1
|
Jimena B, Kazimierczyk D, Kazimierczyk S, Moya H, Shin E, Li L, Korgaonkar P, Porter C, Seed B, Cherayil BJ, Jain N. Prenatal maternal infection promotes maternal microchimeric cells to alter infection risk in male offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633596. [PMID: 39896468 PMCID: PMC11785123 DOI: 10.1101/2025.01.17.633596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Vertically transferred maternal cells or maternal microchimeric cells (MMCs) engraft the fetus and persist in offspring for long periods of time. How altered maternal immune states arising from infection affect MMCs and their function in offspring is poorly understood. Here, we show that pregnancy-associated transient maternal infection alters MMCs to differentially regulate immunity in offspring. In male offspring of dams previously infected with Yersinia pseudotuberculosis , MMCs confer a pro-inflammatory type 17 T effector phenotype that leads to enhanced protective immunity to an unrelated Salmonella infection. Thus, acquired maternal cells imprinted by microbial exposure during pregnancy exert an antigen agnostic and sex-differential effect on offspring immunity, and may potentially be targeted to deliver immune benefits to infants in the vulnerable early life period.
Collapse
|
2
|
Cherayil BJ, Jain N. From Womb to World: Exploring the Immunological Connections between Mother and Child. Immunohorizons 2024; 8:552-562. [PMID: 39172025 PMCID: PMC11374749 DOI: 10.4049/immunohorizons.2400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Mother and child are immunologically interconnected by mechanisms that we are only beginning to understand. During pregnancy, multiple molecular and cellular factors of maternal origin are transferred across the placenta and influence the development and function of the fetal and newborn immune system. Altered maternal immune states arising from pregnancy-associated infections or immunizations have the potential to program offspring immune function in ways that may have long-term health consequences. In this study, we review current literature on the impact of prenatal infection and vaccination on the developing immune system, highlight knowledge gaps, and look to the horizon to envision maternal interventions that could benefit both the mother and her child.
Collapse
Affiliation(s)
- Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Nitya Jain
- Mucosal Immunology and Biology Research Center, Mass General for Children, Charlestown, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Center for Computational and Integrative Biology, Mass General Brigham, Boston, MA
| |
Collapse
|
3
|
Bebell LM, Ngonzi J, Butler A, Kumbakumba E, Adong J, Loos C, Boatin AA, Bassett IV, Siedner MJ, Williams PL, Mattie H, Hedt-Gauthier B, Correia KFB, Lake E, Alter G. Distinct cytokine profiles in late pregnancy in Ugandan people with HIV. Sci Rep 2024; 14:10980. [PMID: 38744864 PMCID: PMC11093984 DOI: 10.1038/s41598-024-61764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
During pregnancy, multiple immune regulatory mechanisms establish an immune-tolerant environment for the allogeneic fetus, including cellular signals called cytokines that modify immune responses. However, the impact of maternal HIV infection on these responses is incompletely characterized. We analyzed paired maternal and umbilical cord plasma collected during labor from 147 people with HIV taking antiretroviral therapy and 142 HIV-uninfected comparators. Though cytokine concentrations were overall similar between groups, using Partial Least Squares Discriminant Analysis we identified distinct cytokine profiles in each group, driven by higher IL-5 and lower IL-8 and MIP-1α levels in pregnant people with HIV and higher RANTES and E-selectin in HIV-unexposed umbilical cord plasma (P-value < 0.01). Furthermore, maternal RANTES, SDF-α, gro α -KC, IL-6, and IP-10 levels differed significantly by HIV serostatus (P < 0.01). Although global maternal and umbilical cord cytokine profiles differed significantly (P < 0.01), umbilical cord plasma profiles were similar by maternal HIV serostatus. We demonstrate that HIV infection is associated with a distinct maternal plasma cytokine profile which is not transferred across the placenta, indicating a placental role in coordinating local inflammatory response. Furthermore, maternal cytokine profiles in people with HIV suggest an incomplete shift from Th2 to Th1 immune phenotype at the end of pregnancy.
Collapse
Affiliation(s)
- Lisa M Bebell
- Medical Practice Evaluation Center and Center for Global Health, Massachusetts General Hospital Division of Infectious Diseases, GRJ-504, 55 Fruit St, Boston, MA, 02114, USA.
| | - Joseph Ngonzi
- Department of Obstetrics and Gynaecology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Audrey Butler
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Elias Kumbakumba
- Department of Paediatrics and Child Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Julian Adong
- Department of Paediatrics and Child Health, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Carolin Loos
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Adeline A Boatin
- Department of Obstetrics and Gynecology and Center for Global Health, Massachusetts General Hospital, Boston, MA, USA
| | - Ingrid V Bassett
- Division of Infectious Diseases and Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Siedner
- Division of Infectious Diseases and Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Heather Mattie
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bethany Hedt-Gauthier
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Erin Lake
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Camacho-Pacheco RT, Hernández-Pineda J, Brito-Pérez Y, Plazola-Camacho N, Coronado-Zarco IA, Arreola-Ramírez G, Bermejo-Haro MY, Najera-Hernández MA, González-Pérez G, Herrera-Salazar A, Olmos-Ortiz A, Soriano-Becerril D, Sandoval-Montes C, Figueroa-Damian R, Rodríguez-Martínez S, Mancilla-Herrera I. Disturbances in the IgG Antibody Profile in HIV-Exposed Uninfected Infants Associated with Maternal Factors. J Immunol Res 2024; 2024:8815767. [PMID: 38375063 PMCID: PMC10876311 DOI: 10.1155/2024/8815767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
Over the last 20 years, the incidence of vertical HIV transmission has decreased from 25%-42% to less than 1%. Although there are no signs of infection, the health of HIV-exposed uninfected (HEU) infants is notoriously affected during the first months of life, with opportunistic infections being the most common disease. Some studies have reported effects on the vertical transfer of antibodies, but little is known about the subclass distribution of these antibodies. We proposed to evaluate the total IgG concentration and its subclasses in HIV+ mothers and HEU pairs and to determine which maternal factors condition their levels. In this study, plasma from 69 HEU newborns, their mothers, and 71 control pairs was quantified via immunoassays for each IgG isotype. Furthermore, we followed the antibody profile of HEUs throughout the first year of life. We showed that mothers present an antibody profile characterized by high concentrations of IgG1 and IgG3 but reduced IgG2, and HEU infants are born with an IgG subclass profile similar to that of their maternal pair. Interestingly, this passively transferred profile could remain influenced even during their own antibody production in HEU infants, depending on maternal conditions such as CD4+ T-cell counts and maternal antiretroviral treatment. Our findings indicate that HEU infants exhibit an altered IgG subclass profile influenced by maternal factors, potentially contributing to their increased susceptibility to infections.
Collapse
Affiliation(s)
- Rodrigo T. Camacho-Pacheco
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jessica Hernández-Pineda
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Yesenia Brito-Pérez
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Noemi Plazola-Camacho
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | | | | | - Mextli Y. Bermejo-Haro
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Angel Najera-Hernández
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Gabriela González-Pérez
- Department of Physiology and Cellular Development, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Alma Herrera-Salazar
- Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán Izcalli, Mexico
| | - Andrea Olmos-Ortiz
- Immunobiochemistry Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Diana Soriano-Becerril
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Claudia Sandoval-Montes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Figueroa-Damian
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Infectology and Immunology Department, National Institute of Perinatology (INPer), Mexico City, Mexico
| |
Collapse
|
6
|
Dauby N, Gagneux-Brunon A, Martin C, Mussi-Pinhata MM, Goetghebuer T. Maternal immunization in women living with HIV. AIDS 2024; 38:137-144. [PMID: 38116721 DOI: 10.1097/qad.0000000000003758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Thanks to widespread use of antiretroviral therapy worldwide, women living with HIV (WLWH) are becoming pregnant and giving birth to HIV-exposed but uninfected (HEU) newborns. Both pregnancy and HIV infection-related factors such as low CD4+ T-cell count or uncontrolled viral load increase the risk of severe infections such as influenza, COVID-19, and others, making maternal immunization a valuable tool to decrease maternal morbidity among WLWH. Vaccines administered during pregnancy may also benefit the health of HEU infants. Indeed, HEU infants suffer from higher risk of morbidity of infectious origin, including respiratory syncytial virus (RSV), group B streptococcus (GBS), pneumococcus and pertussis infections. Maternal pertussis immunization is recommended in various high-income countries but not in many low-middle income countries where HIV prevalence is higher. GBS and RSV vaccines to be administered during pregnancy are currently in late-phase clinical trials in HIV-uninfected women and could represent a valuable tool to decrease morbidity during infancy. Decreased transfer of vaccine-specific IgG, accelerated waning of vaccine-induced antibody responses, linked to persistent maternal immune activation, and blunting of infant immune response to vaccines could hamper vaccine effectiveness among WLWH and HEU infants. Vaccine hesitancy could limit benefits of maternal immunization and strategies to tackle vaccine hesitancy should be part of HIV routine care. The aim of this review is to summarize the current knowledge regarding the immunogenicity and efficacy of available and upcoming vaccines recommended during pregnancy of WLWH.
