1
|
Salari S, Adashi EY, Keller L, Johnson TRB, Smith GD. Human embryos donated for human embryonic stem cell derivation. Fertil Steril 2023; 119:3-10. [PMID: 36494202 DOI: 10.1016/j.fertnstert.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs), produced from human embryos, are demonstrating: utility and promise in disease modeling; enhanced and unique understanding of early events in basic genetic or molecular or cellular or epigenetic development; novel human approaches to pharmaceutical screening; pathways toward the discoveries of disease treatments and cures; and foundational importance for regenerative medicine. The regulatory landscape is rigorous, and rightly so. Here, we discuss the current US federal and state regulatory environment. A unique approach of presenting anonymized embryo donor statements is provided to personalize the decision-making process of human embryo donation for hESC derivation. From the uses of preimplantation genetic-tested and affected human embryos to derived disease-specific hESCs, one can glean the much needed information on early human genetics and developmental biology, which are presented here. Finally, we discuss the future uses of hESCs, and other pluripotent stem cells, in general and reproductive medicine.
Collapse
Affiliation(s)
- Salomeh Salari
- Department of Obstetrics and Gynecology, Case Western Reserve University, University Hospital, Cleveland, Ohio
| | - Eli Y Adashi
- Department of Obstetrics and Gynecology, School of Medicine, Brown University, Providence, Rhode Island
| | - Laura Keller
- Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Timothy R B Johnson
- Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gary D Smith
- Department of Obstetrics and Gynecology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Departments of Physiology and Urology, Reproductive Sciences Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Shin JW, Hong EP, Park SS, Choi DE, Zeng S, Chen RZ, Lee JM. PAM-altering SNP-based allele-specific CRISPR-Cas9 therapeutic strategies for Huntington’s disease. Mol Ther Methods Clin Dev 2022; 26:547-561. [PMID: 36092363 PMCID: PMC9450073 DOI: 10.1016/j.omtm.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Seri S. Park
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Eun Choi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Zeng
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Corresponding author Jong-Min Lee, Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Shin JW, Shin A, Park SS, Lee JM. Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease. Mol Ther Methods Clin Dev 2022; 25:84-95. [PMID: 35356757 PMCID: PMC8933729 DOI: 10.1016/j.omtm.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in huntingtin (HTT). Given an important role for HTT in development and significant neurodegeneration at the time of clinical manifestation in HD, early treatment of allele-specific drugs represents a promising strategy. The feasibility of an allele-specific antisense oligonucleotide (ASO) targeting single-nucleotide polymorphisms (SNPs) has been demonstrated in models of HD. Here, we constructed a map of haplotype-specific insertion-deletion variations (indels) to develop alternative mutant-HTT-specific strategies. We mapped indels annotated in the 1000 Genomes Project data on common HTT haplotypes, revealing candidate indels for mutant-specific HTT targeting. Subsequent sequencing of an HD family confirmed candidate sites and revealed additional allele-specific indels. Interestingly, the most common normal HTT haplotype carries indels of big allele length differences at many sites, further uncovering promising haplotype-specific targets. When patient-derived cells carrying the most common HTT diplotype were treated with ASOs targeting the mutant alleles of candidate indels (rs772629195 or rs72239206), complete mutant specificity was observed. In summary, our map of haplotype-specific indels permits the identification of allele-specific targets in HD subjects, potentially contributing to the development of safe HTT-lowering therapeutics that are suitable for early treatment in HD.
Collapse
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Aram Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seri S Park
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:ijms23020624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
|
5
|
Akimov SS, Jiang M, Kedaigle AJ, Arbez N, Marque LO, Eddings CR, Ranum PT, Whelan E, Tang A, Wang R, DeVine LR, Talbot CC, Cole RN, Ratovitski T, Davidson BL, Fraenkel E, Ross CA. Immortalized striatal precursor neurons from Huntington's disease patient-derived iPS cells as a platform for target identification and screening for experimental therapeutics. Hum Mol Genet 2021; 30:2469-2487. [PMID: 34296279 PMCID: PMC8643509 DOI: 10.1093/hmg/ddab200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
We have previously established induced pluripotent stem cell (iPSC) models of Huntington's disease (HD), demonstrating CAG-repeat-expansion-dependent cell biological changes and toxicity. However, the current differentiation protocols are cumbersome and time consuming, making preparation of large quantities of cells for biochemical or screening assays difficult. Here, we report the generation of immortalized striatal precursor neurons (ISPNs) with normal (33) and expanded (180) CAG repeats from HD iPSCs, differentiated to a phenotype resembling medium spiny neurons (MSN), as a proof of principle for a more tractable patient-derived cell model. For immortalization, we used co-expression of the enzymatic component of telomerase hTERT and conditional expression of c-Myc. ISPNs can be propagated as stable adherent cell lines, and rapidly differentiated into highly homogeneous MSN-like cultures within 2 weeks, as demonstrated by immunocytochemical criteria. Differentiated ISPNs recapitulate major HD-related phenotypes of the parental iPSC model, including brain-derived neurotrophic factor (BDNF)-withdrawal-induced cell death that can be rescued by small molecules previously validated in the parental iPSC model. Proteome and RNA-seq analyses demonstrate separation of HD versus control samples by principal component analysis. We identified several networks, pathways, and upstream regulators, also found altered in HD iPSCs, other HD models, and HD patient samples. HD ISPN lines may be useful for studying HD-related cellular pathogenesis, and for use as a platform for HD target identification and screening experimental therapeutics. The described approach for generation of ISPNs from differentiated patient-derived iPSCs could be applied to a larger allelic series of HD cell lines, and to comparable modeling of other genetic disorders.
Collapse
Affiliation(s)
- Sergey S Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda J Kedaigle
- Department of Biological Engineering, Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leonard O Marque
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chelsy R Eddings
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul T Ranum
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emma Whelan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anthony Tang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ronald Wang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lauren R DeVine
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Conover C Talbot
- The Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Beverly L Davidson
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Neuroscience and Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
7
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
He L, Chen Z, Peng L, Tang B, Jiang H. Human stem cell models of polyglutamine diseases: Sources for disease models and cell therapy. Exp Neurol 2020; 337:113573. [PMID: 33347831 DOI: 10.1016/j.expneurol.2020.113573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Polyglutamine (polyQ) diseases are a group of neurodegenerative disorders involving expanded CAG repeats in pathogenic genes that are translated into extended polyQ tracts and lead to progressive neuronal degeneration in the affected brain. To date, there is no effective therapy for these diseases. Due to the complex pathologic mechanisms of these diseases, intensive research on the pathogenesis of their progression and potential treatment strategies is being conducted. However, animal models cannot recapitulate all aspects of neuronal degeneration. Pluripotent stem cells (PSCs), such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), can be used to study the pathological mechanisms of polyQ diseases, and the ability of autologous stem cell transplantation to treat these diseases. Differentiated PSCs, neuronal precursor cells/neural progenitor cells (NPCs) and mesenchymal stem cells (MSCs) are valuable resources for preclinical and clinical cell transplantation therapies. Here, we discuss diverse stem cell models and their ability to generate neurons involved in polyQ diseases, such as medium spiny neurons (MSNs), cortical neurons, cerebellar Purkinje cells (PCs) and motor neurons. In addition, we discuss potential therapeutic approaches, including stem cell replacement therapy and gene therapy.
