and molecular characterization of a novel adenovirus of squirrel monkeys after fatal infection during immunosuppression. Microb Genom 2020; 6:mgen000395. [PMID: 32614763 PMCID: PMC7643968 DOI: 10.1099/mgen.0.000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses are a frequent cause of acute upper respiratory tract infections that can also cause disseminated disease in immunosuppressed patients. We identified a novel adenovirus, squirrel monkey adenovirus 1 (SqMAdV-1), as the cause of fatal infection in an immunocompromised squirrel monkey (Saimiri boliviensis) at the Keeling Center for Comparative Medicine and Research (KCCMR). Sequencing of SqMAdV-1 revealed that it is most closely related (80.4 % pairwise nucleotide identity) to the titi monkey (Plecturocebus cupreus) adenovirus (TMAdV). Although identified in the titi monkey, TMAdV is highly lethal in these monkeys, and they are not thought to be the natural host. While SqMAdV-1 is similar to other primate adenoviruses in size and genomic characteristics, a nucleotide polymorphism at the expected stop codon of the DNA polymerase gene results in a 126 amino acid extension at the carboxy terminus, a feature not previously observed among other primate adenoviruses. PCR testing and partial sequencing of 95 archived faecal samples from other squirrel monkeys (Saimiri boliviensis and Saimiri sciureus) housed at the KCCMR revealed the presence of three distinct, and apparently endemic species of adenoviruses. A grouping of ten squirrel monkey adenovirus variants has high similarity to SqMAdV-1. A single adenovirus variant (designated SqMAdV-3), detected in five monkeys, has similarity to tufted capuchin (Sapajus apella) adenoviruses. The largest group of adenovirus variants detected (designated SqMAdV-2.0-2.16) has very high similarity (93-99 %) to the TMAdV, suggesting that squirrel monkeys may be the natural host of the TMAdV.
Collapse
Affiliation(s)
- Donna L. Rogers
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Julio C. Ruiz
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Wallace B. Baze
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Gloria B. McClure
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Carolyn Smith
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ricky Urbanowski
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Theresa Boston
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Joe H. Simmons
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Lawrence Williams
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Christian R. Abee
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - John A. Vanchiere
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Keeling Center for Comparative Medicine Research, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| |
Collapse
|
31
|
Rossi D, Shadman M, Condoluci A, Brown JR, Byrd JC, Gaidano G, Hallek M, Hillmen P, Mato A, Montserrat E, Ghia P. How We Manage Patients With Chronic Lymphocytic Leukemia During the SARS-CoV-2 Pandemic. Hemasphere 2020; 4:e432. [PMID: 32803132 PMCID: PMC7410019 DOI: 10.1097/hs9.0000000000000432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Infections are a major cause of morbidity and mortality in patients with chronic lymphocytic leukemia (CLL). These can be exacerbated by anti-leukemic treatments. In addition, the typical patients with CLL already have fragilities and background risk factors that apply to the general population for severe COVID-19. On these bases, patients with CLL may experience COVID-19 morbidity and mortality. Recurrent seasonal epidemics of SARS-CoV-2 are expected, and doctors taking care of patients with CLL must be prepared for the possibility of substantial resurgences of infection and adapt their approach to CLL management accordingly. In this Guideline Article, we aim at providing clinicians with a literature-informed expert opinion on the management of patients with CLL during SARS-CoV-2 epidemic.
