1
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
2
|
Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021; 111:577-592. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Collapse
Affiliation(s)
- Federica Sommonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | | | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy.
| |
Collapse
|
3
|
Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021; 58:e13796. [PMID: 33728712 PMCID: PMC8244108 DOI: 10.1111/psyp.13796] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The process of aging includes changes in cellular biology that affect local interactions between cells and their environments and eventually propagate to systemic levels. In the brain, where neurons critically depend on an efficient and dynamic supply of oxygen and glucose, age-related changes in the complex interaction between the brain parenchyma and the cerebrovasculature have effects on health and functioning that negatively impact cognition and play a role in pathology. Thus, cerebrovascular health is considered one of the main mechanisms by which a healthy lifestyle, such as habitual cardiorespiratory exercise and a healthful diet, could lead to improved cognitive outcomes with aging. This review aims at detailing how the physiology of the cerebral vascular system changes with age and how these changes lead to differential trajectories of cognitive maintenance or decline. This provides a framework for generating specific mechanistic hypotheses about the efficacy of proposed interventions and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we discuss the methodological implications of age-related changes in the cerebral vasculature for human cognitive neuroscience research and propose directions for future experiments aimed at investigating age-related changes in the relationship between physiology and cognitive mechanisms.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
4
|
Park GH, Shin HS, Choi ES, Yoon BS, Choi MH, Lee SJ, Lee KE, Lee JS, Hong JM. Cranial burr hole with erythropoietin administration induces reverse arteriogenesis from the enriched extracranium. Neurobiol Dis 2019; 132:104538. [PMID: 31344491 DOI: 10.1016/j.nbd.2019.104538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
It is challenging to revitalize ischemic penumbra after an acute stroke with intracranial perfusion insufficiency. To evaluate whether cranial burr hole and erythropoietin (EPO) generate effective revascularization, we investigated the efficacy of the augmentation method for reverse arteriogenesis from the healthy extracranial milieu. An intracranial perfusion insufficiency was created through bilateral internal carotid artery ligation (bICAL) in Sprague-Dawley rats. We administered recombinant human EPO (5000 U/kg) or saline intraperitoneally for 3 days after bICAL. Mechanical barrier disruption (MBD) was performed through a cranial burr hole with small dural cracks in the right hemisphere. The ipsilateral hemisphere with MBD grossly showed vascular networks between the extra- and intra-cranial spaces 2 weeks after the MBD procedure. It also showed significantly increased vessels in the intracranial vasculature adjacent to the MBD region (p = 0.0006). The levels of pro-angiogenic and inflammatory factors with prominent markers of vessel permeability were also significantly increased (MBD-only vs. control; Tnf-α, p = 0.0007; Vegf, p = 0.0206). In the EPO-administered group, such elevations in inflammation were significantly mitigated (combined vs. MBD-only; Tnf-α, p = 0.0008). The ipsilateral hemisphere with MBD-EPO (vs. MBD-only) showed significantly increased vessels (RECA-1, p = 0.0182) and their maturation (RECA-1/α-SMA, p = 0.0046), with upregulation of tumor growth factor-β1 (Tgf-β1, p = 0.037) and matrix metalloproteinase-2 (Mmp-2, p = 0.0488). These findings were completely blocked by minocycline (MIC) administration during in vivo (Tgf-β1, p = 0.0009; Mmp-2, p < 0.0001) and in vitro experiments (tube formation, p < 0.0001). Our data suggest that the MBD procedure (for angiogenic routes) and EPO administration (for an arteriogenic booster) are complimentary and can facilitate successfully "reverse arteriogenesis" in subjects with intracranial perfusion insufficiency.
Collapse
Affiliation(s)
- Geun Hwa Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Eun Sil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Mun Hee Choi
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Kyung-Eon Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University School of Pharmacy, Seoul, South Korea
| | - Jin Soo Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea.
| |
Collapse
|
5
|
Increased Expression of Vascular Endothelial Growth Factor-D Following Brain Injury. Int J Mol Sci 2019; 20:ijms20071594. [PMID: 30935023 PMCID: PMC6479775 DOI: 10.3390/ijms20071594] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023] Open
Abstract
Alterations in the expression of the vascular endothelial growth factors (VEGF) A and B occur during blood–brain barrier (BBB) breakdown and angiogenesis following brain injury. In this study, the temporal and spatial expression of VEGF-D and VEGF receptors-2 and -3 (VEGFR-2 and VEGFR-3, respectively) was determined at the mRNA and protein level in the rat cortical cold-injury model over a period of 0.5 to 6 days post-injury. In order to relate endothelial VEGF-D protein expression with BBB breakdown, dual labeling immunofluorescence was performed using antibodies to VEGF-D and to fibronectin, a marker of BBB breakdown. In control rats, VEGF-D signal was only observed in scattered perivascular macrophages in the cerebral cortex. The upregulation of VEGF-D mRNA expression was observed in the injury site between days 0.5 to 4, coinciding with the period of BBB breakdown and angiogenesis. At the protein level, intracerebral vessels with BBB breakdown to fibronectin in the lesion on days 0.5 to 4 failed to show endothelial VEGF-D. Between days 0.5 to 6, an increased VEGF-D immunoreactivity was noted in the endothelium of pial vessels overlying the lesion site, in neutrophils, macrophages, and free endothelial cells within the lesion. The upregulation of VEGFR-2 and -3 mRNA and protein expression was observed early post-injury on day 0.5. Although there was concurrent expression of VEGF-A, VEGF-B, and VEGF-D post-injury, differences in their spatial expression during BBB breakdown and angiogenesis suggest that they have specific and separate roles in these processes.
Collapse
|
6
|
Gong P, Li M, Zou C, Tian Q, Xu Z. Tissue Plasminogen Activator Causes Brain Microvascular Endothelial Cell Injury After Oxygen Glucose Deprivation by Inhibiting Sonic Hedgehog Signaling. Neurochem Res 2018; 44:441-449. [PMID: 30552546 PMCID: PMC6394519 DOI: 10.1007/s11064-018-2697-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022]
Abstract
The thrombolytic activity of tissue plasminogen activator (tPA) has undisputed benefits. However, the documented neurotoxicity of tPA raises important issues. Currently, common treatments for stroke might not be optimum if exogenous tPA can pass through the blood–brain barrier and enter the brain, thus adding to the deleterious effects of tPA within the cerebral parenchyma. Here, we determined whether tPA could damage brain microvascular endothelial cells (BMECs) during cerebral ischemia. We showed that treatment of BMECs with tPA decreased trans-endothelial electrical resistance and cell proliferation, and blocked the cell cycle at the G0–G1 phase. In addition, the Sonic hedgehog (Shh) signaling pathway was involved in tPA-induced BMECs dysfunction. However, tPA-enhanced oxygen glucose deprivation-induced BMECs dysfunction was eliminated by Shh administration and the effects could be reversed by Shh inhibitors. Taken together, these results demonstrate that tPA administration might result in damage to the endothelial barrier owing to blocked Shh signaling pathway.
Collapse
Affiliation(s)
- Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China.
| | - Changlin Zou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| |
Collapse
|
7
|
Abstract
The blood-brain interface (BBI) is the subject of a new named series at Brain, Behavior, and Immunity. It is timely to reflect on a number of advances in the field within the last ten years, which may lead to an increased understanding of human behaviour and a wide range of psychiatric and neurological conditions. We cover discoveries made in solute and cell trafficking, endothelial cell and pericyte biology, extracellular matrix and emerging tools, especially those which will enable study of the human BBI. We now recognize the central role of the BBI in a number of immunopsychiatric syndromes, including sickness behaviour, delirium, septic encephalopathy, cognitive side effects of cytokine-based therapies and the frank psychosis observed in neuronal surface antibody syndromes. In addition, we find ourselves interrogating and modulating the brain across the BBI, during diagnostic investigation and treatment of brain disease. The past ten years of BBI research have been exciting but there is more to come.