Collapse
Affiliation(s)
- Lang He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, Hunan, China; Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Naphade S, Tshilenge KT, Ellerby LM. Modeling Polyglutamine Expansion Diseases with Induced Pluripotent Stem Cells. Neurotherapeutics 2019; 16:979-998. [PMID: 31792895 PMCID: PMC6985408 DOI: 10.1007/s13311-019-00810-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyglutamine expansion disorders, which include Huntington's disease, have expanded CAG repeats that result in polyglutamine expansions in affected proteins. How this specific feature leads to distinct neuropathies in 11 different diseases is a fascinating area of investigation. Most proteins affected by polyglutamine expansions are ubiquitously expressed, yet their mechanisms of selective neurotoxicity are unknown. Induced pluripotent stem cells have emerged as a valuable tool to model diseases, understand molecular mechanisms, and generate relevant human neural and glia subtypes, cocultures, and organoids. Ideally, this tool will generate specific neuronal populations that faithfully recapitulate specific polyglutamine expansion disorder phenotypes and mimic the selective vulnerability of a given disease. Here, we review how induced pluripotent technology is used to understand the effects of the disease-causing polyglutamine protein on cell function, identify new therapeutic targets, and determine how polyglutamine expansion affects human neurodevelopment and disease. We will discuss ongoing challenges and limitations in our use of induced pluripotent stem cells to model polyglutamine expansion diseases.
Collapse
Affiliation(s)
- Swati Naphade
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
10
|
Elitt MS, Barbar L, Tesar PJ. Drug screening for human genetic diseases using iPSC models. Hum Mol Genet 2019; 27:R89-R98. [PMID: 29771306 DOI: 10.1093/hmg/ddy186] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) enable the generation of previously unattainable, scalable quantities of disease-relevant tissues from patients suffering from essentially any genetic disorder. This cellular material has proven instrumental for drug screening efforts on these disorders, and has facilitated the identification of novel therapeutics for patients. Here we will review the foundational technologies that have enabled iPSCs, the power and limitations of iPSC-based compound screens along with screening guidelines, and recent examples of screening efforts. Additionally we will provide a brief commentary on the future scientific roadmap using pluripotent- and 3D organoid-based, combinatorial approaches.
Collapse
Affiliation(s)
- Matthew S Elitt
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lilianne Barbar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
11
|
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded polyglutamine (polyQ)-encoding repeats in the Huntingtin (HTT) gene. Traditionally, HD cellular models consisted of either patient cells not affected by disease or rodent neurons expressing expanded polyQ repeats in HTT. As these models can be limited in their disease manifestation or proper genetic context, respectively, human HD pluripotent stem cells (PSCs) are currently under investigation as a way to model disease in patient-derived neurons and other neural cell types. This chapter reviews embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) models of disease, including published differentiation paradigms for neurons and their associated phenotypes, as well as current challenges to the field such as validation of the PSCs and PSC-derived cells. Highlighted are potential future technical advances to HD PSC modeling, including transdifferentiation, complex in vitro multiorgan/system reconstruction, and personalized medicine. Using a human HD patient model of the central nervous system, hopefully one day researchers can tease out the consequences of mutant HTT (mHTT) expression on specific cell types within the brain in order to identify and test novel therapies for disease.
Collapse
|
12
|
Golas MM. Human cellular models of medium spiny neuron development and Huntington disease. Life Sci 2018; 209:179-196. [PMID: 30031060 DOI: 10.1016/j.lfs.2018.07.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
The loss of gamma-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum is the hallmark of Huntington disease (HD), an incurable neurodegenerative disorder characterized by progressive motor, psychiatric, and cognitive symptoms. Transplantation of MSNs or their precursors represents a promising treatment strategy for HD. In initial clinical trials in which HD patients received fetal neurografts directly into the striatum without a pretransplant cell-differentiation step, some patients exhibited temporary benefits. Meanwhile, major challenges related to graft overgrowth, insufficient survival of grafted cells, and limited availability of donated fetal tissue remain. Thus, the development of approaches that allow modeling of MSN differentiation and HD development in cell culture platforms may improve our understanding of HD and translate, ultimately, into HD treatment options. Here, recent advances in the in vitro differentiation of MSNs derived from fetal neural stem cells/progenitor cells (NSCs/NPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and induced NSCs (iNSCs) as well as advances in direct transdifferentiation are reviewed. Progress in non-allele specific and allele specific gene editing of HTT is presented as well. Cell characterization approaches involving phenotyping as well as in vitro and in vivo functional assays are also discussed.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 3, Building 1233, DK-8000 Aarhus C, Denmark; Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
13
|
Macrin D, Joseph JP, Pillai AA, Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep 2018; 13:741-756. [PMID: 28812219 DOI: 10.1007/s12015-017-9759-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the recent times, stem cell biology has garnered the attention of the scientific fraternity and the general public alike due to the immense therapeutic potential that it holds in the field of regenerative medicine. A breakthrough in this direction came with the isolation of stem cells from human embryo and their differentiation into cell types of all three germ layers. However, the isolation of mesenchymal stem cells from adult tissues proved to be advantageous over embryonic stem cells due to the ethical and immunological naivety. Mesenchymal Stem Cells (MSCs) isolated from the bone marrow were found to differentiate into multiple cell lineages with the help of appropriate differentiation factors. Furthermore, other sources of stem cells including adipose tissue, dental pulp, and breast milk have been identified. Newer sources of stem cells have been emerging recently and their clinical applications are also being studied. In this review, we examine the eminent sources of Mesenchymal Stem Cells (MSCs), their immunophenotypes, and therapeutic imminence.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
14
|
Son B, Kim JA, Cho S, Jeong GJ, Kim BS, Hwang NS, Park TH. Lineage Specific Differentiation of Magnetic Nanoparticle-Based Size Controlled Human Embryoid Body. ACS Biomater Sci Eng 2017; 3:1719-1729. [DOI: 10.1021/acsbiomaterials.7b00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boram Son
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jeong Ah Kim
- Biomedical
Omics Group, Korea Basic Science Institute, Cheongju, Chungbuk 28119, Republic of Korea
| | - Sungwoo Cho
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Gun-Jae Jeong
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Byung Soo Kim
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Nathaniel S. Hwang
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Tai Hyun Park
- School
of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
15
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|
16
|
Xu X, Tay Y, Sim B, Yoon SI, Huang Y, Ooi J, Utami KH, Ziaei A, Ng B, Radulescu C, Low D, Ng AYJ, Loh M, Venkatesh B, Ginhoux F, Augustine GJ, Pouladi MA. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 2017; 8:619-633. [PMID: 28238795 PMCID: PMC5355646 DOI: 10.1016/j.stemcr.2017.01.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 12/31/2022] Open
Abstract
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs.
Collapse
Affiliation(s)
- Xiaohong Xu
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Yilin Tay
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Bernice Sim
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Su-In Yoon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore
| | - Yihui Huang
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Jolene Ooi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Amin Ziaei
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Bryan Ng
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Carola Radulescu
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Donovan Low
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore
| | - Alvin Yu Jin Ng
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore 138673, Singapore
| | - Marie Loh
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore 138673, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore; Institute of Molecular and Cell Biology (IMCB), Singapore 138673, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
17
|
Huang B, Jiang C, Chen A, Cui Y, Xie J, Shen J, Chen J, Cai L, Liao T, Ning S, Jiang SW, Fan G, Qin L, Liu J. Establishment of human-embryonic-stem-cell line from mosaic trisomy 9 embryo. Taiwan J Obstet Gynecol 2016; 54:505-11. [PMID: 26522100 DOI: 10.1016/j.tjog.2015.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Human-embryonic-stem-cell (hESC) lines derived from chromosomally or genetically abnormal embryos obtained following preimplantation genetic diagnosis are valuable in investigating genetic disorders. MATERIALS AND METHODS In this study, a new hESC line, Center of Clinical Reproductive Medicine 8 (CCRM8) was established by isolation, culture, and passaging of the inner cell mass of mosaic trisomy 9 embryos. RESULTS A karyotype analysis showed that the hESC line possessed a euploid (46 chromosomes). The undifferentiated hESCs exhibited long-term proliferation capacity and expressed typical markers of OCT4, TRA-1-60, and TRA-1-81. In vitro embryoid-body (EB) formation, differentiation, and in vivo teratoma production confirmed the pluripotency of the hESC line. The data represented here are the first detailed report on the characterization and differentiation of one Chinese hESC line generated from mosaic trisomy 9 embryos. CONCLUSION Our study showed that chromosomally aberrant embryos could generate a normal hESC line, which would be useful in investigating gene function and embryo development.