Collapse
Affiliation(s)
- Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Laboratory of Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Mazyar Shadman
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Seattle Cancer Care Alliance, Seattle, Washington, USA
| | - Adalgisa Condoluci
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Jennifer R. Brown
- Chronic Lymphocytic Leukemia Center, Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Byrd
- The Ohio State University Comprehensive Cancer Center and Division of Hematology, Columbus, Ohio, USA
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Michael Hallek
- Center of Integrated Oncology Cologne Bonn and German CLL Study Group, University of Cologne, Cologne, Germany
| | - Peter Hillmen
- Haematological Malignancy Diagnostic Service, St. James's University Hospital, Leeds, United Kingdom
- Section of Experimental Haematology, University of Leeds, Leeds, United Kingdom
| | - Anthony Mato
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Emili Montserrat
- Hospital Clinic, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Paolo Ghia
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
32
|
Dunham SR, Schmidt R, Clifford DB. Treatment of Progressive Multifocal Leukoencephalopathy Using Immune Restoration. Neurotherapeutics 2020; 17:955-965. [PMID: 32166631 PMCID: PMC7641288 DOI: 10.1007/s13311-020-00848-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a viral disease of the brain associated with immunodeficiency, immune suppressing medications, and malignancy. In the absence of effective anti-viral therapy for the causative JC virus, immune restoration has emerged as the critical therapeutic alternative. The evolving treatment of PML (and other rare JC virus-associated neurologic syndromes) requires consideration of baseline immune functioning and comorbid diseases while selecting from a number of therapeutic options to restore an effective immune response. This review focuses on the current options for management of PML in typical situations where this disease presents, including several where immune restoration is a standard therapeutic approach such as in PML associated with HIV/AIDS and in multiple sclerosis associated with natalizumab. Other circumstances in which PML occurs including associated with primary immunodeficiencies, malignancies, and transplants present greater challenges to immune reconstitution, but emerging concepts may enhance therapeutic options for these situations. Particular attention is focused on recent experience with checkpoint inhibitors, guidance for MS drug discontinuation, and strategies to monitor and facilitate immune restoration.
Collapse
Affiliation(s)
- S Richard Dunham
- Department of Neurology, Washington University in St Louis, St. Louis, MO, USA
| | - Robert Schmidt
- Department of Pathology & Immunology, Washington University in St Louis, St. Louis, MO, USA
| | - David B Clifford
- Department of Neurology, Washington University in St Louis, St. Louis, MO, USA.
| |
Collapse
|
33
|
Lin WW, Lu YC, Chuang CH, Cheng TL. Ab locks for improving the selectivity and safety of antibody drugs. J Biomed Sci 2020; 27:76. [PMID: 32586313 PMCID: PMC7318374 DOI: 10.1186/s12929-020-00652-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a major targeted therapy for malignancies, infectious diseases, autoimmune diseases, transplant rejection and chronic inflammatory diseases due to their antigen specificity and longer half-life than conventional drugs. However, long-term systemic antigen neutralization by mAbs may cause severe adverse events. Improving the selectivity of mAbs to distinguish target antigens at the disease site from normal healthy tissue and reducing severe adverse events caused by the mechanisms-of-action of mAbs is still a pressing need. Development of pro-antibodies (pro-Abs) by installing a protease-cleavable Ab lock is a novel and advanced recombinant Ab-based strategy that efficiently masks the antigen binding ability of mAbs in the normal state and selectively "turns on" the mAb activity when the pro-Ab reaches the proteolytic protease-overexpressed diseased tissue. In this review, we discuss the design and advantages/disadvantages of different Ab lock strategies, focusing particularly on spatial-hindrance-based and affinity peptide-based approaches. We expect that the development of different masking strategies for mAbs will benefit the local reactivity of mAbs at the disease site, increase the therapeutic efficacy and safety of long-term treatment with mAbs in chronic diseases and even permit scientists to develop Ab drugs for formerly undruggable targets and satisfy the unmet medical needs of mAb therapy.