Collapse
Affiliation(s)
- Nicolas Dauby
- Department of Infectious Diseases, CHU Saint-Pierre
- School of Public Health
- U-CRI, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Tessa Goetghebuer
- Department of Paediatrics, CHU Saint-Pierre, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
7
|
Mutanga JN, Ronan A, Powis KM. Achieving equity for children and adolescents with perinatal HIV exposure: an urgent need for a paradigm shift. J Int AIDS Soc 2023; 26 Suppl 4:e26171. [PMID: 37909238 PMCID: PMC10618885 DOI: 10.1002/jia2.26171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Jane Namangolwa Mutanga
- Department of Pediatrics and Child Health, Livingstone Central Hospital, Livingstone, Zambia
| | - Agnes Ronan
- Paediatric Adolescent Treatment Africa, Cape Town, South Africa
| | - Kathleen M Powis
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Departments of Internal Medicine and Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Flores A, Alonso-Vega C, Hermann E, Torrico MC, Montaño Villarroel NA, Torrico F, Carlier Y, Truyens C. Monocytes from Uninfected Neonates Born to Trypanosoma cruzi-Infected Mothers Display Upregulated Capacity to Produce TNF-α and to Control Infection in Association with Maternally Transferred Antibodies. Pathogens 2023; 12:1103. [PMID: 37764911 PMCID: PMC10536721 DOI: 10.3390/pathogens12091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Activated monocytes/macrophages that produce inflammatory cytokines and nitric oxide are crucial for controlling Trypanosoma cruzi infection. We previously showed that uninfected newborns from T. cruzi infected mothers (M+B- newborns) were sensitized to produce higher levels of inflammatory cytokines than newborns from uninfected mothers (M-B- newborns), suggesting that their monocytes were more activated. Thus, we wondered whether these cells might help limit congenital infection. We investigated this possibility by studying the activation status of M+B- cord blood monocytes and their ability to control T. cruzi in vitro infection. We showed that M+B- monocytes have an upregulated capacity to produce the inflammatory cytokine TNF-α and a better ability to control T. cruzi infection than M-B- monocytes. Our study also showed that T. cruzi-specific Abs transferred from the mother play a dual role by favoring trypomastigote entry into M+B- monocytes and inhibiting intracellular amastigote multiplication. These results support the possibility that some M+B- fetuses may eliminate the parasite transmitted in utero from their mothers, thus being uninfected at birth.
Collapse
Affiliation(s)
- Amilcar Flores
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Cristina Alonso-Vega
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Emmanuel Hermann
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Mary-Cruz Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | | | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Yves Carlier
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| |
Collapse
|
9
|
Jung DK, Tan ST, Hemlock C, Mertens AN, Stewart CP, Rahman MZ, Ali S, Raqib R, Grembi JA, Karim MR, Shahriar S, Roy AK, Abdelrahman S, Shoab AK, Famida SL, Hossen MS, Mutsuddi P, Akther S, Rahman M, Unicomb L, Hester L, Granger DA, Erhardt J, Naved RT, Al Mamun MM, Parvin K, Colford JM, Fernald LC, Luby SP, Dhabhar FS, Lin A. Micronutrient status during pregnancy is associated with child immune status in rural Bangladesh. Curr Dev Nutr 2023; 7:101969. [PMID: 37560460 PMCID: PMC10407622 DOI: 10.1016/j.cdnut.2023.101969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Background Poor immune function increases children's risk of infection and mortality. Several maternal factors during pregnancy may affect infant immune function during the postnatal period. Objectives We aimed to evaluate whether maternal micronutrients, stress, estriol, and immune status during the first or second trimester of pregnancy were associated with child immune status in the first two years after birth. Methods We conducted observational analyses within the water, sanitation, and hygiene (WASH) Benefits Bangladesh randomized controlled trial. We measured biomarkers in 575 pregnant women and postnatally in their children. Maternal biomarkers measured during the first and second trimester of pregnancy included nutrition status via vitamin D (25-hydroxy-D [25(OH)D]), ferritin, soluble transferrin receptor (sTfR), and retinol-binding protein (RBP); cortisol; estriol. Immune markers were assessed in pregnant women at enrollment and their children at ages 14 and 28 mo, including C-reactive protein (CRP), alpha-1-acid glycoprotein (AGP), and 13 cytokines (including IFN-γ). We generated a standardized sum score of log-transformed cytokines. We analyzed IFN-γ individually because it is a critical immunoregulatory cytokine. All outcomes were prespecified. We used generalized additive models and reported the mean difference and 95% confidence intervals at the 25th and 75th percentiles of exposure distribution. Results At child age 14 mo, concentrations of maternal RBP were inversely associated with the cytokine sum score in children (-0.34 adjusted difference between the 25th and 75th percentile [95% confidence interval -0.61, -0.07]), and maternal vitamin A deficiency was positively associated with the cytokine sum score in children (1.02 [0.13, 1.91]). At child age of 28 mo, maternal RBP was positively associated with IFN-γ in children (0.07 [0.01, 0.14]), whereas maternal vitamin A deficiency was negatively associated with child AGP (-0.07 [-0.13, -0.02]). Maternal iron deficiency was associated with higher AGP concentrations in children at age 14 mo (0.13 [0.04, 0.23]), and maternal sTfR concentrations were positively associated with child CRP concentrations at age 28 mo (0.18 [0, 0.36]). Conclusion Maternal deficiencies in vitamin A or iron during the first 2 trimesters of pregnancy may shape the trajectory of a child's immune status.
Collapse
Affiliation(s)
- Da Kyung Jung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Sophia T. Tan
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
| | - Caitlin Hemlock
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Andrew N. Mertens
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Christine P. Stewart
- Institute for Global Nutrition, University of California Davis, Davis, CA, United States
| | - Md Ziaur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Shahjahan Ali
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Rubhana Raqib
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Jessica A. Grembi
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
| | - Mohammed Rabiul Karim
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Sunny Shahriar
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Anjan Kumar Roy
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Sarah Abdelrahman
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Abul K. Shoab
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Syeda L. Famida
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Md Saheen Hossen
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Palash Mutsuddi
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Salma Akther
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Leanne Unicomb
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Lisa Hester
- Department of Medicine, University of Maryland, Baltimore, MD USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, United States
| | | | | | - Md Mahfuz Al Mamun
- Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh
| | - Kausar Parvin
- Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh
| | - John M. Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Lia C.H. Fernald
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Stephen P. Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
| | - Firdaus S. Dhabhar
- Department of Psychiatry & Behavioral Sciences, Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Audrie Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, United States
| |
Collapse
|
10
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
12
|
Abstract
Prior to widespread availability of antiretroviral therapy (ART) in sub-Saharan Africa, children who were HIV-exposed but uninfected (HEU) had increased mortality, morbidity and undernutrition compared with children who were HIV-unexposed. Scale-up of ART has led to impressive declines in vertical HIV transmission, but over 15 million children are now HEU, 90% of whom live in sub-Saharan Africa. There are ongoing health disparities among children who are HEU, with higher mortality, morbidity and stunting and modest impairments in early child development, which collectively hamper health and human capital in high prevalence countries. The underlying causes are multifactorial and include exposure to HIV, co-infections and a skewed antenatal inflammatory milieu, particularly if mothers start ART once they have advanced disease, as well as socioeconomic risk factors, which may cluster in HIV-affected households. Improving maternal health through early and sustained ART, ensuring optimal breastfeeding, and implementing evidence-based priority interventions for all children in areas of high HIV prevalence, will likely improve outcomes. A more comprehensive intervention package based on the Nurturing Care Framework may have particular benefits for children who are HEU, to close health gaps and ensure that the next generation of HIV-free children survive and thrive, and lead healthy and productive lives.