Collapse
Affiliation(s)
- Boxian Huang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210038, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Aiqin Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jiazi Xie
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jiandong Shen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Juan Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Tingting Liao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210038, China.
| |
Collapse
|
18
|
Niclis JC, Murphy SV, Parkinson DY, Zedan A, Sathananthan AH, Cram DS, Heraud P. Three-dimensional imaging of human stem cells using soft X-ray tomography. J R Soc Interface 2016; 12:20150252. [PMID: 26063819 DOI: 10.1098/rsif.2015.0252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional imaging of human stem cells using transmission soft X-ray tomography (SXT) is presented for the first time. Major organelle types--nuclei, nucleoli, mitochondria, lysosomes and vesicles--were discriminated at approximately 50 nm spatial resolution without the use of contrast agents, on the basis of measured linear X-ray absorption coefficients and comparison of the size and shape of structures to transmission electron microscopy (TEM) images. In addition, SXT was used to visualize the distribution of a cell surface protein using gold-labelled antibody staining. We present the strengths of SXT, which include excellent spatial resolution (intermediate between that of TEM and light microscopy), the lack of the requirement for fixative or contrast agent that might perturb cellular morphology or produce imaging artefacts, and the ability to produce three-dimensional images of cells without microtome sectioning. Possible applications to studying the differentiation of human stem cells are discussed.
Collapse
Affiliation(s)
- J C Niclis
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia The Florey Institute of Neuroscience and Mental Health, Melbourne University, Parkville, Victoria 3052, Australia
| | - S V Murphy
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3800, Australia Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
| | - D Y Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, US Department of Energy, Berkeley, CA, USA
| | - A Zedan
- Advanced Light Source, Lawrence Berkeley National Laboratory, US Department of Energy, Berkeley, CA, USA
| | - A H Sathananthan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - D S Cram
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - P Heraud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia Centre for Biospectroscopy, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Golas MM, Sander B. Use of human stem cells in Huntington disease modeling and translational research. Exp Neurol 2016; 278:76-90. [PMID: 26826449 DOI: 10.1016/j.expneurol.2016.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/08/2023]
Abstract
Huntington disease (HD) is a devastating neurological disorder caused by an extended CAG repeat in exon 1 of the gene that encodes the huntingtin (HTT) protein. HD pathology involves a loss of striatal medium spiny neurons (MSNs) and progressive neurodegeneration affects the striatum and other brain regions. Because HTT is involved in multiple cellular processes, the molecular mechanisms of HD pathogenesis should be investigated on multiple levels. On the cellular level, in vitro stem cell models, such as induced pluripotent stem cells (iPSCs) derived from HD patients and HD embryonic stem cells (ESCs), have yielded progress. Approaches to differentiate functional MSNs from ESCs, iPSCs, and neural stem/progenitor cells (NSCs/NPCs) have been established, enabling MSN differentiation to be studied and disease phenotypes to be recapitulated. Isolation of target stem cells and precursor cells may also provide a resource for grafting. In animal models, transplantation of striatal precursors differentiated in vitro to the striatum has been reported to improve disease phenotype. Initial clinical trials examining intrastriatal transplantation of fetal neural tissue suggest a more favorable clinical course in a subset of HD patients, though shortcomings persist. Here, we review recent advances in the development of cellular HD models and approaches aimed at cell regeneration with human stem cells. We also describe how genome editing tools could be used to correct the HTT mutation in patient-specific stem cells. Finally, we discuss the potential and the remaining challenges of stem cell-based approaches in HD research and therapy development.
Collapse
Affiliation(s)
- Monika M Golas
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Bjoern Sander
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
20
|
Modeling Huntington׳s disease with patient-derived neurons. Brain Res 2015; 1656:76-87. [PMID: 26459990 DOI: 10.1016/j.brainres.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/17/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
Huntington׳s Disease (HD) is a fatal neurodegenerative disorder caused by expanded polyglutamine repeats in the Huntingtin (HTT) gene. While the gene was identified over two decades ago, it remains poorly understood why mutant HTT (mtHTT) is initially toxic to striatal medium spiny neurons (MSNs). Models of HD using non-neuronal human patient cells and rodents exhibit some characteristic HD phenotypes. While these current models have contributed to the field, they are limited in disease manifestation and may vary in their response to treatments. As such, human HD patient MSNs for disease modeling could greatly expand the current understanding of HD and facilitate the search for a successful treatment. It is now possible to use pluripotent stem cells, which can generate any tissue type in the body, to study and potentially treat HD. This review covers disease modeling in vitro and, via chimeric animal generation, in vivo using human HD patient MSNs differentiated from embryonic stem cells or induced pluripotent stem cells. This includes an overview of the differentiation of pluripotent cells into MSNs, the established phenotypes found in cell-based models and transplantation studies using these cells. This review not only outlines the advancements in the rapidly progressing field of HD modeling using neurons derived from human pluripotent cells, but also it highlights several remaining controversial issues such as the 'ideal' series of pluripotent lines, the optimal cell types to use and the study of a primarily adult-onset disease in a developmental model. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
|
21
|
Lefler S, Cohen MA, Kantor G, Cheishvili D, Even A, Birger A, Turetsky T, Gil Y, Even-Ram S, Aizenman E, Bashir N, Maayan C, Razin A, Reubinoff BE, Weil M. Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation. PLoS One 2015; 10:e0138807. [PMID: 26437462 PMCID: PMC4593545 DOI: 10.1371/journal.pone.0138807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/03/2015] [Indexed: 12/21/2022] Open
Abstract
A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.
Collapse
Affiliation(s)
- Sharon Lefler
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Malkiel A Cohen
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Gal Kantor
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - David Cheishvili
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Anastasya Birger
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Tikva Turetsky
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Yaniv Gil
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Sharona Even-Ram
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Einat Aizenman
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Nibal Bashir
- Department of Obstetric and Gynecology, Hadassah Hospital Mount Scopus, Hebrew University Medical School, Jerusalem, Israel
| | - Channa Maayan
- Department of Pediatrics, Hadassah Hospital Mount Scopus, Hebrew University Medical School, Jerusalem, Israel
| | - Aharon Razin
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Benjamim E Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel; Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Zhang N, Bailus BJ, Ring KL, Ellerby LM. iPSC-based drug screening for Huntington's disease. Brain Res 2015; 1638:42-56. [PMID: 26428226 DOI: 10.1016/j.brainres.2015.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/29/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. The disease generally manifests in middle age with both physical and mental symptoms. There are no effective treatments or cures and death usually occurs 10-20 years after initial symptoms. Since the original identification of the Huntington disease associated gene, in 1993, a variety of models have been created and used to advance our understanding of HD. The most recent advances have utilized stem cell models derived from HD-patient induced pluripotent stem cells (iPSCs) offering a variety of screening and model options that were not previously available. The discovery and advancement of technology to make human iPSCs has allowed for a more thorough characterization of human HD on a cellular and developmental level. The interaction between the genome editing and the stem cell fields promises to further expand the variety of HD cellular models available for researchers. In this review, we will discuss the history of Huntington's disease models, common screening assays, currently available models and future directions for modeling HD using iPSCs-derived from HD patients. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
Affiliation(s)
- Ningzhe Zhang
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Barbara J Bailus
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Karen L Ring
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, United States.
