1
|
Hu Y, Li Y, Brashear AM, Zeng W, Wu Z, Wang L, Wei H, Soe MT, Aung PL, Sattabongkot J, Kyaw MP, Yang Z, Zhao Y, Cui L, Cao Y. Plasmodium vivax populations in the western Greater Mekong Subregion evaluated using a genetic barcode. PLoS Negl Trop Dis 2024; 18:e0012299. [PMID: 38959285 PMCID: PMC11251639 DOI: 10.1371/journal.pntd.0012299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Awtum M. Brashear
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Zifang Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Division of Infectious Disease and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Stanley P, Rajkumari N, Sivaradjy M. Molecular detection of antimalarial resistance in Plasmodium vivax isolates from a tertiary care setting in Puducherry. Indian J Med Microbiol 2024; 47:100496. [PMID: 37949233 DOI: 10.1016/j.ijmmb.2023.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE The study was aimed at detecting the mutation patterns in the drug targets in Plasmodium vivax that confer resistance to the common antimalarial agents used in India. METHODS A total of 27 Plasmodium vivax isolates collected from whole blood samples over a three year period were subjected to PCR amplification followed by sequencing of the genes pvmdr1, pvdhfr, pvdhps and pvk12, which serve as the molecular targets to detect resistance to chloroquine, pyrimethamine, sulfadoxine and artemisinin respectively. RESULTS The study found T958 M F1076L double mutants of pvmdr1 in 52 %(14/27) isolates, S58R S117 N double mutants of pvdhfr in 67 % (18/27) isolates, A383G A553G double mutant pvdhps in 59 % (16/27) isolates and wild type of pvk12 gene in all the isolates. CONCLUSIONS There was a rise in the proportion of double mutants of pvmdr1 and pvdhfr over time. Those cases with double mutant pvmdr1 gene in their isolates were found to have a prolonged hospital stay compared to those without, indicating reduced clinical response to chloroquine.
Collapse
Affiliation(s)
- Pheba Stanley
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, 605006, India.
| | - Nonika Rajkumari
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, 605006, India.
| | - Monika Sivaradjy
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, 605006, India; Department of Microbiology, ESIC Medical College& PGIMSR, Chennai, 78, India.
| |
Collapse
|
3
|
Alves ACDJ, Feio dos Santos AC, Peres JMV, Nascimento JMDS, Barbosa DRL, Figueiredo JV, Viana GMR, Póvoa MM. Morphological atypia and molecular profile of Plasmodium vivax: Findings from an outbreak in the Brazilian Amazon. Parasite 2023; 30:38. [PMID: 37772844 PMCID: PMC10540677 DOI: 10.1051/parasite/2023039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
This study aimed to perform morphological and molecular analyses of parasites isolated from the blood of malaria-infected individuals during an outbreak in the Microregion of Cametá, State of Pará, Brazilian Amazon. A total of 260 positive samples were identified by microscopy as Plasmodium vivax; however, in three samples, forms considered unusual for the species were found and defined as morphological atypia of P. vivax. Single P. vivax infection was confirmed by qPCR in all samples. Among 256 genotyped samples, the VK247 genotype alone was identified in 255 samples, and the VK210 genotype was found in only one. The study showed that this malaria outbreak was caused by the etiological agent P. vivax, and for the first time, morphological atypia was described in isolates circulating in Brazil. Likewise, for the first time, the VK247 genotype was detected predominantly in single infections in an area of the State of Pará, which may suggest a greater circulation of the genotype in the region.
Collapse
Affiliation(s)
- Amanda Caroline de Jesus Alves
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará Rua Augusto Corrêa, 01 Belém Pará Brazil
- Laboratory of Malaria Entomology, Parasitology Section, Evandro Chagas Institute Rodovia BR 316, Km 7 Ananindeua Pará Brazil
| | - Ana Cecília Feio dos Santos
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará Rua Augusto Corrêa, 01 Belém Pará Brazil
- Laboratory of Malaria Entomology, Parasitology Section, Evandro Chagas Institute Rodovia BR 316, Km 7 Ananindeua Pará Brazil
| | - José Mário Veloso Peres
- Laboratory of Basic Research in Malaria, Parasitology Section, Evandro Chagas Institute Rodovia BR 316, Km 7 Ananindeua Pará Brazil
| | - José Maria de Souza Nascimento
- Laboratory of Basic Research in Malaria, Parasitology Section, Evandro Chagas Institute Rodovia BR 316, Km 7 Ananindeua Pará Brazil
| | - Danielle Regina Lima Barbosa
- Laboratory of Malaria Entomology, Parasitology Section, Evandro Chagas Institute Rodovia BR 316, Km 7 Ananindeua Pará Brazil
| | - Juliana Vasconcelos Figueiredo
- Multiprofessional Residency Program in Animal Reproduction, Federal Rural University of the Amazon Avenida Presidente Tancredo Neves, 2501 Belém Pará Brazil
| | - Giselle Maria Rachid Viana
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará Rua Augusto Corrêa, 01 Belém Pará Brazil
- Laboratory of Basic Research in Malaria, Parasitology Section, Evandro Chagas Institute Rodovia BR 316, Km 7 Ananindeua Pará Brazil
| | - Marinete Marins Póvoa
- Graduate Program in Biology of Infectious and Parasitic Agents, Federal University of Pará Rua Augusto Corrêa, 01 Belém Pará Brazil
- Laboratory of Malaria Entomology, Parasitology Section, Evandro Chagas Institute Rodovia BR 316, Km 7 Ananindeua Pará Brazil
| |
Collapse
|
4
|
Kritsiriwuthinan K, Ngrenngarmlert W, Patrapuvich R, Phuagthong S, Choosang K. Distinct Allelic Diversity of Plasmodium vivax Merozoite Surface Protein 3-Alpha ( PvMSP-3α) Gene in Thailand Using PCR-RFLP. J Trop Med 2023; 2023:8855171. [PMID: 37599666 PMCID: PMC10438972 DOI: 10.1155/2023/8855171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Considering the importance of merozoite surface proteins (MSPs) as vaccine candidates, this study was conducted to investigate the polymorphism and genetic diversity of Plasmodium vivax merozoite surface protein 3-alpha (PvMSP-3α) in Thailand. To analyze genetic diversity, 118 blood samples containing P. vivax were collected from four malaria-endemic areas in western and southern Thailand. The DNA was extracted and amplified for the PvMSP-3α gene using nested PCR. The PCR products were genotyped by PCR-RFLP with Hha I and Alu I restriction enzymes. The combination patterns of Hha I and Alu I RFLP were used to identify allelic variants. Genetic evaluation and phylogenic analysis were performed on 13 sequences, including 10 sequences from our study and 3 sequences from GenBank. The results revealed three major types of PvMSP-3α, 91.5% allelic type A (∼1.8 kb), 5.1% allelic type B (∼1.5 kb), and 3.4% allelic type C (∼1.2 kb), were detected based on PCR product size with different frequencies. Among all PvMSP-3α, 19 allelic subtypes with Hha I RFLP patterns were distinguished and 6 allelic subtypes with Alu I RFLP patterns were identified. Of these samples, 73 (61%) and 42 (35.6%) samples were defined as monoallelic subtype infection by Hha I and Alu I PCR-RFLP, respectively, whereas 77 (65.3%) samples were determined to be mixed-allelic subtype infection by the combination patterns of Hha I and Alu I RFLP. These results strongly indicate that PvMSP-3α gene is highly polymorphic, particularly in blood samples collected from the Thai-Myanmar border area (the western part of Thailand). The combination patterns of Hha I and Alu I RFLP of the PvMSP-3α gene could be considered for use as molecular epidemiologic markers for genotyping P. vivax isolates in Thailand.
Collapse
Affiliation(s)
| | - Warunee Ngrenngarmlert
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria (DRUM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Kantima Choosang
- Faculty of Medical Technology, Rangsit University, Pathumthani 12000, Thailand
| |
Collapse
|
5
|
Neal A, Sassi J, Vardo-Zalik A. Drought correlates with reduced infection complexity and possibly prevalence in a decades-long study of the lizard malaria parasite Plasmodium mexicanum. PeerJ 2023; 11:e14908. [PMID: 36860770 PMCID: PMC9969858 DOI: 10.7717/peerj.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/25/2023] [Indexed: 03/03/2023] Open
Abstract
Microparasites often exist as a collection of genetic 'clones' within a single host (termed multi-clonal, or complex, infections). Malaria parasites are no exception, with complex infections playing key roles in parasite ecology. Even so, we know little about what factors govern the distribution and abundance of complex infections in natural settings. Utilizing a natural dataset that spans more than 20 years, we examined the effects of drought conditions on infection complexity and prevalence in the lizard malaria parasite Plasmodium mexicanum and its vertebrate host, the western fence lizard, Sceloporus occidentalis. We analyzed data for 14,011 lizards sampled from ten sites over 34 years with an average infection rate of 16.2%. Infection complexity was assessed for 546 infected lizards sampled during the most recent 20 years. Our data illustrate significant, negative effects of drought-like conditions on infection complexity, with infection complexity expected to increase by a factor of 2.27 from the lowest to highest rainfall years. The relationship between rainfall and parasite prevalence is somewhat more ambiguous; when prevalence is modeled over the full range in years, a 50% increase in prevalence is predicted between the lowest and highest rainfall years, but this trend is not apparent or is reversed when data are analyzed over a shorter timeframe. To our knowledge, this is the first reported evidence for drought affecting the abundance of multi-clonal infections in malaria parasites. It is not yet clear what mechanism might connect drought with infection complexity, but the correlation we observed suggests that additional research on how drought influences parasite features like infection complexity, transmission rates and within-host competition may be worthwhile.