Collapse
Affiliation(s)
- Wen-Wei Lin
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Chih-Hung Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
34
|
Monoclonal Antibody-Based Treatments for Neuromyelitis Optica Spectrum Disorders: From Bench to Bedside. Neurosci Bull 2020; 36:1213-1224. [PMID: 32533450 DOI: 10.1007/s12264-020-00525-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Neuromyelitis optica (NMO)/NMO spectrum disorder (NMOSD) is a chronic, recurrent, antibody-mediated, inflammatory demyelinating disease of the central nervous system, characterized by optic neuritis and transverse myelitis. The binding of NMO-IgG with astrocytic aquaporin-4 (AQP4) functions directly in the pathogenesis of >60% of NMOSD patients, and causes astrocyte loss, secondary inflammatory infiltration, demyelination, and neuron death, potentially leading to paralysis and blindness. Current treatment options, including immunosuppressive agents, plasma exchange, and B-cell depletion, are based on small retrospective case series and open-label studies. It is noteworthy that monoclonal antibody (mAb) therapy is a better option for autoimmune diseases due to its high efficacy and tolerability. Although the pathophysiological mechanisms of NMOSD remain unknown, increasingly, therapeutic studies have focused on mAbs, which target B cell depletion, complement and inflammation cascade inactivation, blood-brain-barrier protection, and blockade of NMO-IgG-AQP4 binding. Here, we review the targets, characteristics, mechanisms of action, development, and potential efficacy of mAb trials in NMOSD, including preclinical and experimental investigations.
Collapse
|
35
|
Abstract
Lymphocyte depletion and blockade of T-cell activation and trafficking serve as therapeutic strategies for an enlarging number of immune-mediated diseases and malignancies. This review summarizes the infection risks associated to monoclonal antibodies that bind to the α chain of the interleukin-2 receptor, the cell surface glycoprotein CD52, and members of α4- and β2-integrin families acting as cell-adhesion molecules. An outline of the mechanisms of action, approved indications and off-label uses, expected impact on the host immune response, and available clinical evidence is provided for each of these agents.
Collapse
|
36
|
Eis PS, Bruno CD, Richmond TA, Koralnik IJ, Hanson BA, Major EO, Chow CR, Hendel-Chavez H, Stankoff B, Gasnault J, Taoufik Y, Hatchwell E. Germline Genetic Risk Variants for Progressive Multifocal Leukoencephalopathy. Front Neurol 2020; 11:186. [PMID: 32256442 PMCID: PMC7094807 DOI: 10.3389/fneur.2020.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disorder of the brain caused by reactivation of the JC virus (JCV), a polyomavirus that infects at least 60% of the population but is asymptomatic or results in benign symptoms in most people. PML occurs as a secondary disease in a variety of disorders or as a serious adverse event from immunosuppressant agents, but is mainly found in three groups: HIV-infected patients, patients with hematological malignancies, or multiple sclerosis (MS) patients on the immunosuppressant therapy natalizumab. It is severely debilitating and is deadly in ~50% HIV cases, ~90% of hematological malignancy cases, and ~24% of MS-natalizumab cases. A PML risk prediction test would have clinical utility in all at risk patient groups but would be particularly beneficial in patients considering therapy with immunosuppressant agents known to cause PML, such as natalizumab, rituximab, and others. While a JC antibody test is currently used in the clinical decision process for natalizumab, it is suboptimal because of its low specificity and requirement to periodically retest patients for seroconversion or to assess if a patient's JCV index has increased. Whereas a high specificity genetic risk prediction test comprising host genetic risk variants (i.e., germline variants occurring at higher frequency in PML patients compared to the general population) could be administered one time to provide clinicians with additional risk prediction information that is independent of JCV serostatus. Prior PML case reports support the hypothesis that PML risk is greater in patients with a genetically caused immunodeficiency disorder. To identify germline PML risk variants, we performed exome sequencing on 185 PML cases (70 in a discovery cohort and 115 in a replication cohort) and used the gnomAD variant database for interpretation. Our study yielded 19 rare variants (maximum allele frequency of 0.02 in gnomAD ethnically matched populations) that impact 17 immune function genes (10 are known to cause inborn errors of immunity). Modeling of these variants in a PML genetic risk test for MS patients considering natalizumab treatment indicates that at least a quarter of PML cases may be preventable.