| |
Collapse
|
23
|
Qin Y, Gao WQ. Concise Review: Patient-Derived Stem Cell Research for Monogenic Disorders. Stem Cells 2015; 34:44-54. [DOI: 10.1002/stem.2112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/05/2015] [Accepted: 06/20/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Yiren Qin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine; hanghai Jiao Tong University; Shanghai People's Republic of China
- School of Biomedical Engineering & Med-X Research Institute; Shanghai Jiao Tong University; Shanghai People's Republic of China
- Collaborative Innovation Center of Systems Biomedicine; Shanghai Jiao Tong University; Shanghai People's Republic of China
| |
Collapse
|
24
|
Jacquet L, Neueder A, Földes G, Karagiannis P, Hobbs C, Jolinon N, Mioulane M, Sakai T, Harding SE, Ilic D. Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes. PLoS One 2015; 10:e0126860. [PMID: 25993131 PMCID: PMC4438866 DOI: 10.1371/journal.pone.0126860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/08/2015] [Indexed: 12/14/2022] Open
Abstract
Huntington disease (HD; OMIM 143100), a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ) motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC) lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.
Collapse
Affiliation(s)
- Laureen Jacquet
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women’s Health, King’s College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Andreas Neueder
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Gabor Földes
- National Heart and Lung Institute, Imperial College, ICTEM, 4th Floor, Hammersmith Campus, Du Cane Rd, London, W12 0NN, United Kingdom
| | - Panagiotis Karagiannis
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Carl Hobbs
- Histology Laboratory, Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, United Kingdom
| | - Nelly Jolinon
- Division of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Maxime Mioulane
- National Heart and Lung Institute, Imperial College, ICTEM, 4th Floor, Hammersmith Campus, Du Cane Rd, London, W12 0NN, United Kingdom
| | - Takao Sakai
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College, ICTEM, 4th Floor, Hammersmith Campus, Du Cane Rd, London, W12 0NN, United Kingdom
| | - Dusko Ilic
- Stem Cell Laboratory, Assisted Conception Unit, Division of Women’s Health, King’s College London, Guy's Hospital, London, SE1 9RT, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Biagioli M, Ferrari F, Mendenhall EM, Zhang Y, Erdin S, Vijayvargia R, Vallabh SM, Solomos N, Manavalan P, Ragavendran A, Ozsolak F, Lee JM, Talkowski ME, Gusella JF, Macdonald ME, Park PJ, Seong IS. Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. Hum Mol Genet 2015; 24:2442-57. [PMID: 25574027 DOI: 10.1093/hmg/ddv006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 12/15/2022] Open
Abstract
The CAG repeat expansion in the Huntington's disease gene HTT extends a polyglutamine tract in mutant huntingtin that enhances its ability to facilitate polycomb repressive complex 2 (PRC2). To gain insight into this dominant gain of function, we mapped histone modifications genome-wide across an isogenic panel of mouse embryonic stem cell (ESC) and neuronal progenitor cell (NPC) lines, comparing the effects of Htt null and different size Htt CAG mutations. We found that Htt is required in ESC for the proper deposition of histone H3K27me3 at a subset of 'bivalent' loci but in NPC it is needed at 'bivalent' loci for both the proper maintenance and the appropriate removal of this mark. In contrast, Htt CAG size, though changing histone H3K27me3, is prominently associated with altered histone H3K4me3 at 'active' loci. The sets of ESC and NPC genes with altered histone marks delineated by the lack of huntingtin or the presence of mutant huntingtin, though distinct, are enriched in similar pathways with apoptosis specifically highlighted for the CAG mutation. Thus, the manner by which huntingtin function facilitates PRC2 may afford mutant huntingtin with multiple opportunities to impinge upon the broader machinery that orchestrates developmentally appropriate chromatin status.
Collapse
Affiliation(s)
- Marta Biagioli
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | - Yijing Zhang
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Serkan Erdin
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ravi Vijayvargia
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Sonia M Vallabh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicole Solomos
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Poornima Manavalan
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ashok Ragavendran
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fatih Ozsolak
- RaNA Therapeutics, 790 Memorial Drive, Cambridge, MA 02139, USA
| | - Jong Min Lee
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael E Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - James F Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA and
| | - Marcy E Macdonald
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA and
| | - Peter J Park
- Center for Biomedical Informatics, Boston, MA 02114, USA Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ihn Sik Seong
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA, Department of Neurology, Harvard Medical School, Boston, MA 02114, USA,
| |
Collapse
|
26
|
Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol 2014; 127:151-73. [PMID: 24306942 DOI: 10.1007/s00401-013-1222-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
The number of patients with neurodegenerative diseases is increasing significantly worldwide. Thus, intense research is being pursued to uncover mechanisms of disease development in an effort to identify molecular targets for therapeutic intervention. Analysis of postmortem tissue from patients has yielded important histological and biochemical markers of disease progression. However, this approach is inherently limited because it is not possible to study patient neurons prior to degeneration. As such, transgenic and knockout models of neurodegenerative diseases are commonly employed. While these animal models have yielded important insights into some molecular mechanisms of disease development, they do not provide the opportunity to study mechanisms of neurodegeneration in human neurons at risk and thus, it is often difficult or even impossible to replicate human pathogenesis with this approach. The generation of patient-specific induced pluripotent stem (iPS) cells offers a unique opportunity to overcome these obstacles. By expanding and differentiating iPS cells, it is possible to generate large numbers of functional neurons in vitro, which can then be used to study the disease of the donating patient. Here, we provide an overview of human stem cell models of neurodegeneration using iPS cells from patients with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, spinal muscular atrophy and other neurodegenerative diseases. In addition, we describe how further refinements of reprogramming technology resulted in the generation of patient-specific induced neurons, which have also been used to model neurodegenerative changes in vitro.
Collapse
Affiliation(s)
- Gunnar Hargus
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany,
| | | | | | | |
Collapse
|
27
|
Bard J, Wall MD, Lazari O, Arjomand J, Munoz-Sanjuan I. Advances in huntington disease drug discovery: novel approaches to model disease phenotypes. ACTA ACUST UNITED AC 2013; 19:191-204. [PMID: 24196395 DOI: 10.1177/1087057113510320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Huntington disease is a monogenic, autosomal dominant, progressive neurodegenerative disorder caused by a trinucleotide CAG repeat expansion in exon 1 of the huntingtin (HTT) gene; age of onset of clinical symptoms inversely correlates with expanded CAG repeat length. HD leads to extensive degeneration of the basal ganglia, hypothalamic nuclei, and selected cortical areas, and a wide range of molecular mechanisms have been implicated in disease pathology in animal or cellular models expressing mutated HTT (mHTT) proteins, either full-length or amino-terminal fragments. However, HD cellular models that recapitulate the slow progression of the disease have not been available due to the toxicity of overexpressed exogenous mHTT or to limitations with using primary cells for long-term studies. Most investigations of the effects of mHTT relied on cytotoxicity or aggregation end points in heterologous systems or in primary embryonic neuroglial cultures derived from HD mouse models. More innovative approaches are currently under active investigation, including screening using electrophysiological endpoints, as well as the recent use of primary blood mononuclear cells and of human embryonic stem cells derived from a variety of HD research participants. Here we describe how these cellular systems are being used to investigate HD biology as well as to identify mechanisms with therapeutic potential.