Collapse
|
8
|
Lee MJ, Cha J, Choi HA, Woo SY, Kim S, Wang SJ, Chung CS. Blood-brain barrier breakdown in reversible cerebral vasoconstriction syndrome: Implications for pathophysiology and diagnosis. Ann Neurol 2017; 81:454-466. [DOI: 10.1002/ana.24891] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Mi Ji Lee
- Department of Neurology, Neuroscience Center, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jihoon Cha
- Department of Radiology, Imaging Center, Heart Stroke Vascular Institute, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Hyun Ah Choi
- Department of Neurology, Neuroscience Center, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sook-Young Woo
- Biostatistics Team, Samsung Biomedical Research Institute; Seoul Korea
| | - Seonwoo Kim
- Biostatistics Team, Samsung Biomedical Research Institute; Seoul Korea
| | - Shuu-Jiun Wang
- Neurological Institute, Taipei Veterans General Hospital; Taipei Taiwan
- Faculty of Medicine; National Yang-Ming University School of Medicine; Taipei Taiwan
| | - Chin-Sang Chung
- Department of Neurology, Neuroscience Center, Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
9
|
Maugeri R, Schiera G, Di Liegro CM, Fricano A, Iacopino DG, Di Liegro I. Aquaporins and Brain Tumors. Int J Mol Sci 2016; 17:ijms17071029. [PMID: 27367682 PMCID: PMC4964405 DOI: 10.3390/ijms17071029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/04/2023] Open
Abstract
Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Anna Fricano
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Domenico Gerardo Iacopino
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| |
Collapse
|
10
|
Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Mol Neurobiol 2016; 54:4232-4242. [DOI: 10.1007/s12035-016-9973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|
11
|
Kim TY, Yoshimoto T, Aoyama Y, Niimi K, Takahashi E. Analysis of the protective effects of a neuronal Cav2.1 calcium channel in brain injury. Neuroscience 2015; 313:110-21. [PMID: 26616403 DOI: 10.1016/j.neuroscience.2015.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
Abstract
We previously reported that rolling Nagoya mice carrying a mutation in the α1 subunit of the Cav2.1 channel protective from ischemia- and kainate-induced neuronal damage. However, the protective effect of this mutation and its relationship to brain injury recovery have not been examined. To examine the relationship between Cav2.1 channel function and brain injury, we induced cryogenic brain damage in homozygous rolling Nagoya (rol/rol), control wild-type (+/+), ω-agatoxin IVA-pretreated +/+ (ω-aga +/+), and ω-agatoxin IVA-post-treated +/+ (ω-aga-post-treated +/+) mice. We measured the lesion area, blood brain-barrier permeability and performed immunohistochemistry and western blot analysis. The lesions of rol/rol and ω-aga +/+ mice were significantly smaller than those observed in +/+ mice at both day 1 and day 7 after injury. Similar results were shown in blood-brain barrier permeability. We observed more reactive astrogliosis in +/+ mice than in rol/rol or ω-aga +/+ mice. rol/rol and ω-aga +/+ mice had fewer degenerating cells due to cryogenic injury than did +/+ mice at both day 1 and day 7. ω-Aga-post-treated +/+ mice 24h after injury were sacrificed on day 7. The lesions were smaller in ω-aga-post-treated +/+ mice than those in vehicle-treated +/+ mice. We also examined phosphorylated p38 (pp38) at the injured site. ω-Aga-post-treated +/+ mouse brain slices showed weak pp38 signal; vehicle-treated +/+ mouse brain slices were pp38-positive. These findings demonstrate that the mutant Cav2.1 channel exerts a protective effect against cryogenic brain injury in rolling Nagoya mice. Our results indicate that inhibitors of the Cav2.1-dependent p38 signaling cascade would be useful as therapeutic agents in the treatment of brain injury.
Collapse
Affiliation(s)
- T Y Kim
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - T Yoshimoto
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Y Aoyama
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Niimi
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - E Takahashi
- Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
12
|
Carvalho C, Correia SC, Perry G, Castellani RJ, Moreira PI. Cerebrovascular and mitochondrial abnormalities in Alzheimer's disease: a brief overview. J Neural Transm (Vienna) 2015; 123:107-11. [PMID: 25608860 DOI: 10.1007/s00702-015-1367-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/11/2015] [Indexed: 10/24/2022]
Abstract
Multiple lines of evidence suggest that vascular alterations contribute to Alzheimer's disease (AD) pathogenesis. It is also well established that mitochondrial abnormalities occur early in course of AD. Here, we give an overview of the vascular and mitochondrial abnormalities occurring in AD, including mitochondrial alterations in vascular endothelial cells within the brain, which is emerging as a common feature that bridges cerebral vasculature and mitochondrial metabolism.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Sónia C Correia
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - George Perry
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, 78249, USA. .,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| | - Rudy J Castellani
- Division of Neuropathology, University of Maryland, Baltimore, MD, USA
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354, Coimbra, Portugal. .,Faculty of Medicine, Institute of Physiology, University of Coimbra, 3000-354, Coimbra, Portugal.
| |
Collapse
|
13
|
Lok J, Wang XS, Xing CH, Maki TK, Wu LM, Guo SZ, Noviski N, Arai K, Whalen MJ, Lo EH, Wang XY. Targeting the neurovascular unit in brain trauma. CNS Neurosci Ther 2014; 21:304-8. [PMID: 25475543 DOI: 10.1111/cns.12359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 01/22/2023] Open
Abstract
Although the neurovascular unit was originally developed as a conceptual framework for stroke, it is now recognized that these cell-cell interactions play critical roles in many other CNS disorders as well. In brain trauma, perturbations within the neurovascular unit may be especially important. Changes in neurovascular coupling may disrupt blood flow and metabolic regulation. Disruption of transmitter release-reuptake kinetics in neurons and astrocytes may augment excitotoxicity. Alterations in gliovascular signaling may underlie blood-brain barrier disruptions and traumatic edema. Perturbations in cell-cell signaling between all neuronal, glial, and vascular compartments may increase susceptibility to cell death. Finally, repairing the brain after trauma requires the integrated restoration of all neural, glial, and vascular connectivity for effective functional recovery. Just as in stroke, saving neurons alone may also be insufficient for treating brain trauma. In this minireview, we attempt to briefly highlight some of these pathways to underscore the importance of rescuing the entire neurovascular unit in brain trauma.
Collapse
Affiliation(s)
- Josephine Lok
- Departments of Radiology, Neurology and Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pertussis toxin attenuates experimental autoimmune encephalomyelitis by upregulating neuronal vascular endothelial growth factor. Neuroreport 2013; 24:469-75. [PMID: 23660634 DOI: 10.1097/wnr.0b013e3283619fc8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have reported earlier that pertussis toxin (PTx) attenuates the motor deficits in experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. PTx protects neurons from inflammatory insults. Vascular endothelial growth factor (VEGF) is also neuroprotective. However, the effect of PTx on VEGF has never been studied. We investigated whether PTx modulates neuronal VEGF expression and how it affects the pathogenesis of EAE. EAE was induced by injecting myelin oligodendrocyte glycoprotein 35-55 peptides with adjuvants into C57BL/6 mice. Clinical scores of EAE were evaluated daily for 19 days. Brain and spinal cord samples were collected and assessed for inflammation and demyelination. VEGF, NeuN for neurons, and Caspase-3 for apoptosis were stained for localization using immunohistochemistry techniques, followed by western blot analysis for quantification. Primary neurons were cultured to assess the direct effect of PTx on neuronal VEGF expression. PTx treatment increases neuronal VEGF expression by up to ∼75% in vitro and ∼60% in vivo, preventing neurons from apoptosis. This leads to resolution in inflammation and remyelination and amendment in motor deficits. Our findings suggest that upregulation of endogenous neuronal VEGF by PTx protects motor deficits in EAE and it is a potential therapeutic option for multiple sclerosis.