Collapse
|
13
|
Impact assessment of particulate pollution on maternal mortality in Nigeria. Sci Rep 2022; 12:19669. [PMID: 36385256 PMCID: PMC9668819 DOI: 10.1038/s41598-022-19518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, the World Health Organization reported that 20% of all global maternal deaths happened in Nigeria between 2005 and 2015. In developing countries, these maternal deaths are mainly from air pollution. Due to poor facilities and documentation, the extent of danger is not known. This research seeks to estimate the available pollutants and its direct and indirect impact on maternal mortality. Ten (10) years (2010-2019) datasets of black carbon, sulfur dioxide, dust, carbon monoxide, organic carbon particulates, sea-salts, and sulphate particulates were obtained from the second modern-era retrospective analysis for research and applications (MERRA-2). The dataset was obtained for the six geopolitical zones of Nigeria and analyzed using statistical tool, models, spatial interpolation, and risk analysis. The volumetric and radioecological risk was also analyzed. It was observed the dust content had minute volume of heavy metal and/or radionuclide particles that may be unharmful in the short term but lethal in the long term. The risk quotient and total dose rate per organism are given as 0.00000396 and 0.0000396 µGy h-1. The result in this manuscript corroborates existing data on maternal mortality in Nigeria. It is recommended that the safety of pregnant woman depends on significant efforts of authorities to enact and enforce environmental laws to mitigate air pollution.
Collapse
|
14
|
Hammel SC, Nordone S, Zhang S, Lorenzo AM, Eichner B, Moody MA, Harrington L, Gandee J, Schmidt L, Smith S, Stapleton HM, Hoffman K. Infants' diminished response to DTaP vaccine is associated with exposure to organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155782. [PMID: 35533854 DOI: 10.1016/j.scitotenv.2022.155782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) are commonly applied as flame retardants and plasticizers. Toxicological studies suggest exposure effects on immune endpoints, raising concerns as infants' OPE exposures are elevated compared to older children and adults due to hand-to-mouth behavior and breastfeeding. Here, we sought to evaluate the immune responsiveness of infants to a neoantigen (e.g., a newly encountered antigen) in the presence of OPE exposures. As a proxy for immune responsiveness, children were given three doses of the Diphtheria, Tetanus, and Pertussis (DTaP) vaccine as recommended, and diphtheria and tetanus antibodies were evaluated in serum samples collected when children were 12 months old (n = 84). Titers were compared, based on maximum sample overlap, to measurements of OPE metabolites in spot urine samples collected before vaccination (age 2 months, n = 73) and at the time of antibody assessment (12 months of age, n = 46). Metabolites of two chlorinated OPEs were significantly associated with diminished antibodies for diphtheria and tetanus. A metabolite of tris (1,3-dichloroisopropyl)phosphate (TDCIPP) measured at 2 months was associated with decreased diphtheria antibodies (-0.07 IU/mL per log10 increase in metabolite). One metabolite of tris(2-chloroisopropyl)phosphate (TCIPP) measured at 12 months was associated with decreased tetanus antibodies (-0.57 IU/mL per log10 increase in metabolite). These results provide some preliminary insights for OPE exposure impacts on vaccine responses in early life and may have important implications for immune health through childhood and adulthood.
Collapse
Affiliation(s)
- Stephanie C Hammel
- Nicholas School of Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC 27708, USA; Children's Health & Discovery Initiative, Duke School of Medicine, Chesterfield Building, 701 W. Main St., Durham, NC 27710, USA
| | - Shila Nordone
- Nicholas School of Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC 27708, USA
| | - Sharon Zhang
- Nicholas School of Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC 27708, USA
| | - Amelia M Lorenzo
- Nicholas School of Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC 27708, USA
| | - Brian Eichner
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - M Anthony Moody
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, 2 Genome Court, MSRB II, DUMC 103020, Durham, NC 27710, USA
| | - Lynn Harrington
- Duke Human Vaccine Institute, Duke University School of Medicine, 2 Genome Court, MSRB II, DUMC 103020, Durham, NC 27710, USA
| | - Joyce Gandee
- Duke Human Vaccine Institute, Duke University School of Medicine, 2 Genome Court, MSRB II, DUMC 103020, Durham, NC 27710, USA
| | - Liz Schmidt
- Duke Human Vaccine Institute, Duke University School of Medicine, 2 Genome Court, MSRB II, DUMC 103020, Durham, NC 27710, USA
| | - Stephanie Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, 2 Genome Court, MSRB II, DUMC 103020, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC 27708, USA; Children's Health & Discovery Initiative, Duke School of Medicine, Chesterfield Building, 701 W. Main St., Durham, NC 27710, USA
| | - Kate Hoffman
- Nicholas School of Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC 27708, USA; Children's Health & Discovery Initiative, Duke School of Medicine, Chesterfield Building, 701 W. Main St., Durham, NC 27710, USA.
| |
Collapse
|
15
|
Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. J Immunol Res 2022; 2022:7567708. [PMID: 35785037 PMCID: PMC9249541 DOI: 10.1155/2022/7567708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The fetal-maternal immune system determines the fate of pregnancy. The trophoblast cells not only give an active response against external stimuli but are also involved in secreting most of the cytokines. These cells have an essential function in fetal acceptance or fetal rejection. Other immune cells also play a pivotal role in carrying out a successful pregnancy. The disruption in this mechanism may lead to harmful effects on pregnancy. The placenta serves as an immune barrier in fetus protection against invading pathogens. Once the infections prevail, they may localize in placental and fetal tissues, and the presence of inflammation due to cytokines may have detrimental effects on pregnancy. Moreover, some pathogens are responsible for congenital fetal anomalies and affect almost all organs of the developing fetus. This review article is designed to address the bacterial and viral infections that threaten pregnancy and their possible outcomes. Moreover, training of the fetal immune system against the exposure of infections and the role of CD49a + NK cells in embryonic development will also be highlighted.
Collapse
|
16
|
He JR, Hirst JE, Tikellis G, Phillips GS, Ramakrishnan R, Paltiel O, Ponsonby AL, Klebanoff M, Olsen J, Murphy MFG, Håberg SE, Lemeshow S, F Olsen S, Qiu X, Magnus P, Golding J, Ward MH, Wiemels JL, Rahimi K, Linet MS, Dwyer T. Common maternal infections during pregnancy and childhood leukaemia in the offspring: findings from six international birth cohorts. Int J Epidemiol 2022; 51:769-777. [PMID: 34519790 PMCID: PMC9425514 DOI: 10.1093/ije/dyab199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Previous epidemiological studies have found positive associations between maternal infections and childhood leukaemia; however, evidence from prospective cohort studies is scarce. We aimed to examine the associations using large-scale prospective data. METHODS Data were pooled from six population-based birth cohorts in Australia, Denmark, Israel, Norway, the UK and the USA (recruitment 1950s-2000s). Primary outcomes were any childhood leukaemia and acute lymphoblastic leukaemia (ALL); secondary outcomes were acute myeloid leukaemia (AML) and any childhood cancer. Exposures included maternal self-reported infections [influenza-like illness, common cold, any respiratory tract infection, vaginal thrush, vaginal infections and urinary tract infection (including cystitis)] and infection-associated symptoms (fever and diarrhoea) during pregnancy. Covariate-adjusted hazard ratio (HR) and 95% confidence interval (CI) were estimated using multilevel Cox models. RESULTS Among 312 879 children with a median follow-up of 13.6 years, 167 leukaemias, including 129 ALL and 33 AML, were identified. Maternal urinary tract infection was associated with increased risk of any leukaemia [HR (95% CI) 1.68 (1.10-2.58)] and subtypes ALL [1.49 (0.87-2.56)] and AML [2.70 ([0.93-7.86)], but not with any cancer [1.13 (0.85-1.51)]. Respiratory tract infection was associated with increased risk of any leukaemia [1.57 (1.06-2.34)], ALL [1.43 (0.94-2.19)], AML [2.37 (1.10-5.12)] and any cancer [1.33 (1.09-1.63)]; influenza-like illness showed a similar pattern but with less precise estimates. There was no evidence of a link between other infections and any outcomes. CONCLUSIONS Urinary tract and respiratory tract infections during pregnancy may be associated with childhood leukaemia, but the absolute risk is small given the rarity of the outcome.
