1
|
Costa IM, Firth G, Kim J, Banu A, Pham TT, Sunassee K, Langdon S, De Santis V, Vass L, Schettino G, Fruhwirth GO, Terry SYA. In Vitro and Preclinical Systematic Dose-Effect Studies of Auger Electron- and β Particle-Emitting Radionuclides and External Beam Radiation for Cancer Treatment. Int J Radiat Oncol Biol Phys 2024; 120:1124-1134. [PMID: 38797497 DOI: 10.1016/j.ijrobp.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Despite a rise in clinical use of radiopharmaceutical therapies, the biological effects of radionuclides and their relationship with absorbed radiation dose are poorly understood. Here, we set out to define this relationship for Auger electron emitters [99mTc]TcO4- and [123I]I- and β--particle emitter [188Re]ReO4-. Studies were carried out using genetically modified cells that permitted direct radionuclide comparisons. METHODS AND MATERIALS Triple-negative MDA-MB-231 breast cancer cells expressing the human sodium iodide symporter (hNIS) and green fluorescent protein (GFP; MDA-MB-231.hNIS-GFP) were used. In vitro radiotoxicity of [99mTc]TcO4-, [123I]I-, and [188Re]ReO4- was determined using clonogenic assays. Radionuclide uptake, efflux, and subcellular location were used to calculate nuclear absorbed doses using the Medical Internal Radiation Dose (MIRD) formalism. In vivo studies were performed using female NSG mice bearing orthotopic MDA-MB-231.hNIS-GFP tumors and compared with X-ray-treated (12.6-15 Gy) and untreated cohorts. Absorbed dose per unit activity in tumors and sodium iodide symporter-expressing organs was extrapolated to reference human adult models using OLINDA/EXM. RESULTS [99mTc]TcO4- and [123I]I- reduced the survival fraction only in hNIS-expressing cells, whereas [188Re]ReO4- reduced survival fraction in hNIS-expressing and parental cells. [123I]I- required 2.4- and 1.5-fold lower decays/cell to achieve 37% survival compared with [99mTc]TcO4- and [188Re]ReO4-, respectively, after 72 hours of incubation. Additionally, [99mTc]TcO4-, [123I]I-, and [188Re]ReO4- had superior cell killing effectiveness in vitro compared with X-rays. In vivo, X-ray led to a greater median survival compared with [188Re]ReO4- and [123I]I- (54 days vs 45 and 43 days, respectively). Unlike the X-ray cohort, no metastases were visualized in the radionuclide-treated cohorts. Extrapolated human absorbed doses of [188Re]ReO4- to a 1 g tumor were 13.8- and 11.2-fold greater than for [123I]I- in female and male models, respectively. CONCLUSIONS This work reports reference dose-effect data using cell and tumor models for [99mTc]TcO4-, [123I]I-, and [188Re]ReO4- for the first time. We further demonstrate the tumor-controlling effects of [123I]I- and [188Re]ReO4- in comparison with external beam radiation therapy.
Collapse
Affiliation(s)
- Ines M Costa
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - George Firth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Kim
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Arshiya Banu
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Truc T Pham
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Kavitha Sunassee
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Langdon
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Vittorio De Santis
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Laurence Vass
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giuseppe Schettino
- Medical Radiation Science Group, National Physical Laboratory, Teddington, United Kingdom.
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
2
|
Koontz BF, Koritzinsky M, Zoberi JE, Brown SL, Ding X, Wong J, Joiner MC, Dominello MM, Burmeister J. Three discipline collaborative radiation therapy (3DCRT) special debate: Systemic radiotherapy using targeted isotopes is the best hope for advancing curative radiation therapy. J Appl Clin Med Phys 2024:e14533. [PMID: 39447139 DOI: 10.1002/acm2.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024] Open
Affiliation(s)
- Bridget F Koontz
- Department of Radiation Oncology, AdventHealth Cancer Institute, Orlando, Florida, USA
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network / Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline E Zoberi
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Michigan State University Health Sciences, Detroit, Michigan, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, William Beaumont University Hospital, Corewell Health, Royal Oak, Michigan, USA
| | - Jeffrey Wong
- Department of Radiation Oncology, City of Hope Cancer Center, Duarte, California, USA
| | - Michael C Joiner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Michael M Dominello
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jay Burmeister
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Gershenson Radiation Oncology Center, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
3
|
Najdian A, Beiki D, Abbasi M, Gholamrezanezhad A, Ahmadzadehfar H, Amani AM, Ardestani MS, Assadi M. Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications. Cancer Imaging 2024; 24:127. [PMID: 39304961 DOI: 10.1186/s40644-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Multimodal imaging unfolds as an innovative approach that synergistically employs a spectrum of imaging techniques either simultaneously or sequentially. The integration of computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and optical imaging (OI) results in a comprehensive and complementary understanding of complex biological processes. This innovative approach combines the strengths of each method and overcoming their individual limitations. By harmoniously blending data from these modalities, it significantly improves the accuracy of cancer diagnosis and aids in treatment decision-making processes. Nanoparticles possess a high potential for facile functionalization with radioactive isotopes and a wide array of contrast agents. This strategic modification serves to augment signal amplification, significantly enhance image sensitivity, and elevate contrast indices. Such tailored nanoparticles constructs exhibit a promising avenue for advancing imaging modalities in both preclinical and clinical setting. Furthermore, nanoparticles function as a unified nanoplatform for the co-localization of imaging agents and therapeutic payloads, thereby optimizing the efficiency of cancer management strategies. Consequently, radiolabeled nanoparticles exhibit substantial potential in driving forward the realms of multimodal imaging and theranostic applications. This review discusses the potential applications of molecular imaging in cancer diagnosis, the utilization of nanotechnology-based radiolabeled materials in multimodal imaging and theranostic applications, as well as recent advancements in this field. It also highlights challenges including cytotoxicity and regulatory compliance, essential considerations for effective clinical translation of nanoradiopharmaceuticals in multimodal imaging and theranostic applications.
Collapse
Affiliation(s)
- Atena Najdian
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen, Dortmund, Germany
- Department of Nuclear Medicine, Institute of Radiology, Neuroradiology and Nuclear Medicine, University Hospital Knappschaftskrankenhaus, Bochum, Germany
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
4
|
Magro N, Oteo M, Romero E, Ibáñez-Moragues M, Lujan VM, Martínez L, Vela O, López-Melero ME, Arroyo AG, Garaulet G, Martínez-Torrecuadrada JL, Mulero F, Morcillo MA. Target engagement of an anti-MT1-MMP antibody for triple-negative breast cancer PET imaging and beta therapy. Nucl Med Biol 2024; 136-137:108930. [PMID: 38833768 DOI: 10.1016/j.nucmedbio.2024.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective diagnostic and therapeutic options. Membrane type 1 matrix metalloproteinase (MT1-MMP) is an attractive biomarker for improving patient selection. This study aimed to develop a theranostic tool using a highly tumour-selective anti-MT1-MMP antibody (LEM2/15) radiolabelled with 89Zr for PET and 177Lu for therapy in a TNBC murine model. METHODS The LEM2/15 antibody and IgG isotype control were radiolabelled with 89Zr. PET imaging was performed in a TNBC orthotopic mouse model at 1, 2, 4, and 7 days after administration. Tissue biodistribution and pharmacokinetic parameters were analysed and Patlak linearisation was used to calculate the influx rate of irreversible uptake. The TNBC mice were treated with [177Lu]Lu-DOTA-LEM2/15 (single- or 3-dose regimen) or saline. Efficacy of [177Lu]Lu-DOTA-LEM2/15 was evaluated as tumour growth and DNA damage (γH2AX) in MDA 231-BrM2-831 tumours. RESULTS At 7 days post-injection, PET uptake in tumour xenografts revealed a 1.6-fold and 2.4-fold higher tumour-to-blood ratio for [89Zr]Zr-Df-LEM2/15 in the non-blocked group compared to the blocked and IgG isotype control groups, respectively. Specific uptake of LEM2/15 in TBNC tumours mediated by MT1-MMP-binding was demonstrated by the Patlak linearisation method, providing insights into the potential efficacy of LEM2/15-based treatments. A similar uptake was found for [89Zr]Zr-Df-LEM2/15 and [177Lu]Lu-DOTA-LEM2/15 in tumours 7 days post-injection (6.80 ± 1.31 vs. 5.61 ± 0.66 %ID/g). Tumour doubling time was longer in the [177Lu]Lu-DOTA-LEM2/15 3-dose regimen treated group compared to the control (50 vs. 17 days, respectively). The percentage of cells with γH2AX-foci was higher in tumours treated with [177Lu]Lu-DOTA-LEM2/15 3-dose regimen compared to tumours non-treated or treated with [177Lu]Lu-DOTA-LEM2/15 single-dose (12 % vs. 4-5 %). CONCLUSIONS The results showed that the 89Zr/177Lu-labelled anti-MT1-MMP mAb (LEM2/15) pair facilitated immune-PET imaging and reduced tumour growth in a preclinical TNBC xenograft model.