Collapse
Affiliation(s)
- Peggy S Eis
- Population Bio, Inc., New York, NY, United States
| | | | - Todd A Richmond
- Richmond Bioinformatics Consulting, Seattle, WA, United States
| | - Igor J Koralnik
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A Hanson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene O Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | | | - Houria Hendel-Chavez
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bruno Stankoff
- Department of Neurology, Hôpital Saint-Antoine, Paris, France
| | - Jacques Gasnault
- Department of Internal Medicine, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Yassine Taoufik
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Eli Hatchwell
- Population Bio UK, Inc., Oxfordshire, United Kingdom
| |
Collapse
|
37
|
Soleimani B, Murray K, Hunt D. Established and Emerging Immunological Complications of Biological Therapeutics in Multiple Sclerosis. Drug Saf 2020; 42:941-956. [PMID: 30830572 DOI: 10.1007/s40264-019-00799-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biologic immunotherapies have transformed the treatment landscape of multiple sclerosis. Such therapies include recombinant proteins (interferon beta), as well as monoclonal antibodies (natalizumab, alemtuzumab, daclizumab, rituximab and ocrelizumab). Monoclonal antibodies show particular efficacy in the treatment of the inflammatory phase of multiple sclerosis. However, the immunological perturbations caused by biologic therapies are associated with significant immunological adverse reactions. These include development of neutralising immunogenicity, secondary immunodeficiency and secondary autoimmunity. These complications can affect the balance of risks and benefits of biologic agents, and 2018 saw the withdrawal from the market of daclizumab, an anti-CD25 monoclonal antibody, due to concerns about the development of severe, unpredictable autoimmunity. Here we review established and emerging risks associated with multiple sclerosis biologic agents, with an emphasis on their immunological adverse effects. We also discuss the specific challenges that multiple sclerosis biologics pose to drug safety systems, and the potential for improvements in safety frameworks.
Collapse
Affiliation(s)
| | - Katy Murray
- Anne Rowling Clinic, University of Edinburgh, Edinburgh, UK
| | - David Hunt
- Anne Rowling Clinic, University of Edinburgh, Edinburgh, UK. .,MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
38
|
Kordzadeh-Kermani E, Khalili H, Karimzadeh I, Salehi M. Prevention Strategies to Minimize the Infection Risk Associated with Biologic and Targeted Immunomodulators. Infect Drug Resist 2020; 13:513-532. [PMID: 32110062 PMCID: PMC7035951 DOI: 10.2147/idr.s233137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
The introduction of biologic and targeted immunomodulators is a significant breakthrough in the therapeutic area of various fields of medicine. The occurrence of serious infections, a complication of secondary immunosuppression associated with these agents, leads to increased morbidity and mortality. Implementing preventive strategies could minimize infection-related complications and improve therapeutic outcomes. The purpose of this review is to focus on current evident approaches regarding screening, monitoring, preventing (immunization and chemoprophylaxis), and management of infections in patients who are candidates for about 70 biologic and targeted immunomodulators. Recommendations are based on relevant guidelines, especially the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document series published in 2018.