Collapse
Affiliation(s)
- Jian-Rong He
- Nuffield Department of Women’s and Reproductive Health, University of
Oxford, Oxford, UK
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical
Center, Guangzhou Medical University, Guangzhou, China
- George Institute for Global Health, University of Oxford,
Oxford, UK
| | - Jane E Hirst
- Nuffield Department of Women’s and Reproductive Health, University of
Oxford, Oxford, UK
- George Institute for Global Health, University of Oxford,
Oxford, UK
| | - Gabriella Tikellis
- Murdoch Children’s Research Institute, Royal Children’s Hospital,
University of Melbourne, Melbourne, VIC, Australia
| | - Gary S Phillips
- Retired from Center for Biostatistics, Department of Biomedical
Informatics, Ohio State University, Columbus, OH, USA
| | - Rema Ramakrishnan
- Nuffield Department of Women’s and Reproductive Health, University of
Oxford, Oxford, UK
- George Institute for Global Health, University of Oxford,
Oxford, UK
- University of New South Wales, Faculty of Medicine, Sydney,
NSW, Australia
| | - Ora Paltiel
- Braun School of Public Health, Hadassah-Hebrew University Medical
Center, Jerusalem, Israel
| | - Anne-Louise Ponsonby
- Murdoch Children’s Research Institute, Royal Children’s Hospital,
University of Melbourne, Melbourne, VIC, Australia
| | - Mark Klebanoff
- Center for Perinatal Research, Abigail Wexner Research Institute at
Nationwide Children's Hospital, Columbus, OH, USA
| | - Jørn Olsen
- Department of Clinical Epidemiology, Aarhus University,
Aarhus, Denmark
| | - Michael F G Murphy
- Nuffield Department of Women’s and Reproductive Health, University of
Oxford, Oxford, UK
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public
Health, Oslo, Norway
| | - Stanley Lemeshow
- Division of Biostatistics, College of Public Health, Ohio State
University, Columbus, OH, USA
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens
Serum Institut, Copenhagen, Denmark
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical
Center, Guangzhou Medical University, Guangzhou, China
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public
Health, Oslo, Norway
| | - Jean Golding
- Centre for Academic Child Health, Population Health Sciences, Bristol
Medical School, University of Bristol, Bristol, UK
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer
Epidemiology and Genetics, National Cancer Institute, Rockville, MD,
USA
| | - Joseph L Wiemels
- Department of Preventative Medicine, University of Southern
California, Los Angeles, CA, USA
and
| | - Kazem Rahimi
- Nuffield Department of Women’s and Reproductive Health, University of
Oxford, Oxford, UK
- George Institute for Global Health, University of Oxford,
Oxford, UK
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer
Institute, Bethesda, MD, USA
| | - Terence Dwyer
- Corresponding author. Nuffield Department of Women’s and
Reproductive Health, University of Oxford, Oxford OX3 9DU, UK. E-mail:
| | | |
Collapse
|
17
|
Prenatal fortified balanced energy-protein supplementation and birth outcomes in rural Burkina Faso: A randomized controlled efficacy trial. PLoS Med 2022; 19:e1004002. [PMID: 35560315 PMCID: PMC9140265 DOI: 10.1371/journal.pmed.1004002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/27/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Providing balanced energy-protein (BEP) supplements is a promising intervention to improve birth outcomes in low- and middle-income countries (LMICs); however, evidence is limited. We aimed to assess the efficacy of fortified BEP supplementation during pregnancy to improve birth outcomes, as compared to iron-folic acid (IFA) tablets, the standard of care. METHODS AND FINDINGS We conducted an individually randomized controlled efficacy trial (MIcronutriments pour la SAnté de la Mère et de l'Enfant [MISAME]-III) in 6 health center catchment areas in rural Burkina Faso. Pregnant women, aged 15 to 40 years with gestational age (GA) <21 completed weeks, were randomly assigned to receive either fortified BEP supplements and IFA (intervention) or IFA (control). Supplements were provided during home visits, and intake was supervised on a daily basis by trained village-based project workers. The primary outcome was prevalence of small-for-gestational age (SGA) and secondary outcomes included large-for-gestational age (LGA), low birth weight (LBW), preterm birth (PTB), gestational duration, birth weight, birth length, Rohrer's ponderal index, head circumference, thoracic circumference, arm circumference, fetal loss, and stillbirth. Statistical analyses followed the intention-to-treat (ITT) principle. From October 2019 to December 2020, 1,897 pregnant women were randomized (960 control and 937 intervention). The last child was born in August 2021, and birth anthropometry was analyzed from 1,708 pregnancies (872 control and 836 intervention). A total of 22 women were lost to follow-up in the control group and 27 women in the intervention group. BEP supplementation led to a mean 3.1 percentage points (pp) reduction in SGA with a 95% confidence interval (CI) of -7.39 to 1.16 (P = 0.151), indicating a wide range of plausible true treatment efficacy. Adjusting for prognostic factors of SGA, and conducting complete cases (1,659/1,708, 97%) and per-protocol analysis among women with an observed BEP adherence ≥75% (1,481/1,708, 87%), did not change the results. The intervention significantly improved the duration of gestation (+0.20 weeks, 95% CI 0.05 to 0.36, P = 0.010), birth weight (50.1 g, 8.11 to 92.0, P = 0.019), birth length (0.20 cm, 0.01 to 0.40, P = 0.044), thoracic circumference (0.20 cm, 0.04 to 0.37, P = 0.016), arm circumference (0.86 mm, 0.11 to 1.62, P = 0.025), and decreased LBW prevalence (-3.95 pp, -6.83 to -1.06, P = 0.007) as secondary outcomes measures. No differences in serious adverse events [SAEs; fetal loss (21 control and 26 intervention) and stillbirth (16 control and 17 intervention)] between the study groups were found. Key limitations are the nonblinded administration of supplements and the lack of information on other prognostic factors (e.g., infection, inflammation, stress, and physical activity) to determine to which extent these might have influenced the effect on nutrient availability and birth outcomes. CONCLUSIONS The MISAME-III trial did not provide evidence that fortified BEP supplementation is efficacious in reducing SGA prevalence. However, the intervention had a small positive effect on other birth outcomes. Additional maternal and biochemical outcomes need to be investigated to provide further evidence on the overall clinical relevance of BEP supplementation. TRIAL REGISTRATION ClinicalTrials.gov NCT03533712.
Collapse
|
18
|
Cromi A, Bertelli E, Ferraro L, Munari A, Ghezzi F. Thymic hyperplasia in a HIV-exposed unaffected fetus. Eur J Obstet Gynecol Reprod Biol 2022; 272:257-258. [PMID: 35339326 DOI: 10.1016/j.ejogrb.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Antonella Cromi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Gynecology and Obstetrics, Del Ponte Hospital, Varese, Italy.