Collapse
Affiliation(s)
- Natalia Magro
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Eduardo Romero
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Victor Manuel Lujan
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Laura Martínez
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Oscar Vela
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | - Alicia G Arroyo
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Miguel Angel Morcillo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.
| |
Collapse
|
5
|
Sanwick AM, Chaple IF. Targeted radionuclide therapy for head and neck squamous cell carcinoma: a review. Front Oncol 2024; 14:1445191. [PMID: 39239273 PMCID: PMC11374632 DOI: 10.3389/fonc.2024.1445191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a type of head and neck cancer that is aggressive, difficult to treat, and often associated with poor prognosis. HNSCC is the sixth most common cancer worldwide, highlighting the need to develop novel treatments for this disease. The current standard of care for HNSCC usually involves a combination of surgical resection, radiation therapy, and chemotherapy. Chemotherapy is notorious for its detrimental side effects including nausea, fatigue, hair loss, and more. Radiation therapy can be a challenge due to the anatomy of the head and neck area and presence of normal tissues. In addition to the drawbacks of chemotherapy and radiation therapy, high morbidity and mortality rates for HNSCC highlight the urgent need for alternative treatment options. Immunotherapy has recently emerged as a possible treatment option for cancers including HNSCC, in which monoclonal antibodies are used to help the immune system fight disease. Combining monoclonal antibodies approved by the US Food and Drug Administration, such as cetuximab and pembrolizumab, with radiotherapy or platinum-based chemotherapy for patients with locally advanced, recurrent, or metastatic HNSCC is an accepted first-line therapy. Targeted radionuclide therapy can potentially be used in conjunction with the first-line therapy, or as an additional treatment option, to improve patient outcomes and quality of life. Epidermal growth factor receptor is a known molecular target for HNSCC; however, other targets such as human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, programmed cell death protein 1, and programmed death-ligand 1 are emerging molecular targets for the diagnosis and treatment of HNSCC. To develop successful radiopharmaceuticals, it is imperative to first understand the molecular biology of the disease of interest. For cancer, this understanding often means detection and characterization of molecular targets, such as cell surface receptors, that can be used as sensitive targeting agents. The goal of this review article is to explore molecular targets for HNSCC and dissect previously conducted research in nuclear medicine and provide a possible path forward for the development of novel radiopharmaceuticals used in targeted radionuclide therapy for HNSCC, which has been underexplored to date.
Collapse
Affiliation(s)
- Alexis M Sanwick
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, United States
| | - Ivis F Chaple
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Zhao X, Jakobsson V, Tao Y, Zhao T, Wang J, Khong PL, Chen X, Zhang J. Targeted Radionuclide Therapy in Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042829 DOI: 10.1021/acsami.4c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Despite the development of various novel therapies, glioblastoma (GBM) remains a devastating disease, with a median survival of less than 15 months. Recently, targeted radionuclide therapy has shown significant progress in treating solid tumors, with the approval of Lutathera for neuroendocrine tumors and Pluvicto for prostate cancer by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). This achievement has shed light on the potential of targeted radionuclide therapy for other solid tumors, including GBM. This review presents the current status of targeted radionuclide therapy in GBM, highlighting the commonly used therapeutic radionuclides emitting alpha, beta particles, and Auger electrons that could induce potent molecular and cellular damage to treat GBM. We then explore a range of targeting vectors, including small molecules, peptides, and antibodies, which selectively target antigen-expressing tumor cells with minimal or no binding to healthy tissues. Considering that radiopharmaceuticals for GBM are often administered locoregionally to bypass the blood-brain barrier (BBB), we review prominent delivery methods such as convection-enhanced delivery, local implantation, and stereotactic injections. Finally, we address the challenges of this therapeutic approach for GBM and propose potential solutions.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yucen Tao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingyan Wang
- Xiamen University, School of Public Health, Xiang'an South Road, Xiamen 361102, China
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Departments of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
7
|
Adam DP, Grudzinski JJ, Marsh IR, Hill PM, Cho SY, Bradshaw TJ, Longcor J, Burr A, Bruce JY, Harari PM, Bednarz BP. Voxel-Level Dosimetry for Combined Iodine 131 Radiopharmaceutical Therapy and External Beam Radiation Therapy Treatment Paradigms for Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2024; 119:1275-1284. [PMID: 38367914 DOI: 10.1016/j.ijrobp.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
PURPOSE Targeted radiopharmaceutical therapy (RPT) in combination with external beam radiation therapy (EBRT) shows promise as a method to increase tumor control and mitigate potential high-grade toxicities associated with re-treatment for patients with recurrent head and neck cancer. This work establishes a patient-specific dosimetry framework that combines Monte Carlo-based dosimetry from the 2 radiation modalities at the voxel level using deformable image registration (DIR) and radiobiological constructs for patients enrolled in a phase 1 clinical trial combining EBRT and RPT. METHODS AND MATERIALS Serial single-photon emission computed tomography (SPECT)/computed tomography (CT) patient scans were performed at approximately 24, 48, 72, and 168 hours postinjection of 577.2 MBq/m2 (15.6 mCi/m2) CLR 131, an iodine 131-containing RPT agent. Using RayStation, clinical EBRT treatment plans were created with a treatment planning CT (TPCT). SPECT/CT images were deformably registered to the TPCT using the Elastix DIR module in 3D Slicer software and assessed by measuring mean activity concentrations and absorbed doses. Monte Carlo EBRT dosimetry was computed using EGSnrc. RPT dosimetry was conducted using RAPID, a GEANT4-based RPT dosimetry platform. Radiobiological metrics (biologically effective dose and equivalent dose in 2-Gy fractions) were used to combine the 2 radiation modalities. RESULTS The DIR method provided good agreement for the activity concentrations and calculated absorbed dose in the tumor volumes for the SPECT/CT and TPCT images, with a maximum mean absorbed dose difference of -11.2%. Based on the RPT absorbed dose calculations, 2 to 4 EBRT fractions were removed from patient EBRT treatments. For the combined treatment, the absorbed dose to target volumes ranged from 57.14 to 75.02 Gy. When partial volume corrections were included, the mean equivalent dose in 2-Gy fractions to the planning target volume from EBRT + RPT differed -3.11% to 1.40% compared with EBRT alone. CONCLUSIONS This work demonstrates the clinical feasibility of performing combined EBRT + RPT dosimetry on TPCT scans. Dosimetry guides treatment decisions for EBRT, and this work provides a bridge for the same paradigm to be implemented within the rapidly emerging clinical RPT space.
Collapse
Affiliation(s)
- David P Adam
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph J Grudzinski
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian R Marsh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Steve Y Cho
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Tyler J Bradshaw
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Adam Burr
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Justine Y Bruce
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Bryan P Bednarz
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
8
|
Zhao L, Pang Y, Zhou Y, Chen J, Fu H, Guo W, Xu W, Xue X, Su G, Sun L, Wu H, Zhang J, Wang Z, Lin Q, Chen X, Chen H. Antitumor efficacy and potential mechanism of FAP-targeted radioligand therapy combined with immune checkpoint blockade. Signal Transduct Target Ther 2024; 9:142. [PMID: 38825657 PMCID: PMC11144707 DOI: 10.1038/s41392-024-01853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.
Collapse
Grants
- 82071961 National Natural Science Foundation of China (National Science Foundation of China)
- 82272037 National Natural Science Foundation of China (National Science Foundation of China)
- NUHSRO/2023/008/NUSMed/TCE/LOA National University of Singapore (NUS)
- NUHSRO/2021/034/TRP/09/Nanomedicine National University of Singapore (NUS)
- (MOH-001388-00, CG21APR1005) MOH | National Medical Research Council (NMRC)
- NRF-000352-00 National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore)
- Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare, Key Scientific Research Program for Yong Scholars in Fujian (2021ZQNZD016), Fujian Natural Science Foundation for Distinguished Yong Scholars (2022D005)
- Key Medical and Health Projects in Xiamen (Grant number 3502Z20209002), Xiamen Key Laboratory of Radiation Oncology, Xiamen Clinical Research Center for Head and Neck Cancer, and 2021 National Clinical Key Specialty, (Oncology, Grant number 3210013)
- National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
- Singapore Ministry of Education (MOE-000387-00)
Collapse
Affiliation(s)
- Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yangfan Zhou
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hao Fu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Guo
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Weizhi Xu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Xue
- Department of Cardiothoracic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guoqiang Su
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China.
| |
Collapse
|
9
|
Wang Y, Tang T, Yuan Y, Li N, Wang X, Guan J. Copper and Copper Complexes in Tumor Therapy. ChemMedChem 2024; 19:e202400060. [PMID: 38443744 DOI: 10.1002/cmdc.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Copper (Cu), a crucial trace element in physiological processes, has garnered significant interest for its involvement in cancer progression and potential therapeutic applications. The regulation of cellular copper levels is essential for maintaining copper homeostasis, as imbalances can lead to toxicity and cell death. The development of drugs that target copper homeostasis has emerged as a promising strategy for anticancer treatment, with a particular focus on copper chelators, copper ionophores, and novel copper complexes. Recent research has also investigated the potential of copper complexes in cancer therapy.
Collapse
Affiliation(s)
- Yingqiao Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingxi Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Guan
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Shea AG, Idrissou MB, Torres AI, Chen T, Hernandez R, Morris ZS, Sodji QH. Immunological effects of radiopharmaceutical therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1331364. [PMID: 39355211 PMCID: PMC11440989 DOI: 10.3389/fnume.2024.1331364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 10/03/2024]
Abstract
Radiation therapy (RT) is a pillar of cancer therapy used by more than half of all cancer patients. Clinically, RT is mostly delivered as external beam radiation therapy (EBRT). However, the scope of EBRT is limited in the metastatic setting, where all sites of disease need to be irradiated. Such a limitation is attributed to radiation-induced toxicities, for example on bone marrow and hematologic toxicities, resulting from a large EBRT field. Radiopharmaceutical therapy (RPT) has emerged as an alternative to EBRT for the irradiation of all sites of metastatic disease. While RPT can reduce tumor burden, it can also impact the immune system and anti-tumor immunity. Understanding these effects is crucial for predicting and managing treatment-related hematological toxicities and optimizing their integration with other therapeutic modalities, such as immunotherapies. Here, we review the immunomodulatory effects of α- and β-particle emitter-based RPT on various immune cell lines, such as CD8+ and CD4+ T cells, natural killer (NK) cells, and regulatory T (Treg) cells. We briefly discuss Auger electron-emitter (AEE)-based RPT, and finally, we highlight the combination of RPT with immune checkpoint inhibitors, which may offer potential therapeutic synergies for patients with metastatic cancers.