Collapse
Affiliation(s)
- Elaheh Kordzadeh-Kermani
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Salehi
- Department of Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Nishihara H, Soldati S, Mossu A, Rosito M, Rudolph H, Muller WA, Latorre D, Sallusto F, Sospedra M, Martin R, Ishikawa H, Tenenbaum T, Schroten H, Gosselet F, Engelhardt B. Human CD4 + T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS 2020; 17:3. [PMID: 32008573 PMCID: PMC6996191 DOI: 10.1186/s12987-019-0165-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background The brain barriers establish compartments in the central nervous system (CNS) that significantly differ in their communication with the peripheral immune system. In this function they strictly control T-cell entry into the CNS. T cells can reach the CNS by either crossing the endothelial blood–brain barrier (BBB) or the epithelial blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP). Objective Analysis of the cellular and molecular mechanisms involved in the migration of different human CD4+ T-cell subsets across the BBB versus the BCSFB. Methods Human in vitro models of the BBB and BCSFB were employed to study the migration of circulating and CNS-entry experienced CD4+ T helper cell subsets (Th1, Th1*, Th2, Th17) across the BBB and BCSFB under inflammatory and non-inflammatory conditions in vitro. Results While under non-inflammatory conditions Th1* and Th1 cells preferentially crossed the BBB, under inflammatory conditions the migration rate of all Th subsets across the BBB was comparable. The migration of all Th subsets across the BCSFB from the same donor was 10- to 20-fold lower when compared to their migration across the BBB. Interestingly, Th17 cells preferentially crossed the BCSFB under both, non-inflamed and inflamed conditions. Barrier-crossing experienced Th cells sorted from CSF of MS patients showed migratory characteristics indistinguishable from those of circulating Th cells of healthy donors. All Th cell subsets could additionally cross the BCSFB from the CSF to ChP stroma side. T-cell migration across the BCSFB involved epithelial ICAM-1 irrespective of the direction of migration. Conclusions Our observations underscore that different Th subsets may use different anatomical routes to enter the CNS during immune surveillance versus neuroinflammation with the BCSFB establishing a tighter barrier for T-cell entry into the CNS compared to the BBB. In addition, CNS-entry experienced Th cell subsets isolated from the CSF of MS patients do not show an increased ability to cross the brain barriers when compared to circulating Th cell subsets from healthy donors underscoring the active role of the brain barriers in controlling T-cell entry into the CNS. Also we identify ICAM-1 to mediate T cell migration across the BCSFB.
Collapse
Affiliation(s)
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Adrien Mossu
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Transcure Bioservices, Archamps, France
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Henriette Rudolph
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - William A Muller
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniela Latorre
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, University of Artois, Lens, France
| | | |
Collapse
|
40
|
Godbole MM, Barr PM. Complete recovery of late onset progressive multifocal leukoencephalopathy related to treatment with chemoimmunotherapy: A case report. Leuk Res 2020; 90:106309. [PMID: 32004701 DOI: 10.1016/j.leukres.2020.106309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Manasi M Godbole
- Department of Internal Medicine, Rochester General Hospital, NY, United States.
| | - Paul M Barr
- Department of Hematology-Oncology, Wilmot Cancer Center/Strong Memorial Hospital, Rochester, NY, United States
| |
Collapse
|
41
|
Sarsour K, Beckley‐Kartey S, Melega S, Odueyungbo A, Kirchner P, Khalife N, Bangs J. Rituximab utilization for approved and off-label nononcology indications and patients' experiences with the Patient Alert Card. Pharmacol Res Perspect 2020; 8:e00555. [PMID: 31911839 PMCID: PMC6941895 DOI: 10.1002/prp2.555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023] Open
Abstract
This study used retrospective chart review and survey data to evaluate: (1) off-label use of rituximab (MabThera®/Rituxan®) in autoimmune conditions and (2) patients' receipt and knowledge of the Patient Alert Card (PAC), a risk minimization measure for progressive multifocal leukoencephalopathy (PML) and serious infections. Anonymized patient data were collected from infusion centers in Europe from December 2015 to July 2017. Adults receiving rituximab in the same centers were provided a self-administered survey. Outcomes included patterns of off-label rituximab use for nononcology indications, and evaluation of patients' receipt and knowledge of the PAC and its impact. Of 1012 patients in the retrospective chart review, 70.2% received rituximab for rheumatoid arthritis or granulomatosis with polyangiitis/microscopic polyangiitis, and 29.8% received rituximab off label. Among 524 survey participants, 32.8% reported receiving the PAC, 59.3% reported not receiving the PAC and 7.9% did not know whether they received the PAC. A total of 72.4% of patients reported that they were unaware that some patients receiving rituximab experience PML. A higher proportion of PAC recipients identified PML as a potential risk of rituximab than nonrecipients (37.8% vs 19.9%); 58.3% of PAC recipients had poor awareness of PML. Most PAC recipients (90.0%) and nonrecipients (85.5%) correctly answered that they should seek medical attention for infection symptoms. In conclusion, approximately 30% of patients received off-label rituximab. Most patients reported not receiving the PAC or having knowledge of PML but demonstrated understanding of the recommended action in the event of infection symptoms, regardless of PAC receipt.