| | - Evelina Bertelli
- Department of Gynecology and Obstetrics, Del Ponte Hospital, Varese, Italy
| | - Luigi Ferraro
- Department of Gynecology and Obstetrics, Del Ponte Hospital, Varese, Italy
| | - Alice Munari
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, Milan, Italy
| | - Fabio Ghezzi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Gynecology and Obstetrics, Del Ponte Hospital, Varese, Italy
| |
Collapse
|
19
|
Esposito S, Abu Raya B, Baraldi E, Flanagan K, Martinon Torres F, Tsolia M, Zielen S. RSV Prevention in All Infants: Which Is the Most Preferable Strategy? Front Immunol 2022; 13:880368. [PMID: 35572550 PMCID: PMC9096079 DOI: 10.3389/fimmu.2022.880368] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes a spectrum of respiratory illnesses in infants and young children that may lead to hospitalizations and a substantial number of outpatient visits, which result in a huge economic and healthcare burden. Most hospitalizations happen in otherwise healthy infants, highlighting the need to protect all infants against RSV. Moreover, there is evidence on the association between early-life RSV respiratory illness and recurrent wheezing/asthma-like symptoms As such, RSV is considered a global health priority. However, despite this, the only prevention strategy currently available is palivizumab, a monoclonal antibody (mAb) indicated in a subset of preterm infants or those with comorbidities, hence leaving the majority of the infant population unprotected against this virus. Therefore, development of prevention strategies against RSV for all infants entering their first RSV season constitutes a large unmet medical need. The aim of this review is to explore different immunization approaches to protect all infants against RSV. Prevention strategies include maternal immunization, immunization of infants with vaccines, immunization of infants with licensed mAbs (palivizumab), and immunization of infants with long-acting mAbs (e.g., nirsevimab, MK-1654). Of these, palivizumab use is restricted to a small population of infants and does not offer a solution for all-infant protection, whereas vaccine development in infants has encountered various challenges, including the immaturity of the infant immune system, highlighting that future pediatric vaccines will most likely be used in older infants (>6 months of age) and children. Consequently, maternal immunization and immunization of infants with long-acting mAbs represent the two feasible strategies for protection of all infants against RSV. Here, we present considerations regarding these two strategies covering key areas which include mechanism of action, "consistency" of protection, RSV variability, duration of protection, flexibility and optimal timing of immunization, benefit for the mother, programmatic implementation, and acceptance of each strategy by key stakeholders. We conclude that, based on current data, immunization of infants with long-acting mAbs might represent the most effective approach for protecting all infants entering their first RSV season.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Parma, Italy
| | - Bahaa Abu Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman’s and Child’s Health, Padova University Hospital, Padova, Italy
| | - Katie Flanagan
- School of Medicine, Faculty of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
| | - Federico Martinon Torres
- Genetics, Vaccines, Infections and Pediatrics Research group (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Tsolia
- Second Department of Pediatrics, National and Kapodistrian University of Athens, “A&P Kyriakou” Children’s Hospital, Athens, Greece
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe-University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Gibbs L, Fairfax KC. Altered Offspring Immunity in Maternal Parasitic Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:221-226. [PMID: 35017211 PMCID: PMC8769501 DOI: 10.4049/jimmunol.2100708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023]
Abstract
Maternal infection during pregnancy is known to alter the development and function of offspring's immune system, leading to inappropriate immune responses to common childhood infections and immunizations. Although this is an expanding field, maternal parasitic infections remain understudied. Millions of women of reproductive age are currently at risk for parasitic infection, whereas many pregnant, chronically infected women are excluded from mass drug administration due partially to a lack of resources, as well as fear of unknown adverse fetal developmental outcomes. In areas endemic for multiple parasitic infections, such as sub-Saharan Africa, there are increased rates of morbidity and mortality for various infections during early childhood in comparison with nonendemic areas. Despite evidence supporting similar immunomodulatory effects between various parasite species, there is no clear mechanistic understanding of how maternal infection reprograms offspring immunity. This brief review will compare the effects of selected maternal parasitic infections on offspring immunity.
Collapse
Affiliation(s)
- Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, USA
| | - Keke C. Fairfax
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, USA
| |
Collapse
|
21
|
Feyaerts D, Urbschat C, Gaudillière B, Stelzer IA. Establishment of tissue-resident immune populations in the fetus. Semin Immunopathol 2022; 44:747-766. [PMID: 35508672 PMCID: PMC9067556 DOI: 10.1007/s00281-022-00931-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
The immune system establishes during the prenatal period from distinct waves of stem and progenitor cells and continuously adapts to the needs and challenges of early postnatal and adult life. Fetal immune development not only lays the foundation for postnatal immunity but establishes functional populations of tissue-resident immune cells that are instrumental for fetal immune responses amidst organ growth and maturation. This review aims to discuss current knowledge about the development and function of tissue-resident immune populations during fetal life, focusing on the brain, lung, and gastrointestinal tract as sites with distinct developmental trajectories. While recent progress using system-level approaches has shed light on the fetal immune landscape, further work is required to describe precise roles of prenatal immune populations and their migration and adaptation to respective organ environments. Defining points of prenatal susceptibility to environmental challenges will support the search for potential therapeutic targets to positively impact postnatal health.
Collapse
Affiliation(s)
- Dorien Feyaerts
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| | - Christopher Urbschat
- grid.13648.380000 0001 2180 3484Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Brice Gaudillière
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA ,grid.168010.e0000000419368956Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Ina A. Stelzer
- grid.168010.e0000000419368956Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA USA
| |
Collapse
|
22
|
Dauby N, Flamand V. From maternal breath to infant's cells: Impact of maternal respiratory infections on infants 'immune responses. Front Pediatr 2022; 10:1046100. [PMID: 36419921 PMCID: PMC9676445 DOI: 10.3389/fped.2022.1046100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
In utero exposure to maternally-derived antigens following chronic infection is associated with modulation of infants 'immune response, differential susceptibility to post-natal infections and immune response toward vaccines. The maternal environment, both internal (microbiota) and external (exposure to environmental microbes) also modulates infant's immune response but also the clinical phenotype after birth. Vertical transmission of ubiquitous respiratory pathogens such as influenza and COVID-19 is uncommon. Evidence suggest that in utero exposure to maternal influenza and SARS-CoV-2 infections may have a significant impact on the developing immune system with activation of both innate and adaptive responses, possibly related to placental inflammation. Here in, we review how maternal respiratory infections, associated with airway, systemic and placental inflammation but also changes in maternal microbiota might impact infant's immune responses after birth. The clinical impact of immune modifications observed following maternal respiratory infections remains unexplored. Given the high frequencies of respiratory infections during pregnancy (COVID-19, influenza but also RSV and HMPV), the impact on global child health could be important.
Collapse
Affiliation(s)
- Nicolas Dauby
- Institute for Medical Immunology, ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Department of Infectious Diseases, CHU Saint-Pierre, Brussels, Belgium.,School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
23
|
Otsuka KS, Nielson C, Firpo MA, Park AH, Beaudin AE. Early Life Inflammation and the Developing Hematopoietic and Immune Systems: The Cochlea as a Sensitive Indicator of Disruption. Cells 2021; 10:cells10123596. [PMID: 34944105 PMCID: PMC8700005 DOI: 10.3390/cells10123596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that perinatal infection and inflammation can influence the developing immune system and may ultimately affect long-term health and disease outcomes in offspring by perturbing tissue and immune homeostasis. We posit that perinatal inflammation influences immune outcomes in offspring by perturbing (1) the development and function of fetal-derived immune cells that regulate tissue development and homeostasis, and (2) the establishment and function of developing hematopoietic stem cells (HSCs) that continually generate immune cells across the lifespan. To disentangle the complexities of these interlinked systems, we propose the cochlea as an ideal model tissue to investigate how perinatal infection affects immune, tissue, and stem cell development. The cochlea contains complex tissue architecture and a rich immune milieu that is established during early life. A wide range of congenital infections cause cochlea dysfunction and sensorineural hearing loss (SNHL), likely attributable to early life inflammation. Furthermore, we show that both immune cells and bone marrow hematopoietic progenitors can be simultaneously analyzed within neonatal cochlear samples. Future work investigating the pathogenesis of SNHL in the context of congenital infection will therefore provide critical information on how perinatal inflammation drives disease susceptibility in offspring.
Collapse
Affiliation(s)
- Kelly S. Otsuka
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA;
| | - Christopher Nielson
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Matthew A. Firpo
- Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA;
| | - Albert H. Park
- Division of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; (C.N.); (A.H.P.)