Collapse
Affiliation(s)
- Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ana Isabel Torres
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tessa Chen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Reiner Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Quaovi H. Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Yang H, Zeng X, Liu J, Li J, Li Y, Zhang Q, Shu L, Liu H, Wang X, Liang Y, Hu J, Huang L, Guo Z, Zhang X. A proof-of-concept study on bioorthogonal-based pretargeting and signal amplify radiotheranostic strategy. J Nanobiotechnology 2024; 22:101. [PMID: 38462598 PMCID: PMC10926607 DOI: 10.1186/s12951-024-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Radiotheranostics differs from the vast majority of other cancer therapies in its capacity for simultaneous imaging and therapy, and it is becoming more widely implemented. A balance between diagnostic and treatment requirements is essential for achieving effective radiotheranostics. Herein, we propose a proof-of-concept strategy aiming to address the profound differences in the specific requirements of the diagnosis and treatment of radiotheranostics. RESULTS To validate the concept, we designed an s-tetrazine (Tz) conjugated prostate-specific membrane antigen (PSMA) ligand (DOTA-PSMA-Tz) for 68Ga or 177Lu radiolabeling and tumor radiotheranostics, a trans-cyclooctene (TCO) modified Pd@Au nanoplates (Pd@Au-PEG-TCO) for signal amplification, respectively. We then demonstrated this radiotheranostic strategy in the tumor-bearing mice with the following three-step procedures: (1) i.v. injection of the [68Ga]Ga-PSMA-Tz for diagnosis; (2) i.v. injection of the signal amplification module Pd@Au-PEG-TCO; (3) i.v. injection of the [177Lu]Lu-PSMA-Tz for therapy. Firstly, this strategy was demonstrated in 22Rv1 tumor-bearing mice via positron emission tomography (PET) imaging with [68Ga]Ga-PSMA-Tz. We observed significantly higher tumor uptake (11.5 ± 0.8%ID/g) with the injection of Pd@Au-PEG-TCO than with the injection [68Ga]Ga-PSMA-Tz alone (5.5 ± 0.9%ID/g). Furthermore, we validated this strategy through biodistribution studies of [177Lu]Lu-PSMA-Tz, with the injection of the signal amplification module, approximately five-fold higher tumor uptake of [177Lu]Lu-PSMA-Tz (24.33 ± 2.53% ID/g) was obtained when compared to [177Lu]Lu-PSMA-Tz alone (5.19 ± 0.26%ID/g) at 48 h post-injection. CONCLUSION In summary, the proposed strategy has the potential to expand the toolbox of pretargeted radiotherapy in the field of theranostics.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingchao Li
- PET Center, Department of Nuclear Medicine, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yun Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Linlin Shu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ji Hu
- HTA Co., Ltd., No. 1 Sanqiang Road, Fangshan District, Beijing, 102413, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Yang M, Liu H, Lou J, Zhang J, Zuo C, Zhu M, Zhang X, Yin Y, Zhang Y, Qin S, Zhang H, Fan X, Dang Y, Cheng C, Cheng Z, Yu F. Alpha-Emitter Radium-223 Induces STING-Dependent Pyroptosis to Trigger Robust Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307448. [PMID: 37845027 DOI: 10.1002/smll.202307448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Radium-223 (223 Ra) is the first-in-class alpha-emitter to mediate tumor eradication, which is commonly thought to kill tumor cells by directly cleaving double-strand DNA. However, the immunogenic characteristics and cell death modalities triggered by 223 Ra remain unclear. Here, it is reported that the 223 Ra irradiation induces the pro-inflammatory damage-associated molecular patterns including calreticulin, HMGB1, and HSP70, hallmarks of tumor immunogenicity. Moreover, therapeutic 223 Ra retards tumor progression by triggering pyroptosis, an immunogenic cell death. Mechanically, 223 Ra-induced DNA damage leads to the activation of stimulator of interferon genes (STING)-mediated DNA sensing pathway, which is critical for NLRP3 inflammasome-dependent pyroptosis and subsequent DCs maturation as well as T cell activation. These findings establish an essential role of STING in mediating alpha-emitter 223 Ra-induced antitumor immunity, which provides the basis for the development of novel cancer therapeutic strategies and combinatory therapy.
Collapse
Affiliation(s)
- Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haipeng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jingjing Lou
- Department of Nuclear Medicine, Pudong Medical Center, Fudan University, Shanghai, 201399, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Changjing Zuo
- Department of Nuclear Medicine, the First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoyi Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yifang Dang
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, the First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Zhen Cheng
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
13
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
14
|
Musket A, Davern S, Elam BM, Musich PR, Moorman JP, Jiang Y. The application of radionuclide therapy for breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 3:1323514. [PMID: 39355029 PMCID: PMC11440853 DOI: 10.3389/fnume.2023.1323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/27/2023] [Indexed: 10/03/2024]
Abstract
Radionuclide-mediated diagnosis and therapy have emerged as effective and low-risk approaches to treating breast cancer. Compared to traditional anatomic imaging techniques, diagnostic radionuclide-based molecular imaging systems exhibit much greater sensitivity and ability to precisely illustrate the biodistribution and metabolic processes from a functional perspective in breast cancer; this transitions diagnosis from an invasive visualization to a noninvasive visualization, potentially ensuring earlier diagnosis and on-time treatment. Radionuclide therapy is a newly developed modality for the treatment of breast cancer in which radionuclides are delivered to tumors and/or tumor-associated targets either directly or using delivery vehicles. Radionuclide therapy has been proven to be eminently effective and to exhibit low toxicity when eliminating both primary tumors and metastases and even undetected tumors. In addition, the specific interaction between the surface modules of the delivery vehicles and the targets on the surface of tumor cells enables radionuclide targeting therapy, and this represents an exceptional potential for this treatment in breast cancer. This article reviews the development of radionuclide molecular imaging techniques that are currently employed for early breast cancer diagnosis and both the progress and challenges of radionuclide therapy employed in breast cancer treatment.
Collapse
Affiliation(s)
- Anna Musket
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sandra Davern
- Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Brianna M Elam
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Philip R Musich
- Department of Biomedical Science, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jonathan P Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
15
|
Giraudet AL. [Combination of internal and external beam radiotherapy]. Cancer Radiother 2023; 27:754-758. [PMID: 37953187 DOI: 10.1016/j.canrad.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 11/14/2023]
Abstract
External beam radiation therapy and internal vectorized radiation therapy are two types of radiotherapy that can be used to treat cancer. They differ in the way they are administered, and the type of radiation used. Although they can be effective in treating cancer, they each have their own advantages and disadvantages, and their combination could be synergistic. Preclinical studies on combined internal and external beam radiation therapy have mainly used radiolabelled antibodies, whose bone marrow toxicity remains the limiting factor in increasing the administered activities. The use of small radioligands in clinical trials has shown to be better tolerated and more effective, which explains their rapid development. The results of preclinical studies on combined internal and external beam radiation therapy appear heterogeneous, making it impossible to determine an ideal therapeutic sequencing scheme, and complicating the transposition to clinical studies. The few clinical studies on combined internal and external beam radiation therapy available to date have demonstrated feasibility and tolerability. More work remains to be done in the fields of dosimetry and radiobiology, as well as in the sequencing of these two irradiation modalities to optimize their combination.
Collapse
Affiliation(s)
- A-L Giraudet
- Centre Léon-Bérard, 15, rue Gabriel-Sarrazin, 69008 Lyon, France.