Collapse
|
15
|
Xia YP, He QW, Li YN, Chen SC, Huang M, Wang Y, Gao Y, Huang Y, Wang MD, Mao L, Hu B. Recombinant human sonic hedgehog protein regulates the expression of ZO-1 and occludin by activating angiopoietin-1 in stroke damage. PLoS One 2013; 8:e68891. [PMID: 23894369 PMCID: PMC3720889 DOI: 10.1371/journal.pone.0068891] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/01/2013] [Indexed: 01/23/2023] Open
Abstract
This study examines the regulating effect of Sonic Hedgehog (Shh) on the permeability of the blood-brain barrier (BBB) in cerebral ischemia. By employing permanent middle cerebral artery occlusion (pMCAO) model, we find that Shh significantly decreases brain edema and preserves BBB permeability. Moreover, Shh increases zonula occludens-1 (ZO-1), occludin and angiopiotetin-1 (Ang-1) expression in the ischemic penumbra. Blockage of Shh with cyclopamine abolishes the effects of Shh on brain edema, BBB permeability and ZO-1, occludin, Ang-1 expression. Primary brain microvessel endothelial cells (BMECs) and astrocytes were pre-treated with Shh, cyclopamine, Ang-1-neutralizing antibody, and subjected to oxygen-glucose deprivation (OGD). Results show that the Ang-1 protein level in the culture medium of Shh-treated astrocytes is significantly higher. Shh also increased ZO-1, occludin and Ang-1 expression in BMECs, while cyclopamine and Ang-1-neutralizing antibody inhibited the effects of Shh on the ZO-1 and occludin expression, respectively. This study suggests that, under ischemic insults, Shh triggers Ang-1 production predominantly in astrocytes, and the secreted Ang-1 acts on BMECs, thereby upregulating ZO-1 and occludin to repair the tight junction and ameliorate the brain edema and BBB leakage.
Collapse
Affiliation(s)
- Yuan-peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-cai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-die Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
16
|
WANG R, WANG GJ, WU XL, ZHOU F, LI YN. Ginsenoside Rg1 attenuates structural disruption of the blood-brain barrier to protect the central nervous system in ischemia/reperfusion. Chin J Nat Med 2013. [DOI: 10.1016/s1875-5364(13)60004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Wei XE, Zhang YZ, Li YH, Li MH, Li WB. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study. J Neurotrauma 2011; 29:2413-20. [PMID: 21675826 DOI: 10.1089/neu.2010.1510] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To understand the dynamics of brain edema in different areas after traumatic brain injury (TBI) in rabbit, we used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to monitor blood-brain barrier (BBB) permeability and cytotoxic brain edema after weight drop-induced TBI in rabbit. The dynamics of BBB permeability and brain edema were quantified using K(trans) and apparent diffusion coefficient (ADC) in the focal and perifocal lesion areas, as well as the area contralateral to the lesion. In the focal lesion area, K(trans) began to increase at 3 h post-TBI, peaked at 3 days, and decreased gradually while remaining higher than sham injury animals at 7 and 30 days. ADC was more variable, increased slightly at 3 h, decreased to its lowest value at 7 days, then increased to a peak at 30 days. In the perifocal lesion area, K(trans) began to increase at 1 day, peaked at 3-7 days, and returned to control level by 30 days. ADC showed a trend to increase at 1 day, followed by a continuous increase thereafter. In the contralateral area, no changes in K(trans) and ADC were observed at any time-point. These data demonstrate that different types of brain edema predominate in the focal and perifocal lesion areas. Specifically cytotoxic edema was predominant in the focal lesion area while vasogenic edema predominated in the perifocal area in acute phase. Furthermore, secondary opening of the BBB after TBI may appear if secondary injury is not controlled. BBB damage may be a driving force for cytotoxic brain edema and could be a new target for TBI intervention.
Collapse
Affiliation(s)
- Xiao-Er Wei
- Department of Radiology, The Sixth Affiliated People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
18
|
Duckles SP, Krause DN. Mechanisms of cerebrovascular protection: oestrogen, inflammation and mitochondria. Acta Physiol (Oxf) 2011; 203:149-54. [PMID: 20825371 DOI: 10.1111/j.1748-1716.2010.02184.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Investigation of oestrogen action reveals a multitude of diverse effects. This brief review focuses on the impact of oestrogen on the vasculature, with particular emphasis on the cerebral circulation. Three major actions of oestrogen are discussed: enhancement of vasodilator capacity, suppression of vascular inflammation and increase in mitochondrial efficiency. In both humans and animals, oestrogen increases vasodilator tone, an effect dependent on a functional endothelium. Two distinct mechanisms are involved: increase in endothelial nitric oxide synthase (eNOS) mRNA and protein and phosphorylation of eNOS via the PI-3 kinase/Akt pathway. Both effects are mediated by oestrogen receptors (ER), but through two pathways, ER-mediated nuclear gene transcription and cell membrane-associated ERs respectively. Oestrogen also increases function of other endothelium-dependent vasodilators. Oestrogen suppresses vascular inflammation through an NF-κB-dependent effect. The inflammatory response has also been shown to vary significantly during the oestrous cycle of rodents. Emerging information shows that oestrogen increases mitochondrial biogenesis and decreases superoxide production. Suppression of mitochondrial superoxide production by 17β-estradiol in cerebral blood vessels is mediated by the ER-alpha receptor and not dependent on increased Mn superoxide dismutase activity. Oestrogen treatment also increases protein levels for a number of components of the electron transfer chain, as well as levels of transcription factors that regulate mitochondrial function. All of these actions of oestrogen could be important in mediating vascular protection, especially in the cerebral circulation. Furthermore, given the potential of mitochondrial DNA damage to contribute to pathophysiology and ageing, mitochondrial protective effects of oestrogen might contribute to the longer average lifespan of women.
Collapse
Affiliation(s)
- S P Duckles
- Department of Pharmacology, School of Medicine, University of California, Irvine, 92697-4625, USA.
| | | |
Collapse
|
19
|
Ohlin KE, Francardo V, Lindgren HS, Sillivan SE, O'Sullivan SS, Luksik AS, Vassoler FM, Lees AJ, Konradi C, Cenci MA. Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. ACTA ACUST UNITED AC 2011; 134:2339-57. [PMID: 21771855 DOI: 10.1093/brain/awr165] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Angiogenesis and increased permeability of the blood-brain barrier have been reported to occur in animal models of Parkinson's disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood-brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson's disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson's disease.
Collapse
Affiliation(s)
- K Elisabet Ohlin
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Koneru R, Kobiler D, Lehrer S, Li J, van Rooijen N, Banerjee D, Glod J. Macrophages play a key role in early blood brain barrier reformation after hypothermic brain injury. Neurosci Lett 2011; 501:148-51. [PMID: 21782894 DOI: 10.1016/j.neulet.2011.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/20/2011] [Accepted: 06/30/2011] [Indexed: 12/15/2022]
Abstract
The inflammatory response following traumatic injury to the central nervous system (CNS) includes the infiltration of large numbers of macrophages. This response has been implicated in both ongoing tissue damage as well as recovery following CNS injury. We investigated the role of invading macrophages on one important aspect of tissue repair in the brain, the reformation of the blood brain barrier (BBB). We used liposomal clodronate to deplete monocytes and tissue macrophages. This method led to a marked reduction in the accumulation of F4/80-expressing cells at sites of hypothermic brain injury in a murine model. The integrity of the blood brain barrier over time following injury was assessed by permeability of fluorescent labeled albumin. The reduction in macrophages at the injury site was accompanied by a delay in early reformation of the blood brain barrier. In control animals the permeability of the BBB to FITC-labeled albumin returned to normal levels by seven days post-injury. In macrophage-depleted mice leakage of albumin was still observed at seven days post-injury. These results suggest that macrophages play an important role in early post-traumatic reformation of the BBB.
Collapse
Affiliation(s)
- Rajeth Koneru
- Department of Pediatrics, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Nag S, Kapadia A, Stewart DJ. Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 2011; 37:3-23. [PMID: 20946242 DOI: 10.1111/j.1365-2990.2010.01138.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically, the blood-brain barrier (BBB) was considered to be at the level of cerebral endothelium. Currently, the interaction of endothelium with other components of the vessel wall and with neurones and glial cells is considered to constitute a functional unit, termed the neurovascular unit that maintains cerebral homeostasis in steady states and brain injury. The emphasis of this review is on cerebral endothelium, the best-studied component of the neurovascular unit, and its permeability mechanisms in health and acute brain injury. Major advances have been made in unravelling the molecular structure of caveolae and tight junctions, both of which are components of the structural barrier to the entry of plasma proteins into brain. Time course studies suggest that caveolar changes precede junctional changes in acute brain injury. Additional factors modulating BBB permeability in acute brain injury are matrix metalloproteinases-2 and 9 and angiogenic factors, the most notable being vascular endothelial growth factor-A and angiopoietins (Ang) 1 and 2. Vascular endothelial growth factor-A and Ang2 have emerged as potent inducers of BBB breakdown while Ang1 is a potent anti-leakage factor. These factors have the potential to modulate permeability in acute brain injury and this is an area of ongoing research. Overall, a combination of haemodynamic, structural and molecular alterations affecting brain endothelium results in BBB breakdown in acute brain injury.