Collapse
Affiliation(s)
| | | | | | - Adefowope Odueyungbo
- Roche Products LtdMississaugaONCanada
- Present address:
Fulcrum TherapeuticsCambridgeMAUSA
| | | | - Natasha Khalife
- IQVIAReadingUK
- Present address:
IQVIADubaiUnited Arab Emirates
| | - Joanne Bangs
- Joanne Bangs LtdLetchworth Garden CityHertfordshireUK
| |
Collapse
|
42
|
Bejan-Angoulvant T, Alexandre J. [Mechanism of action and adverse effects of monoclonal antibodies]. Med Sci (Paris) 2020; 35:1114-1120. [PMID: 31903925 DOI: 10.1051/medsci/2019208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies are therapeutic monoclonal Ig that act by highly specific binding to their target antigen and by interacting with the immune system. Their side effects are mainly related to their mechanism of action. The most frequent adverse effects are infusion reactions. Post-marketing surveillance is essential for identifying adverse reactions and improving knowledge of their mechanism of action.
Collapse
Affiliation(s)
- Theodora Bejan-Angoulvant
- Service de Pharmacologie médicale, CHRU de Tours ; EA 7501, GICC, équipe PATCH, Université de Tours, 37000 Tours, France - LabEx MabImprove,
| | - Joachim Alexandre
- Service de Pharmacologie, CHU Caen ; EA4650, Normandie Université, Caen, 14000, France
| |
Collapse
|
43
|
Du-Thanh A, Guillot B. [Monoclonal antibodies: also for dermatologists!]. Med Sci (Paris) 2020; 35:1017-1021. [PMID: 31903911 DOI: 10.1051/medsci/2019201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Therapeutic monoclonal antibodies are henceforth commonly used in the management of psoriasis but have been also used more recently in chronic spontaneous urticaria and atopic dermatitis. Three examples are developed herein: dupilumab, omalizumab and lanadelumab. The specificity of their mechanism of action results from a better understanding of the inflammatory pathways in these chronic diseases, which previously shared either the same targeted topical or systemic treatments. However, their high costs should be put into perspective with the epidemiology, the precise evaluation of the severity, the optimization of first line treatments and the long-term benefit/risk ratio.
Collapse
Affiliation(s)
- Aurélie Du-Thanh
- Univ Montpellier, Département de dermatologie, Hôpital Saint-Eloi, CHU de Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, France - Inserm 1058, Pathogenèse et contrôle des infections chroniques (PCCI), 34394 Montpellier, France
| | - Bernard Guillot
- Univ Montpellier, Département de dermatologie, Hôpital Saint-Eloi, CHU de Montpellier, 80 avenue Augustin Fliche, 34295 Montpellier, France - Inserm 1058, Pathogenèse et contrôle des infections chroniques (PCCI), 34394 Montpellier, France
| |
Collapse
|
44
|
Abstract
: Given the challenges of life-long adherence to suppressive HIV antiretroviral therapy (ART) and possibilities of comorbidities, such as HIV association neurocognitive disorder, HIV remission and eradication are desirable goals for people living with HIV. In some individuals, there is evidence that HIV persists and replicates in the CNS, impacting the success of HIV remission interventions. This article addresses the role of HIV CNS latency on HIV eradication, examines the effects of early ART, latency-modifying agents, antibody-based and T-cell enhancing therapies on the CNS as well as ART interruption in remission studies. We propose the integration of CNS monitoring into such studies in order to clarify the short-term and long-term neurological safety of experimental agents and treatment interruption, and to better characterize their effects on HIV CNS persistence.