| |
Collapse
|
16
|
Grkovski M, O'Donoghue JA, Imber BS, Andl G, Tu C, Lafontaine D, Schwartz J, Thor M, Zelefsky MJ, Humm JL, Bodei L. Lesion Dosimetry for [ 177Lu]Lu-PSMA-617 Radiopharmaceutical Therapy Combined with Stereotactic Body Radiotherapy in Patients with Oligometastatic Castration-Sensitive Prostate Cancer. J Nucl Med 2023; 64:1779-1787. [PMID: 37652541 PMCID: PMC10626375 DOI: 10.2967/jnumed.123.265763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
A single-institution prospective pilot clinical trial was performed to demonstrate the feasibility of combining [177Lu]Lu-PSMA-617 radiopharmaceutical therapy (RPT) with stereotactic body radiotherapy (SBRT) for the treatment of oligometastatic castration-sensitive prostate cancer. Methods: Six patients with 9 prostate-specific membrane antigen (PSMA)-positive oligometastases received 2 cycles of [177Lu]Lu-PSMA-617 RPT followed by SBRT. After the first intravenous infusion of [177Lu]Lu-PSMA-617 (7.46 ± 0.15 GBq), patients underwent SPECT/CT at 3.2 ± 0.5, 23.9 ± 0.4, and 87.4 ± 12.0 h. Voxel-based dosimetry was performed with calibration factors (11.7 counts per second/MBq) and recovery coefficients derived from in-house phantom experiments. Lesions were segmented on baseline PSMA PET/CT (50% SUVmax). After a second cycle of [177Lu]Lu-PSMA-617 (44 ± 3 d; 7.50 ± 0.10 GBq) and an interim PSMA PET/CT scan, SBRT (27 Gy in 3 fractions) was delivered to all PSMA-avid oligometastatic sites, followed by post-PSMA PET/CT. RPT and SBRT voxelwise dose maps were scaled (α/β = 3 Gy; repair half-time, 1.5 h) to calculate the biologically effective dose (BED). Results: All patients completed the combination therapy without complications. No grade 3+ toxicities were noted. The median of the lesion SUVmax as measured on PSMA PET was 16.8 (interquartile range [IQR], 11.6) (baseline), 6.2 (IQR, 2.7) (interim), and 2.9 (IQR, 1.4) (post). PET-derived lesion volumes were 0.4-1.7 cm3 The median lesion-absorbed dose (AD) from the first cycle of [177Lu]Lu-PSMA-617 RPT (ADRPT) was 27.7 Gy (range, 8.3-58.2 Gy; corresponding to 3.7 Gy/GBq, range, 1.1-7.7 Gy/GBq), whereas the median lesion AD from SBRT was 28.1 Gy (range, 26.7-28.8 Gy). Spearman rank correlation, ρ, was 0.90 between the baseline lesion PET SUVmax and SPECT SUVmax (P = 0.005), 0.74 (P = 0.046) between the baseline PET SUVmax and the lesion ADRPT, and -0.81 (P = 0.022) between the lesion ADRPT and the percent change in PET SUVmax (baseline to interim). The median for the lesion BED from RPT and SBRT was 159 Gy (range, 124-219 Gy). ρ between the BED from RPT and SBRT and the percent change in PET SUVmax (baseline to post) was -0.88 (P = 0.007). Two cycles of [177Lu]Lu-PSMA-617 RPT contributed approximately 40% to the maximum BED from RPT and SBRT. Conclusion: Lesional dosimetry in patients with oligometastatic castration-sensitive prostate cancer undergoing [177Lu]Lu-PSMA-617 RPT followed by SBRT is feasible. Combined RPT and SBRT may provide an efficient method to maximize the delivery of meaningful doses to oligometastatic disease while addressing potential microscopic disease reservoirs and limiting the dose exposure to normal tissues.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - George Andl
- Varian Medical Systems Inc., Palo Alto, California; and
| | - Cheng Tu
- Varian Medical Systems Inc., Palo Alto, California; and
| | - Daniel Lafontaine
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Lara-Vega I, Correa-Lara MVM, Vega-López A. Effectiveness of radiotherapy and targeted radionuclide therapy for melanoma in preclinical mouse models: A combination treatments overview. Bull Cancer 2023; 110:912-936. [PMID: 37277266 DOI: 10.1016/j.bulcan.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Cutaneous melanoma is an aggressive and highly metastatic skin cancer. In recent years, immunotherapy and targeted small-molecule inhibitors have improved the overall survival of patients. Unfortunately, most patients in advanced stages of disease exhibit either intrinsically resistant or rapidly acquire resistance to these approved treatments. However, combination treatments have emerged to overcome resistance, and novel treatments based on radiotherapy (RT) and targeted radionuclide therapy (TRT) have been developed to treat melanoma in the preclinical mouse model, raising the question of whether synergy in combination therapies may motivate and increase their use as primary treatments for melanoma. To help clarify this question, we reviewed the studies in preclinical mouse models where they evaluated RT and TRT in combination with other approved and unapproved therapies from 2016 onwards, focusing on the type of melanoma model used (primary tumor and or metastatic model). PubMed® was the database in which the search was performed using mesh search algorithms resulting in 41 studies that comply with the inclusion rules of screening. Studies reviewed showed that synergy with RT or TRT had strong antitumor effects, such as tumor growth inhibition and fewer metastases, also exhibiting systemic protection. In addition, most studies were carried out on antitumor response for the implanted primary tumor, demonstrating that more studies are needed to evaluate these combined treatments in metastatic models on long-term protocols.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Maximiliano V M Correa-Lara
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Armando Vega-López
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico.
| |
Collapse
|
18
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
19
|
Liu Y, Tang H, Song T, Xu M, Chen J, Cui XY, Han Y, Li Z, Liu Z. Organotrifluoroborate enhances tumor targeting of fibroblast activation protein inhibitors for targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 2023; 50:2636-2646. [PMID: 37103565 DOI: 10.1007/s00259-023-06230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE Fibroblast activation protein (FAP) is a pan-cancer target and now the state-of-the-art to develop radiopharmaceuticals. FAP inhibitors have been of great success in developing imaging tracers. Yet, the overly rapid clearance cannot match with the long half-lives of regular therapeutic radionuclides. Though strategies that aim to elongate the circulation of FAPIs are being developed, here we describe an innovation that uses α-emitters of short half-lives (e.g., 213Bi) to pair the rapid pharmacokinetics of FAPIs. METHODS An organotrifluoroborate linker is engineered to FAPIs to give two advantages: (1) selectively increases tumor uptake and retention; (2) facile 18F-radiolabeling for positron emission tomography to guide radiotherapy with α-emitters, which can hardly be traced in general. RESULTS The organotrifluoroborate linker helps to improve the internalization in cancer cells, resulting in notably higher tumor uptake while the background is clean. In FAP-expressed tumor-bearing mice, this FAPI labeled with 213Bi, a short half-life α-emitter, exhibits almost complete suppression to tumor growth while the side effect is negligible. Additional data shows that this strategy is generally applicable to guide other α-emitters, such as 212Bi, 212Pb, and 149Tb. CONCLUSION The organotrifluoroborate linker may be of importance to optimize FAP-targeted radiopharmaceuticals, and the short half-lived α-emitters may be of choice for the rapid-cleared small molecule-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Yu Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haocheng Tang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tianchi Song
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Changping Laboratory, Beijing, 102206, China
| | - Yuxiang Han
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhibo Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Changping Laboratory, Beijing, 102206, China.
| |
Collapse
|
20
|
Funeh CN, Bridoux J, Ertveldt T, De Groof TWM, Chigoho DM, Asiabi P, Covens P, D'Huyvetter M, Devoogdt N. Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051378. [PMID: 37242621 DOI: 10.3390/pharmaceutics15051378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.
Collapse
Affiliation(s)
- Cyprine Neba Funeh
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Timo W M De Groof
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Dora Mugoli Chigoho
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Parinaz Asiabi
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Peter Covens
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Matthias D'Huyvetter
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| |
Collapse
|
21
|
Ertveldt T, Krasniqi A, Ceuppens H, Puttemans J, Dekempeneer Y, De Jonghe K, de Mey W, Lecocq Q, De Vlaeminck Y, Awad RM, Goyvaerts C, De Veirman K, Morgenstern A, Bruchertseifer F, Keyaerts M, Devoogdt N, D'Huyvetter M, Breckpot K. Targeted α-Therapy Using 225Ac Radiolabeled Single-Domain Antibodies Induces Antigen-Specific Immune Responses and Instills Immunomodulation Both Systemically and at the Tumor Microenvironment. J Nucl Med 2023; 64:751-758. [PMID: 37055223 DOI: 10.2967/jnumed.122.264752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Indexed: 04/15/2023] Open
Abstract
Targeted radionuclide therapy (TRT) using targeting moieties labeled with α-particle-emitting radionuclides (α-TRT) is an intensely investigated treatment approach as the short range of α-particles allows effective treatment of local lesions and micrometastases. However, profound assessment of the immunomodulatory effect of α-TRT is lacking in literature. Methods: Using flow cytometry of tumors, splenocyte restimulation, and multiplex analysis of blood serum, we studied immunologic responses ensuing from TRT with an antihuman CD20 single-domain antibody radiolabeled with 225Ac in a human CD20 and ovalbumin expressing B16-melanoma model. Results: Tumor growth was delayed with α-TRT and increased blood levels of various cytokines such as interferon-γ, C-C motif chemokine ligand 5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1. Peripheral antitumoral T-cell responses were detected on α-TRT. At the tumor site, α-TRT modulated the cold tumor microenvironment (TME) to a more hospitable and hot habitat for antitumoral immune cells, characterized by a decrease in protumoral alternatively activated macrophages and an increase in antitumoral macrophages and dendritic cells. We also showed that α-TRT increased the percentage of programmed death-ligand 1 (PD-L1)-positive (PD-L1pos) immune cells in the TME. To circumvent this immunosuppressive countermeasure we applied immune checkpoint blockade of the programmed cell death protein 1-PD-L1 axis. Combination of α-TRT with PD-L1 blockade potentiated the therapeutic effect, however, the combination aggravated adverse events. A long-term toxicity study revealed severe kidney damage ensuing from α-TRT. Conclusion: These data suggest that α-TRT alters the TME and induces systemic antitumoral immune responses, which explains why immune checkpoint blockade enhances the therapeutic effect of α-TRT. However, further optimization is warranted to avoid adverse events.