Collapse
Affiliation(s)
- S Nag
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
22
|
Abstract
The molecular advances in various aspects of brain endothelial cell function in steady states are considerable and difficult to summarize in one chapter. Therefore, this chapter focuses on endothelial permeability mechanisms in steady states and disease namely vasogenic edema. The morphology and properties of caveolae and tight junctions that are involved in endothelial permeability to macromolecules are reviewed. Endothelial transport functions are briefly reviewed. Diseases with alterations of endothelial permeability are mentioned and details are provided of the molecular alterations in caveolae and tight junctions in vasogenic edema. Other factors involved in increased endothelial permeability such as the matrix metalloproteinases are briefly discussed. Of the modulators of endothelial permeability, angioneurins such as the vascular endothelial growth factors and angiopoietins are discussed. The chapter concludes with a brief discussion on delivery of therapeutic substances across endothelium.
Collapse
|
23
|
Yonezawa T, Hattori S, Inagaki J, Kurosaki M, Takigawa T, Hirohata S, Miyoshi T, Ninomiya Y. Type IV collagen induces expression of thrombospondin-1 that is mediated by integrin alpha1beta1 in astrocytes. Glia 2010; 58:755-67. [PMID: 20091789 DOI: 10.1002/glia.20959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following brain injury, thrombospondin-1 (TSP-1) is involved in angiogenesis and synaptic recovery. In this study, we used a cold injury-model and found that TSP-1 mRNA was markedly upregulated after brain injury. Immunohistochemistry showed that TSP-1 was upregulated in both the core of the lesion and in the perilesional area of injured brain tissue. Numerous astrocytes immunopositive for glial fibrillary acidic protein (GFAP) were found in the perilesional area, and TSP-1 was also expressed in almost all astrocytes surrounding blood vessels at 4 days after injury. Next, we examined the influence of vascular basement membrane components on TSP-1 expression. When astrocytes were cultured on type IV collagen, TSP-1 was significantly upregulated compared with the expression when cells were grown on laminin, fibronectin, or poly-L-lysine. This increase occurred exclusively when astrocytes were grown on the native form of type IV collagen but not on the heat-denatured form or the non-collagenous 1 domain. Further, integrin alpha1 and beta1 mRNAs were upregulated concomitantly with GFAP mRNA, and integrin alpha1 protein was localized to the endfeet of astrocytes that surrounded blood vessels in the injured brain. Using function-blocking antibodies, we found that the effect of type IV collagen was attributed to integrin alpha1beta1 in primary astrocytes. Collectively, our results suggest that vascular basement membrane components substantially impact gene expression in astrocytes during brain tissue repair.
Collapse
Affiliation(s)
- Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 2010; 6:393-403. [PMID: 20551947 DOI: 10.1038/nrneurol.2010.74] [Citation(s) in RCA: 628] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults and children. The treatment of TBI in the acute phase has improved substantially; however, the prevention and management of long-term complications remain a challenge. Blood-brain barrier (BBB) breakdown has often been documented in patients with TBI, but the role of such vascular pathology in neurological dysfunction has only recently been explored. Animal studies have demonstrated that BBB breakdown is involved in the initiation of transcriptional changes in the neurovascular network that ultimately lead to delayed neuronal dysfunction and degeneration. Brain imaging data have confirmed the high incidence of BBB breakdown in patients with TBI and suggest that such pathology could be used as a biomarker in the clinic and in drug trials. Here, we review the neurological consequences of TBI, focusing on the long-term complications of such injuries. We present the clinical evidence for involvement of BBB breakdown in TBI and examine the primary and secondary mechanisms that underlie such pathology. We go on to consider the consequences of BBB injury, before analyzing potential mechanisms linking vascular pathology to neuronal dysfunction and degeneration, and exploring possible targets for treatment. Finally, we highlight areas for future basic research and clinical studies into TBI.
Collapse
Affiliation(s)
- Dan Shlosberg
- Department of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
25
|
Wohl SG, Schmeer CW, Kretz A, Witte OW, Isenmann S. Optic nerve lesion increases cell proliferation and nestin expression in the adult mouse eye in vivo. Exp Neurol 2009; 219:175-86. [DOI: 10.1016/j.expneurol.2009.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/01/2009] [Accepted: 05/08/2009] [Indexed: 11/28/2022]
|
26
|
Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 2009; 118:197-217. [PMID: 19404652 DOI: 10.1007/s00401-009-0541-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/16/2009] [Accepted: 04/21/2009] [Indexed: 12/20/2022]
Abstract
Brain edema continues to be a major cause of mortality after diverse types of brain pathologies such as major cerebral infarcts, hemorrhages, trauma, infections and tumors. The classification of edema into vasogenic, cytotoxic, hydrocephalic and osmotic has stood the test of time although it is recognized that in most clinical situations there is a combination of different types of edema during the course of the disease. Basic information about the types of edema is provided for better understanding of the expression pattern of some of the newer molecules implicated in the pathogenesis of brain edema. These molecules include the aquaporins, matrix metalloproteinases and growth factors such as vascular endothelial growth factors A and B and the angiopoietins. The potential of these agents in the treatment of edema is discussed. Since many molecules are involved in the pathogenesis of brain edema, effective treatment cannot be achieved by a single agent but will require the administration of a "magic bullet" containing a variety of agents released at different times during the course of edema in order to be successful.
Collapse
|
27
|
|
28
|
Nico B, Mangieri D, De Luca A, Corsi P, Benagiano V, Tamma R, Annese T, Longo V, Crivellato E, Ribatti D. Nerve growth factor and its receptors TrkA and p75 are upregulated in the brain of mdx dystrophic mouse. Neuroscience 2009; 161:1057-66. [PMID: 19376199 DOI: 10.1016/j.neuroscience.2009.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022]
Abstract
Increased angiogenesis and an altered blood-brain barrier have been reported in the brain of dystrophin-deficient mdx mouse, an experimental model of Duchenne muscular dystrophy. To further elucidate the mechanisms underlying angiogenesis in Duchenne muscular dystrophy, in this study we evaluated whether nerve growth factor (NGF) and nerve growth factor receptors (NGFRs) are involved, then correlated NGF-NGFRs expression with vascular endothelial growth factor (VEGF) and its receptor-2 (VEGFR-2) content and matrix metalloproteinases-2 and -9 (MMP-2 and -9) activity, by confocal laser microscopy and immunohistochemistry. Results showed that neurons, astrocytes and ependymal cells were strongly labeled by NGF in mdx brain, expressing NGFRs on glial and endothelial cells. In controls, NGF faintly labeled neurons and astrocytes, whereas endothelial cells were negative for NGFRs. Immunogold electron microscopy demonstrated NGFR gold particles on endothelial cells in mdx brain, while in controls few particles were recognizable only on glial end feet. Western blotting and real time polymerase chain reaction (RT-PCR) demonstrated a higher expression of NGF and NGFR mRNA and protein in mdx brain as compared to controls, and increase of VEGF-VEGFR-2 and active MMP-2 and -9 content. Overall, these data suggest that in the brain of mdx mice, an upregulation of the NGF-NGFRs system might be involved directly, or indirectly through the activation of VEGF-VEGFR-2 and MMP-2 and -9, in the angiogenic response taking place in this pathological condition.