Collapse
Affiliation(s)
- Jonathan Bard
- 1CHDI Management/CHDI Foundation, Princeton, NJ, and Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
28
|
Ben-Yosef D, Boscolo FS, Amir H, Malcov M, Amit A, Laurent LC. Genomic analysis of hESC pedigrees identifies de novo mutations and enables determination of the timing and origin of mutational events. Cell Rep 2013; 4:1288-302. [PMID: 24035391 PMCID: PMC3894204 DOI: 10.1016/j.celrep.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/11/2013] [Accepted: 08/05/2013] [Indexed: 01/05/2023] Open
Abstract
Given the association between mutational load and cancer, the observation
that genetic aberrations are frequently found in human pluripotent stem cells
(hPSCs) is of concern. Prior studies in human induced pluripotent stem cells
(hiPSCs) have shown that deletions and regions of loss of heterozygosity (LOH)
tend to arise during reprogramming and early culture, whereas duplications more
frequently occur during long-term culture. For the corresponding experiments in
human embryonic stem cells (hESCs), we studied two sets of hESC lines: one
including the corresponding parental DNA and the other generated from single
blastomeres from four sibling embryos. Here, we show that genetic aberrations
observed in hESCs can originate during preimplantation embryo development and/or
early derivation. These early aberrations are mainly deletions and LOH, whereas
aberrations arising during long-term culture of hESCs are more frequently
duplications. Our results highlight the importance of close monitoring of
genomic integrity and the development of improved methods for derivation and
culture of hPSCs.
Collapse
Affiliation(s)
- Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Medical
School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Francesca S. Boscolo
- University of California, San Diego, Department of Reproductive
Medicine, Division of Maternal Fetal Medicine, The Sanford Consortium for
Regenerative Medicine, 7880 Torrey Pines Scenic Drive, La Jolla, CA 92037-0695,
USA
- The Scripps Research Institute Center for Regenerative Medicine,
Department of Chemical Physiology, 10550 North Torrey Pines Road SP30-3021, La
Jolla, CA 92037, USA
| | - Hadar Amir
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- University of California, San Diego, Department of Reproductive
Medicine, Division of Maternal Fetal Medicine, The Sanford Consortium for
Regenerative Medicine, 7880 Torrey Pines Scenic Drive, La Jolla, CA 92037-0695,
USA
| | - Mira Malcov
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Ami Amit
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital,
Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Louise C. Laurent
- University of California, San Diego, Department of Reproductive
Medicine, Division of Maternal Fetal Medicine, The Sanford Consortium for
Regenerative Medicine, 7880 Torrey Pines Scenic Drive, La Jolla, CA 92037-0695,
USA
- The Scripps Research Institute Center for Regenerative Medicine,
Department of Chemical Physiology, 10550 North Torrey Pines Road SP30-3021, La
Jolla, CA 92037, USA
- Correspondence: http://dx.doi.org/10.1016/j.celrep.2013.08.009
| |
Collapse
|
29
|
Jonson I, Ougland R, Klungland A, Larsen E. Oxidative stress causes DNA triplet expansion in Huntington's disease mouse embryonic stem cells. Stem Cell Res 2013; 11:1264-71. [PMID: 24041806 DOI: 10.1016/j.scr.2013.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/31/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded trinucleotide CAG repeat in the Huntingtin (Htt) gene. The molecular basis for the development and progression of HD is currently poorly understood. However, different DNA repair pathways have been implicated in both somatic expansion and disease progression. Embryonic stem cells provide a remarkable in vitro system to study HD and could have implications for understanding disease development and for therapeutic treatment. Here, we derive pluripotent stem cells from the mouse R6/1 HD model and demonstrate that repeated exposure to genotoxic agents inducing oxidative DNA damage gave a significant and dose dependent increase in somatic triplet expansion. Further investigation into specific steps of DNA repair revealed impaired double stranded break repair in exposed R6/1 cells, accompanied by the induction of apoptosis. We also found that differentiation status, and consequently DNA repair efficiency influenced somatic expansion. Our data underscore the importance of DNA damage and repair for the stability of the HD triplet in pluripotent stem cells.
Collapse
Affiliation(s)
- Ida Jonson
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet and University of Oslo, NO-0027 Oslo, Norway
| | | | | | | |
Collapse
|
30
|
Jiang C, Cai L, Huang B, Dong J, Chen A, Ning S, Cui Y, Qin L, Liu J. Normal human embryonic stem cell lines were derived from microsurgical enucleated tripronuclear zygotes. J Cell Biochem 2013; 114:2016-23. [PMID: 23564289 DOI: 10.1002/jcb.24547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/12/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | | | - Juan Dong
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Aiqin Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine; First Affiliated Hospital, Nanjing Medical University; Nanjing; 210029; China
| | | |
Collapse
|
31
|
Niclis JC, Pinar A, Haynes JM, Alsanie W, Jenny R, Dottori M, Cram DS. Characterization of forebrain neurons derived from late-onset Huntington's disease human embryonic stem cell lines. Front Cell Neurosci 2013; 7:37. [PMID: 23576953 PMCID: PMC3617399 DOI: 10.3389/fncel.2013.00037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/20/2013] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the Huntingtin (HTT) gene. Recently, induced pluripotent stem cell (iPSC) lines carrying atypical and aggressive (CAG60+) HD variants have been generated and exhibit disparate molecular pathologies. Here we investigate two human embryonic stem cell (hESC) lines carrying CAG37 and CAG51 typical late-onset repeat expansions in comparison to wildtype control lines during undifferentiated states and throughout forebrain neuronal differentiation. Pluripotent HD lines demonstrate growth, viability, pluripotent gene expression, mitochondrial activity and forebrain specification that is indistinguishable from control lines. Expression profiles of crucial genes known to be dysregulated in HD remain unperturbed in the presence of mutant protein and throughout differentiation; however, elevated glutamate-evoked responses were observed in HD CAG51 neurons. These findings suggest typical late-onset HD mutations do not alter pluripotent parameters or the capacity to generate forebrain neurons, but that such progeny may recapitulate hallmarks observed in established HD model systems. Such HD models will help further our understanding of the cascade of pathological events leading to disease onset and progression, while simultaneously facilitating the identification of candidate HD therapeutics.
Collapse
Affiliation(s)
- Jonathan C Niclis
- Monash Immunology and Stem Cell Laboratories, Monash University Clayton, VIC, Australia ; The Florey Institute of Neuroscience and Mental Health, University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Kaye JA, Finkbeiner S. Modeling Huntington's disease with induced pluripotent stem cells. Mol Cell Neurosci 2013; 56:50-64. [PMID: 23459227 DOI: 10.1016/j.mcn.2013.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) causes severe motor dysfunction, behavioral abnormalities, cognitive impairment and death. Investigations into its molecular pathology have primarily relied on murine tissues; however, the recent discovery of induced pluripotent stem cells (iPSCs) has opened new possibilities to model neurodegenerative disease using cells derived directly from patients, and therefore may provide a human-cell-based platform for unique insights into the pathogenesis of HD. Here, we will examine the practical implementation of iPSCs to study HD, such as approaches to differentiate embryonic stem cells (ESCs) or iPSCs into medium spiny neurons, the cell type most susceptible in HD. We will explore the HD-related phenotypes identified in iPSCs and ESCs and review how brain development and neurogenesis may actually be altered early, before the onset of HD symptoms, which could inform the search for drugs that delay disease onset. Finally, we will speculate on the exciting possibility that ESCs or iPSCs might be used as therapeutics to restore or replace dying neurons in HD brains.