Collapse
Affiliation(s)
- Thomas Ertveldt
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janik Puttemans
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yana Dekempeneer
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Jonghe
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin Maximilian Awad
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe Institut, Germany; and
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe Institut, Germany; and
| | - Marleen Keyaerts
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Department of Biomedical Sciences, Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
22
|
Borbinha J, Ferreira P, Costa D, Vaz P, Di Maria S. Targeted radionuclide therapy directed to the tumor phenotypes: A dosimetric approach using MC simulations. Appl Radiat Isot 2023; 192:110569. [PMID: 36436229 DOI: 10.1016/j.apradiso.2022.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND In Targeted Radionuclide Therapy (TRT), the continuous technological effort in imaging tumor phenotypes (i.e. sub-volumes with different phenotypic characteristics) and in precise radiopharmaceutical tumor-targeting, is allowing for a better dosimetric optimization at the tumor phenotype level. The aim of this study was to evaluate the dosimetric efficiency (considering strategic absorbed dose delivery to the phenotypes) of personalized TRT directed to the tumor phenotypes. METHODS The dosimetric assessment was performed using a four-phenotype realistic tumor model implemented within the ICRP reference voxel phantom and simulations using the state-of-the-art Monte Carlo program PENELOPE. The dose assessment was performed for five radionuclides commonly used in therapy and/or diagnostic procedures: 125I, 99mTc, 177Lu, 161Tb and 67Ga. Two irradiation scenarios were considered: (i) the Whole Tumor Treatment Planning Scenario (WTTPS), i.e. the four phenotypes irradiated with the same radionuclide; (ii) the Phenotype Treatment Planning Scenario (PTPS), i.e. each phenotype irradiated by a single radionuclide. The optimal radionuclide configurations were studied considering the maximization of the absorbed dose delivered to the tumor and the minimization of dose to healthy tissues. RESULTS In WTTPS, 125I outperforms the other radionuclides in terms of the ratio of the maximum absorbed dose delivered to the tumor and the minimum absorbed dose delivered to healthy tissues. In the PTPS, the use of 161Tb in combination with the other radionuclides maximizes the absorbed dose in the tumor tissues while simultaneously minimizing dose to healthy tissue, compared to the WTTPS. In agreement with recent pre-clinical studies, our computational results confirm and indicate the beneficial additive dosimetric effects of Auger and conversion electrons of 161Tb with respect to 177Lu, when considering the same cumulated activity for both. Interestingly, in considering a realistic tumor model, the better dosimetric performances of 161Tb were confirmed also for tumor volumes ranging from 1.98 cm3 to 33.32 cm3. CONCLUSIONS Dose assessment in realistic non-homogeneous tumor models could provide more insights with respect to consider only homogenous water-spheres tumor models and should be taken into account in dosimetry-based TRT planning studies.
Collapse
Affiliation(s)
- Jorge Borbinha
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Paulo Ferreira
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Durval Costa
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Avenida Brasília, 1400-038, Lisboa, Portugal.
| | - Pedro Vaz
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares - Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139,7, 2695-066, Bobadela, Portugal.
| |
Collapse
|
23
|
Te Beek ET, Burggraaf J, Teunissen JJM, Vriens D. Clinical Pharmacology of Radiotheranostics in Oncology. Clin Pharmacol Ther 2023; 113:260-274. [PMID: 35373336 DOI: 10.1002/cpt.2598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
Abstract
The combined use of diagnostic and therapeutic radioligands with the same molecular target, also known as theranostics, enables accurate patient selection, targeted therapy, and prediction of treatment response. Radioiodine, bone-seeking radioligands and norepinephrine analogs have been used for many years for diagnostic imaging and radioligand therapy of thyroid carcinoma, bone metastases, pheochromocytoma, paraganglioma, and neuroblastoma, respectively. In recent years, radiolabeled somatostatin analogs and prostate-specific membrane antigen ligands have shown clinical efficacy in the treatment of neuroendocrine tumors and prostate cancer, respectively. Several candidate compounds are targeting novel theranostic targets such as fibroblast activation protein, C-X-C chemokine receptor 4, and gastrin-releasing peptide receptor. In addition, several strategies to improve efficacy of radioligand therapy are being evaluated, including dosimetry-based dose optimization, multireceptor targeting, upregulation of target receptors, radiosensitization, pharmacogenomics, and radiation genomics. Design and evaluation of novel radioligands and optimization of dose and dose schedules, within the complex context of individualized multimodal cancer treatment, requires a multidisciplinary approach that includes clinical pharmacology. Significant increases in the use of these radiopharmaceuticals in routine oncological practice can be expected, which will have major impact on patient care as well as (radio)pharmacy utilization.
Collapse
Affiliation(s)
- Erik T Te Beek
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | | | - Jaap J M Teunissen
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Dennis Vriens
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Kerr CP, Grudzinski JJ, Nguyen TP, Hernandez R, Weichert JP, Morris ZS. Developments in Combining Targeted Radionuclide Therapies and Immunotherapies for Cancer Treatment. Pharmaceutics 2022; 15:128. [PMID: 36678756 PMCID: PMC9865370 DOI: 10.3390/pharmaceutics15010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Targeted radionuclide therapy (TRT) and immunotherapy are rapidly growing classes of cancer treatments. Basic, translational, and clinical research are now investigating therapeutic combinations of these agents. In comparison to external beam radiation therapy (EBRT), TRT has the unique advantage of treating all disease sites following intravenous injection and selective tumor uptake and retention-a particularly beneficial property in metastatic disease settings. The therapeutic value of combining radiation therapy with immune checkpoint blockade to treat metastases has been demonstrated in preclinical studies, whereas results of clinical studies have been mixed. Several clinical trials combining TRT and immune checkpoint blockade have been initiated based on preclinical studies combining these with EBRT and/or TRT. Despite the interest in translation of TRT and immunotherapy combinations, many questions remain surrounding the mechanisms of interaction and the optimal approach to clinical implementation of these combinations. This review highlights the mechanisms of interaction between anti-tumor immunity and radiation therapy and the status of basic and translational research and clinical trials investigating combinations of TRT and immunotherapies.
Collapse
Affiliation(s)
- Caroline P. Kerr
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph J. Grudzinski
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thanh Phuong Nguyen
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jamey P. Weichert
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary S. Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
25
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
26
|
Li H, Kong Z, Xiang Y, Zheng R, Liu S. The role of PET/CT in radiotherapy for nasopharyngeal carcinoma. Front Oncol 2022; 12:1017758. [PMID: 36338692 PMCID: PMC9634754 DOI: 10.3389/fonc.2022.1017758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/06/2022] [Indexed: 05/29/2024] Open
Abstract
Radiotherapy has already been developed as the standard of care for patients with nasopharyngeal carcinoma (NPC), and precision staging, target volume delineation, prognosis prediction, and post-treatment surveillance are essential in the management of NPC. Positron emission tomography/computed tomography (PET/CT) is increasingly recognized as an imaging modality to guide precision radiotherapy in these areas. The feasibility and efficacy of 18F-FDG PET/CT have been confirmed in tumor diagnosis, treatment planning, prognosis, surveillance, and assessment. Coupled with the capability of revealing tumor metabolic information, 18F-FDG PET/CT is more accurate in identifying primary lesions and metastases of NPC than other conventional imaging methods including CT and MRI and shows the independently diagnostic and prognostic value for radiotherapy. However, 18F-FDG has limitations due to its physiological distribution in brain tissue and increasing uptake in post-radiation inflammation. Novel PET radiotracers including FAPI, NaF, CHO, and FLT are explored as alternatives with potential superiority for radiotherapy in NPC. In this review, we summarized the evolving role of PET/CT in the management of radiotherapy in NPC patients, aiming to facilitate precision radiotherapy from a molecular imaging aspect.
Collapse
Affiliation(s)
- Hongjia Li
- Department of Nuclear Medicine/PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongbo Xiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Zheng
- Department of Nuclear Medicine/PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Marei HE, Cenciarelli C, Hasan A. Potential of antibody-drug conjugates (ADCs) for cancer therapy. Cancer Cell Int 2022; 22:255. [PMID: 35964048 PMCID: PMC9375290 DOI: 10.1186/s12935-022-02679-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
28
|
Radionuclide Delivery Strategies in Tumor Treatment: A Systematic Review. Curr Issues Mol Biol 2022; 44:3267-3282. [PMID: 35892711 PMCID: PMC9332578 DOI: 10.3390/cimb44080225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this review was to assess recent progress in targeted radionuclide tumor therapy, focusing on the best delivery strategies. A literature search was conducted in PubMed, Web of Science, and Scopus using the terms "radionuclides", "liposomes", "avidin-biotin interaction", "theranostic", and "molecular docking". The 10 year filter was applied, except for the avidin-biotin interaction. Data were retrieved from both preclinical and clinical settings. Three targeting strategies were considered: pretargeting, liposomes, and ligands. Pretargeting can be achieved by exploiting the avidin-biotin interaction. This strategy seems very promising, although it has been investigated mainly in resectable tumors. Radiolabeled liposomes have attracted new interest as probes to identify the most suitable patients for treatment with liposomal formulations of common chemotherapeutics. The use of ligands for the delivery of radiotherapeutics to a specific target is still the most appealing strategy for treating tumors. The most appropriate ligand can be identified by virtually simulating its interaction with the receptor. All strategies showed great potential for use in targeted radionuclide therapy, but they also have numerous drawbacks. The most promising option is probably the one based on the use of new ligands.
Collapse
|
29
|
Personalized Dosimetry in the Context of Radioiodine Therapy for Differentiated Thyroid Cancer. Diagnostics (Basel) 2022; 12:diagnostics12071763. [PMID: 35885666 PMCID: PMC9320760 DOI: 10.3390/diagnostics12071763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
The most frequent thyroid cancer is Differentiated Thyroid Cancer (DTC) representing more than 95% of cases. A suitable choice for the treatment of DTC is the systemic administration of 131-sodium or potassium iodide. It is an effective tool used for the irradiation of thyroid remnants, microscopic DTC, other nonresectable or incompletely resectable DTC, or all the cited purposes. Dosimetry represents a valid tool that permits a tailored therapy to be obtained, sparing healthy tissue and so minimizing potential damages to at-risk organs. Absorbed dose represents a reliable indicator of biological response due to its correlation to tissue irradiation effects. The present paper aims to focus attention on iodine therapy for DTC treatment and has developed due to the urgent need for standardization in procedures, since no unique approaches are available. This review aims to summarize new proposals for a dosimetry-based therapy and so explore new alternatives that could provide the possibility to achieve more tailored therapies, minimizing the possible side effects of radioiodine therapy for Differentiated Thyroid Cancer.