Collapse
|
45
|
Verma NK, Chalasani MLS, Scott JD, Kelleher D. CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Front Immunol 2019; 10:2642. [PMID: 31781123 PMCID: PMC6861388 DOI: 10.3389/fimmu.2019.02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Horta E, Bongiorno C, Ezzeddine M, Neil EC. Neurotoxicity of antibodies in cancer therapy: A review. Clin Neurol Neurosurg 2019; 188:105566. [PMID: 31731087 DOI: 10.1016/j.clineuro.2019.105566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/13/2019] [Accepted: 10/20/2019] [Indexed: 01/17/2023]
Abstract
The objective of this manuscript is to identify the neurological side effect profile associated with different classes of antibodies used in cancer pharmacotherapy and to estimate the frequency in which these neurotoxicity occurs. A systematic review of the literature was conducted using OVID MEDLINE and EMBASE databases for articles written between January of 2010 till August of 2018. The spectrum of neurotoxicity was searched using expanded terminology, medical subject headings, truncation, spelling variations and database specific controlled vocabulary. 2134 citations were retrieved that were narrowed down to 151 when SORT 1 or SORT 2 critical appraisal tool was applied to articles with human subjects. Meta-analysis using random effect model was done to estimate the prevalence of neurological symptoms per class of antibody described in SORT1 and SORT2 articles. It was found that the most common neurotoxicity per antibody class are as follows; Bi-specific T-cell engagers was headache 38% [35-40%; I2 0%]; anti-CD20, neuropathy, 16% [7-24%, I2 65%]; anti-CD30, neuropathy 57% [46-68%, I2 72%]; anti-CD52, neuropathy 5-15%; anti-CTL4, headache 12% [7-16%, I2 49%]; anti-EGFR, headache 25% [11-38%, I2 92%]; anti-Her2, neuropathy 33% [18-49%, I2 98%]; anti-PD1 and PDL1, headache 3% [2-5%, I2 85%]; and anti-VEGF, headache 25% [16-35%, I2 73%]. Therefore, all classes of antibodies used in cancer pharmacotherapy have associated neurotoxicity with a wide spectrum of effects afflicting the nervous system as a whole. The specific side effects and the frequency at which they occur differ per class of antibody. Broader and more severe symptoms were noted to effect patients with preexisting brain lesions.
Collapse
Affiliation(s)
- Erika Horta
- Department of Neurology of University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 5545, USA; Department of Neurosurgery, 2799 W Grand Blvd, Henry Ford Health System, Detroit, MI 48202 USA.
| | - Connie Bongiorno
- University of Minnesota Biomedicine Library, 505 Essex St SE, Minneapolis, MN 55455, USA
| | - Mustapha Ezzeddine
- Department of Neurology of University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 5545, USA
| | - Elizabeth C Neil
- Department of Neurology of University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 5545, USA
| |
Collapse
|
47
|
JCPyV-Induced MAPK Signaling Activates Transcription Factors during Infection. Int J Mol Sci 2019; 20:ijms20194779. [PMID: 31561471 PMCID: PMC6801635 DOI: 10.3390/ijms20194779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
JC polyomavirus (JCPyV), a ubiquitous human pathogen, is the etiological agent of the fatal neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Like most viruses, JCPyV infection requires the activation of host-cell signaling pathways in order to promote viral replication processes. Previous works have established the necessity of the extracellular signal-regulated kinase (ERK), the terminal core kinase of the mitogen-activated protein kinase (MAPK) cascade (MAPK-ERK) for facilitating transcription of the JCPyV genome. However, the underlying mechanisms by which the MAPK-ERK pathway becomes activated and induces viral transcription are poorly understood. Treatment of cells with siRNAs specific for Raf and MAP kinase kinase (MEK) targets proteins in the MAPK-ERK cascade, significantly reducing JCPyV infection. MEK, the dual-specificity kinase responsible for the phosphorylation of ERK, is phosphorylated at times congruent with early events in the virus infectious cycle. Moreover, a MAPK-specific signaling array revealed that transcription factors downstream of the MAPK cascade, including cMyc and SMAD4, are upregulated within infected cells. Confocal microscopy analysis demonstrated that cMyc and SMAD4 shuttle to the nucleus during infection, and nuclear localization is reduced when ERK is inhibited. These findings suggest that JCPyV induction of the MAPK-ERK pathway is mediated by Raf and MEK and leads to the activation of downstream transcription factors during infection. This study further defines the role of the MAPK cascade during JCPyV infection and the downstream signaling consequences, illuminating kinases as potential therapeutic targets for viral infection.