Collapse
Affiliation(s)
- Julia A Kaye
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, United States.
| | | |
Collapse
|
33
|
Perrier A, Peschanski M. How can human pluripotent stem cells help decipher and cure Huntington's disease? Cell Stem Cell 2013; 11:153-61. [PMID: 22862942 DOI: 10.1016/j.stem.2012.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cell (PSC) technologies are becoming a key asset for deciphering pathological cascades and for developing new treatments against many neurodegenerative disorders, including Huntington's disease (HD). This perspective discusses the challenges and opportunities facing the use of PSCs for treating HD, focusing on four major applications: namely, the use of PSCs as a substitute source of human striatal cells for current HD cell therapy, as a cellular model of HD for the validation of human-specific gene therapies, for deciphering molecular mechanisms underlying HD, and in drug discovery.
Collapse
Affiliation(s)
- Anselme Perrier
- INSERM U861, I-Stem/AFM, 5 rue Henri Desbruères Evry, 91030 Cedex, France
| | | |
Collapse
|
34
|
Garcia I, Kim C, Arenkiel BR. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons. Front Cell Neurosci 2012; 6:59. [PMID: 23264761 PMCID: PMC3524522 DOI: 10.3389/fncel.2012.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/30/2012] [Indexed: 01/28/2023] Open
Abstract
The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Isabella Garcia
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA ; Medical Scientist Training Program, Baylor College of Medicine Houston, TX, USA
| | | | | |
Collapse
|
35
|
Camnasio S, Delli Carri A, Lombardo A, Grad I, Mariotti C, Castucci A, Rozell B, Lo Riso P, Castiglioni V, Zuccato C, Rochon C, Takashima Y, Diaferia G, Biunno I, Gellera C, Jaconi M, Smith A, Hovatta O, Naldini L, Di Donato S, Feki A, Cattaneo E. The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 2012; 46:41-51. [PMID: 22405424 DOI: 10.1016/j.nbd.2011.12.042] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/24/2011] [Accepted: 12/22/2011] [Indexed: 12/23/2022] Open
Abstract
Neuronal disorders, like Huntington's disease (HD), are difficult to study, due to limited cell accessibility, late onset manifestations, and low availability of material. The establishment of an in vitro model that recapitulates features of the disease may help understanding the cellular and molecular events that trigger disease manifestations. Here, we describe the generation and characterization of a series of induced pluripotent stem (iPS) cells derived from patients with HD, including two rare homozygous genotypes and one heterozygous genotype. We used lentiviral technology to transfer key genes for inducing reprogramming. To confirm pluripotency and differentiation of iPS cells, we used PCR amplification and immunocytochemistry to measure the expression of marker genes in embryoid bodies and neurons. We also analyzed teratomas that formed in iPS cell-injected mice. We found that the length of the pathological CAG repeat did not increase during reprogramming, after long term growth in vitro, and after differentiation into neurons. In addition, we observed no differences between normal and mutant genotypes in reprogramming, growth rate, caspase activation or neuronal differentiation. However, we observed a significant increase in lysosomal activity in HD-iPS cells compared to control iPS cells, both during self-renewal and in iPS-derived neurons. In conclusion, we have established stable HD-iPS cell lines that can be used for investigating disease mechanisms that underlie HD. The CAG stability and lysosomal activity represent novel observations in HD-iPS cells. In the future, these cells may provide the basis for a powerful platform for drug screening and target identification in HD.
Collapse
Affiliation(s)
- Stefano Camnasio
- Department of Pharmacological Sciences and Centre for Stem Cell Research, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Conforti P, Camnasio S, Mutti C, Valenza M, Thompson M, Fossale E, Zeitlin S, MacDonald ME, Zuccato C, Cattaneo E. Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death. Neurobiol Dis 2012; 50:160-70. [PMID: 23089356 DOI: 10.1016/j.nbd.2012.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/10/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that affects muscle coordination and diminishes cognitive abilities. The genetic basis of the disease is an expansion of CAG repeats in the Huntingtin (Htt) gene. Here we aimed to generate a series of mouse neural stem (NS) cell lines that carried varying numbers of CAG repeats in the mouse Htt gene (Hdh CAG knock-in NS cells) or that had Hdh null alleles (Hdh knock-out NS cells). Towards this end, Hdh CAG knock-in mouse ES cell lines that carried an Htt gene with 20, 50, 111, or 140 CAG repeats or that were Htt null were neuralized and converted into self-renewing NS cells. The resulting NS cell lines were immunopositive for the neural stem cell markers NESTIN, SOX2, and BLBP and had similar proliferative rates and cell cycle distributions. After 14 days in vitro, wild-type NS cells gave rise to cultures composed of 70% MAP2(+) neurons and 30% GFAP(+) astrocytes. In contrast, NS cells with expanded CAG repeats underwent neuronal cell death, with only 38%±15% of the MAP2(+) cells remaining at the end of the differentiation period. Cell death was verified by increased caspase 3/7 activity on day 14 of the neuronal differentiation protocol. Interestingly, Hdh knock-out NS cells treated using the same neuronal differentiation protocol showed a dramatic increase in the number of GFAP(+) cells on day 14 (61%±20% versus 24%±10% in controls), and a massive decrease of MAP2(+) neurons (30%±11% versus 64%±17% in controls). Both Hdh CAG knock-in NS cells and Hdh knock-out NS cells showed reduced levels of Bdnf mRNA during neuronal differentiation, in agreement with data obtained previously in HD mouse models and in post-mortem brain samples from HD patients. We concluded that Hdh CAG knock-in and Hdh knock-out NS cells have potential as tools for investigating the roles of normal and mutant HTT in differentiated neurons and glial cells of the brain.
Collapse
Affiliation(s)
- Paola Conforti
- Center for Stem Cell Research, Università degli Studi di Milano, Via Balzaretti 9, 20113 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hibaoui Y, Feki A. Human pluripotent stem cells: applications and challenges in neurological diseases. Front Physiol 2012; 3:267. [PMID: 22934023 PMCID: PMC3429043 DOI: 10.3389/fphys.2012.00267] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022] Open
Abstract
The ability to generate human pluripotent stem cells (hPSCs) holds great promise for the understanding and the treatment of human neurological diseases in modern medicine. The hPSCs are considered for their in vitro use as research tools to provide relevant cellular model for human diseases, drug discovery, and toxicity assays and for their in vivo use in regenerative medicine applications. In this review, we highlight recent progress, promises, and challenges of hPSC applications in human neurological disease modeling and therapies.
Collapse
Affiliation(s)
- Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals Geneva, Switzerland
| | | |
Collapse
|
38
|
Vitrified blastocysts from Preimplantation Genetic Diagnosis (PGD) as a source for human Embryonic Stem Cell (hESC) derivation. J Assist Reprod Genet 2012; 29:1013-20. [PMID: 22735930 DOI: 10.1007/s10815-012-9820-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022] Open
Abstract
Embryos diagnosed as abnormal in Preimplantation Genetic Diagnosis (PGD) cycles are useful for the establishment of human Embryonic Stem Cells (hESC) lines with genetic disorders. These lines can be helpful for drug screening and for the development of new treatments. Vitrification has proved to be an efficient method to preserve human blastocysts. One hundred and three abnormal or undiagnosed vitrified blastocysts from the PGD programme at Institut Universitari Dexeus were donated for human embryonic stem cell derivation. The overall survival rate after warming was 70.6 %. Our results showed better survival rates when blastocysts have not started the hatching process (initial/expanded 87.8 %, hatching 68.3 % and hatched 27.3 %). Thirty-five blastocysts and 12 partially surviving embryos were seeded. One hESC line with the multiple exostoses type 2 paternal mutation was obtained.