Collapse
|
30
|
Ertveldt T, De Beck L, De Ridder K, Locy H, de Mey W, Goyvaerts C, Lecocq Q, Ceuppens H, De Vlaeminck Y, Awad RM, Keyaerts M, Devoogdt N, D'Huyvetter M, Breckpot K, Krasniqi A. Targeted Radionuclide Therapy with Low and High-Dose Lutetium-177-Labeled Single Domain Antibodies Induces Distinct Immune Signatures in a Mouse Melanoma Model. Mol Cancer Ther 2022; 21:1136-1148. [PMID: 35499391 PMCID: PMC9377759 DOI: 10.1158/1535-7163.mct-21-0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/07/2023]
Abstract
Targeted radionuclide therapy (TRT) using probes labeled with Lutetium-177 (177Lu) represents a new and growing type of cancer therapy. We studied immunologic changes in response to TRT with 177Lu labeled anti-human CD20 camelid single domain antibodies (sdAb) in a B16-melanoma model transfected to express human CD20, the target antigen, and ovalbumin, a surrogate tumor antigen. High-dose TRT induced melanoma cell death, calreticulin exposure, and ATP-release in vitro. Melanoma-bearing mice received fractionated low and high-dose TRT via tumor targeting anti-human CD20 sdAbs, as opposed to control sdAbs. Tumor growth was delayed with both doses. Low- and high-dose TRT increased IL10 serum levels. Low-dose TRT also decreased CCL5 serum levels. At the tumor, high-dose TRT induced a type I IFN gene signature, while low-dose TRT induced a proinflammatory gene signature. Low- and high-dose TRT increased the percentage of PD-L1pos and PD-L2pos myeloid cells in tumors with a marked increase in alternatively activated macrophages after high-dose TRT. The percentage of tumor-infiltrating T cells was not changed, yet a modest increase in ovalbumin-specific CD8pos T-cells was observed after low-dose TRT. Contradictory, low and high-dose TRT decreased CD4pos Th1 cells in addition to double negative T cells. In conclusion, these data suggest that low and high-dose TRT induce distinct immunologic changes, which might serve as an anchoring point for combination therapy.
Collapse
Affiliation(s)
- Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Authors: Karine Breckpot, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium. Phone: 322-477-4566; Fax: 322-477-4506; E-mail: ; and Thomas Ertveldt, E-mail:
| | - Lien De Beck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hanne Locy
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wout de Mey
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marleen Keyaerts
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Nuclear Medicine, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Corresponding Authors: Karine Breckpot, Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium. Phone: 322-477-4566; Fax: 322-477-4506; E-mail: ; and Thomas Ertveldt, E-mail:
| | - Ahmet Krasniqi
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
31
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Wen X, Zeng X, Cheng X, Zeng X, Liu J, Zhang Y, Li Y, Chen H, Huang J, Guo Z, Chen X, Zhang X. PD-L1-Targeted Radionuclide Therapy Combined with αPD-L1 Antibody Immunotherapy Synergistically Improves the Antitumor Effect. Mol Pharm 2022; 19:3612-3622. [PMID: 35652897 DOI: 10.1021/acs.molpharmaceut.2c00281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune checkpoint blockers (ICBs) targeting programmed death receptor 1 (PD-1) ligand 1 (PD-L1) for immunotherapy have radically reformed oncology. It is of great significance to enhance the response rate of ICB in cancer patients. Here, a radioiodinated anti-PD-L1 antibody (131I-αPD-L1) was developed for PD-L1-targeted single-photon emission computed tomography (SPECT) imaging and αPD-L1 immunotherapy. Flow cytometry and immunofluorescence staining were performed to identify PD-L1 upregulation in a time- and dose-dependent manner after being induced by 131I-αPD-L1. ImmunoSPECT imaging and biodistributions of 131I-αPD-L1 in CT26, MC38, 4T1, and B16F10 tumor models were conducted to visualize the high tumor uptake and low background signal. Compared to monotherapy alone, concurrent administration of αPD-L1 mAb and 131I-αPD-L1 revealed improved tumor control in murine tumor models. The combination of 11.1 MBq of 131I-αPD-L1 and 200 μg of αPD-L1 mAb resulted in significant tumor growth delay and prolonged survival. This radioligand synergized immunotherapy strategy holds great potential for cancer management.
Collapse
Affiliation(s)
- Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xueyuan Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xingxing Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yiren Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Haojun Chen
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Jinxiong Huang
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
33
|
Awad RM, Meeus F, Ceuppens H, Ertveldt T, Hanssens H, Lecocq Q, Mateusiak L, Zeven K, Valenta H, De Groof TWM, De Vlaeminck Y, Krasniqi A, De Veirman K, Goyvaerts C, D'Huyvetter M, Hernot S, Devoogdt N, Breckpot K. Emerging applications of nanobodies in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:143-199. [PMID: 35777863 DOI: 10.1016/bs.ircmb.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Hanssens
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Mateusiak
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Valenta
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
34
|
|
35
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
36
|
Sochacka-Ćwikła A, Mączyński M, Regiec A. FDA-Approved Small Molecule Compounds as Drugs for Solid Cancers from Early 2011 to the End of 2021. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072259. [PMID: 35408658 PMCID: PMC9000317 DOI: 10.3390/molecules27072259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Solid cancers are the most common types of cancers diagnosed globally and comprise a large number of deaths each year. The main challenge currently in drug development for tumors raised from solid organs is to find more selective compounds, which exploit specific molecular targets. In this work, the small molecule drugs registered by the Food and Drug Administration (FDA) for solid cancers treatment between 2011 and 2022 were identified and analyzed by investigating a type of therapy they are used for, as well as their structures and mechanisms of action. On average, 4 new small molecule agents were introduced each year, with a few exceptions, for a total of 62 new drug approvals. A total of 50 of all FDA-approved drugs have also been authorized for use in the European Union by the European Medicines Agency (EMA). Our analysis indicates that many more anticancer molecules show a selective mode of action, i.e., 49 targeted agents, 5 hormone therapies and 3 radiopharmaceuticals, compared to less specific cytostatic action, i.e., 5 chemotherapeutic agents. It should be emphasized that new medications are indicated for use mainly for monotherapy and less for a combination or adjuvant therapies. The comprehensive data presented in this review can serve for further design and development of more specific targeted agents in clinical usage for solid tumors.
Collapse
|
37
|
Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med 2022; 24:e15. [PMID: 35357290 DOI: 10.1017/erm.2022.6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA damage and repair studies are at the core of the radiation biology field and represent also the fundamental principles informing radiation therapy (RT). DNA damage levels are a function of radiation dose, whereas the type of damage and biological effects such as DNA damage complexity, depend on radiation quality that is linear energy transfer (LET). Both levels and types of DNA damage determine cell fate, which can include necrosis, apoptosis, senescence or autophagy. Herein, we present an overview of current RT modalities in the light of DNA damage and repair with emphasis on medium to high-LET radiation. Proton radiation is discussed along with its new adaptation of FLASH RT. RT based on α-particles includes brachytherapy and nuclear-RT, that is proton-boron capture therapy (PBCT) and boron-neutron capture therapy (BNCT). We also discuss carbon ion therapy along with combinatorial immune-based therapies and high-LET RT. For each RT modality, we summarise relevant DNA damage studies. Finally, we provide an update of the role of DNA repair in high-LET RT and we explore the biological responses triggered by differential LET and dose.
Collapse
|
38
|
Malcolm JC, Falzone N, Gains JE, Aldridge MD, Mirando D, Lee BQ, Gaze MN, Vallis KA. Impact of cyclic changes in pharmacokinetics and absorbed dose in pediatric neuroblastoma patients receiving [ 177Lu]Lu-DOTATATE. EJNMMI Phys 2022; 9:24. [PMID: 35347483 PMCID: PMC8960523 DOI: 10.1186/s40658-022-00436-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Recent reports personalizing the administered activity (AA) of each cycle of peptide receptor radionuclide therapy based on the predicted absorbed dose (AD) to the kidneys (dose-limiting organ) have been promising. Assuming identical renal pharmacokinetics for each cycle is pragmatic, however it may lead to over- or under-estimation of the optimal AA. Here, we investigate the influence that earlier cycles of [177Lu]Lu-DOTATATE had on the biokinetics and AD of subsequent cycles in a recent clinical trial that evaluated the safety and activity of [177Lu]Lu-DOTATATE in pediatric neuroblastoma (NBL). We investigated whether predictions based on an assumption of unchanging AD per unit AA (Gy/GBq) prove robust to cyclical changes in biokinetics. METHODS A simulation study, based on dosimetry data from six children with NBL who received four-cycles of [177Lu]Lu-DOTATATE in the LuDO trial (ISRCTN98918118), was performed to explore the effect of variable biokinetics on AD. In the LuDO trial, AA was adapted to the patient's weight and SPECT/CT-based dosimetry was performed for the kidneys and tumour after each cycle. The largest tumour mass was selected for dosimetric analysis in each case. RESULTS The median tumour AD per cycle was found to decrease from 15.6 Gy (range 8.12-26.4) in cycle 1 to 11.4 Gy (range 9.67-28.8), 11.3 Gy (range 2.73-32.9) and 4.3 Gy (range 0.72-20.1) in cycles 2, 3 and 4, respectively. By the fourth cycle, the median of the ratios of the delivered AD (ADD) and the predicted (or "expected") AD (ADE) (which was based on an assumption of stable biokinetics from the first cycle onwards) were 0.16 (range 0.02-0.92, p = 0.013) for the tumour and 1.08 (range 0.84-1.76, p > 0.05) for kidney. None of the patients had an objective response at 1 month follow up. CONCLUSION This study demonstrates variability in Gy/GBq and tumour AD per cycle in children receiving four administrations of [177Lu]Lu-DOTATATE treatment for NBL. NBL is deemed a radiation sensitive tumour; therefore, dose-adaptive treatment planning schemes may be appropriate for some patients to compensate for decreasing tumour uptake as treatment progresses. Trial registration ISRCTN ISRCTN98918118. Registered 20 December 2013 (retrospectively registered).