Collapse
Affiliation(s)
- Allison Neal
- Norwich University, Northfield, VT, United States
| | - Joshua Sassi
- Norwich University, Northfield, VT, United States
| | | |
Collapse
|
6
|
Wang X, Bai Y, Xiang Z, Zeng W, Wu Y, Zhao H, Zhao W, Chen X, Duan M, Li X, Zhu W, Sun K, Wu Y, Zhang Y, Li X, Rosenthal BM, Cui L, Yang Z. Genetic diversity of Plasmodium vivax populations from the China-Myanmar border identified by genotyping merozoite surface protein markers. Trop Med Health 2023; 51:2. [PMID: 36631913 PMCID: PMC9832627 DOI: 10.1186/s41182-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Parasite diversity and population structure influence malaria control measures. Malaria transmission at international borders affects indigenous residents and migrants, defying management efforts and resulting in malaria re-introduction. Here we aimed to determine the extent and distribution of genetic variations in Plasmodium vivax populations and the complexity of infections along the China-Myanmar border. METHODS We collected clinical P. vivax samples from local and migrant malaria patients from Laiza and Myitsone, Kachin State, Myanmar, respectively. We characterized the polymorphisms in two P. vivax merozoite surface protein markers, Pvmsp-3α and Pvmsp-3β, by PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. We sought to determine whether these genetic markers could differentiate these two neighboring parasite populations. RESULTS PCR revealed three major size variants for Pvmsp-3α and four for Pvmsp-3β among the 370 and 378 samples, respectively. PCR-RFLP resolved 26 fragment-size alleles by digesting Pvmsp-3α with Alu I and Hha I and 28 alleles by digesting Pvmsp-3β with Pst I. PCR-RFLP analysis of Pvmsp-3α found that infections in migrant laborers from Myitsone bore more alleles than did infections in residents of Laiza, while such difference was not evident from genotyping Pvmsp-3β. Infections originating from these two places contained distinct but overlapping subpopulations of P. vivax. Infections from Myitsone had a higher multiplicity of infection as judged by the size of the Pvmsp-3α amplicons and alleles after Alu I/Hha I digestion. CONCLUSIONS Migrant laborers from Myitsone and indigenous residents from Laiza harbored overlapping but genetically distinct P. vivax parasite populations. The results suggested a more diverse P. vivax population in Myitsone than in the border town of Laiza. PCR-RFLP of Pvmsp-3α offers a convenient method to determine the complexity of P. vivax infections and differentiate parasite populations.
Collapse
Affiliation(s)
- Xun Wang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yao Bai
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zheng Xiang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Weilin Zeng
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yanrui Wu
- grid.285847.40000 0000 9588 0960Department of Cell Biology and Genetics, Kunming Medical University, Kunming, China
| | - Hui Zhao
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Wei Zhao
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xi Chen
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Mengxi Duan
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xiaosong Li
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Wenya Zhu
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Kemin Sun
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yiman Wu
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yanmei Zhang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Xiaomei Li
- grid.285847.40000 0000 9588 0960Faculty of Public Health, Kunming Medical University, Kunming, Yunnan Province China
| | - Benjamin M. Rosenthal
- grid.508984.8Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD USA
| | - Liwang Cui
- grid.170693.a0000 0001 2353 285XDepartment of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Zhaoqing Yang
- grid.285847.40000 0000 9588 0960Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, 650500 Yunnan China
| |
Collapse
|
7
|
Kuesap J, Rungsihirunrat K, Chaijaroenkul W, Mungthin M. Genetic diversity of Plasmodium vivax merozoite surface protein-3 alpha and beta from diverse geographic areas of Thailand. Jpn J Infect Dis 2021; 75:241-248. [PMID: 34588369 DOI: 10.7883/yoken.jjid.2021.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malaria is parasitic disease cause by Plasmodium infection. In Thailand, co-infections of Plasmodium vivax and P. falciparum are commonly found. P. vivax infection has been increasing in the past decade. The objective of this study was to investigate the genetic diversity patterns of Plasmodium vivax merozoite surface protein 3 (PvMSP-3) genes in total of 450 isolates collected from Thai-neighboring border during two different periods (2009-20 14 and 2015 -2016) using polymerase chain reaction (PCR) - restriction fragment length polymorphism (RFLP) method. Three major types of PvMSP-3α (A, B, and C) and PvMSP-3β (A, B, and C) were detected based on PCR products size. Forty five and 23 of PvMSP-3α and, 41 and 30 alleles of PvMSP-3β genes from the first period and second period, respectively, with difference frequencies of samples were distinguished. The results strongly indicate genetic diversity patterns of PvMSP-3 in the second period especially samples from Thai-Myanmar border. These two polymorphic genes could be used as a molecular epidemiologic marker for genotyping P. vivax isolate in Thailand.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Thailand
| | | | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Thailand
| | - Mathirut Mungthin
- Department of Pharmacology, Phramongkutklao College of Medicine, Thailand
| |
Collapse
|
8
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
9
|
Thanapongpichat S, Khammanee T, Sawangjaroen N, Buncherd H, Tun AW. Genetic Diversity of Plasmodium vivax in Clinical Isolates from Southern Thailand using PvMSP1, PvMSP3 (PvMSP3α, PvMSP3β) Genes and Eight Microsatellite Markers. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:469-479. [PMID: 31715687 PMCID: PMC6851248 DOI: 10.3347/kjp.2019.57.5.469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/21/2019] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax is usually considered morbidity in endemic areas of Asia, Central and South America, and some part of Africa. In Thailand, previous studies indicated the genetic diversity of P. vivax in malaria-endemic regions such as the western part of Thailand bordering with Myanmar. The objective of the study is to investigate the genetic diversity of P. vivax circulating in Southern Thailand by using 3 antigenic markers and 8 microsatellite markers. Dried blood spots were collected from Chumphon, Phang Nga, Ranong and, Surat Thani provinces of Thailand. By PCR, 3 distinct sizes of PvMSP3α, 2 sizes of PvMSP3β and 2 sizes of PvMSP1 F2 were detected based on the length of PCR products, respectively. PCR/RFLP analyses of these antigen genes revealed high levels of genetic diversity. The genotyping of 8 microsatellite loci showed high genetic diversity as indicated by high alleles per locus and high expected heterozygosity (HE). The genotyping markers also showed multiple-clones of infection. Mixed genotypes were detected in 4.8% of PvMSP3α, 29.1% in PvMSP3β and 55.3% of microsatellite markers. These results showed that there was high genetic diversity of P. vivax isolated from Southern Thailand, indicating that the genetic diversity of P. vivax in this region was comparable to those observed other areas of Thailand.
Collapse
Affiliation(s)
| | - Thunchanok Khammanee
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nongyao Sawangjaroen
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
10
|
Anantabotla VM, Antony HA, Joseph NM, Parija SC, Rajkumari N, Kini JR, Manipura R, Nag VL, Gadepalli RS, Chayani N, Patro S. Genetic diversity of Indian Plasmodium vivax isolates based on the analysis of PvMSP3β polymorphic marker. Trop Parasitol 2019; 9:108-114. [PMID: 31579665 PMCID: PMC6767795 DOI: 10.4103/tp.tp_11_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 11/04/2022] Open
Abstract
Background Malaria is one of the major communicable diseases in India and worldwide. PvMSP3β is a highly polymorphic gene due to its large insertions and deletions in the central alanine-rich region, which, in turn, makes it a valuable marker for population genetic analysis. Very few studies are available from India about the genetic diversity of Plasmodium vivax based on PvMSP3β gene, and hence, this study was designed to understand the molecular diversity of the P. vivax malaria parasite. The accumulating epidemiological data provide insights into the circulating genetic variants of P. vivax in India, and ultimately benefits the vaccine development. Materials and Methods A total of 268 samples confirmed to be positive by microscopy, rapid diagnostic test, and quantitative buffy coat test were collected from four different regions of India (Puducherry, Mangaluru, Jodhpur, and Cuttack) in the present study. Polymerase chain reaction (PCR)-based diagnosis was carried out to confirm the P. vivax monoinfection, and only the mono-infected samples were subjected to PvMSP3β gene amplification and further restriction fragment length polymorphism (RFLP) to determine suballeles. Results Based on the size of the amplified fragment, the PvMSP3β gene was apportioned into two major types, namely Type A genotype (1.6-2 Kb) was predominantly present in 148 isolates and Type B (1-1.5 Kb) was observed in 110 isolates. The percentage of mixed infections by PCR was 3.73%. All the PCR products were subjected to RFLP to categorize into suballeles and we detected 39 suballeles (A1-A39) in Type A, and 23 suballeles (B1-B23) in Type B genotype. A high degree of diversity was observed among the isolates collected from Mangaluru region when compared to isolates collected from other regions. Conclusion The present study showed a high degree of genetic diversity of PvMSP3β gene among the isolates collected from various parts of India. High polymorphism in PvMSP3β gene makes it a promising marker for epidemiological and vaccine development studies.
Collapse
Affiliation(s)
- V M Anantabotla
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Hiasindh Ashmi Antony
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Noyal Maria Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | | | - Nonika Rajkumari
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jyoti R Kini
- Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Radhakrishna Manipura
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - R S Gadepalli
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Nirupama Chayani
- Department of Microbiology, Srirama Chandra Bhanja Medical College and Hospital, Cuttack, Odisha, India
| | - Somi Patro
- District Public Health Lab, District Headquarter Hospital, Puri, Odisha, India
| |
Collapse
|
11
|
Sibley CH. A Solid Beginning to Understanding Plasmodium vivax in Africa. J Infect Dis 2019; 220:1716-1718. [DOI: 10.1093/infdis/jiz019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
|
12
|
Bahk YY, Kim J, Ahn SK, Na BK, Chai JY, Kim TS. Genetic Diversity of Plasmodium vivax Causing Epidemic Malaria in the Republic of Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:545-552. [PMID: 30630274 PMCID: PMC6327206 DOI: 10.3347/kjp.2018.56.6.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax is more challenging to control and eliminate than P. falciparum due to its more asymptomatic infections with low parasite densities making diagnosis more difficult, in addition to its unique biological characteristics. The potential re-introduction of incidence cases, either through borders or via human migrations, is another major hurdle to sustained control and elimination. The Republic of Korea has experienced re-emergence of vivax malaria in 1993 but is one of the 32 malaria-eliminating countries to-date. Despite achieving successful nationwide control and elimination of vivax malaria, the evolutionary characteristics of vivax malaria isolates in the Republic of Korea have not been fully understood. In this review, we present an overview of the genetic variability of such isolates to increase understanding of the epidemiology, diversity, and dynamics of vivax populations in the Republic of Korea.
Collapse
Affiliation(s)
- Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478,
Korea
| | - Jeonga Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294,
USA
| | - Seong Kyu Ahn
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212,
Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Jong-Yil Chai
- Korea Association of Health Promotion, Seoul 07653,
Korea
| | - Tong-Soo Kim
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212,
Korea
| |
Collapse
|
13
|
Paleopathological Considerations on Malaria Infection in Korea before the 20th Century. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8516785. [PMID: 29854798 PMCID: PMC5966694 DOI: 10.1155/2018/8516785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
Malaria, one of the deadliest diseases in human history, still infects many people worldwide. Among the species of the genus Plasmodium, P. vivax is commonly found in temperate-zone countries including South Korea. In this article, we first review the history of malarial infection in Korea by means of studies on Joseon documents and the related scientific data on the evolutionary history of P. vivax in Asia. According to the historical records, malarial infection was not unusual in pre-20th-century Korean society. We also found that certain behaviors of the Joseon people might have affected the host-vector-pathogen relationship, which could explain why malarial infection prevalence was so high in Korea at that time. In our review of genetic studies on P. vivax, we identified substantial geographic differentiation among continents and even between neighboring countries. Based on these, we were able to formulate a strategy for future analysis of ancient Plasmodium strains in Korea.