Collapse
Affiliation(s)
- B Nico
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza Giulio Cesare, 11 Policlinico, I-70124 Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Inhibition of Src activity decreases tyrosine phosphorylation of occludin in brain capillaries and attenuates increase in permeability of the blood-brain barrier after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2009; 29:1099-108. [PMID: 19319148 DOI: 10.1038/jcbfm.2009.30] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disruption of the blood-brain barrier (BBB) caused by cerebral ischemia can initiate the development and progression of brain injuries, which may lead to irreversible dysfunction of the central nervous system. It is likely that tyrosine phosphorylation of a membrane-associated tight junctional protein, occludin, is important for the interaction of occludin with intracellular proteins, ZO-1 to ZO-3, and it regulates vascular permeability. Little is known about the pathophysiological alterations of tight junctional proteins after transient focal cerebral ischemia. In this study, we examined the tyrosine phosphorylation of occludin in isolated brain capillaries after transient focal cerebral ischemia. We further examined the effects of the Src-family tyrosine kinase inhibitor, PP2, on the tyrosine phosphorylation of occludin and on vascular permeability and infarct volume. Transient focal ischemia increased the tyrosine phosphorylation of occludin in the isolated brain capillaries. The administration of PP2 attenuated this phosphorylation, which was coincident with an inhibition of BBB leakage and a decrease in infarct volume. These results suggest that the increase in the tyrosine phosphorylation of occludin in the brain capillaries may be linked to the disruption of tight junctions, whose disruption can cause dysfunction of the BBB and the consequent increase in infarct volume.
Collapse
|
31
|
Lee SW, Youn SW, Kim TY, Suh JW, Koh GY, Kwon YW, Chae IH, Park YB, Kim HS. Angiopoietin-1 Protects Endothelial Cells From Hypoxia-Induced Apoptosis via Inhibition of Phosphatase and Tensin Homologue Deleted From Chromosome Ten. Korean Circ J 2009. [DOI: 10.4070/kcj.2009.39.2.57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Sae-Won Lee
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seock-Won Youn
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
| | - Tae-Youn Kim
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
| | - Jung-Won Suh
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Gou-Young Koh
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
| | - In-Ho Chae
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young-Bae Park
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Cardiovascular Stem Cells and IRICT, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Schmid-Brunclik N, Bürgi-Taboada C, Antoniou X, Gassmann M, Ogunshola OO. Astrocyte responses to injury: VEGF simultaneously modulates cell death and proliferation. Am J Physiol Regul Integr Comp Physiol 2008; 295:R864-73. [PMID: 18614764 DOI: 10.1152/ajpregu.00536.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia is linked to changes in blood-brain barrier (BBB) permeability, and loss of BBB integrity is characteristic of many pathological brain diseases including stroke. In particular, astrocytes play a central role in brain homeostasis and BBB function. We investigated how hypoxia affects astrocyte survival and assessed whether VEGF release through hypoxia-inducible factor-1alpha (HIF-1alpha) induction plays a role in tolerance of these cells to insult. Thus primary astrocytes were subjected to normoxic (21% O(2)), hypoxic (1% O(2)), or near-anoxic (<0.1% O(2)) conditions in the presence or absence of glucose. Cell death was significantly initiated after combined oxygen glucose deprivation, and, surprisingly, astrocyte proliferation increased concomitantly. Near anoxic, but not hypoxic, conditions stabilized HIF-1alpha protein and provoked DNA binding activity, whereas oxygen and glucose deprivation accelerated HIF-1alpha accumulation. Unexpectedly, Hif-1alpha knockdown studies showed that elevated VEGF levels following increased insult was only partially due to HIF-1alpha induction, suggesting alternative mechanisms of VEGF regulation. Notably, endogenous VEGF signaling during insult was essential for cell fate since VEGF inhibition appreciably augmented cell death and reduced proliferation. These data suggest Hif-1 only partially contributes to VEGF-mediated astrocyte responses during chronic injury (as occurs in clinical hypoxic/ischemic insults) that may ultimately be responsible for disrupting BBB integrity.
Collapse
Affiliation(s)
- Nicole Schmid-Brunclik
- Institute of Veterinary Physiology, Vetsuisse Faculty, Univ. of Zurich, Winterthurerstrasse 260, Zurich CH 8057, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Brown R, Thompson HJ, Imran SA, Ur E, Wilkinson M. Traumatic brain injury induces adipokine gene expression in rat brain. Neurosci Lett 2008; 432:73-8. [PMID: 18178314 PMCID: PMC2367125 DOI: 10.1016/j.neulet.2007.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 12/12/2022]
Abstract
UNLABELLED Traumatic brain injury (TBI) induces cachexia and neuroinflammation which profoundly impact patient recovery. Adipokine genes such as leptin (ob), resistin (rstn) and fasting-induced adipose factor (fiaf) are implicated in energy metabolism and body weight control and are also associated with chronic low grade inflammation. Since central rstn and fiaf expression was increased following hypoxic/ischemic brain injury, we hypothesized that these genes would also be induced in the rat brain following TBI. Realtime RT-PCR detected a 2-2.5-fold increase in ob mRNA in the ipsilateral cortex and thalamus 12h following lateral fluid percussion (FP)-induced brain injury. Fiaf mRNA was elevated 5-7.5-fold in cortex, hippocampus and thalamus, and modest increases were also detectable in the contralateral brain. Remarkably, rstn mRNA was elevated in ipsilateral (150-fold) and in contralateral (50-fold) hippocampus. To test whether these changes were part of an inflammatory response to TBI we also examined the effects of an intracerebral injection of lipopolysaccharide (LPS). We determined that central injection of LPS produced some, but not all, of the changes seen after TBI. For example, in contrast to the stimulatory influence of TBI, LPS had no effect on ob expression in any brain region, though fiaf and rstn mRNA levels were significantly elevated in both ipsi- and contralateral cortex. IN CONCLUSION (a) brain-derived adipokines could be involved in the acute pathology of traumatic brain injury partly through modulation of central inflammatory responses, but also via leptin-mediated neuroprotective effects and (b) TBI-induced brain adipokines may induce the metabolic changes observed following neurotrauma.
Collapse
Affiliation(s)
- Russell Brown
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Obstetrics and Gynaecology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hilaire J. Thompson
- Department of Biobehavioral Nursing and Health Systems, University of Washington, Seattle, WA, USA
| | - Syed A. Imran
- Department of Obstetrics and Gynaecology, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ehud Ur
- Department of Obstetrics and Gynaecology, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael Wilkinson
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Obstetrics and Gynaecology, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
34
|
Rite I, Machado A, Cano J, Venero JL. Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 2007; 101:1567-82. [PMID: 17437543 DOI: 10.1111/j.1471-4159.2007.04567.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have evaluated the possibility that changes in the vascular system may constitute a contributing factor for the death of nigral dopaminergic neurons in Parkinson's disease. Thus, we have employed intranigral injections of vascular endothelial growth factor (VEGF), the most potent inducer of blood-brain barrier (BBB) permeability. A single dose of 1 mug of VEGF, chosen from a dose-response study, highly disrupted the BBB in the ventral mesencephalon in a time-dependent manner. A strong regional correlation between BBB disruption and loss of tyrosine hydroxylase-positive neurons was evident. Moreover, Fluoro-Jade B labelling showed the presence of dying neurons in the substantia nigra in response to VEGF injection. High number of TUNEL-positive nuclei was observed in this area along with activation of caspase 3 within nigral dopaminergic neurons. Analysis of the glial population demonstrated a strong inflammatory response and activation of astroglia in response to BBB disruption. We conclude that disruption of the BBB may be a causative factor for degeneration of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Inmaculada Rite
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González, Sevilla, Spain
| | | | | | | |
Collapse
|
35
|
Paul R, Angele B, Popp B, Klein M, Riedel E, Pfister HW, Koedel U. Differential regulation of blood–brain barrier permeability in brain trauma and pneumococcal meningitis—role of Src kinases. Exp Neurol 2007; 203:158-67. [PMID: 17010340 DOI: 10.1016/j.expneurol.2006.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 07/26/2006] [Accepted: 08/01/2006] [Indexed: 11/27/2022]
Abstract
Increased vascular permeability causing vasogenic brain edema is characteristic for many acute neurological diseases such as stroke, brain trauma, and meningitis. Src family kinases, especially c-Src, play an important role in regulating blood-brain barrier permeability in response to VEGF, but also mediate leukocyte function and cytokine signalling. Here we demonstrate that pharmacological inhibition of Src or c-Src deficiency does not influence cerebrospinal fluid (CSF) pleocytosis, brain edema formation, and bacterial outgrowth during experimental pneumococcal meningitis despite the increased cerebral expression of inflammatory chemokines, such as IL-6, CCL-9, CXCL-1, CXCL-2 and G-CSF as determined by protein array analysis. In contrast, inhibition of Src significantly reduced brain edema formation, lesion volume, and clinical worsening in cold-induced brain injury without decreasing cytokine/chemokine expression. While brain trauma was associated with increased cerebral VEGF formation, VEGF levels significantly declined during pneumococcal meningitis. Therefore, we conclude that in brain trauma blood-brain barrier tightness is regulated by the VEGF/Src pathway whereas c-Src does not influence brain edema formation and leukocyte function during bacterial meningitis.