Collapse
|
39
|
Carter RL, Chan AW. Pluripotent stem cells models for Huntington's disease: prospects and challenges. J Genet Genomics 2012; 39:253-9. [PMID: 22749012 PMCID: PMC4075320 DOI: 10.1016/j.jgg.2012.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 11/28/2022]
Abstract
Pluripotent cellular models have shown great promise in the study of a number of neurological disorders. Several advantages of using a stem cell model include the potential for cells to derive disease relevant neuronal cell types, providing a system for researchers to monitor disease progression during neurogenesis, along with serving as a platform for drug discovery. A number of stem cell derived models have been employed to establish in vitro research models of Huntington's disease that can be used to investigate cellular pathology and screen for drug and cell-based therapies. Although some progress has been made, there are a number of challenges and limitations that must be overcome before the true potential of this research strategy is achieved. In this article we review current stem cell models that have been reported, as well as discuss the issues that impair these studies. We also highlight the prospective application of Huntington's disease stem cell models in the development of novel therapeutic strategies and advancement of personalized medicine.
Collapse
Affiliation(s)
- Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| | - Anthony W.S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd., N.E. Atlanta, GA 39329
- Genetic and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells. Mol Brain 2012; 5:17. [PMID: 22613578 PMCID: PMC3506453 DOI: 10.1186/1756-6606-5-17] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 05/21/2012] [Indexed: 02/08/2023] Open
Abstract
Background Huntington’s Disease (HD) is a devastating neurodegenerative disorder that clinically manifests as motor dysfunction, cognitive impairment and psychiatric symptoms. There is currently no cure for this progressive and fatal disorder. The causative mutation of this hereditary disease is a trinucleotide repeat expansion (CAG) in the Huntingtin gene that results in an expanded polyglutamine tract. Multiple mechanisms have been proposed to explain the preferential striatal and cortical degeneration that occurs with HD, including non-cell-autonomous contribution from astrocytes. Although numerous cell culture and animal models exist, there is a great need for experimental systems that can more accurately replicate the human disease. Human induced pluripotent stem cells (iPSCs) are a remarkable new tool to study neurological disorders because this cell type can be derived from patients as a renewable, genetically tractable source for unlimited cells that are difficult to acquire, such as neurons and astrocytes. The development of experimental systems based on iPSC technology could aid in the identification of molecular lesions and therapeutic treatments. Results We derived iPSCs from a father with adult onset HD and 50 CAG repeats (F-HD-iPSC) and his daughter with juvenile HD and 109 CAG repeats (D-HD-iPSC). These disease-specific iPSC lines were characterized by standard assays to assess the quality of iPSC lines and to demonstrate their pluripotency. HD-iPSCs were capable of producing phenotypically normal, functional neurons in vitro and were able to survive and differentiate into neurons in the adult mouse brain in vivo after transplantation. Surprisingly, when HD-iPSCs were directed to differentiate into an astrocytic lineage, we observed the presence of cytoplasmic, electron clear vacuoles in astrocytes from both F-HD-iPSCs and D-HD-iPSCs, which were significantly more pronounced in D-HD-astrocytes. Remarkably, the vacuolation in diseased astrocytes was observed under basal culture conditions without additional stressors and increased over time. Importantly, similar vacuolation phenotype has also been observed in peripheral blood lymphocytes from individuals with HD. Together, these data suggest that vacuolation may be a phenotype associated with HD. Conclusions We have generated a unique in vitro system to study HD pathogenesis using patient-specific iPSCs. The astrocytes derived from patient-specific iPSCs exhibit a vacuolation phenotype, a phenomenon previously documented in primary lymphocytes from HD patients. Our studies pave the way for future mechanistic investigations using human iPSCs to model HD and for high-throughput therapeutic screens.
Collapse
|
41
|
Ritch JJ, Valencia A, Alexander J, Sapp E, Gatune L, Sangrey GR, Sinha S, Scherber CM, Zeitlin S, Sadri-Vakili G, Irimia D, Difiglia M, Kegel KB. Multiple phenotypes in Huntington disease mouse neural stem cells. Mol Cell Neurosci 2012; 50:70-81. [PMID: 22508027 DOI: 10.1016/j.mcn.2012.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 11/25/2022] Open
Abstract
Neural stem (NS) cells are a limitless resource, and thus superior to primary neurons for drug discovery provided they exhibit appropriate disease phenotypes. Here we established NS cells for cellular studies of Huntington's disease (HD). HD is a heritable neurodegenerative disease caused by a mutation resulting in an increased number of glutamines (Q) within a polyglutamine tract in Huntingtin (Htt). NS cells were isolated from embryonic wild-type (Htt(7Q/7Q)) and "knock-in" HD (Htt(140Q/140Q)) mice expressing full-length endogenous normal or mutant Htt. NS cells were also developed from mouse embryonic stem cells that were devoid of Htt (Htt(-/-)), or knock-in cells containing human exon1 with an N-terminal FLAG epitope tag and with 7Q or 140Q inserted into one of the mouse alleles (Htt(F7Q/7Q) and Htt(F140Q/7Q)). Compared to Htt(7Q/7Q) NS cells, HD Htt(140Q/140Q) NS cells showed significantly reduced levels of cholesterol, increased levels of reactive oxygen species (ROS), and impaired motility. The heterozygous Htt(F140Q/7Q) NS cells had increased ROS and decreased motility compared to Htt(F7Q/7Q). These phenotypes of HD NS cells replicate those seen in HD patients or in primary cell or in vivo models of HD. Huntingtin "knock-out" NS cells (Htt(-/-)) also had impaired motility, but in contrast to HD cells had increased cholesterol. In addition, Htt(140Q/140Q) NS cells had higher phospho-AKT/AKT ratios than Htt(7Q/7Q) NS cells in resting conditions and after BDNF stimulation, suggesting mutant htt affects AKT dependent growth factor signaling. Upon differentiation, the Htt(7Q/7Q) and Htt(140Q/140Q) generated numerous Beta(III)-Tubulin- and GABA-positive neurons; however, after 15 days the cellular architecture of the differentiated Htt(140Q/140Q) cultures changed compared to Htt(7Q/7Q) cultures and included a marked increase of GFAP-positive cells. Our findings suggest that NS cells expressing endogenous mutant Htt will be useful for study of mechanisms of HD and drug discovery.
Collapse
Affiliation(s)
- James J Ritch
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu G, Leffak M. Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis. Cell Biosci 2012; 2:7. [PMID: 22369689 PMCID: PMC3310812 DOI: 10.1186/2045-3701-2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
43
|
Pistollato F, Bremer-Hoffmann S, Healy L, Young L, Stacey G. Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opin Drug Metab Toxicol 2012; 8:239-57. [PMID: 22248265 DOI: 10.1517/17425255.2012.639763] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Pluripotent stem cell (PSC) lines offer a unique opportunity to derive various human cell types that can be exploited for human safety assessments in vitro and as such contribute to modern mechanistically oriented toxicity testing. AREAS COVERED This article reviews the two major types of PSC cultures that are currently most promising for toxicological applications: human embryonic stem cell lines and human induced PSC lines. Through the review, the article explains how these cell types will improve the current safety evaluations of chemicals and will allow a more efficient selection of drug candidates. Additionally, the article discusses the important issues of maintaining PSCs as well as their differentiation efficiency. EXPERT OPINION The demonstration of the reliability and relevance of in vitro toxicity tests for a given purpose is mandatory for their use in regulatory toxicity testing. Given the peculiar nature of PSCs, a high level of standardization of undifferentiated cell cultures as well as of the differentiation process is required in order to ensure the establishment of robust test systems. It is, therefore, of pivotal importance to define and internationally agree on crucial parameters to judge the quality of the cellular models before enrolling them for toxicity testing.