Collapse
|
14
|
Zhou R, Liu Y, Li S, Zhao Y, Huang F, Yang C, Qian D, Lu D, Deng Y, Zhang H, Xu B. Polymorphisms analysis of the Plasmodium ovale tryptophan-rich antigen gene (potra) from imported malaria cases in Henan Province. Malar J 2018; 17:127. [PMID: 29566685 PMCID: PMC5865371 DOI: 10.1186/s12936-018-2261-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium ovale has two different subspecies: P. ovale curtisi and P. ovale wallikeri, which may be distinguished by the gene potra encoding P. ovale tryptophan-rich antigen. The sequence and size of potra gene was variable between the two P. ovale spp., and more fragment sizes were found compared to previous studies. Further information about the diversity of potra genes in these two P. ovale spp. will be needed. METHODS A total of 110 dried blood samples were collected from the clinical patients infected with P. ovale, who all returned from Africa in Henan Province in 2011-2016. The fragments of potra were amplified by nested PCR. The sizes and species of potra gene were analysed after sequencing, and the difference between the isolates were analysed with the alignment of the amino acid sequences. The phylogenetic tree was constructed by neighbour-joining to determine the genetic relationship among all the isolates. The distribution of the isolates was analysed based on the origin country. RESULTS Totally 67 samples infected with P. o. wallikeri, which included 8 genotypes of potra, while 43 samples infected with P. o. curtisi including 3 genotypes of potra. Combination with the previous studies, P. o. wallikeri had six sizes, 227, 245, 263, 281, 299 and 335 bp, and P. o. curtisi had four sizes, 299, 317, 335 and 353 bp, the fragment sizes of 299 and 335 bp were the overlaps between the two species. Six amino acid as one unit was firstly used to analyse the amino acid sequence of potra. Amino acid sequence alignment revealed that potra of P. o. wallikeri differed in two amino acid units, MANPIN and AITPIN, while potra of P. o. curtisi differed in amino acid units TINPIN and TITPIS. Combination with the previous studies, there were ten subtypes of potra exiting for P. o. wallikeri and four subtypes for P. o. curtisi. The phylogenetic tree showed that 11 isolates were divided into two clusters, P. o. wallikeri which was then divided into five sub-clusters, and P. o. curtisi which also formed two sub-clusters with their respective reference sequences. The genetic relationship of the P. ovale spp. mainly based on the number of the dominant amino acid repeats, the number of MANPIN, AITPIN, TINPIN or TITPIS. The genotype of the 245 bp size for P. o. wallikeri and that of the 299 and 317 bp size for P. o. curtisi were commonly exiting in Africa. CONCLUSION This study further proved that more fragment sizes were found, P. o. wallikeri had six sizes, P. o. curtisi had four sizes. There were ten subtypes of potra exiting for P. o. wallikeri and four subtypes for P. o. curtisi. The genetic polymorphisms of potra provided complementary information for the gene tracing of P. ovale spp. in the malaria elimination era.
Collapse
Affiliation(s)
- Ruimin Zhou
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Suhua Li
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Yuling Zhao
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
| | - Chengyun Yang
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Deling Lu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Yan Deng
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China
| | - Hongwei Zhang
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China.
| | - Bianli Xu
- Department of Parasite Disease Control and Prevention, Henan Province Center for Disease Control and Prevention, Zhengzhou, 450016, People's Republic of China.
| |
Collapse
|
15
|
Lim C, Dankwa S, Paul AS, Duraisingh MT. Host Cell Tropism and Adaptation of Blood-Stage Malaria Parasites: Challenges for Malaria Elimination. Cold Spring Harb Perspect Med 2017; 7:a025494. [PMID: 28213436 PMCID: PMC5666624 DOI: 10.1101/cshperspect.a025494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for most of the mortality and morbidity associated with malaria in humans. Research and control efforts have focused on infections caused by P. falciparum and P. vivax, but have neglected other malaria parasite species that infect humans. Additionally, many related malaria parasite species infect nonhuman primates (NHPs), and have the potential for transmission to humans. For malaria elimination, the varied and specific challenges of all of these Plasmodium species will need to be considered. Recent advances in molecular genetics and genomics have increased our knowledge of the prevalence and existing diversity of the human and NHP Plasmodium species. We are beginning to identify the extent of the reservoirs of each parasite species in humans and NHPs, revealing their origins as well as potential for adaptation in humans. Here, we focus on the red blood cell stage of human infection and the host cell tropism of each human Plasmodium species. Determinants of tropism are unique among malaria parasite species, presenting a complex challenge for malaria elimination.
Collapse
Affiliation(s)
- Caeul Lim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Selasi Dankwa
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Aditya S Paul
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
16
|
Boopathi PA, Subudhi AK, Middha S, Acharya J, Mugasimangalam RC, Kochar SK, Kochar DK, Das A. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates. Acta Trop 2016; 164:438-447. [PMID: 27720625 DOI: 10.1016/j.actatropica.2016.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/05/2016] [Accepted: 10/03/2016] [Indexed: 02/04/2023]
Abstract
High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n=14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n=85) present in the arrays showed perfect correlation (r2=0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r≥0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates.
Collapse
|
17
|
Hamedi Y, Sharifi-Sarasiabi K, Dehghan F, Safari R, To S, Handayuni I, Trimarsanto H, Price RN, Auburn S. Molecular Epidemiology of P. vivax in Iran: High Diversity and Complex Sub-Structure Using Neutral Markers, but No Evidence of Y976F Mutation at pvmdr1. PLoS One 2016; 11:e0166124. [PMID: 27829067 PMCID: PMC5102416 DOI: 10.1371/journal.pone.0166124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria remains endemic at low levels in the south-eastern provinces of Iran bordering Afghanistan and Pakistan, with the majority of cases attributable to P. vivax. The national guidelines recommend chloroquine (CQ) as blood-stage treatment for uncomplicated P. vivax, but the large influx of imported cases enhances the risk of introducing CQ resistance (CQR). METHODOLOGY AND PRINCIPAL FINDINGS The genetic diversity at pvmdr1, a putative modulator of CQR, and across nine putatively neutral short tandem repeat (STR) markers were assessed in P. vivax clinical isolates collected between April 2007 and January 2013 in Hormozgan Province, south-eastern Iran. One hundred blood samples were collected from patients with microscopy-confirmed P. vivax enrolled at one of five district clinics. In total 73 (73%) were autochthonous cases, 23 (23%) imported cases from Afghanistan or Pakistan, and 4 (4%) with unknown origin. 97% (97/100) isolates carried the F1076L mutation, but none carried the Y976F mutation. STR genotyping was successful in 71 (71%) isolates, including 57(57%) autochthonous and 11 (11%) imported cases. Analysis of population structure revealed 2 major sub-populations, K1 and K2, with further sub-structure within K2. The K1 sub-population had markedly lower diversity than K2 (HE = 0.06 vs HE = 0.82) suggesting that the sub-populations were sustained by distinct reservoirs with differing transmission dynamics, possibly reflecting local versus imported/introduced populations. No notable separation was observed between the local and imported cases although the sample size was limited. CONCLUSIONS The contrasting low versus high diversity in the two sub-populations (K1 and K2) infers that a combination of local transmission and cross-border malaria from higher transmission regions shape the genetic make-up of the P. vivax population in south-eastern Iran. There was no molecular evidence of CQR amongst the local or imported cases, but ongoing clinical surveillance is warranted.
Collapse
Affiliation(s)
- Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Khojasteh Sharifi-Sarasiabi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Farzaneh Dehghan
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Reza Safari
- Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Hidayat Trimarsanto
- Bioinformatics Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
18
|
Verma A, Joshi H, Singh V, Anvikar A, Valecha N. Plasmodium vivax msp-3α polymorphisms: analysis in the Indian subcontinent. Malar J 2016; 15:492. [PMID: 27663527 PMCID: PMC5035448 DOI: 10.1186/s12936-016-1524-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite and accounts for approximately the same number of malaria cases as Plasmodium falciparum in India. Compared with P. falciparum, P. vivax is difficult to eradicate because of its tendency to cause relapses, which impacts treatment and control strategies. The genetic diversity of these parasites, particularly of the merozoite surface protein-3 alpha (msp-3α) gene, can be used to help develop a potential vaccine. The present study aimed to investigate the genetic diversity of P. vivax using the highly polymorphic antigen gene msp-3α and to assess the suitability of using this gene for population genetic studies of P. vivax isolates and was carried out in 2004-06. No recent study has been reported for MSP 3α in the recent decade in India. Limited reports are available on the genetic diversity of the P. vivax population in India; hence, this report aimed to improve the understanding of the molecular epidemiology of the parasite by studying the P. vivax msp-3α (Pvmsp-3α) marker from P. vivax field isolates from India. METHODS Field isolates were collected from different sites distributed across eight states in India. A total of 182 blood samples were analysed by a nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the HhaI and AluI restriction enzymes to determine genetic msp-3α variation among clinical P. vivax isolates. RESULTS Based on the length variants of the PCR products of Pvmsp-3α gene, three allele sizes, Type A (1.8 kb), Type B (1.5 kb) and Type C (1.2 kb) were detected among the 182 samples. Type A PCR amplicon was more predominant (75.4 %) in the samples compared with the Type B (14.3 %) and Type C (10.0 %) polymorphisms. Among all of the samples analysed, 8.2 % were mixed infections detected by PCR alone. Restriction fragment length polymorphism (RFLP) analysis involving the restriction enzymes AluI and HhaI generated fragment sizes that were highly polymorphic and revealed substantial diversity at the nucleotide level. CONCLUSIONS The present study is the first extensive study in India using the Pvmsp-3α marker. The results indicated that Pvmps-3α, a polymorphic genetic marker of P. vivax, exhibited considerable variability in infection prevalence in field isolates from India. Additionally, the mean multiplicity of infection observed at all of the study sites indicated that P. vivax is highly diverse in nature in India, and Pvmsp-3α is likely an effective and promising epidemiological marker.