Collapse
Affiliation(s)
- Robert Paul
- Department of Neurology, Klinikum Grosshadern, Ludwig-Maximilians University, Marchioninistr. 15, D-81377 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wilkinson M, Brown R, Imran SA, Ur E. Adipokine gene expression in brain and pituitary gland. Neuroendocrinology 2007; 86:191-209. [PMID: 17878708 DOI: 10.1159/000108635] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/04/2006] [Indexed: 12/20/2022]
Abstract
The brain has been recognized as a prominent site of peptide biosynthesis for more than 30 years, and many neuropeptides are now known to be common to gut and brain. With these precedents in mind it is remarkable that adipose-derived peptides like leptin have attracted minimal attention as brain-derived putative neuromodulators of energy balance. This review outlines the evidence that several adipose-specific genes are also expressed in the central nervous system and pituitary gland. We, and others, confirmed that the genes for leptin, resistin, adiponectin, FIAF (fasting-induced adipose factor) and adiponutrin are expressed and regulated in these tissues. For example, leptin mRNA was readily detectable in human, rat, sheep and pig brain, but not in the mouse. Leptin expression in rat brain and pituitary was regulated through development, by food restriction, and following traumatic brain injury. In contrast, hypothalamic resistin mRNA was unaffected by age or by fasting, but was significantly depleted by food restriction in mouse pituitary gland. Similar results were seen in the ob/ob mouse, and we noted a marked reduction in resistin-positive hypothalamic nerve fibres. Resistin and fiaf mRNA were also upregulated in hypoxic/ischaemic mouse brain. Our studies on the regulation of neuronal adipokines were greatly aided by the availability of clonal hypothalamic neuronal cell lines. One of these, N-1, expresses both rstn and fiaf together with several other neuropeptides and receptors involved in energy homeostasis. Selective silencing of rstn revealed an autocrine/paracrine regulatory system, mediated through socs-3 expression that may influence the feedback effects of insulin and leptin in vivo. A similar convergence of signals in the pituitary gland could also influence anterior pituitary hormone secretion. In conclusion, the evidence is suggestive that brain and pituitary-derived adipokines represent a local regulatory circuit that may fine tune the feedback effects of adipose hormones in the control of energy balance.
Collapse
Affiliation(s)
- Michael Wilkinson
- Department of Obstetrics and Gynaecology, Dalhousie University, Halifax, N.S., Canada.
| | | | | | | |
Collapse
|
37
|
Chi OZ, Hunter C, Liu X, Weiss HR. Effects of anti-VEGF antibody on blood-brain barrier disruption in focal cerebral ischemia. Exp Neurol 2006; 204:283-7. [PMID: 17188266 DOI: 10.1016/j.expneurol.2006.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/05/2006] [Accepted: 11/09/2006] [Indexed: 11/20/2022]
Abstract
Since cerebral ischemia increases expression of vascular endothelial growth factor (VEGF) and exogenous VEGF can aggravate BBB disruption in cerebral ischemia, we hypothesized that inhibition of endogenous VEGF would attenuate BBB disruption. To test this hypothesis, rats were mechanically ventilated with isoflurane and a craniotomy (5 mm in diameter) was performed to expose the cerebral cortex. Anti-VEGF antibody was applied topically (75 mug) 1 h before middle cerebral artery (MCA) occlusion and additional anti-VEGF antibody was applied (25 mug) immediately after MCA occlusion (anti-VEGF group). For the control animals, normal saline was applied instead of anti-VEGF antibody on the surface of the cortex (control group). One hour after MCA occlusion, the transfer coefficient (K(i)) of (14)C-alpha-aminoisobutyric acid and volume of (3)H-dextran (70,000 Da) distribution were determined to measure the degree of BBB disruption. There was no significant difference in vital signs, blood gases, and pericranial temperature between the control and the anti-VEGF group. In both of the groups, the K(i) of the ischemic cortex (IC) was higher than that of the corresponding contralateral cortex (CC) (p<0.05). The K(i) of the IC of the anti-VEGF group was significantly lower than that of the IC of the control group (-34%, p<0.05). The K(i) of the CC and pons were similar between these two groups. The data of volume of dextran distribution followed the same pattern as that of K(i) but without a statistical significance. Our data demonstrated that inhibition of endogenous VEGF by topical application of anti-VEGF antibody in the ischemic cortex decreased the K(i) of (14)C-AIB and suggest that endogenous VEGF is in part responsible for the BBB disruption during the early stage of focal cerebral ischemia.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesia, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901-1977, USA.
| | | | | | | |
Collapse
|
38
|
Westin JE, Lindgren HS, Gardi J, Nyengaard JR, Brundin P, Mohapel P, Cenci MA. Endothelial proliferation and increased blood-brain barrier permeability in the basal ganglia in a rat model of 3,4-dihydroxyphenyl-L-alanine-induced dyskinesia. J Neurosci 2006; 26:9448-61. [PMID: 16971529 PMCID: PMC6674611 DOI: 10.1523/jneurosci.0944-06.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
3,4-Dihydroxyphenyl-L-alanine (L-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) concomitantly with L-DOPA for 2 weeks. A large number of BrdU-positive cells were found in the striatum and its output structures (globus pallidus, entopeduncular nucleus, and substantia nigra pars reticulata) in L-DOPA-treated rats that had developed dyskinesia. The vast majority (60-80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence of angiogenesis and blood-brain barrier dysfunction in an experimental model of L-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of L-DOPA entry into the brain, favoring the occurrence of motor complications.
Collapse
Affiliation(s)
| | | | - Jonathan Gardi
- Stereology and Electron Microscopy Research Laboratory and Centre of Research in Membrane-receptor in Neurological Disease, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Research Laboratory and Centre of Research in Membrane-receptor in Neurological Disease, Aarhus University, DK-8000 Aarhus, Denmark
| | - Patrik Brundin
- Neuronal Survival Unit, Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden, and
| | - Paul Mohapel
- Neuronal Survival Unit, Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden, and
| | | |
Collapse
|
39
|
Zhang L, Zhang WP, Chen KD, Qian XD, Fang SH, Wei EQ. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci 2006; 80:530-7. [PMID: 17074364 DOI: 10.1016/j.lfs.2006.09.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/26/2006] [Accepted: 09/29/2006] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury induces neuron damage in early phase, and astrogliosis and the formation of the glial scar in late phase. Caffeic acid (3, 4-dihydroxycinnamic acid), one of the natural phenolic compounds, exerts neuroprotective effects against ischemic brain injuries with anti-oxidant and anti-inflammatory properties, and by scavenging reactive species. However, whether caffeic acid has protective effects against traumatic brain injury is unknown. Therefore, we determined the effect of caffeic acid on the lesion in the early (1 day) and late phases (7 to 28 days) of cryoinjury in mice. We found that caffeic acid (10 and 50 mg/kg, i.p., for 7 days after cryoinjury) reduced the lesion area and attenuated the neuron loss around the lesion core 1 to 28 days, but attenuated the neuron loss in the lesion core only 1 day after cryoinjury. Moreover, caffeic acid attenuated astrocyte proliferation, glial scar wall formation and glial fibrillary acidic protein (GFAP) protein expression in the late phase of cryoinjury (7 to 28 days). Caffeic acid also inhibited the reduction of superoxide dismutase activity and the increase in malondialdehyde content in the brain 1 day after cryoinjury. These results indicate that caffeic acid exerts a protective effect in traumatic brain injury, especially on glial scar formation in the late phase, which at least is associated with its anti-oxidant ability.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, 388, Yu Hang Tang Road, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Lafuente JV, Argandoña EG, Mitre B. VEGFR-2 expression in brain injury: its distribution related to brain-blood barrier markers. J Neural Transm (Vienna) 2006; 113:487-96. [PMID: 16550327 DOI: 10.1007/s00702-005-0407-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 09/26/2005] [Indexed: 12/21/2022]
Abstract
VEGF is a major regulator of angiogenesis and vascular permeability in development and injury. The involvement of one of its receptors, Flk-1 in angiogenesis has been widely demonstrated, but few studies elucidate its role as a mediator of the BBB permeability and none displays its distribution following a cortical micronecrosis. A microvascular marker (LEA lectin), two BBB markers (EBA, GluT-1) and the VEGFR2 receptor were studied in adult rats after a minimal brain injury. Immunohistochemistry shows an increase of positive vessels, somata and processes around the micronecrosis from 6 to 72 hours after injury. Flk-1 was overexpressed mainly in endothelial cells, but also in astrocytes, neuronal somata and processes adjacent to the damage. This increase correlates to the lose of positivity for EBA. After injury, VEGFR-2 expression increases and its distribution corresponds to VEGF one. The whole system seems to play a role in the disruption of the BBB.