Collapse
Affiliation(s)
- Javian C Malcolm
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Nadia Falzone
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jennifer E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Matthew D Aldridge
- Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Boon Q Lee
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Katherine A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
39
|
Parakh S, Lee ST, Gan HK, Scott AM. Radiolabeled Antibodies for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:1454. [PMID: 35326605 PMCID: PMC8946248 DOI: 10.3390/cancers14061454] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Radioimmunoconjugates consist of a monoclonal antibody (mAb) linked to a radionuclide. Radioimmunoconjugates as theranostics tools have been in development with success, particularly in hematological malignancies, leading to approval by the US Food and Drug Administration (FDA) for the treatment of non-Hodgkin's lymphoma. Radioimmunotherapy (RIT) allows for reduced toxicity compared to conventional radiation therapy and enhances the efficacy of mAbs. In addition, using radiolabeled mAbs with imaging methods provides critical information on the pharmacokinetics and pharmacodynamics of therapeutic agents with direct relevance to the optimization of the dose and dosing schedule, real-time antigen quantitation, antigen heterogeneity, and dynamic antigen changes. All of these parameters are critical in predicting treatment responses and identifying patients who are most likely to benefit from treatment. Historically, RITs have been less effective in solid tumors; however, several strategies are being investigated to improve their therapeutic index, including targeting patients with minimal disease burden; using pre-targeting strategies, newer radionuclides, and improved labeling techniques; and using combined modalities and locoregional application. This review provides an overview of the radiolabeled intact antibodies currently in clinical use and those in development.
Collapse
Affiliation(s)
- Sagun Parakh
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
| | - Sze Ting Lee
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Hui K. Gan
- Department of Medical Oncology, Heidelberg, VIC 3084, Australia; (S.P.); (H.K.G.)
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3086, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC 3010, Australia
| |
Collapse
|
40
|
Ma H, Li F, Shen G, Pan L, Liu W, Liang R, Lan T, Yang Y, Yang J, Liao J, Liu N. In vitro and in vivo evaluation of 211At-labeled fibroblast activation protein inhibitor for glioma treatment. Bioorg Med Chem 2022; 55:116600. [PMID: 34999526 DOI: 10.1016/j.bmc.2021.116600] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023]
Abstract
Glioma is the most common primary intracranial tumor without effective treatment. Positron emission tomography tracers labeled with 68Ga targeting fibroblast activation protein (FAP) have shown favorable characteristics in the diagnosis of glioma. However, to the best of our knowledge, FAP-targeted endoradiotherapy has never been explored in glioma. Hence, in this study, we investigated the therapeutic effect of 211At-labeled fibroblast activation protein inhibitor (FAPI) for glioma in vitro and in vivo. By astatodestannylation reaction, we prepared 211At-FAPI-04 with a radiochemical yield of 45 ± 6.7% and radiochemical purity of 98%. With good stability in vitro, 211At-FAPI-04 showed fast and specific binding to FAP-positive U87MG cells, and could significantly reduce the cell viability, arrested cell cycle at G2/M phase and suppressed cell proliferative efficacy. Biodistribution studies revealed that 6-fold higher accumulation in tumor sites was achieved by intratumoral injection in comparison with intravenous injection. In U87MG xenografts, 211At-FAPI-04 obviously suppressed the tumor growth and prolonged the median survival in a dose-dependent manner without obvious toxicity to normal organs. In addition, reduced proliferation and increased apoptosis were also observed after 211At-FAPI-04 treatment. All these results suggest that targeted alpha-particle therapy (TAT) mediated by 211At-FAPI-04 can provide an effective and promising strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Huan Ma
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| | - Guohua Shen
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Weihao Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education; Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
41
|
Principles and Applications of Auger-Electron Radionuclide Therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Lundsten S, Berglund H, Jha P, Krona C, Hariri M, Nelander S, Lane DP, Nestor M. p53-Mediated Radiosensitization of 177Lu-DOTATATE in Neuroblastoma Tumor Spheroids. Biomolecules 2021; 11:1695. [PMID: 34827693 PMCID: PMC8615514 DOI: 10.3390/biom11111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022] Open
Abstract
p53 is involved in DNA damage response and is an exciting target for radiosensitization in cancer. Targeted radionuclide therapy against somatostatin receptors with 177Lu-DOTATATE is currently being explored as a treatment for neuroblastoma. The aim of this study was to investigate the novel p53-stabilizing peptide VIP116 in neuroblastoma, both as monotherapy and together with 177Lu-DOTATATE. Five neuroblastoma cell lines, including two patient-derived xenograft (PDX) lines, were characterized in monolayer cultures. Four out of five were positive for 177Lu-DOTATATE uptake. IC50 values after VIP116 treatments correlated with p53 status, ranging between 2.8-238.2 μM. IMR-32 and PDX lines LU-NB-1 and LU-NB-2 were then cultured as multicellular tumor spheroids and treated with 177Lu-DOTATATE and/or VIP116. Spheroid growth was inhibited in all spheroid models for all treatment modalities. The most pronounced effects were observed for combination treatments, mediating synergistic effects in the IMR-32 model. VIP116 and combination treatment increased p53 levels with subsequent induction of p21, Bax and cleaved caspase 3. Combination treatment resulted in a 14-fold and 1.6-fold induction of MDM2 in LU-NB-2 and IMR-32 spheroids, respectively. This, together with differential MYCN signaling, may explain the varying degree of synergy. In conclusion, VIP116 inhibited neuroblastoma cell growth, potentiated 177Lu-DOTATATE treatment and could, therefore, be a feasible treatment option for neuroblastoma.
Collapse
Affiliation(s)
- Sara Lundsten
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Hanna Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Preeti Jha
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
- Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| | - David P. Lane
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 65 Solna, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (S.L.); (H.B.); (P.J.); (C.K.); (M.H.); (S.N.); (D.P.L.)
| |
Collapse
|
43
|
Bavelaar BM, Song L, Jackson MR, Able S, Tietz O, Skaripa-Koukelli I, Waghorn PA, Gill MR, Carlisle RC, Tarsounas M, Vallis KA. Oligonucleotide-Functionalized Gold Nanoparticles for Synchronous Telomerase Inhibition, Radiosensitization, and Delivery of Theranostic Radionuclides. Mol Pharm 2021; 18:3820-3831. [PMID: 34449222 PMCID: PMC8493550 DOI: 10.1021/acs.molpharmaceut.1c00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
Telomerase represents an attractive target in oncology as it is expressed in cancer but not in normal tissues. The oligonucleotide inhibitors of telomerase represent a promising anticancer strategy, although poor cellular uptake can restrict their efficacy. In this study, gold nanoparticles (AuNPs) were used to enhance oligonucleotide uptake. "match" oligonucleotides complementary to the telomerase RNA template subunit (hTR) and "scramble" (control) oligonucleotides were conjugated to diethylenetriamine pentaacetate (DTPA) for 111In-labeling. AuNPs (15.5 nm) were decorated with a monofunctional layer of oligonucleotides (ON-AuNP) or a multifunctional layer of oligonucleotides, PEG(polethylene glycol)800-SH (to reduce AuNP aggregation) and the cell-penetrating peptide Tat (ON-AuNP-Tat). Match-AuNP enhanced the cellular uptake of radiolabeled oligonucleotides while retaining the ability to inhibit telomerase activity. The addition of Tat to AuNPs increased nuclear localization. 111In-Match-AuNP-Tat induced DNA double-strand breaks and caused a dose-dependent reduction in clonogenic survival of telomerase-positive cells but not telomerase-negative cells. hTR inhibition has been reported to sensitize cancer cells to ionizing radiation, and 111In-Match-AuNP-Tat therefore holds promise as a vector for delivery of radionuclides into cancer cells while simultaneously sensitizing them to the effects of the emitted radiation.
Collapse
Affiliation(s)
- Bas M. Bavelaar
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Lei Song
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Mark R. Jackson
- Institute
of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Sarah Able
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Ole Tietz
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Irini Skaripa-Koukelli
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Philip A. Waghorn
- Charles
River Laboratories, Elphinstone Research Centre, Elphinstone, Tranent EH33 2NE, U.K.
| | - Martin R. Gill
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Robert C. Carlisle
- Institute
of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
| | - Madalena Tarsounas
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| | - Katherine A. Vallis
- Oxford
Institute for Radiation Oncology, University
of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.