Collapse
Affiliation(s)
- Anju Verma
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Hema Joshi
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| | - Vineeta Singh
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| | - Anup Anvikar
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| | - Neena Valecha
- National Institute of Malaria Research, Sector 8, Dwarka, Delhi, 110077, India
| |
Collapse
|
19
|
Friedrich LR, Popovici J, Kim S, Dysoley L, Zimmerman PA, Menard D, Serre D. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax. PLoS Negl Trop Dis 2016; 10:e0004526. [PMID: 27018585 PMCID: PMC4809505 DOI: 10.1371/journal.pntd.0004526] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. METHODOLOGY/PRINCIPAL FINDINGS We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites.
Collapse
Affiliation(s)
- Lindsey R. Friedrich
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jean Popovici
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Das R, Dhiman RC, Savargaonkar D, Anvikar AR, Valecha N. Genotyping of Plasmodium vivax by minisatellite marker and its application in differentiating relapse and new infection. Malar J 2016; 15:115. [PMID: 26912225 PMCID: PMC4766672 DOI: 10.1186/s12936-016-1139-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax malaria is a major public health problem in India. Control of vivax malaria is challenging due to various factors including relapse which increase the burden significantly. There is no well studied marker to differentiate relapse from reinfection. This creates hindrance in search for anti-relapse medicines. The genomic study of minisatellite can help in characterization of relapse and new infection of vivax malaria. METHODS Eighty-eight samples of P. vivax were collected from malaria clinic. All the 14 chromosomes of P. vivax were scanned for minisatellite marker by Tandem Repeat Finder software Version 4.07b. Minisatellite marker CH1T1M13779 from chromosome one was applied for genotyping in 88 samples of P. vivax including 2 recurrence cases. RESULTS Whole genome of P. vivax was scanned and found to have one hundred minisatellite markers. CH1T1M13779 minisatellite marker from chromosome-1 was used for amplification in 88 samples of P. vivax. Of 66 amplified samples, 14 alleles were found with varied allele frequency. The base size of 280 (13.63 %) 320 bp (13.63 %) and 300 bp (16.66 %) showed the predominant allele in the P. vivax population. Genotyping of two paired samples (day 0 and day relapse) could demonstrate the presence of relapse and reinfection. CONCLUSION The CH1T1M13779 can be potential minisatellite marker which can be used to differentiate between relapse and new infection of P. vivax strain.
Collapse
Affiliation(s)
- Ram Das
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110077, India.
| | - Ramesh C Dhiman
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110077, India.
| | - Deepali Savargaonkar
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110077, India.
| | - Anupkumar R Anvikar
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110077, India.
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
21
|
Maneerattanasak S, Gosi P, Krudsood S, Tongshoob J, Lanteri CA, Snounou G, Khusmith S. Genetic diversity among Plasmodium vivax isolates along the Thai-Myanmar border of Thailand. Malar J 2016; 15:75. [PMID: 26858120 PMCID: PMC4746829 DOI: 10.1186/s12936-016-1136-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022] Open
Abstract
Background Knowledge of the population genetics and transmission dynamics of Plasmodium vivax is crucial in predicting the emergence of drug resistance, relapse pattern and novel parasite phenotypes, all of which are relevant to the control of vivax infections. The aim of this study was to analyse changes in the genetic diversity of P. vivax genes from field isolates collected at different times along the Thai–Myanmar border. Methods Two hundred and fifty-four P. vivax isolates collected during two periods 10 years apart along the Thai–Myanmar border were analysed. The parasites were genotyped by nested-PCR and PCR–RFLP targeting selected polymorphic loci of Pvmsp1, Pvmsp3α and Pvcsp genes. Results The total number of distinguishable allelic variants observed for Pvcsp, Pvmsp1, and Pvmsp3α was 17, 7 and 3, respectively. High genetic diversity was observed for Pvcsp (HE = 0.846) and Pvmsp1 (HE = 0.709). Of the 254 isolates, 4.3 and 14.6 % harboured mixed Pvmsp1 and Pvcsp genotypes with a mean multiplicity of infection (MOI) of 1.06 and 1.15, respectively. The overall frequency of multiple genotypes was 16.9 %. When the frequencies of allelic variants of each gene during the two distinct periods were analysed, significant differences were noted for Pvmsp1 (P = 0.018) and the Pvcsp (P = 0.033) allelic variants. Conclusion Despite the low malaria transmission levels in Thailand, P. vivax population exhibit a relatively high degree of genetic diversity along the Thai–Myanmar border of Thailand, in particular for Pvmsp1 and Pvcsp, with indication of geographic and temporal variation in frequencies for some variants. These results are of relevance to monitoring the emergence of drug resistance and to the elaboration of measures to control vivax malaria.
Collapse
Affiliation(s)
- Sarunya Maneerattanasak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Panita Gosi
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science-United States Army Military Component, Bangkok, Thailand.
| | - Srivicha Krudsood
- Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Jarinee Tongshoob
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | - Charlotte A Lanteri
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science-United States Army Military Component, Bangkok, Thailand.
| | - Georges Snounou
- UPMC UMRS CR7, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (Inserm) U1135 - Centre National de la Recherche Scientifique (CNRS) ERL 8255, Centre d'Immunologie et de Maladies Infectieuses (CIMI) - Paris, 75013, Paris, France.
| | - Srisin Khusmith
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand. .,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
22
|
Kibria MG, Elahi R, Mohon AN, Khan WA, Haque R, Alam MS. Genetic diversity of Plasmodium vivax in clinical isolates from Bangladesh. Malar J 2015; 14:267. [PMID: 26159168 PMCID: PMC4498513 DOI: 10.1186/s12936-015-0790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022] Open
Abstract
Background Plasmodium vivax is the second most prevalent human malaria parasite in Bangladesh; however, there are no data of its genetic diversity. Several molecular markers are available where Pvcsp, Pvmsp 1 and Pvmsp 3α are most commonly used for P. vivax genotyping studies. The aim of the study was to investigate the population structure of P. vivax in Bangladesh. Methods A total of 102 P. vivax-positive blood samples were collected from different malaria-endemic areas in Bangladesh and subsequently analysed for those three genotyping markers. Nested PCR was performed for diagnosis and genotyping analysis followed by PCR–RFLP to detect genetic diversity using Pvcsp, Pvmsp 1 and Pvmsp 3α markers. Results Analysis of Pvcsp showed that the VK210 repeat type was highly prevalent (64.7%, 66/102) compared to VK247 (35.3%, 36/102), although the prevalence of VK247 was higher than other Southeast Asian countries. Analysis of these three genes revealed a diverse, circulating population of P. vivax where a total of ten, 56 and 35 distinct genotypes were detected for Pvcsp, Pvmsp 1 and Pvmsp 3α, respectively. Conclusion This genotyping observation of P. vivax is the first report from Bangladesh and will provide valuable information for establishing the genotyping methods and circulating genetic variants of these three markers available in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Golam Kibria
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| | - Rubayet Elahi
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh. .,Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Abu Naser Mohon
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh. .,Department of Microbiology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N1N4, Canada.
| | - Wasif A Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| | - Mohammad Shafiul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, 1212, Bangladesh.
| |
Collapse
|
23
|
Talha AA, Pirahmadi S, Mehrizi AA, Djadid ND, Nour BYM, Zakeri S. Molecular genetic analysis of Plasmodium vivax isolates from Eastern and Central Sudan using pvcsp and pvmsp-3α genes as molecular markers. INFECTION GENETICS AND EVOLUTION 2015; 32:12-22. [PMID: 25721363 DOI: 10.1016/j.meegid.2015.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 11/29/2022]
Abstract
In Sudan, Plasmodium vivax accounts for approximately 5-10% of malaria cases. This study was carried out to determine the genetic diversity of P. vivax population from Sudan by analyzing the polymorphism of P. vivax csp (pvcsp) and pvmsp-3α genes. Blood samples (n=76) were taken from suspected malaria cases from 2012-2013 in three health centers of Eastern and Central Sudan. Parasite detection was performed by microscopy and molecular techniques, and genotyping of both genes was performed by PCR-RFLP followed by DNA sequence for only pvcsp gene (n=30). Based on microscopy analysis, 76 (%100) patients were infected with P. vivax, whereas nested-PCR results showed that 86.8% (n=66), 3.9% (n=3), and 3.9% (n=3) of tested samples had P. vivax as well as Plasmodium falciparum mono- and mixed infections, respectively. Four out of 76 samples had no results in molecular diagnosis. All sequenced samples were found to be of VK210 (100%) genotype with six distinct amino acid haplotypes, and 210A (66.7%) was the most prevalent haplotype. The Sudanese isolates displayed variations in the peptide repeat motifs (PRMs) ranging from 17 to 19 with GDRADGQPA (PRM1), GDRAAGQPA (PRM2) and DDRAAGQPA (PRM3). Also, 54 polymorphic sites with 56 mutations were found in repeat and post-repeat regions of the pvcsp and the overall nucleotide diversity (π) was 0.02149±0.00539. A negative value of dN-dS (-0.0344) was found that suggested a significant purifying selection of Sudanese pvcsp, (Z test, P<0.05). Regarding pvmsp-3α, three types were detected: types A (94.6%, 52/55), type C (3.6%, 2/55), and type B (1.8%, 1/55). No multiclonal infections were detected, and RFLP analysis identified 13 (Hha I, A1-A11, B1, and C1) and 16 (Alu I, A1-A14, B1, and C1) distinct allelic forms. In conclusion, genetic investigation among Sudanese P. vivax isolates indicated that this antigen showed limited antigenic diversity.
Collapse
Affiliation(s)
- Albadawi Abdelbagi Talha
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, P.O. Box 20, Wad Medani, Sudan; Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wad Medani, Sudan
| | - Sekineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Bakri Y M Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, P.O. Box 20, Wad Medani, Sudan; Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wad Medani, Sudan
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran.
| |
Collapse
|
24
|
Li YC, Wang GZ, Meng F, Zeng W, He CH, Hu XM, Wang SQ. Genetic diversity of Plasmodium vivax population before elimination of malaria in Hainan Province, China. Malar J 2015; 14:78. [PMID: 25888891 PMCID: PMC4354742 DOI: 10.1186/s12936-015-0545-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/05/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hainan Province is one of the most severe endemic regions with high transmission of Plasmodium falciparum and Plasmodium vivax in China. However, the incidence of P. falciparum and P. vivax has dropped dramatically since 2007 and a national elimination malaria programme (NEMP) was launched after 2010. To better understand the genetic information on P. vivax population before elimination of malaria in Hainan Province, the extent of genetic diversity of P. vivax isolates in Hainan Province was investigated using four polymorphic genetic markers, including P. vivax merozoite surface proteins 1, 3α, and 3β (pvmsp-1, pvmsp-3α, and pvmsp-3β) and circumsporozoite protein (pvcsp). METHODS Isolates of P. vivax (n = 27) from Hainan Province were collected from 2009 to 2010 and pvmsp-1 and pvcsp were analysed by DNA sequencing, respectively. Using polymerase chain reaction-restriction fragment length polymorphism were analysed in pvmsp-3α, and pvmsp-3β. RESULTS The DNA sequencing analysis on pvmsp1 revealed that there were three allele types: Salvador-1 (Sal-1), Belem and recombinant (R) types. Among them, Sal-1 type was a dominant strain with eight variant subtypes (88.9%), whereas R- (3.7%) and Belem-type strains (7.4%) had one variant subtypes, respectively. All the isolates carried pvcsp with VK210 type accounting for 85.2% (23/27 isolates) and VK247 type accounting for 14.8% (4/27). Only type A and type B alleles were successfully amplified in pvmsp-3α gene, and a high level of polymorphism was observed in pvmsp-3α. Considering pvmsp-3β gene, type A was the predominant type in 17 isolates (63%), whereas type B was dominant in only ten isolates (37%). CONCLUSION The present data indicate that there was high degree of genetic diversity among P. vivax population in Hainan Province of China during the pre-elimination stage of malaria, with 26 unique haplotypes observed among 27 samples.