Collapse
Affiliation(s)
- J V Lafuente
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, University of the Basque Country, Leioa, Spain.
| | | | | |
Collapse
|
41
|
Limesand KH, Schwertfeger KL, Anderson SM. MDM2 is required for suppression of apoptosis by activated Akt1 in salivary acinar cells. Mol Cell Biol 2006; 26:8840-56. [PMID: 16982679 PMCID: PMC1636839 DOI: 10.1128/mcb.01846-05] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic damage to the salivary glands is a common side effect following head and neck irradiation. It is hypothesized that irreversible damage to the salivary glands occurs immediately after radiation; however, previous studies with rat models have not shown a causal role for apoptosis in radiation-induced injury. We report that etoposide and gamma irradiation induce apoptosis of salivary acinar cells from FVB control mice in vitro and in vivo; however, apoptosis is reduced in transgenic mice expressing a constitutively activated mutant of Akt1 (myr-Akt1). Expression of myr-Akt1 in the salivary glands results in a significant reduction in phosphorylation of p53 at serine(18), total p53 protein accumulation, and p21(WAF1) or Bax mRNA following etoposide or gamma irradiation of primary salivary acinar cells. The reduced level of p53 protein in myr-Akt1 salivary glands corresponds with an increase in MDM2 phosphorylation in vivo, suggesting that the Akt/MDM2/p53 pathway is responsible for suppression of apoptosis. Dominant-negative Akt blocked phosphorylation of MDM2 in salivary acinar cells from myr-Akt1 transgenic mice. Reduction of MDM2 levels in myr-Akt1 primary salivary acinar cells with small interfering RNA increases the levels of p53 protein and renders these cells susceptible to etoposide-induced apoptosis in spite of the presence of activated Akt1. These results indicate that MDM2 is a critical substrate of activated Akt1 in the suppression of p53-dependent apoptosis in vivo.
Collapse
Affiliation(s)
- Kirsten H Limesand
- Department of Pathology, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | | | |
Collapse
|
42
|
Date I, Takagi N, Takagi K, Tanonaka K, Funakoshi H, Matsumoto K, Nakamura T, Takeo S. Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood-brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci Lett 2006; 407:141-5. [PMID: 16973272 DOI: 10.1016/j.neulet.2006.08.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/11/2006] [Accepted: 08/11/2006] [Indexed: 11/18/2022]
Abstract
Hepatocyte growth factor (HGF) exerts its physiological activities as that of an organotropic factor for regeneration and can prevent ischemia-induced injuries; however, its effect and mechanism of action under in vivo pathophysiological conditions remains to be determined. Recently, we demonstrated that treatment with human recombinant HGF (hrHGF) attenuated the disruption of the blood-brain barrier (BBB) observed after microsphere embolism-induced sustained cerebral ischemia. To see if tight junctional proteins were involved in this attenuation, in the present study, we investigated the effects of HGF on the levels of occludin and zonula occludens (ZO)-1 in cerebrovascular endothelial cells after microsphere embolism. Sustained cerebral ischemia was induced by the injection of 700 microspheres (48 microm diameter) into the right internal carotid artery of rats. hrHGF was injected into the right ventricle of the brain by using an osmotic pump at a dose of 30 microg/7 days per animal. The levels of tight junctional proteins in the endothelial cells were examined by immunohistochemical analysis. Treatment with hrHGF attenuated the decrease in the expression of occludin and ZO-1 proteins in the endothelial cells that occurred after sustained cerebral ischemia. Furthermore, treatment with hrHGF resulted in retention of these tight junctional proteins in fluorescein isothiocyanate (FITC)-albumin-perfused cerebral vessels, which did not leak FITC-albumin in the ipsilateral cortex. These results suggest that HGF-mediated maintenance of the tight junctional proteins in the endothelial cells may be a possible mechanism for the protective effect of HGF against the disruption of the BBB after cerebral ischemia.
Collapse
Affiliation(s)
- Ichiro Date
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wiesner G, Brown RE, Robertson GS, Imran SA, Ur E, Wilkinson M. Increased expression of the adipokine genes resistin and fasting-induced adipose factor in hypoxic/ischaemic mouse brain. Neuroreport 2006; 17:1195-8. [PMID: 16837853 DOI: 10.1097/01.wnr.0000224776.12647.ba] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adipose tissue is the primary source of the adipokines resistin and fasting-induced adipose factor (FIAF). We reported that the brain is also a site of adipokine expression, although their function there is unknown. Peripheral resistin and fasting-induced adipose factor are reported to be inflammatory markers, and we hypothesized that they would be induced in the brain by hypoxia/ischaemia. We show that neonatal hypoxia/ischaemia rapidly increased fiaf mRNA in the injured cortex and hippocampus at 2 and 7 days after hypoxia/ischaemia. In contrast, resistin (retn) mRNA was increased in the cortex only at 21 days after hypoxia/ischaemia. As a lipopolysaccharide-induced inflammatory response did not increase brain fiaf and retn mRNA levels, we conclude that brain injury may be responsible for the novel hypoxia/ischaemia-induced changes in adipokine gene expression. In summary, our results indicate that brain injury, or an inflammatory stimulus, regulates the central expression of two genes normally considered to be adipose tissue-specific. These observations add to our previous evidence that the brain is an important site of adipokine gene expression.
Collapse
Affiliation(s)
- Glen Wiesner
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Horváth EM, Lacza Z, Csordás A, Szabó C, Kollai M, Busija DW. Graft derived cells with double nuclei in the penumbral region of experimental brain trauma. Neurosci Lett 2006; 396:182-6. [PMID: 16377084 DOI: 10.1016/j.neulet.2005.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/13/2005] [Accepted: 11/17/2005] [Indexed: 12/23/2022]
Abstract
Recent in vitro studies showed that stem cells might fuse with mature cells or each other; however, there is no in vivo evidence for this phenomenon in the cerebral cortex. Our goal was to find evidence for cell fusion in a model of traumatic brain injury followed by grafting of embryonic cortical cells. Cold lesion protocol was applied to induce lesion of the motor cortex in adult male rats. Six days later we grafted a suspension of freshly isolated rat brain cortical cells of early embryonic stage (E14) into the penumbra area of the lesion. The grafted cell nuclei were labelled with bromodeoxyuridine (BrDU). Six days after transplantation 4,328 BrDU positive cells were observed in nine animals. 89.5% of these cells had cytoplasmic staining probably representing dead or phagocyted grafted cells. Ten percent of surviving BrDU positive cells had only one BrDU positive nucleus and negative cytoplasm, while 0.5% had two distinct nuclei, one was unlabelled and one was BrDU positive. These cells were similar in appearance and size to the astrocytes in the vicinity and expressed the astocyte specific glial fibrillaly acidic protein. Thus, these cells showed a possible sign of cell fusion in the penumbral region of the injured brain.