Collapse
|
48
|
de la Fuente MI, Alderuccio JP, Lossos IS. Central nervous system emergencies in haematological malignancies. Br J Haematol 2019; 189:1028-1037. [PMID: 31483060 DOI: 10.1111/bjh.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurological emergencies are frequently catastrophic events in the course of haematological malignancies (HM) that, if not promptly recognized and treated, may lead to lethal outcomes or chronic sequelae. They may occur at any time during the disease course, but are more frequently observed following relapse. Practice guidelines are lacking in the management of most central nervous system (CNS) complications in HM. Herein we review the pathophysiology, presentation and treatment of elevated intracranial pressure, spinal cord compression, status epilepticus, neurovascular complications, CNS infection, leucostasis and hyperviscosity. Further, we discuss the expanding spectrum of neurological complications of old and novel treatments in HM.
Collapse
Affiliation(s)
- Macarena I de la Fuente
- Departments of Neurology and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Juan Pablo Alderuccio
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Izidore S Lossos
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
49
|
Griffin JD, Song JY, Huang A, Sedlacek AR, Flannagan KL, Berkland CJ. Antigen-specific immune decoys intercept and exhaust autoimmunity to prevent disease. Biomaterials 2019; 222:119440. [PMID: 31450159 DOI: 10.1016/j.biomaterials.2019.119440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Relapsing-remitting patterns of many autoimmune diseases such as multiple sclerosis (MS) are perpetuated by a recurring circuit of adaptive immune cells that amplify in secondary lymphoid organs (SLOs) and traffic to compartments where antigen is abundant to elicit damage. Some of the most effective immunotherapies impede the migration of immune cells through this circuit, however, broadly suppressing immune cell migration can introduce life-threatening risks for patients. We developed antigen-specific immune decoys (ASIDs) to mimic tissues targeted in autoimmunity and selectively intercept autoimmune cells to preserve host tissue. Using Experimental Autoimmune Encephalomyelitis (EAE) as a model, we conjugated autoantigen PLP139-151 to a microporous collagen scaffold. By subcutaneously implanting ASIDs after induction but prior to the onset of symptoms, mice were protected from paralysis. ASID implants were rich with autoimmune cells, however, reactivity to cognate antigen was substantially diminished and apoptosis was prevalent. ASID-implanted mice consistently exhibited engorged spleens when disease normally peaked. In addition, splenocyte antigen-presenting cells were highly activated in response to PLP rechallenge, but CD3+ and CD19 + effector subsets were significantly decreased, suggesting exhaustion. ASID-implanted mice never developed EAE relapse symptoms even though the ASID material had long since degraded, suggesting exhausted autoimmune cells did not recover functionality. Together, data suggested ASIDs were able to sequester and exhaust immune cells in an antigen-specific fashion, thus offering a compelling approach to inhibit the migration circuit underlying autoimmunity.
Collapse
Affiliation(s)
- J Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
| | - Jimmy Y Song
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Alexander R Sedlacek
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - Kaitlin L Flannagan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| | - Cory J Berkland
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA; Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
50
|
Focosi D, Tuccori M, Maggi F. Progressive multifocal leukoencephalopathy and anti‐CD20 monoclonal antibodies: What do we know after 20 years of rituximab. Rev Med Virol 2019; 29:e2077. [DOI: 10.1002/rmv.2077] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Daniele Focosi
- North‐Western Tuscany Blood Bank Pisa University Hospital Pisa Italy
| | - Marco Tuccori
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
- Unit of Adverse Drug Reaction Monitoring Pisa University Hospital Pisa Italy
| | - Fabrizio Maggi
- Department of Translational Research University of Pisa Pisa Italy
| |
Collapse
|