Collapse
Affiliation(s)
- Yu-Chun Li
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Guang-Ze Wang
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Feng Meng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Wen Zeng
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Chang-hua He
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Xi-Min Hu
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| | - Shan-Qing Wang
- Hainan Provincial Centre for Disease Control and Prevention, Haikou, 570203, China.
| |
Collapse
|
25
|
Putaporntip C, Miao J, Kuamsab N, Sattabongkot J, Sirichaisinthop J, Jongwutiwes S, Cui L. The Plasmodium vivax merozoite surface protein 3β sequence reveals contrasting parasite populations in southern and northwestern Thailand. PLoS Negl Trop Dis 2014; 8:e3336. [PMID: 25412166 PMCID: PMC4238993 DOI: 10.1371/journal.pntd.0003336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria control efforts have a significant impact on the epidemiology and parasite population dynamics. In countries aiming for malaria elimination, malaria transmission may be restricted to limited transmission hot spots, where parasite populations may be isolated from each other and experience different selection forces. Here we aim to examine the Plasmodium vivax population divergence in geographically isolated transmission zones in Thailand. METHODOLOGY We employed the P. vivax merozoite surface protein 3β (PvMSP3β) as a molecular marker for characterizing P. vivax populations based on the extensive diversity of this gene in Southeast Asian parasite populations. To examine two parasite populations with different transmission levels in Thailand, we obtained 45 P. vivax isolates from Tak Province, northwestern Thailand, where the annual parasite incidence (API) was more than 2%, and 28 isolates from Yala and Narathiwat Provinces, southern Thailand, where the API was less than 0.02%. We sequenced the PvMSP3β gene and examined its genetic diversity and molecular evolution between the parasite populations. PRINCIPAL FINDINGS Of 58 isolates containing single PvMSP3β alleles, 31 sequence types were identified. The overall haplotype diversity was 0.77 ± 0.06 and nucleotide diversity 0.0877±0.0054. The northwestern vivax malaria population exhibited extensive haplotype diversity (HD) of PvMSP3β (HD=1.0). In contrast, the southern parasite population displayed a single PvMSP3β allele (HD=0), suggesting a clonal population expansion. This result revealed that the extent of allelic diversity in P. vivax populations in Thailand varies among endemic areas. CONCLUSION Malaria parasite populations in a given region may vary significantly in genetic diversity, which may be the result of control and influenced by the magnitude of malaria transmission intensity. This is an issue that should be taken into account for the implementation of P. vivax control measures such as drug policy and vaccine development.
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jun Miao
- Department of Entomology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Vivax Malaria Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Liwang Cui
- Department of Entomology, The Pennsylvania State University, State College, Pennsylvania, United States of America
| |
Collapse
|
26
|
Esmaeili Rastaghi AR, Nedaei F, Nahrevanian H, Hoseinkhan N. Genetic diversity and effect of natural selection at apical membrane antigen-1 (AMA-1) among Iranian Plasmodium vivax isolates. Folia Parasitol (Praha) 2014. [DOI: 10.14411/fp.2014.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Schousboe ML, Ranjitkar S, Rajakaruna RS, Amerasinghe PH, Konradsen F, Morales F, Ord R, Pearce R, Leslie T, Rowland M, Gadalla N, Bygbjerg IC, Alifrangis M, Roper C. Global and local genetic diversity at two microsatellite loci in Plasmodium vivax parasites from Asia, Africa and South America. Malar J 2014; 13:392. [PMID: 25277367 PMCID: PMC4200131 DOI: 10.1186/1475-2875-13-392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Even though Plasmodium vivax has the widest worldwide distribution of the human malaria species and imposes a serious impact on global public health, the investigation of genetic diversity in this species has been limited in comparison to Plasmodium falciparum. Markers of genetic diversity are vital to the evaluation of drug and vaccine efficacy, tracking of P. vivax outbreaks, and assessing geographical differentiation between parasite populations. Methods The genetic diversity of eight P. vivax populations (n = 543) was investigated by using two microsatellites (MS), m1501 and m3502, chosen because of their seven and eight base-pair (bp) repeat lengths, respectively. These were compared with published data of the same loci from six other P. vivax populations. Results In total, 1,440 P. vivax samples from 14 countries on three continents were compared. There was highest heterozygosity within Asian populations, where expected heterozygosity (He) was 0.92-0.98, and alleles with a high repeat number were more common. Pairwise FST revealed significant differentiation between most P. vivax populations, with the highest divergence found between Asian and South American populations, yet the majority of the diversity (~89%) was found to exist within rather than between populations. Conclusions The MS markers used were informative in both global and local P. vivax population comparisons and their seven and eight bp repeat length facilitated population comparison using data from independent studies. A complex spatial pattern of MS polymorphisms among global P. vivax populations was observed which has potential utility in future epidemiological studies of the P. vivax parasite. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-392) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 4HT, UK.
| |
Collapse
|
28
|
Arnott A, Wapling J, Mueller I, Ramsland PA, Siba PM, Reeder JC, Barry AE. Distinct patterns of diversity, population structure and evolution in the AMA1 genes of sympatric Plasmodium falciparum and Plasmodium vivax populations of Papua New Guinea from an area of similarly high transmission. Malar J 2014; 13:233. [PMID: 24930015 PMCID: PMC4085730 DOI: 10.1186/1475-2875-13-233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
Background As Plasmodium falciparum and Plasmodium vivax co-exist in most malaria-endemic regions outside sub-Saharan Africa, malaria control strategies in these areas must target both species in order to succeed. Population genetic analyses can predict the effectiveness of interventions including vaccines, by providing insight into patterns of diversity and evolution. The aim of this study was to investigate the population genetics of leading malaria vaccine candidate AMA1 in sympatric P. falciparum and P. vivax populations of Papua New Guinea (PNG), an area of similarly high prevalence (Pf = 22.3 to 38.8%, Pv = 15.3 to 31.8%). Methods A total of 72 Pfama1 and 102 Pvama1 sequences were collected from two distinct areas, Madang and Wosera, on the highly endemic PNG north coast. Results Despite a greater number of polymorphic sites in the AMA1 genes of P. falciparum (Madang = 52; Wosera = 56) compared to P. vivax (Madang = 36, Wosera = 34), the number of AMA1 haplotypes, haplotype diversity (Hd) and recombination (R) was far lower for P. falciparum (Madang = 12, Wosera = 20; Hd ≤0.92, R ≤45.8) than for P. vivax (Madang = 50, Wosera = 38; Hd = 0.99, R = ≤70.9). Balancing selection was detected only within domain I of AMA1 for P. vivax, and in both domains I and III for P. falciparum. Conclusions Higher diversity in the genes encoding P. vivax AMA1 than in P. falciparum AMA1 in this highly endemic area has important implications for development of AMA1-based vaccines in PNG and beyond. These results also suggest a smaller effective population size of P. falciparum compared to P. vivax, a finding that warrants further investigation. Differing patterns of selection on the AMA1 genes indicate that critical antigenic sites may differ between the species, highlighting the need for independent investigations of these two leading vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| |
Collapse
|
29
|
Kang JM, Ju HL, Cho PY, Moon SU, Ahn SK, Sohn WM, Lee HW, Kim TS, Na BK. Polymorphic patterns of the merozoite surface protein-3β in Korean isolates of Plasmodium vivax. Malar J 2014; 13:104. [PMID: 24635878 PMCID: PMC3995521 DOI: 10.1186/1475-2875-13-104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/07/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The merozoite surface protein-3β of Plasmodium vivax (PvMSP-3β) is one of the candidate antigens for blood stage malaria vaccine development. The polymorphisms in PvMSP-3β have been reported in certain P. vivax isolates. However, the diversity of PvMSP-3β throughout its global distribution has not been well understood. In this study, the genetic diversity and the effects of natural selection in PvMSP-3β among P. vivax Korean isolates were analysed. METHODS Blood samples were collected from 95 patients with vivax malaria in Korea. The region flanking full-length PvMSP-3β was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvMSP-3β sequence of each isolate was determined and the polymorphic characteristics and effects of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. RESULTS Five different subtypes of PvMSP-3β were identified based on single nucleotide polymorphisms (SNPs), insertions, and deletions. Although a high level of sequence diversity was observed in the PvMSP-3β gene, the coiled-coil tertiary structure of the PvMSP-3β protein was well conserved in all of the sequences. The PvMSP-3β of Korean isolates is under natural selection. DNA polymerase slippage and intragenic recombination likely contributed to PvMSP-3β diversity in Korean P. vivax isolates. CONCLUSIONS The PvMSP-3β of Korean P. vivax isolates displayed polymorphisms, with SNPs, insertions and deletions scattered throughout of the gene. These results of parasite heterogeneity are relevant to the development of a PvMSP-3β based vaccine against P. vivax and the implementation of malaria control programmes in Korea.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Cloning, Molecular
- Cluster Analysis
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/isolation & purification
- Evolution, Molecular
- Genetic Vectors
- Humans
- Malaria, Vivax/parasitology
- Molecular Sequence Data
- Phylogeny
- Plasmodium vivax/classification
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Protein Conformation
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Republic of Korea
- Selection, Genetic
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Hye-Lim Ju
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Pyo Yun Cho
- Department of Parasitology and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | - Sung-Ung Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Seong Kyu Ahn
- Department of Parasitology and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Hyeong-Woo Lee