Collapse
Affiliation(s)
- Francesca Pistollato
- Institute for Health & Consumer Protection, Systems Toxicology Unit, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | | | | |
Collapse
|
44
|
Abstract
Human embryonic stem cells (HESCs) are of great interest in biology and medicine due to their ability to grow indefinitely in culture while maintaining their ability to differentiate into all different cell types in the human body. In addition, HESCs can be used for better understanding the key developmental processes and can, therefore, serve for studying genetic disorders for which no good research model exists. Preimplantation genetic diagnosis of in vitro derived embryos results in affected-spare blastocysts with specific known inherited mutations.These affected blastocysts can be used for the derivation of disease-bearing HESCs, which would serve for studying the molecular and pathophysiological mechanisms underlying the genetic disease for which they were diagnosed. This chapter describes the methods to derive HESCs carrying mutations for inherited disorders.
Collapse
|
45
|
Grskovic M, Javaherian A, Strulovici B, Daley GQ. Induced pluripotent stem cells--opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 2011; 10:915-29. [PMID: 22076509 DOI: 10.1038/nrd3577] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to generate induced pluripotent stem cells (iPSCs) from patients, and an increasingly refined capacity to differentiate these iPSCs into disease-relevant cell types, promises a new paradigm in drug development - one that positions human disease pathophysiology at the core of preclinical drug discovery. Disease models derived from iPSCs that manifest cellular disease phenotypes have been established for several monogenic diseases, but iPSCs can likewise be used for phenotype-based drug screens in complex diseases for which the underlying genetic mechanism is unknown. Here, we highlight recent advances as well as limitations in the use of iPSC technology for modelling a 'disease in a dish' and for testing compounds against human disease phenotypes in vitro. We discuss how iPSCs are being exploited to illuminate disease pathophysiology, identify novel drug targets and enhance the probability of clinical success of new drugs.
Collapse
Affiliation(s)
- Marica Grskovic
- iPierian, 951 Gateway Blvd, South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
46
|
Sathananthan AH. Neural stem cells in neurospheres, embryoid bodies, and central nervous system of human embryos. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:520-527. [PMID: 21771387 DOI: 10.1017/s1431927611000584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The process of neurogenesis and formation of neural stem cells is reported in human neurospheres (NS) and embryoid bodies (EB) derived from human embryonic stem cells, in vitro, and compared with neural tissue formed in human ectopic embryos in week 4 (stage 9), developed in vivo. This morphological study was done using digital imaging by light microscopy and routine transmission electron microscopy. Both NS and EB form neural rosettes from the surface epithelium much like the process of neural tube formation from ectoderm in the embryo. The rosette is the developmental signature of neuroprogenitors in cultures of differentiating embryonic stem cells and is a radial arrangement of columnar cells that express many of the proteins expressed in neuroepithelial cells in the neural tube. The NS produce all of the major classes of progeny of the neural tube, some of which have been documented here. Specific neural markers expressed in the NS and the clinical implications of this study in cell therapy are also discussed.
Collapse
Affiliation(s)
- A Henry Sathananthan
- Monash Immunology and Stem Cell Laboratories, Monash, Medical, Nursing and Health Sciences, Clayton, Vic. 3800, Australia.
| |
Collapse
|
47
|
Mattis VB, Svendsen CN. Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 2011; 10:383-94. [PMID: 21435601 DOI: 10.1016/s1474-4422(11)70022-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Why specific neuronal populations are uniquely susceptible in neurodegenerative diseases remains a mystery. Brain tissue samples from patients are rarely available for testing, and animal models frequently do not recapitulate all features of a specific disorder; therefore, pathophysiological investigations are difficult. An exciting new avenue for neurological research and drug development is the discovery that patients' somatic cells can be reprogrammed to a pluripotent state; these cells are known as induced pluripotent stem cells. Once pluripotency is reinstated, cell colonies can be expanded and differentiated into specific neural populations. The availability of these cells enables the monitoring in vitro of temporal features of disease initiation and progression, and testing of new drug treatments on the patient's own cells. Hence, this swiftly growing area of research has the potential to contribute greatly to our understanding of the pathophysiology of neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Virginia B Mattis
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
48
|
Skibinski G, Finkbeiner S. Drug discovery in Parkinson's disease-Update and developments in the use of cellular models. ACTA ACUST UNITED AC 2011; 2011:15-25. [PMID: 23505333 DOI: 10.2147/ijhts.s8681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic (DA) neurons within the substantia nigra. Dopamine replacement drugs remain the most effective PD treatment but only provide temporary symptomatic relief. New therapies are urgently needed, but the search for a disease-modifying treatment and a definitive understanding of the underlying mechanisms of PD has been limited by the lack of physiologically relevant models that recapitulate the disease phenotype. The use of immortalized cell lines as in vitro model systems for drug discovery has met with limited success, since efficacy and safety too often fail to translate successfully in human clinical trials. Drug discoverers are shifting their focus to more physiologically relevant cellular models, including primary neurons and stem cells. The recent discovery of induced pluripotent stem (iPS) cell technology presents an exciting opportunity to derive human DA neurons from patients with sporadic and familial forms of PD. We anticipate that these human DA models will recapitulate key features of the PD phenotype. In parallel, high-content screening platforms, which extract information on multiple cellular features within individual neurons, provide a network-based approach that can resolve temporal and spatial relationships underlying mechanisms of neurodegeneration and drug perturbations. These emerging technologies have the potential to establish highly predictive cellular models that could bring about a desperately needed revolution in PD drug discovery.
Collapse
Affiliation(s)
- Gaia Skibinski
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, United States ; Taube-Koret Center for Huntingon's Disease Research, the Consortium for Frontotemporal Dementia Research, and the Hellman Family Foundation Program for Alzheimer's Disease Research, San Francisco, CA 94158, United States
| | | |
Collapse
|
49
|
Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Björkqvist M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington's disease. Hum Mol Genet 2011; 20:2225-37. [PMID: 21421997 DOI: 10.1093/hmg/ddr111] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) is a devastating, neurodegenerative condition, which lacks effective treatment. Normal Huntingtin (HTT) and mutant Huntingtin (mHTT) are expressed in multiple tissues and can alter transcription of microRNAs (miRs). Importantly, miRs are present in a bio-stable form in human peripheral blood plasma and have recently been shown to be useful biomarkers in other diseases. We therefore sought to identify potential miR biomarkers of HD that are present in, and have functional consequences for, neuronal and non-neuronal tissues. In a cell line over-expressing mHTT-Exon-1, miR microarray analysis was used to identify candidate miRs. We then examined their presence and bio-stability in control and HD plasma. We found that miR-34b is significantly elevated in response to mHTT-Exon-1, and its blockade alters the toxicity of mHTT-Exon-1 in vitro. We also show that miR-34b is detectable in plasma from small input volumes and is insensitive to freeze-thaw-induced RNA degradation. Interestingly, miR-34b is significantly elevated in plasma from HD gene carriers prior to symptom onset. This is the first study suggesting that plasma miRs might be used as biomarkers for HD.
Collapse
Affiliation(s)
- Philip Michael Gaughwin
- Department of Experimental Medical Sciences, Wallenberg Neuroscience Center, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Bradley CK, Scott HA, Chami O, Peura TT, Dumevska B, Schmidt U, Stojanov T. Derivation of Huntington's Disease-Affected Human Embryonic Stem Cell Lines. Stem Cells Dev 2011; 20:495-502. [DOI: 10.1089/scd.2010.0120] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Omar Chami
- Sydney IVF Stem Cells, Sydney, Australia
| | | | | | | | | |
Collapse
|