| |
Collapse
|
44
|
Chiesa C, Strigari L, Pacilio M, Richetta E, Cannatà V, Stasi M, Marzola MC, Schillaci O, Bagni O, Maccauro M. Dosimetric optimization of nuclear medicine therapy based on the Council Directive 2013/59/EURATOM and the Italian law N. 101/2020. Position paper and recommendations by the Italian National Associations of Medical Physics (AIFM) and Nuclear Medicine (AIMN). Phys Med 2021; 89:317-326. [PMID: 34583307 DOI: 10.1016/j.ejmp.2021.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
This recommendation by the Italian Associations of Nuclear Medicine (AIMN) and Medical Physics (AIFM) focuses on the dosimetric optimization of Nuclear Medicine Therapy (NMT) as clearly requested by the article 56 of the EURATOM Directive 2013/59 and its consequent implementation in article 158 in the Italian Law n. 101/2020. However, this statement must deal with scientific and methodological limits that still exist and, above all, with the currently available limited resources. This paper addresses these specific issues. It distinguishes among many possible kinds of NMT. For each type, dosimetric optimization is recommended or considered optional, according to the general criteria adopted in any human choice, i.e. a check of technical feasibility first, followed by a cost/benefit argument. The classification of therapies as standardized or non-standardized is presented. This is based on the complexity of the type of pathology, on the variability of the treatment outcome, and on the risks involved. According to the present document, which was officially delivered to Italian Health Ministry as necessary interpretation of the law, a therapeutic team can, in science and consciousness, overcome the indications of posology, to optimize and tailoring a treatment with dosimetry, on the basis of published national or international data or guidelines, without need of an Ethics Committee approval. Data collected in this way will provide additional evidence about optimal dosimetric reference values. As conclusion, a formal appeal is made to the European and National regulatory agencies for pharmaceuticals to obtain the official acknowledgment of this principle.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Lidia Strigari
- Director of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Pacilio
- Director of Medical Physics, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Elisa Richetta
- Medical Physics, Azienda Ospedaliera Ordine Mauriziano, Turin, Italy
| | - Vittorio Cannatà
- Director of Medical Physics Unit, Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Stasi
- Medical Physics, Azienda Ospedaliera Ordine Mauriziano, Turin, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - Orazio Schillaci
- Dean of University Tor Vergata, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Oreste Bagni
- Director of Nuclear Medicine, S. Maria Goretti Hospital, Latina, Italy
| | - Marco Maccauro
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
45
|
Abbott EM, Falzone N, Lenzo N, Vallis KA. Combining External Beam Radiation and Radionuclide Therapies: Rationale, Radiobiology, Results and Roadblocks. Clin Oncol (R Coll Radiol) 2021; 33:735-743. [PMID: 34544640 DOI: 10.1016/j.clon.2021.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022]
Abstract
The emergence of effective radionuclide therapeutics, such as radium-223 dichloride, [177Lu]Lu-DOTA-TATE and [177Lu]Lu-PSMA ligands, over the last 10 years is driving a rapid expansion in molecular radiotherapy (MRT) research. Clinical trials that are underway will help to define optimal dosing protocols and identify groups of patients who are likely to benefit from this form of treatment. Clinical investigations are also being conducted to combine new MRT agents with other anticancer drugs, with particular emphasis on DNA repair inhibitors and immunotherapeutics. In this review, the case is presented for combining MRT with external beam radiotherapy (EBRT). The technical and dosimetric challenges of combining two radiotherapeutic modalities have impeded progress in the past. However, the need for research into the specific radiobiological effects of radionuclide therapy, which has lagged behind that for EBRT, has been recognised. This, together with innovations in imaging technology, MRT dosimetry tools and EBRT hardware, will facilitate the future use of this important combination of treatments.
Collapse
Affiliation(s)
- E M Abbott
- MIM Software Inc., Cleveland, Ohio, USA.
| | - N Falzone
- GenesisCare, Alexandria, New South Wales, Australia.
| | - N Lenzo
- GenesisCare Theranostics, St John of God Murdoch Cancer Centre, Murdoch, Western Australia, Australia; Department of Medicine, Notre Dame University Australia, Fremantle, Western Australia, Australia
| | - K A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|
47
|
Corroyer-Dulmont A, Jaudet C, Frelin AM, Fantin J, Weyts K, Vallis KA, Falzone N, Sibson NR, Chérel M, Kraeber-Bodéré F, Batalla A, Bardet S, Bernaudin M, Valable S. Radioimmunotherapy for Brain Metastases: The Potential for Inflammation as a Target of Choice. Front Oncol 2021; 11:714514. [PMID: 34504791 PMCID: PMC8423367 DOI: 10.3389/fonc.2021.714514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Brain metastases (BM) are frequently detected during the follow-up of patients with malignant tumors, particularly in those with advanced disease. Despite a major progress in systemic anti-cancer treatments, the average overall survival of these patients remains limited (6 months from diagnosis). Also, cognitive decline is regularly reported especially in patients treated with whole brain external beam radiotherapy (WBRT), due to the absorbed radiation dose in healthy brain tissue. New targeted therapies, for an earlier and/or more specific treatment of the tumor and its microenvironment, are needed. Radioimmunotherapy (RIT), a combination of a radionuclide to a specific antibody, appears to be a promising tool. Inflammation, which is involved in multiple steps, including the early phase, of BM development is attractive as a relevant target for RIT. This review will focus on the (1) early biomarkers of inflammation in BM pertinent for RIT, (2) state of the art studies on RIT for BM, and (3) the importance of dosimetry to RIT in BM. These two last points will be addressed in comparison to the conventional EBRT treatment, particularly with respect to the balance between tumor control and healthy tissue complications. Finally, because new diagnostic imaging techniques show a potential for the detection of BM at an early stage of the disease, we focus particularly on this therapeutic window.
Collapse
Affiliation(s)
- Aurélien Corroyer-Dulmont
- Medical Physics Department, CLCC François Baclesse, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Cyril Jaudet
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Anne-Marie Frelin
- Grand accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - Jade Fantin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Kathleen Weyts
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Katherine A. Vallis
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Nicola R. Sibson
- Medical Research Council, Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Michel Chérel
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Françoise Kraeber-Bodéré
- Team 13-Nuclear Oncology, CRCINA, INSERM, CNRS, Nantes University, Nantes, France
- Nuclear Medicine Department, University Hospital, Nantes, France
| | - Alain Batalla
- Medical Physics Department, CLCC François Baclesse, Caen, France
| | - Stéphane Bardet
- Nuclear Medicine Department, CLCC François Baclesse, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, Caen, France
| |
Collapse
|
48
|
Antibody Conjugates for Sarcoma Therapy: How Far along Are We? Biomedicines 2021; 9:biomedicines9080978. [PMID: 34440182 PMCID: PMC8392509 DOI: 10.3390/biomedicines9080978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sarcomas are one of the most difficult type of cancer to manage and treat because of their extremely heterogeneous molecular and morphological features. Despite the progress made over the years in the establishment of standard protocols for high and low grading/staging sarcoma patients, mostly with chemotherapy and/or radiotherapy, 50% of treated patients experience relapse episodes. Because of this, in the last 20 years, new therapeutic approaches for sarcoma treatment have been evaluated in preclinical and clinical studies. Among them, antibody-based therapies have been the most studied. Immunoconjugates consist of a carrier portion, frequently represented by an antibody, linked to a toxic moiety, i.e., a drug, toxin, or radionuclide. While the efficacy of immunoconjugates is well demonstrated in the therapy of hematological tumors and more recently also of epithelial ones, their potential as therapeutic agents against sarcomas is still not completely explored. In this paper, we summarize the results obtained with immunoconjugates targeting sarcoma surface antigens, considering both preclinical and clinical studies. To date, the encouraging results obtained in preclinical studies allowed nine immunoconjugates to enter clinical trials, demonstrating the validity of immunotherapy as a promising pharmacological tool also for sarcoma therapy.
Collapse
|
49
|
Matsumura Y. Barriers to antibody therapy in solid tumors, and their solutions. Cancer Sci 2021; 112:2939-2947. [PMID: 34032331 PMCID: PMC8353947 DOI: 10.1111/cas.14983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Antibody drugs have become the mainstream of cancer treatment due to advances in cancer biology and Ab engineering. However, several barriers to Ab therapy have also been identified. These include various mechanisms for Ab drug resistance, such as heterogeneity of antigen expression in tumor cells and reduction in antitumor immunity due to expression diversity, polymorphism of Fc receptors (FcR) in effector cells, and reduced function of effector cells. Countermeasures to each resistance mechanism are being investigated. This review focuses on barriers that impede the delivery of Ab drugs due to features of the solid tumor microenvironment. Unlike hematological malignancies, in which the target tumor cells are in blood vessels, clinical solid tumors contain cancer stroma, which interferes with the delivery of Ab drugs. In addition, the cancer mass itself interferes with the penetration of Ab drugs. In this article, I will consider the etiology of cancer stroma and propose a new Ab drug development strategy for solid cancer treatment centering on cancer stromal targeting (CAST) therapy using anti-insoluble fibrin Ab-drug conjugate (ADC), which can overcome the cancer stroma barrier. The recent success of ADCs, chimeric antigen receptor T cells (CAR-Ts), and Bi-specific Abs is changing the category of Ab drugs from molecular-targeted drugs based on growth signal inhibition to cancer-specific targeted therapies. Therefore, at the end of this review, I argue that it is time to reorient the concept of Ab drug development.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Matsumura LabInnovation Center of NanoMedicineKawasakiJapan
- Tsukiji LabRINInstitute Inc.TokyoJapan
| |
Collapse
|
50
|
Du H, Yang X, Fan J, Du X. Claudin 6: Therapeutic prospects for tumours, and mechanisms of expression and regulation (Review). Mol Med Rep 2021; 24:677. [PMID: 34296304 PMCID: PMC8335585 DOI: 10.3892/mmr.2021.12316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Tight junctions (TJs) are an important component of cell connectivity; they maintain cell polarity, permeability and adhesion, and participate in the regulation of cell proliferation and differentiation. The claudin (CLDN) family is integral to TJs, and CLDN6 is an important member of this family. Abnormal expression of CLDN6 can destroy the integrity of TJs through various mechanisms and can serve multiple roles in the occurrence and development of tumours. CLDN6 is widely expressed in various tumours but rarely expressed in healthy adult tissues. The aim of this review is to critically examine the recent literature on CLDN6, including its structure, expression in different tumours, regulatory mechanisms and therapeutic prospects. Although some conclusions are controversial, in certain tumours, such as liver, ovarian, endometrial and oesophageal cancer, and atypical teratoid/rhabdoid tumours, research consistently shows that CLDN6 is expressed in tumour tissues but is not expressed or is expressed at low levels in surrounding tissues. In these tumours, CLDN6 has potential as a carcinoembryonic antigen and a therapeutic target.
Collapse
Affiliation(s)
- Huan Du
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Xiyue Yang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jinjia Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaobo Du
- Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|