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, J-566, 1275 Center Drive, Gainesville, FL 32610, USA
| | - Tong-Soo Kim
- Department of Parasitology and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| |
Collapse
|
30
|
Huang B, Huang S, Su XZ, Guo H, Xu Y, Xu F, Hu X, Yang Y, Wang S, Lu F. Genetic diversity of Plasmodium vivax population in Anhui province of China. Malar J 2014; 13:13. [PMID: 24401153 PMCID: PMC3893497 DOI: 10.1186/1475-2875-13-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/19/2013] [Indexed: 12/28/2022] Open
Abstract
Background Although the numbers of malaria cases in China have been declining in recent years, outbreaks of Plasmodium vivax malaria were still being reported in rural areas south of the Yellow River. To better understand the transmission dynamics of P. vivax parasites in China, the extent of genetic diversity of P. vivax populations circulating in Bozhou of Anhui province of China were investigated using three polymorphic genetic markers: merozoite surface proteins 1 and 3α (pvmsp-1 and pvmsp-3α) and circumsporozoite protein (pvcsp). Methods Forty-five P. vivax clinical isolates from Bouzhou of Anhui province were collected from 2009 to 2010 and were analysed using PCR/RFLP or DNA sequencing. Results Seven and six distinct allelic variants were identified using PCR/RFLP analysis of pvmsp-3α with HhaI and AluI, respectively. DNA sequence analysis of pvmsp-1 (variable block 5) revealed that there were Sal-I and recombinant types but not Belem type, and seven distinct allelic variants in pvmsp-1 were detected, with recombinant subtype 2 (R2) being predominant (66.7%). All the isolates carried pvcsp with VK210 type but not VK247 or P. vivax-like types in the samples. Sequence analysis of pvcsp gene revealed 12 distinct allelic variants, with VK210-1 being predominant (41.5%). Conclusions The present data indicate that there is some degree of genetic diversity among P. vivax populations in Anhui province of China. The genetic data obtained may assist in the surveillance of P. vivax infection in endemic areas or in tracking potential future disease outbreak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
31
|
Valizadeh V, Zakeri S, Mehrizi AA, Djadid ND. Population genetics and natural selection in the gene encoding the Duffy binding protein II in Iranian Plasmodium vivax wild isolates. INFECTION GENETICS AND EVOLUTION 2013; 21:424-35. [PMID: 24384095 DOI: 10.1016/j.meegid.2013.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
Abstract
Region II of Duffy binding protein (PvDBP-II) is one of the most promising blood-stage vaccine candidate antigens against Plasmodium vivax and having knowledge of the nature and genetic polymorphism of PvDBP-II among global P. vivax isolates is important for developing a DBP-based vaccine. By using PCR and sequencing, the present molecular population genetic approach was carried out to investigate sequence diversity and natural selection of dbp-II gene in 63 P. vivax isolates collected from unstable and low transmission malaria-endemic areas of Iran during 2008-2012. Also, phylogenetic analysis, the diversifying natural selection, and recombination across the pvdbp-II gene, including regions containing B-cell epitopes were analyzed using the DnaSP and MEGA4 programs. Twenty two single nucleotide polymorphisms (SNPs, including 20 non-synonymous and 2 synonymous) were identified in PvDBP-II, resulting in 16 different PvDBP-II haplotypes among the Iranian P. vivax isolates. High binding inhibitory B-cell epitope (H3) overlapping with intrinsically unstructured/disordered region (aa: 384-392) appeared to be highly polymorphic (D384G/E385K/ K386N/Q/R390H), and positive selective pressure acted on this region. Most of the polymorphic amino acids, which are located on the surface of the protein, are under selective pressure that implies increased recombination events and exposure to the human immune system. In summary, PvDBP-II gene displays genetic polymorphism among Iranian P. vivax isolates and it is under selective pressure. Mutations, recombination, and positive selection seem to play a role in the resulting genetic diversity, and phylogenetic analysis of DNA sequences demonstrates that Iranian isolates represent a sample of the global population. These results are useful for understanding the nature of the P. vivax population in Iran and also for development of PvDBP-II-based malaria vaccine.
Collapse
Affiliation(s)
- Vahideh Valizadeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
32
|
Kim JY, Suh EJ, Yu HS, Jung HS, Park IH, Choi YK, Choi KM, Cho SH, Lee WJ. Longitudinal and Cross-Sectional Genetic Diversity in the Korean Peninsula Based on the P vivax Merozoite Surface Protein Gene. Osong Public Health Res Perspect 2013; 2:158-63. [PMID: 24159467 PMCID: PMC3738684 DOI: 10.1016/j.phrp.2011.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/26/2011] [Accepted: 10/15/2011] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, Korea National Institute of Health, Osong, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li N, Parker DM, Yang Z, Fan Q, Zhou G, Ai G, Duan J, Lee MC, Yan G, Matthews SA, Cui L, Wang Y. Risk factors associated with slide positivity among febrile patients in a conflict zone of north-eastern Myanmar along the China-Myanmar border. Malar J 2013; 12:361. [PMID: 24112638 PMCID: PMC3852943 DOI: 10.1186/1475-2875-12-361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/21/2013] [Indexed: 12/02/2022] Open
Abstract
Background Malaria within the Greater Mekong sub-region is extremely heterogeneous. While China and Thailand have been relatively successful in controlling malaria, Myanmar continues to see high prevalence. Coupled with the recent emergence of artemisinin-resistant malaria along the Thai-Myanmar border, this makes Myanmar an important focus of malaria within the overall region. However, accurate epidemiological data from Myanmar have been lacking, in part because of ongoing and emerging conflicts between the government and various ethnic groups. Here the results are reported from a risk analysis of malaria slide positivity in a conflict zone along the China-Myanmar border. Methods Surveys were conducted in 13 clinics and hospitals around Laiza City, Myanmar between April 2011 and October 2012. Demographic, occupational and educational information, as well as malaria infection history, were collected. Logistic models were used to assess risk factors for slide positivity. Results Age patterns in Plasmodium vivax infections were younger than those with Plasmodium falciparum. Furthermore, males were more likely than females to have falciparum infections. Patients who reported having been infected with malaria during the previous year were much more likely to have a current vivax infection. During the second year of the study, falciparum infections among soldiers increased signficiantly. Conclusions These results fill some knowledge gaps with regard to risk factors associated with malaria slide positivity in this conflict region of north-eastern Myanmar. Since epidemiological studies in this region have been rare or non-existent, studies such as the current are crucial for understanding the dynamic nature of malaria in this extremely heterogeneous epidemiological landscape.
Collapse
Affiliation(s)
- Nana Li
- Department of Tropical Disease, Institute of Tropical Medicine, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ioannidis A, Nicolaou C, Stoupi A, Kossyvakis A, Matsoukas P, Liakata MV, Magiorkinis E, Petinaki E, Chatzipanagiotou S. First report of a phylogenetic analysis of an autochthonous Plasmodium vivax strain isolated from a malaria case in East Attica, Greece. Malar J 2013; 12:299. [PMID: 23987921 PMCID: PMC3765708 DOI: 10.1186/1475-2875-12-299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/18/2013] [Indexed: 11/24/2022] Open
Abstract
Malaria has become an emerging infection in Greece, which is the doorstep to Europe for thousands of immigrants. With increasing immigration, cases with evidence of domestic transmission (autochthonous) are being reported. In the present study, an isolate of Plasmodium vivax from an autochthonous clinical case was subjected to phylogenetic analysis of the genes encoding the merozoite surface protein 1 (MSP-1) and the circumsporozoite protein (CSP). In the MSP region, the strain was related with strains from Brazil, South Korea, Turkey and Thailand, whereas in the CSP region, with strains from Brazil, Colombia and New Guinea. The present study establishes for the first time in Greece the basis for the creation of a database comprising genotypic and phylogenetic characteristics of Plasmodium spp.
Collapse
Affiliation(s)
- Anastasios Ioannidis
- Department of Biopathology and Clinical Microbiology, Athens Medical School, Aeginition Hospital, Vass, Sophias av, 72-74, Athens 115 28, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chuquiyauri R, Peñataro P, Brouwer KC, Fasabi M, Calderon M, Torres S, Gilman RH, Kosek M, Vinetz JM. Microgeographical differences of Plasmodium vivax relapse and re-infection in the Peruvian Amazon. Am J Trop Med Hyg 2013; 89:326-38. [PMID: 23836566 DOI: 10.4269/ajtmh.13-0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To determine the magnitude of Plasmodium vivax relapsing malaria in rural Amazonia, we carried out a study in four sites in northeastern Peru. Polymerase chain reaction-restriction fragment length polymorphism of PvMSP-3α and tandem repeat (TR) markers were compared for their ability to distinguish relapse versus reinfection. Of 1,507 subjects with P. vivax malaria, 354 developed > 1 episode during the study; 97 of 354 (27.5%) were defined as relapse using Pvmsp-3α alone. The addition of TR polymorphism analysis significantly reduced the number of definitively defined relapses to 26 of 354 (7.4%) (P < 0.05). Multivariate logistic regression modeling showed that the probability of having > 1 infection was associated with the following: subjects in Mazan (odds ratio [OR] = 2.56; 95% confidence interval [CI] 1.87, 3.51), 15-44 years of age (OR = 1.49; 95% CI 1.03, 2.15), traveling for job purposes (OR = 1.45; 95%CI 1.03, 2.06), and travel within past month (OR = 1.46; 95% CI 1.0, 2.14). The high discriminatory capacity of the molecular tools shown here is useful for understanding the micro-geography of malaria transmission.
Collapse
Affiliation(s)
- Raul Chuquiyauri
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California 92093-0741, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Taylor JE, Pacheco MA, Bacon DJ, Beg MA, Machado RL, Fairhurst RM, Herrera S, Kim JY, Menard D, Póvoa MM, Villegas L, Mulyanto, Snounou G, Cui L, Zeyrek FY, Escalante AA. The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas. Mol Biol Evol 2013; 30:2050-64. [PMID: 23733143 PMCID: PMC3748350 DOI: 10.1093/molbev/mst104] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.