Collapse
Affiliation(s)
- Eszter M Horváth
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Lee SW, Kim WJ, Park JA, Choi YK, Kwon YW, Kim KW. Blood-brain barrier interfaces and brain tumors. Arch Pharm Res 2006; 29:265-75. [PMID: 16681030 DOI: 10.1007/bf02968569] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the developing brain, capillaries are differentiated and matured into the blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocyte end-feet, and pericytes. Since the BBB regulates the homeostasis of central nervous system (CNS), the maintenance of the BBB is important for CNS function. The disruption of the BBB may result in many brain disorders including brain tumors. However, the molecular mechanism of BBB formation and maintenance is poorly understood. Here, we summarize recent advances in the role of oxygen tension and growth factors on BBB development and maintenance, and in BBB dysfunction related with brain tumors.
Collapse
Affiliation(s)
- Sae-Won Lee
- Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
46
|
Kago T, Takagi N, Date I, Takenaga Y, Takagi K, Takeo S. Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun 2006; 339:1197-203. [PMID: 16338221 DOI: 10.1016/j.bbrc.2005.11.133] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 11/27/2005] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia induces disruption of the blood-brain barrier (BBB), and this disruption can initiate the development of brain injuries. Although the molecular structure of tight junctional complexes in the BBB has been identified, little is known about alterations of tight junctional proteins after cerebral ischemia. Therefore, we investigated alterations of tight junctional proteins, i.e., occludin and zonula occludens (ZO)-1, in isolated rat brain capillaries after microsphere-induced cerebral embolism. We demonstrated that the levels of occludin and ZO-1 had decreased after the embolism. The embolism also resulted in a marked increase in tyrosine phosphorylation of occludin, which was coincident with an increase in the activity of c-Src. These results suggest that a decrease in the levels of occludin and ZO-1, and an increase in tyrosine phosphorylation of occludin may play an important role in the disruption of tight junctions, which may lead to dysfunction of the BBB after cerebral ischemia.
Collapse
Affiliation(s)
- Tomoyuki Kago
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Merrill MJ, Oldfield EH. A reassessment of vascular endothelial growth factor in central nervous system pathology. J Neurosurg 2005; 103:853-68. [PMID: 16304990 DOI: 10.3171/jns.2005.103.5.0853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
✓ Overexpression of vascular endothelial growth factor (VEGF) is associated with several central nervous system (CNS) diseases and abnormalities, and is often postulated as a causative factor and promising therapeutic target in these settings. The authors' goal was to reassess the contribution of VEGF to the biology and pathology of the CNS.
The authors review the literature relating to the following aspects of VEGF: 1) the biology of VEGF in normal brain; 2) the involvement of VEGF in CNS disorders other than tumors (traumatic and ischemic injuries, arteriovenous malformations, inflammation); and 3) the role of VEGF in brain tumor biology (gliomas and the associated vasogenic edema, and hemangioblastomas).
The authors conclude the following: first, that VEGF overexpression contributes to the phenotype associated with many CNS disorders, but VEGF is a reactive rather than a causative factor in many cases; and second, that use of VEGF as a therapeutic agent or target is complicated by the effects of VEGF not only on the cerebral vasculature, but also on astrocytes, neurons, and inflammatory cells. In many cases, therapeutic interventions targeting the VEGF/VEGF receptor axis are likely to be ineffective or even detrimental. Clinical manipulation of VEGF levels in the CNS must be approached with caution.
Collapse
Affiliation(s)
- Marsha J Merrill
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | |
Collapse
|
48
|
Nag S, Papneja T, Venugopalan R, Stewart DJ. Increased angiopoietin2 expression is associated with endothelial apoptosis and blood-brain barrier breakdown. J Transl Med 2005; 85:1189-98. [PMID: 16056241 DOI: 10.1038/labinvest.3700325] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Normal intracerebral and pial vessels show constitutive expression of angiopoietin (Ang) 1 in endothelium while weak Ang2 immunoreactivity is present in occasional vessels. In the early phase postinjury, blood-brain barrier (BBB) breakdown at the lesion site is associated with decreased endothelial Ang1 and increased Ang2 expression, raising the possibility that Ang2 may have a role in early BBB breakdown. In order to determine whether Ang2 can cause BBB breakdown, the effect of recombinant Ang2 on cerebrovascular permeability to horseradish peroxidase (HRP) was studied in normal rat cortex. As hypothesized, Ang2 produced significant BBB breakdown to HRP as compared with vehicle-injected control rats. Since Ang2 is reported to have proapoptotic activity, the possibility that Ang2 may be associated with endothelial apoptosis was investigated in the rat cortical cold injury model over a period of 6 h to 6 days postinjury. Perilesion and pial vessels showed evidence of endothelial apoptosis as demonstrated by active Caspase-3 localization and TUNEL staining. Dual labeling for Ang proteins and active Caspase-3 demonstrated endothelial colocalization of Ang2 with active caspase-3. These data suggest that following injury, Ang2 may play a role in BBB breakdown of perilesional vessels, and it may also be a factor in endothelial cell apoptosis that occurs at days 1 and 2 following the injury.
Collapse
Affiliation(s)
- Sukriti Nag
- Toronto Western Research Institute and Department of Pathology, University Health Network, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
49
|
van der Flier M, Coenjaerts FE, Mwinzi PN, Rijkers E, Ruyken M, Scharringa J, Kimpen JLL, Hoepelman AIM, Geelen SPM. Antibody neutralization of vascular endothelial growth factor (VEGF) fails to attenuate vascular permeability and brain edema in experimental pneumococcal meningitis. J Neuroimmunol 2005; 160:170-7. [PMID: 15710470 DOI: 10.1016/j.jneuroim.2004.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 10/07/2004] [Accepted: 11/24/2004] [Indexed: 11/18/2022]
Abstract
To determine the contribution of vascular endothelial growth factor (VEGF) to cerebral edema formation in bacterial meningitis, we used a VEGF neutralizing antibody to block VEGF in rabbits, following induction of meningitis by intracisternal inoculation with 10(9) heat-killed pneumococci. At 8 h, cerebrospinal fluid (CSF) VEGF was significantly elevated in infected untreated animals, and correlated with CSF white blood cell (WBC) count (r=0.56, P=0.004), and brain water content (r=0.42, P=0.04). Blocking of VEGF did not attenuate brain edema, blood-brain barrier disruption, or CSF pleocytosis. The functional role of VEGF in the pathophysiology of BM remains elusive.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/administration & dosage
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Bevacizumab
- Brain Edema/blood
- Brain Edema/cerebrospinal fluid
- Brain Edema/immunology
- Brain Edema/physiopathology
- Capillary Permeability/immunology
- Cell Movement/immunology
- Cisterna Magna
- Female
- Humans
- Injections, Intravenous
- Leukocytes/immunology
- Leukocytes/pathology
- Meningitis, Pneumococcal/blood
- Meningitis, Pneumococcal/cerebrospinal fluid
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/physiopathology
- Mice
- Rabbits
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/blood
- Vascular Endothelial Growth Factor A/cerebrospinal fluid
- Vascular Endothelial Growth Factor A/immunology
- Water-Electrolyte Balance
Collapse
Affiliation(s)
- M van der Flier
- Wilhelmina Children's Hospital, University Medical Center, Room KE 04.1331, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A, Logvinova A, Banwait S, Greenberg DA. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis 2005; 18:366-74. [PMID: 15686965 DOI: 10.1016/j.nbd.2004.10.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 08/04/2004] [Accepted: 10/13/2004] [Indexed: 01/24/2023] Open
Abstract
Cell replacement therapy may have the potential to promote brain repair and recovery after stroke. To compare how focal cerebral ischemia affects the entry, migration, and phenotypic features of neural precursor cells transplanted by different routes, we administered neuronal precursors from embryonic cerebral cortex of green fluorescent protein (GFP)-expressing transgenic mice to rats that had undergone middle cerebral artery occlusion (MCAO) by the intrastriatal, intraventricular, and intravenous routes. MCAO increased the entry of GFP-immunoreactive cells, most of which expressed neuroepithelial (nestin) or neuronal (doublecortin) markers, from the ventricles and bloodstream into the brain, and enhanced their migration when delivered by any of these routes. Transplanted neural precursors migrated into the ischemic striatum and cerebral cortex. Thus, transplantation of neural precursors by a variety of routes can deliver cells with the potential to replace injured neurons to ischemic brain regions.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945-0638, USA
| | | | | | | | | | | | | | | | | |
Collapse
|