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Correspondence:
| |
Collapse
|
24
|
Risk Factors and Spatial Distribution of Schistosoma mansoni Infection among Preschool-Aged Children in Blapleu, Biankouma District, Western Côte d'Ivoire. J Trop Med 2021; 2021:6224401. [PMID: 34876909 PMCID: PMC8645407 DOI: 10.1155/2021/6224401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Schistosoma mansoni infection is common among school-age children (SAC) in western Côte d'Ivoire. Little is known on the infection rate of preschool-aged children (PSAC) due to epidemiological data deficiency and nonappropriate formulation of the drug. Thus, mass drug administration for schistosomiasis control mainly targets SAC. This study aims to identify the risk factors and spatial distribution of S. mansoni infection among PSAC in Blapleu, endemic foci of S. mansoni. We carried out a cross-sectional study in households with PSAC aged 1–6 years. A structured questionnaire was administered to mothers/guardians to obtain data on sociodemographics and water contact behaviour of children. Point-of-care circulating cathodic antigen (POC-CCA) immunodiagnostic test in urine and Kato-Katz (K-K) method with stool were used for S. mansoni infection diagnosis. Multiple logistic regression analysis was performed to determine the relationship between S. mansoni infection and sociodemographic data. Coordinates recorded by a Global Positioning System of households, water source points, and infected PSAC were used to map the spatial distribution of S. mansoni infection cases. This study was conducted with 350 PSAC aged 1–6 years. The overall infection prevalence of S. mansoni varies from 31.43% with the K-K method to 62.86% with the POC-CCA. PSAC aged 2–6 years were highly infected with S. mansoni than those aged 1-2 years (OR = 14.24, 95% CI: 5.85–34.64). PSAC who did not have access and who do not live close to the infected water source were at a significant lower risk of S. mansoni infection (OR = 0.13, 95% CI: 0.057–0.30). The main purpose of water contact of PSAC was to help their mother for laundry that occurs weekly. In Blapleu, a high risk of S. mansoni infection was observed among PSAC. Schistosomiasis control effort in such localities should include information, education, and communication, water, sanitation, and hygiene, and particularly chemotherapy targeting PSAC, reinforcing the need of the paediatric praziquantel formulation.
Collapse
|
25
|
Bliznashka L, Sudfeld CR, Garba S, Guindo O, Soumana I, Adehossi I, Langendorf C, Grais RF, Isanaka S. Prenatal supplementation with multiple micronutrient supplements or medium-quantity lipid-based nutrient supplements has limited effects on child growth up to 24 months in rural Niger: a secondary analysis of a cluster randomized trial. Am J Clin Nutr 2021; 115:738-748. [PMID: 34871344 PMCID: PMC8895211 DOI: 10.1093/ajcn/nqab404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Prenatal multiple micronutrient supplementation (MMS) and lipid-based nutrient supplementation (LNS) can improve birth outcomes relative to iron-folic acid supplementation (IFA); however, effects on child postnatal growth remain unclear. OBJECTIVES The aim was to compare the effect of prenatal MMS, medium-quantity LNS (MQ-LNS), and IFA on child growth up to 2 y of age. METHODS We conducted a cluster randomized controlled trial of prenatal nutritional supplementation in Madarounfa, Niger. Villages were randomly assigned for pregnant women to receive IFA (17 villages, 1105 women), MMS (18 villages, 1083 women) or MQ-LNS (18 villages, 1144 women). Pregnant women received nutritional supplements weekly until delivery, and children were followed up monthly from 6-8 wk to 24 mo of age. We assessed the effect of prenatal MMS and MQ-LNS compared with IFA and the effect of prenatal MMS compared with MQ-LNS on child length-for-age z scores (LAZ), weight-for-age z scores (WAZ), and weight-for-length z scores (WLZ) at 24 mo of age using generalized linear models. In secondary analyses, we used mixed-effects models to assess the trajectories of anthropometric z scores longitudinally from 6-8 wk to 24 mo. RESULTS Compared with IFA, MMS and MQ-LNS had no effect on child LAZ, WAZ, or WLZ at 24 mo of age (P > 0.05). Children in the MQ-LNS arm had significantly higher mid-upper arm circumference at 24 mo than children in the MMS arm: mean difference 0.50 cm (95% CI 0.10, 0.91 cm). WAZ and WLZ trajectories were more negative in the MQ-LNS arm compared with IFA and MMS, with lower z scores from 14 to 20 mo of age. However, WAZ and WLZ trajectories converged after 20 mo of age, and there were no differences by 24 mo of age. CONCLUSIONS Prenatal MMS and MQ-LNS had limited effect on anthropometric measures of child growth up to 24 mo of age as compared with IFA in rural Niger.
Collapse
Affiliation(s)
- Lilia Bliznashka
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christopher R Sudfeld
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dias ML, O'Connor KM, Dempsey EM, O'Halloran KD, McDonald FB. Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. Am J Physiol Regul Integr Comp Physiol 2021; 321:R879-R902. [PMID: 34612068 DOI: 10.1152/ajpregu.00307.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are crucial transmembrane receptors that form part of the innate immune response. They play a role in the recognition of various microorganisms and their elimination from the host. TLRs have been proposed as vital immunomodulators in the regulation of multiple neonatal stressors that extend beyond infection such as oxidative stress and pain. The immune system is immature at birth and takes some time to become fully established. As such, babies are especially vulnerable to sepsis at this early stage of life. Findings suggest a gestational age-dependent increase in TLR expression. TLRs engage with accessory and adaptor proteins to facilitate recognition of pathogens and their activation of the receptor. TLRs are generally upregulated during infection and promote the transcription and release of proinflammatory cytokines. Several studies report that TLRs are epigenetically modulated by chromatin changes and promoter methylation upon bacterial infection that have long-term influences on immune responses. TLR activation is reported to modulate cardiorespiratory responses during infection and may play a key role in driving homeostatic instability observed during sepsis. Although complex, TLR signaling and downstream pathways are potential therapeutic targets in the treatment of neonatal diseases. By reviewing the expression and function of key Toll-like receptors, we aim to provide an important framework to understand the functional role of these receptors in response to stress and infection in premature infants.
Collapse
Affiliation(s)
- Maria L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Taylor M, Pillaye J, Horsnell WGC. Inherent maternal type 2 immunity: Consequences for maternal and offspring health. Semin Immunol 2021; 53:101527. [PMID: 34838445 DOI: 10.1016/j.smim.2021.101527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
An inherent elevation in type 2 immunity is a feature of maternal and offspring immune systems. This has diverse implications for maternal and offspring biology including influencing success of pregnancy, offspring immune development and maternal and offspring ability to control infection and diseases such as allergies. In this review we provide a broad insight into how this immunological feature of pregnancy and early life impacts both maternal and offspring biology. We also suggest how understanding of this axis of immune influence is and may be utilised to improve maternal and offspring health.
Collapse
Affiliation(s)
- Matthew Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, The Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | - Jamie Pillaye
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Gordon Charles Horsnell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
28
|
Ma L, Papadopoulou M, Taton M, Genco F, Marchant A, Meroni V, Vermijlen D. Effector Vγ9Vδ2 T cell response to congenital Toxoplasma gondii infection. JCI Insight 2021; 6:e138066. [PMID: 34255746 PMCID: PMC8409983 DOI: 10.1172/jci.insight.138066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
A major γδ T cell population in human adult blood are the Vγ9Vδ2 T cells that are activated and expanded in a TCR-dependent manner by microbe-derived and endogenously derived phosphorylated prenyl metabolites (phosphoantigens). Vγ9Vδ2 T cells are also abundant in human fetal peripheral blood, but compared with their adult counterparts they have a distinct developmental origin, are hyporesponsive toward in vitro phosphoantigen exposure, and do not possess a cytotoxic effector phenotype. In order to obtain insight into the role of Vγ9Vδ2 T cells in the human fetus, we investigated their response to in utero infection with the phosphoantigen-producing parasite Toxoplasma gondii (T. gondii). Vγ9Vδ2 T cells expanded strongly when faced with congenital T. gondii infection, which was associated with differentiation toward potent cytotoxic effector cells. The Vγ9Vδ2 T cell expansion in utero resulted in a fetal footprint with public germline-encoded clonotypes in the Vγ9Vδ2 TCR repertoire 2 months after birth. Overall, our data indicate that the human fetus, from early gestation onward, possesses public Vγ9Vδ2 T cells that acquire effector functions following parasite infections.