Collapse
Affiliation(s)
- Jesse E Taylor
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zakeri S, Sadeghi H, Mehrizi AA, Djadid ND. Population genetic structure and polymorphism analysis of gene encoding apical membrane antigen-1 (AMA-1) of Iranian Plasmodium vivax wild isolates. Acta Trop 2013; 126:269-79. [PMID: 23467011 DOI: 10.1016/j.actatropica.2013.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/27/2022]
Abstract
Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is a major candidate antigen for human malaria vaccine. In the present study, polymorphism of pvama-1 among Iranian isolates was investigated to generate useful information on this vaccine candidate antigen, which is required for the rational design of a vaccine against P. vivax. Blood samples were collected from P. vivax-infected Iranian patients during 2009-2010. Of 99 collected isolates, 37 were analyzed for almost the entire pvama-1 gene using sequencing. The overall nucleotide diversity (π) was 0.00826 ± 0.0004 and the majority of polymorphic sites were identified in domain I (DI) of the pvama-1 gene. Neutrality analysis using Tajima's D, Fu and Li's D* and F* and McDonald Kreitman tests showed a significant positive departure from neutral substitution patterns, indicating a possible balancing selection across the entire ectodomain and DI sequences of pvama-1 gene. However, no evidence was found for the balancing selection in DII and DIII regions of Iranian PvAMA-1. Also, 29 haplotypes with different frequencies were identified and the overall haplotype diversity was 0.982 ± 0.012. Epitope mapping prediction of PvAMA-1 showed the potential B-cell epitopes across DI-DIII overlap with E145K, P210S, R249H, G253E, K352E, R438H and N445D mutations; however, no mutation has been found in intrinsically unstructured/disordered regions. The fixation index (Fst) estimation between Iran and the closest geographical sites such as India (0.0707) showed a slight geographical genetic differentiation; however, the Fst estimation between Iran and Thailand (0.1253) suggested a moderate geographical isolation. In summary, genetic investigation in pvama-1 among Iranian P. vivax isolates indicates that this antigen showed limited antigenic diversity and most of the detected mutations are located outside B-cell epitopes. Therefore, the present results have significant implications in understanding the nature of P. vivax population circulating in Iran as well as in providing useful information for malaria vaccine development based on this antigen.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran 1316943551, Iran.
| | | | | | | |
Collapse
|
38
|
Carlton JM, Das A, Escalante AA. Genomics, population genetics and evolutionary history of Plasmodium vivax. ADVANCES IN PARASITOLOGY 2013; 81:203-22. [PMID: 23384624 DOI: 10.1016/b978-0-12-407826-0.00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax is part of a highly diverse clade that includes several Plasmodium species found in nonhuman primates from Southeast Asia. The diversity of primate malarias in Asia is staggering; nevertheless, their origin was relatively recent in the evolution of Plasmodium. We discuss how humans acquired the lineage leading to P. vivax from a nonhuman primate determined by the complex geological processes that took place in Southeast Asia during the last few million years. We conclude that widespread population genomic investigations are needed in order to understand the demographic processes involved in the expansion of P. vivax in the human populations. India represents one of the few countries with widespread vivax malaria. Earlier studies have indicated high genetic polymorphism at antigenic loci and no evidence for geographic structuring. However, new studies using genetic markers in selectively neutral genetic regions indicate that Indian P. vivax presents complex evolutionary history but possesses features consistent with being part of the ancestral distribution range of this species. Such studies are possible due to the availability of the first P. vivax genome sequences. Next generation sequencing technologies are now paving the way for the sequencing of more P. vivax genomes that will dramatically increase our understanding of the unique biology of this species.
Collapse
Affiliation(s)
- Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA.
| | | | | |
Collapse
|
39
|
Raza A, Ghanchi NK, Thaver AM, Jafri S, Beg MA. Genetic diversity of Plasmodium vivax clinical isolates from southern Pakistan using pvcsp and pvmsp1 genetic markers. Malar J 2013; 12:16. [PMID: 23311628 PMCID: PMC3601996 DOI: 10.1186/1475-2875-12-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium vivax is the prevalent malarial species accounting for 70% of malaria burden in Pakistan; however, there is no baseline data on the circulating genotypes. Studies have shown that polymorphic loci of gene encoding antigens pvcsp and pvmsp1 can be used reliably for conducting molecular epidemiological studies. Therefore, this study aimed to bridge the existing knowledge gap on population structure on P. vivax from Pakistan using these two polymorphic genes. Methods During the period January 2008 to May 2009, a total of 250 blood samples were collected from patients tested slide positive for P. vivax, at the Aga Khan University Hospital, Karachi, or its collection units located in Baluchistan and Sindh Province. Nested PCR/RFLP was performed, using pvcsp and pvmsp1 markers to detect the extent of genetic diversity in clinical isolates of P. vivax from southern Pakistan. Results A total of 227/250 (91%) isolates were included in the analysis while the remainder were excluded due to negative PCR outcome for P.vivax. Pvcsp analysis showed that both VK 210 (85.5%, 194/227) and VK 247 type (14.5%, 33/227) were found to be circulating in P. vivax isolates from southern Pakistan. A total of sixteen and eighty-seven genotypes of pvcsp and pvmsp-1 were detected respectively. Conclusion This is the first report from southern Pakistan on characterization of P. vivax isolates confirming that extensively diverse pvcsp and pvmsp1 variants are present within this region. Results from this study provide valuable data on genetic diversity of P. vivax that will be helpful for further epidemiological studies.
Collapse
Affiliation(s)
- Afsheen Raza
- Department of Pathology and Microbiology, Aga Khan University, Stadium Road, PO Box 3500, Karachi, 74800, Pakistan
| | | | | | | | | |
Collapse
|
40
|
Lopez AC, Ortiz A, Coello J, Sosa-Ochoa W, Torres REM, Banegas EI, Jovel I, Fontecha GA. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras. Malar J 2012. [PMID: 23181845 PMCID: PMC3519596 DOI: 10.1186/1475-2875-11-391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite's circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. METHODS Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. RESULTS AND CONCLUSION A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.
Collapse
Affiliation(s)
- Ana Cecilia Lopez
- MEIZ-Microbiology School, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Probing mixed-genotype infections II: high multiplicity in natural infections of the trypanosomatid, Crithidia bombi, in its host, Bombus spp. PLoS One 2012; 7:e49137. [PMID: 23145099 PMCID: PMC3493493 DOI: 10.1371/journal.pone.0049137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022] Open
Abstract
Mixed-genotype infections have major consequences for many essential elements of host-parasite interactions. With genetic exchange between co-infecting parasite genotypes increased diversity among parasite offspring and the emergence of novel genotypes from infected hosts is possible. We here investigated mixed- genotype infections using the host, Bombus spp. and its trypanosome parasite Crithidia bombi as our study case. The natural infections of C. bombi were genotyped with a novel method for a representative sample of workers and spring queens in Switzerland. We found that around 60% of all infected hosts showed mixed-genotype infections with an average of 2.47±0.22 (S.E.) and 3.65±1.02 genotypes per worker or queen, respectively. Queens, however, harboured up to 29 different genotypes. Based on the genotypes of co-infecting strains, these could be putatively assigned to either ‘primary’ and ‘derived’ genotypes - the latter resulting from genetic exchange among the primary genotypes. High genetic relatedness among co-infecting derived but not primary genotypes supported this scenario. Co-infection in queens seems to be a major driver for the diversity of genotypes circulating in host populations.
Collapse
|
42
|
Pedro RS, Guaraldo L, Campos DP, Costa AP, Daniel-Ribeiro CT, Brasil P. Plasmodium vivax malaria relapses at a travel medicine centre in Rio de Janeiro, a non-endemic area in Brazil. Malar J 2012; 11:245. [PMID: 22839416 PMCID: PMC3416703 DOI: 10.1186/1475-2875-11-245] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/16/2012] [Indexed: 12/21/2022] Open
Abstract
Background Malaria is a potentially severe disease widely distributed in tropical and subtropical regions worldwide. Clinically, the progression of the disease can be life-threatening if it is not promptly diagnosed and properly treated. Through treatment, the radical cure of Plasmodium vivax infection can be achieved, thus preventing potential relapses and the emergence of new cases outside the Amazon region in Brazil. Surveillance for therapeutic failure in non-endemic areas is advantageous, as it is unlikely that recurrence of the disease can be attributed to a new malaria infection in these regions. Methods An observational study of 53 cases of P. vivax and mixed (P. vivax and Plasmodium falciparum) malaria was conducted at a travel medicine centre between 2005 and 2011 in Rio de Janeiro and a descriptive analysis of the potential factors related to recurrence of P. vivax malaria was performed. Groups with different therapeutic responses were compared using survival analysis based on the length of time to recurrence and a set of independent variables thought to be associated with recurrence. Results Twenty-one relapses (39.6%) of P. vivax malaria were observed. The overall median time to relapse, obtained by the Kaplan-Meier method, was 108 days, and the survival analysis demonstrated an association between non-weight-adjusted primaquine dosing and the occurrence of relapse (p < 0.03). Primaquine total dose at 3.6 mg/kg gave improved results in preventing relapses. Conclusions A known challenge to individual cure and environmental control of malaria is the possibility of an inappropriate, non-weight-based primaquine dosing, which should be considered a potential cause of P. vivax malaria relapse. Indeed, the total dose of primaquine associated with non-occurrence of relapses was higher than recommended by Brazilian guidelines.
Collapse
Affiliation(s)
- Renata S Pedro
- Instituto de Pesquisa Clínica Evandro Chagas (IPEC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Av, Brasil 4365, Manguinhos, Rio de Janeiro, RJ - CEP 21,045-900, RJ -, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, Price RN. The anaemia of Plasmodium vivax malaria. Malar J 2012; 11:135. [PMID: 22540175 PMCID: PMC3438072 DOI: 10.1186/1475-2875-11-135] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmodium vivax threatens nearly half the world's population and is a significant impediment to achievement of the millennium development goals. It is an important, but incompletely understood, cause of anaemia. This review synthesizes current evidence on the epidemiology, pathogenesis, treatment and consequences of vivax-associated anaemia. Young children are at high risk of clinically significant and potentially severe vivax-associated anaemia, particularly in countries where transmission is intense and relapses are frequent. Despite reaching lower densities than Plasmodium falciparum, Plasmodium vivax causes similar absolute reduction in red blood cell mass because it results in proportionately greater removal of uninfected red blood cells. Severe vivax anaemia is associated with substantial indirect mortality and morbidity through impaired resilience to co-morbidities, obstetric complications and requirement for blood transfusion. Anaemia can be averted by early and effective anti-malarial treatment.
Collapse
Affiliation(s)
- Nicholas M Douglas
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Pierre A Buffet
- INSERM - UPMC, (Paris 6 University) UMRs945, F-75013, Paris, France
- Department of Parasitology, Pitié-Salpétrière Hospital, Assistance Publique – Hôpitaux de Paris, F-75013, Paris, France
- Institut Pasteur, Unité d’Immunologie Moléculaire des Parasites, Département de Parasitologie Mycologie, F-75015, Paris, France
| | - Jeanne R Poespoprodjo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Mimika District Health Authority, Timika, Papua, Indonesia
- Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Tsin W Yeo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
44
|
GUPTA BHAVNA, SRIVASTAVA NALINI, DAS APARUP. Inferring the evolutionary history of IndianPlasmodium vivaxfrom population genetic analyses of multilocus nuclear DNA fragments. Mol Ecol 2012; 21:1597-616. [DOI: 10.1111/j.1365-294x.2012.05480.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Plasmodium vivax populations revisited: mitochondrial genomes of temperate strains in Asia suggest ancient population expansion. BMC Evol Biol 2012; 12:22. [PMID: 22340143 PMCID: PMC3305529 DOI: 10.1186/1471-2148-12-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 02/17/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite outside of Africa, and its range extends well into the temperate zones. Previous studies provided evidence for vivax population differentiation, but temperate vivax parasites were not well represented in these analyses. Here we address this deficit by using complete mitochondrial (mt) genome sequences to elucidate the broad genetic diversity and population structure of P. vivax from temperate regions in East and Southeast Asia. RESULTS From the complete mtDNA sequences of 99 clinical samples collected in China, Myanmar and Korea, a total of 30 different haplotypes were identified from 26 polymorphic sites. Significant differentiation between different East and Southeast Asian parasite populations was observed except for the comparison between populations from Korea and southern China. Haplotype patterns and structure diversity analysis showed coexistence of two different groups in East Asia, which were genetically related to the Southeast Asian population and Myanmar population, respectively. The demographic history of P. vivax, examined using neutrality tests and mismatch distribution analyses, revealed population expansion events across the entire P. vivax range and the Myanmar population. Bayesian skyline analysis further supported the occurrence of ancient P. vivax population expansion. CONCLUSIONS This study provided further resolution of the population structure and evolution of P. vivax, especially in temperate/warm-temperate endemic areas of Asia. The results revealed divergence of the P. vivax populations in temperate regions of China and Korea from other populations. Multiple analyses confirmed ancient population expansion of this parasite. The extensive genetic diversity of the P. vivax populations is consistent with phenotypic plasticity of the parasites, which has implications for malaria control.
Collapse
|
46
|
Brito CFAD, Ferreira MU. Molecular markers and genetic diversity of Plasmodium vivax. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:12-26. [PMID: 21881753 DOI: 10.1590/s0074-02762011000900003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 11/22/2022] Open
Abstract
Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.
Collapse
|
47
|
Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J 2012; 11:14. [PMID: 22233585 PMCID: PMC3298510 DOI: 10.1186/1475-2875-11-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/10/2012] [Indexed: 11/22/2022] Open
Abstract
Traditionally, infection with Plasmodium vivax was thought to be benign and self-limiting, however, recent evidence has demonstrated that infection with P. vivax can also result in severe illness and death. Research into P. vivax has been relatively neglected and much remains unknown regarding the biology, pathogenesis and epidemiology of this parasite. One of the fundamental factors governing transmission and immunity is parasite diversity. An understanding of parasite population genetic structure is necessary to understand the epidemiology, diversity, distribution and dynamics of natural P. vivax populations. In addition, studying the population structure of genes under immune selection also enables investigation of the dynamic interplay between transmission and immunity, which is crucial for vaccine development. A lack of knowledge regarding the transmission and spread of P. vivax has been particularly highlighted in areas where malaria control and elimination programmes have made progress in reducing the burden of Plasmodium falciparum, yet P. vivax remains as a substantial obstacle. With malaria elimination back on the global agenda, mapping of global and local P. vivax population structure is essential prior to establishing goals for elimination and the roll-out of interventions. A detailed knowledge of the spatial distribution, transmission and clinical burden of P. vivax is required to act as a benchmark against which control targets can be set and measured. This paper presents an overview of what is known and what is yet to be fully understood regarding P. vivax population genetics, as well as the importance and application of P. vivax population genetics studies.
Collapse
Affiliation(s)
- Alicia Arnott
- Centre for Population Health, Burnet Institute, Melbourne, Australia
| | | | | |
Collapse
|
48
|
Honma H, Kim JY, Palacpac NMQ, Mita T, Lee W, Horii T, Tanabe K. Recent increase of genetic diversity in Plasmodium vivax population in the Republic of Korea. Malar J 2011; 10:257. [PMID: 21899730 PMCID: PMC3176257 DOI: 10.1186/1475-2875-10-257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reemergence of Plasmodium vivax in South Korea since 1993 represents a serious public health concern. Despite the importance in understanding genetic diversity for control strategies, however, studies remain inconclusive with the general premise that due to low rate of malaria transmission, there is generally low genetic diversity with very few strains involved. In this study, the genetic diversity and population structure of P. vivax in South Korea were explored by analysing microsatellite polymorphism. METHODS Sequences for 13 microsatellite loci distributed across the twelve chromosomes of P. vivax were obtained from 58 South Korean isolates collected during two sampling periods, namely 1997-2000 and 2007. The sequences were used for the analysis of expected heterozygosity and multilocus genotype diversity. Population structure was evaluated using STRUCTURE version 2.3.2. Linkage disequilibrium was also analysed to investigate the extent of outbreeding in the P. vivax population. RESULTS Mean expected heterozygosity significantly increased from 0.382 in 1997-2000 to 0.545 in 2007 (P < 0.05). The number of multilocus genotypes was 7 and 27; and genotype diversity was statistically significant (P < 0.01) at 0.661 and 0.995 in 1997-2000 and 2007, respectively. Analysis by STRUCTURE showed a more complex population structure in 2007 than in 1997-2000. Linkage disequilibrium between 13 microsatellites, although significant in both time points, was notably lower in 2007. CONCLUSIONS The present microsatellite analysis clearly showed recent increase of genetic diversity and recent relaxation of the strong population structure observed in 1997-2000. These results suggest that multiple genotypes not present previously recently migrated into South Korea, accompanied by substantial outbreeding between different genotypes.
Collapse
Affiliation(s)
- Hajime Honma
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Dias S, Somarathna M, Manamperi A, Escalante AA, Gunasekera AM, Udagama PV. Evaluation of the genetic diversity of domain II of Plasmodium vivax Apical Membrane Antigen 1 (PvAMA-1) and the ensuing strain-specific immune responses in patients from Sri Lanka. Vaccine 2011; 29:7491-504. [PMID: 21784116 DOI: 10.1016/j.vaccine.2011.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022]
Abstract
Antigenic polymorphism displayed by malaria parasites is a skewed schema to escape the host immune system. The prevailing genetic diversity at domain II of the Plasmodium vivax Apical Membrane Antigen-1 (Pvama-1DII) was characterized in 64 single clone P. vivax isolates from Sri Lanka, where unstable malaria prevails with low intensity. In Sri Lanka, the Pvama-1DII gene showed meager meiotic recombination with the enclosure of single nucleotide polymorphisms (SNPs). Eleven amino acid (a.a.) variant positions defined 21 a.a. haplotypes with 9 unique to the island, where the predominant haplotype, H1, was identical to the reference Salvador I strain. A further 376 globally dispersed isolates defined 38 a.a. haplotypes (H22-H59), with 4 and 26 haplotypes exclusive to India and Thailand, respectively. The phylogenetic tree revealed no clustering, where most isolates had a very recent common origin. The polymorphism detected in PvAMA-1DII B and T cell epitopes evidenced an immune evasion mechanism exploited by the parasite. Majority of Sri Lankan patients developed antibody responses to both conformational and linear B cell epitopes. The ensuing strain-specific immunity due to extensive antigenic polymorphism was evaluated by aligning a.a. sequences of PvAMA-1DII with the homologous total (IgM+IgG) antibody responses assayed by in-house established indirect ELISAs against 7 PvAMA-1DII overlapping synthetic peptides, P01-P07. While the antibody responses to P01-P03, P06, P07 harbouring P. vivax clinical isolates with polymorphic a.a. haplotype to Sal I was clearly strain-transcending (cross-reactive), individuals with isolates identical to the Sal I strain observed varying antibody prevalence against the seven PvAMA-1DII Sal-I synthetic peptides, with the highest prevalence detected against P04. Synthetic peptide P04, spanning a.a. positions 302-324 of the PvAMA-1DII of the Sal I strain that included the epitope recognized by the invasion inhibitory 4G2 monoclonal antibody of PfAMA-1, was highly conserved in all 440 local and global P. vivax isolates examined. A functional role for this region is reinforced by the highly immunogenic nature of P04, and could point towards a presumably "protective" anti-P04 antibody response that elicited an isotype switch from IgM to IgG, with increasing exposure to malaria exclusively in endemic residents. Thus the conserved and seemingly "protective" nature of the domain II loop of PvAMA-1 makes it a putative contender to be included in a cocktail vaccine against P. vivax asexual erythrocytic stages in Sri Lanka.
Collapse
Affiliation(s)
- Sajani Dias
- Department of Zoology, Faculty of Science, University of Colombo, No 94, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | | | | | | | | | | |
Collapse
|
50
|
Han ET, Wang Y, Lim CS, Cho JH, Chai JY. Genetic diversity of the malaria vaccine candidate merozoite surface protein 1 gene of Plasmodium vivax field isolates in Republic of Korea. Parasitol Res 2011; 109:1571-6. [PMID: 21556687 DOI: 10.1007/s00436-011-2413-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
The Plasmodium vivax merozoite surface protein 1 (Pvmsp-1) locus codes for a major asexual blood-stage antigen currently proposed as a malaria vaccine candidate antigen. However, extensive polymorphism of this protein has been observed in isolates from different geographical areas. Here, we investigate the extent and the frequency of allelic diversity at the Pvmsp-1 locus in field isolates collected in the Republic of Korea during the past decade. Among the 45 Korean isolates, six Pvmsp-1 gene types (SKOR-I to SKOR-VI) were identified as unique combinations of type sequences in each variable block. Of these six different Pvmsp-1 gene types, two major Pvmsp-1 allelic types were found in 72% (SKOR-I) and 28% (SKOR-II) of field isolates collected in 1996 to 2000, and four different allelic types (SKOR-III to SKOR-VI) emerged in 70% (10-25%) of isolates collected in 2007 to 2009. These results suggest that allelic diversity of Pvmsp-1 increased in several variable regions, including the N- and C-terminals, after reemergence of P. vivax parasites in the Republic of Korea.
Collapse
Affiliation(s)
- Eun-Taek Han
- Department of Parasitology, Kangwon National University School of Medicine, Hyoja2-dong, Chuncheon, Gangwon-do 200-701, Republic of Korea.
| | | | | | | | | |
Collapse
|