Collapse
Affiliation(s)
- Ling Ma
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Taton
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Arnaud Marchant
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valeria Meroni
- IRCCS San Matteo Polyclinic, Pavia, Italy.,Molecular Medicine Department, University of Pavia, Italy
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
29
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
30
|
Castro-Sesquen YE, Tinajeros F, Bern C, Galdos-Cardenas G, Malaga ES, Valencia Ayala E, Hjerrild K, Clipman SJ, Lescano AG, Bayangos T, Castillo W, Menduiña MC, Talaat KR, Gilman RH. The Immunoglobulin M-Shed Acute Phase Antigen (SAPA)-test for the Early Diagnosis of Congenital Chagas Disease in the Time of the Elimination Goal of Mother-to-Child Transmission. Clin Infect Dis 2021; 73:e477-e484. [PMID: 32667981 DOI: 10.1093/cid/ciaa986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Diagnosis of congenital Chagas disease (CChD) in most endemic areas is based on low-sensitive microscopy at birth and 9-month immunoglobulin G (IgG), which has poor adherence. We aim to evaluate the accuracy of the Immunoglobulin M (IgM)-Shed Acute Phase Antigen (SAPA) test in the diagnosis of CChD at birth. METHODS Two cohort studies (training and validation cohorts) were conducted in 3 hospitals in the department of Santa Cruz, Bolivia. Pregnant women were screened for Chagas disease, and all infants born to seropositive mothers were followed for up to 9 months to diagnose CChD. A composite reference standard was used to determine congenital infection and was based on the parallel use of microscopy, quantitative polymerase chain reaction (qPCR), and IgM-trypomastigote excreted-secreted antigen (TESA) blot at birth and/or 1 month, and/or the detection of anti-Trypanosoma cruzi IgG at 6 or 9 months. The diagnostic accuracy of the IgM-SAPA test was calculated at birth against the composite reference standard. RESULTS Adherence to the 6- or 9-month follow-up ranged from 25.3% to 59.7%. Most cases of CChD (training and validation cohort: 76.5% and 83.7%, respectively) were detected during the first month of life using the combination of microscopy, qPCR, and/or IgM-TESA blot. Results from the validation cohort showed that when only 1 infant sample obtained at birth was evaluated, the qPCR and the IgM-SAPA test have similar accuracy (sensitivity: range, 79.1%-97.1% and 76.7%-94.3%, respectively, and specificity: 99.5% and 92.6%, respectively). CONCLUSIONS The IgM-SAPA test has the potential to be implemented as an early diagnostic tool in areas that currently rely only on microscopy.
Collapse
Affiliation(s)
- Yagahira E Castro-Sesquen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Freddy Tinajeros
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Asociación Benéfica PRISMA, Lima, Peru
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Gerson Galdos-Cardenas
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Edith S Malaga
- Infectious Diseases Research Laboratory, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edward Valencia Ayala
- Infectious Diseases Research Laboratory, School of Science and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Steven J Clipman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrés G Lescano
- Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tabitha Bayangos
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Kawsar R Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | |
Collapse
|
31
|
Nunez N, Réot L, Menu E. Neonatal Immune System Ontogeny: The Role of Maternal Microbiota and Associated Factors. How Might the Non-Human Primate Model Enlighten the Path? Vaccines (Basel) 2021; 9:584. [PMID: 34206053 PMCID: PMC8230289 DOI: 10.3390/vaccines9060584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Interactions between the immune system and the microbiome play a crucial role on the human health. These interactions start in the prenatal period and are critical for the maturation of the immune system in newborns and infants. Several factors influence the composition of the infant's microbiota and subsequently the development of the immune system. They include maternal infection, antibiotic treatment, environmental exposure, mode of delivery, breastfeeding, and food introduction. In this review, we focus on the ontogeny of the immune system and its association to microbial colonization from conception to food diversification. In this context, we give an overview of the mother-fetus interactions during pregnancy, the impact of the time of birth and the mode of delivery, the neonate gastrointestinal colonization and the role of breastfeeding, weaning, and food diversification. We further review the impact of the vaccination on the infant's microbiota and the reciprocal case. Finally, we discuss several potential therapeutic interventions that might help to improve the newborn and infant's health and their responses to vaccination. Throughout the review, we underline the main scientific questions that are left to be answered and how the non-human primate model could help enlighten the path.
Collapse
Affiliation(s)
- Natalia Nunez
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Louis Réot
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
| | - Elisabeth Menu
- CEA, Université Paris-Sud, Inserm, U1184 “Immunology of Viral Infections and Autoimmune Diseases” (IMVA-HB), IDMIT Department, IBFJ, 92265 Fontenay-aux-Roses, France; (N.N.); (L.R.)
- MISTIC Group, Department of Virology, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
32
|
Bebell LM, Parks K, Le MH, Ngonzi J, Adong J, Boatin AA, Bassett IV, Siedner MJ, Gernand AD, Roberts DJ. Placental decidual arteriopathy and vascular endothelial growth factor A (VEGF-A) expression among women with and without HIV. J Infect Dis 2021; 224:S694-S700. [PMID: 33880547 DOI: 10.1093/infdis/jiab201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Women with HIV (WHIV) are at higher risk of adverse birth outcomes. Proposed mechanisms for the increased risk include placental arteriopathy (vasculopathy) and maternal vascular malperfusion (MVM) due to antiretroviral therapy (ART) and medical comorbidities. However, these features and their underlying pathophysiologic mechanisms have not been well characterized in WHIV. METHODS We performed gross and histologic examination and immunohistochemistry staining for vascular endothelial growth factor A (VEGF-A), a key angiogenic factor, on placentas from women with one or more MVM risk factors including: weight <5 th percentile, histologic infarct or distal villous hypoplasia, nevirapine-based ART, hypertension, and pre-eclampsia/eclampsia during pregnancy. We compared pathologic characteristics by maternal HIV serostatus. RESULTS A total of 27/41 (66%) placentas assessed for VEGF-A were from WHIV. Mean maternal age was 27 years. Among WHIV, median CD4 T-cell count was 440 cells/mm 3 and HIV viral load was undetectable in 74%. Of VEGF-A stained placentas, both decidua and villous endothelium tissue layers were present in 36 (88%). VEGF-A was detected in 31/36 (86%) with decidua present, and 39/40 (98%) with villous endothelium present. There were no differences in VEGF-A presence in any tissue type by maternal HIV serostatus (P=0.28-1.0). MVM was more common in placentas selected for VEGF-A staining (51 versus 8%, P<0.001). CONCLUSIONS VEGF-A immunostaining was highly prevalent, and staining pattern did not differ by maternal HIV serostatus among those with MVM risk factors, indicating the role of VEGF-A in placental vasculopathy may not differ by maternal HIV serostatus.
Collapse
Affiliation(s)
- Lisa M Bebell
- Massachusetts General Hospital Division of Infectious Diseases, Boston, MA, USA.,MassGeneral Global Health, Massachusetts General Hospital, Boston, MA, USA.,Medical Practice Evaluation Center of Massachusetts General Hospital, Boston, MA, USA
| | - Kalynn Parks
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Mylinh H Le
- Medical Practice Evaluation Center of Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Ngonzi
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Julian Adong
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Adeline A Boatin
- MassGeneral Global Health, Massachusetts General Hospital, Boston, MA, USA.,Massachusetts General Hospital Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Ingrid V Bassett
- Massachusetts General Hospital Division of Infectious Diseases, Boston, MA, USA.,Medical Practice Evaluation Center of Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Siedner
- Massachusetts General Hospital Division of Infectious Diseases, Boston, MA, USA.,MassGeneral Global Health, Massachusetts General Hospital, Boston, MA, USA.,Medical Practice Evaluation Center of Massachusetts General Hospital, Boston, MA, USA
| | - Alison D Gernand
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
33
|
Lohman-Payne B, Koster J, Gabriel B, Chilengi R, Forman LS, Heeren T, Duffy CR, Herlihy J, Crimaldi S, Gill C, Chavuma R, Mwananyanda L, Thea DM. Persistent Immune activation in HIV-Infected Pregnant Women Initiating cART Post Conception. J Infect Dis 2021; 225:1162-1167. [PMID: 33780543 PMCID: PMC8974832 DOI: 10.1093/infdis/jiab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the impact of human immunodeficiency virus (HIV) and combination antiretroviral therapy (cART) on immune activation during pregnancy in a Zambian cohort of HIV-exposed but uninfected children followed up from birth. Activated CD8+ T cells (CD38+ and HLA-DR+) were compared among HIV-uninfected (n = 95), cART experienced HIV-infected (n = 111), and cART-naive HIV-infected (n = 21) pregnant women. Immune activation was highest among HIV-infected/cART-naive women but decreased during pregnancy. Immune activation HIV-infected women who started cART during pregnancy was reduced but not to levels similar to those in HIV-uninfected women. The effects of elevated maternal immune activation in pregnancy on subsequent infant health and immunity remain to be determined.
Collapse
Affiliation(s)
- Barbara Lohman-Payne
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, USA
| | - Jacob Koster
- National Emerging Infectious Diseases Laboratories, Boston University Medical Campus, Boston Massachusetts, USA
| | - Benjamin Gabriel
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, USA
| | - Roma Chilengi
- Center for Infectious Disease Research Zambia, Lusaka, Zambia
| | - Leah S Forman
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Tim Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Cassandra R Duffy
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical, School, Boston, Massachusetts, USA
| | - Julie Herlihy
- Department of Pediatrics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Steven Crimaldi
- Department of Global Health Boston University School of Public Health, Boston, Massachusetts, USA
| | - Chris Gill
- Department of Global Health Boston University School of Public Health, Boston, Massachusetts, USA
| | - Roy Chavuma
- Dept of Surgery, School of Medicine, University of Zambia, Lusaka, Zambia.,Right to Care-Zambia, Lusaka, Zambia.,Deceased due to Covid-19
| | - Lawrence Mwananyanda
- Department of Global Health Boston University School of Public Health, Boston, Massachusetts, USA.,Right to Care-Zambia, Lusaka, Zambia
| | - Donald M Thea
- Department of Global Health Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Brief Report: Chronic Placental Inflammation Among Women Living With HIV in Uganda. J Acquir Immune Defic Syndr 2021; 85:320-324. [PMID: 33060419 DOI: 10.1097/qai.0000000000002446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND HIV-exposed, uninfected (HEU) children have poorer early-life outcomes than HIV-unexposed children. The determinants of adverse health outcomes among HEU children are poorly understood but may result from chronic placental inflammation (CPI). SETTING AND METHODS We enrolled 176 pregnant women living with HIV (WLWH) taking antiretroviral therapy in southwestern Uganda and 176 HIV-uninfected women to compare CPI prevalence by maternal HIV serostatus. Placentas were evaluated histologically by an expert pathologist for presence of CPI, defined as chronic chorioamnionitis, plasma cell deciduitis, villitis of unknown etiology, or chronic histiocytic intervillositis. Placentas with CPI were additionally immunostained with CD3 (T cell), CD20 (B cell), and CD68 (macrophage) markers to characterize inflammatory cell profiles. RESULTS WLWH and HIV-uninfected women had similar age, parity, and gestational age. Among WLWH, the mean CD4 count was 480 cells/µL, and 74% had an undetectable HIV viral load. We detected CPI in 16 (9%) placentas from WLWH and 24 (14%) from HIV-uninfected women (P = 0.18). Among WLWH, CPI was not associated with the CD4 count or HIV viral load. Villitis of unknown etiology was twice as common among HIV-uninfected women than WLWH (10 vs. 5%, P = 0.04). Among placentas with CPI, more villous inflammatory cells stained for CD3 or CD68 among HIV-uninfected women than WLWH (79% vs. 46%, P = 0.07). CONCLUSIONS CPI prevalence did not differ by HIV serostatus. T-cell (CD3) and macrophage (CD68) markers were more prevalent in placental inflammatory cells from HIV-uninfected women. Our results do not support CPI as a leading mechanism for poor outcomes among HEU children in the antiretroviral therapy era.
Collapse
|
35
|
Driciru E, Koopman JPR, Cose S, Siddiqui AA, Yazdanbakhsh M, Elliott AM, Roestenberg M. Immunological Considerations for Schistosoma Vaccine Development: Transitioning to Endemic Settings. Front Immunol 2021; 12:635985. [PMID: 33746974 PMCID: PMC7970007 DOI: 10.3389/fimmu.2021.635985] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite mass drug administration programmes with praziquantel, the prevalence of schistosomiasis remains high. A vaccine is urgently needed to control transmission of this debilitating disease. As some promising schistosomiasis vaccine candidates are moving through pre-clinical and clinical testing, we review the immunological challenges that these vaccine candidates may encounter in transitioning through the clinical trial phases in endemic settings. Prior exposure of the target population to schistosomes and other infections may impact vaccine response and efficacy and therefore requires considerable attention. Schistosomes are known for their potential to induce T-reg/IL-10 mediated immune suppression in populations which are chronically infected. Moreover, endemicity of schistosomiasis is focal whereby target and trial populations may exhibit several degrees of prior exposure as well as in utero exposure which may increase heterogeneity of vaccine responses. The age dependent distribution of exposure and development of acquired immunity, and general differences in the baseline immunological profile, adds to the complexity of selecting suitable trial populations. Similarly, prior or concurrent infections with other parasitic helminths, viral and bacterial infections, may alter immunological responses. Consequently, treatment of co-infections may benefit the immunogenicity of vaccines and may be considered despite logistical challenges. On the other hand, viral infections leave a life-long immunological imprint on the human host. Screening for serostatus may be needed to facilitate interpretation of vaccine responses. Co-delivery of schistosome vaccines with PZQ is attractive from a perspective of implementation but may complicate the immunogenicity of schistosomiasis vaccines. Several studies have reported PZQ treatment to induce both transient and long-term immuno-modulatory effects as a result of tegument destruction, worm killing and subsequent exposure of worm antigens to the host immune system. These in turn may augment or antagonize vaccine immunogenicity. Understanding the complex immunological interactions between vaccine, co-infections or prior exposure is essential in early stages of clinical development to facilitate phase 3 clinical trial design and implementation policies. Besides well-designed studies in different target populations using schistosome candidate vaccines or other vaccines as models, controlled human infections could also help identify markers of immune protection in populations with different disease and immunological backgrounds.
Collapse
Affiliation(s)
- Emmanuella Driciru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, TX, United States
- Department of Internal Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
36
|
Fetal Macrophages Exposed to Salmonella Antigens Elicit Protective Immunity Against Overwhelming Salmonella Challenge in A Murine Model. Biomedicines 2021; 9:biomedicines9030245. [PMID: 33804435 PMCID: PMC8001423 DOI: 10.3390/biomedicines9030245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the evidence for fetal immunization following maternal infection, it remained a mystery how the fetal immune system was primed by vertically-transmitted pathogens or microbial antigens, especially before its full maturation. We previously demonstrated the capacity of fetal macrophages for endocytosing oncoprotein and allergens to bridge towards adaptive immunity in postnatal life. To investigate the immunological consequences of fetal contact with microbial antigens and the role of fetal macrophages in the defense against infection before T-cell development, we exposed gestational day 14 murine fetuses and their macrophages to flagellin and heat-killed Salmonella Typhimurium. Recipients with in utero exposure to Salmonella antigens or adoptive transfer of microbial antigen-loaded fetal macrophages were examined for immune responses to Salmonella antigens and resistance to virulent Salmonella challenge. Fetal exposure to microbial antigens or adoptive transfer of microbial antigen-loaded fetal macrophages could confer antigen-specific adaptive immunity. However, protective immunity against lethal Salmonella challenge was only granted to those receiving heat-killed Salmonella antigens, presenting as heightened recall responses of serum anti-lipopolysaccharide immunoglobulins and interferon-gamma. In immunized recipients surviving Salmonella challenge, their serum transfer to succeeding recipients provided immediate protection from lethal Salmonella challenge in preference to lymphocyte transfer, indicating a more active role of humoral immunity in the prevention of Salmonella invasiveness. Our study sheds insight on the role of fetal macrophages in immunogenicity to transplacental pathogens regardless of fetal lymphocyte maturity, paving the way for fetal macrophage therapies to enhance vaccine responsiveness or increase resistance to pathogenic microorganisms in perinatal life.
Collapse
|
37
|
Swartz TH, Bradford BJ, Clay JS. Intergenerational cycle of disease: Maternal mastitis is associated with poorer daughter performance in dairy cattle. J Dairy Sci 2021; 104:4537-4548. [PMID: 33612233 DOI: 10.3168/jds.2020-19249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022]
Abstract
Adverse prenatal environments, such as maternal stress and infections, can influence the health and performance of offspring. Mastitis is the most common disease in dairy cattle, yet the intergenerational effects have not been specifically investigated. Therefore, we examined the associations between the dam's mammary gland health and daughter performance using somatic cell score (SCS) as a proxy for mammary health. Using data obtained from Dairy Records Management Systems (Raleigh, NC), we linked daughter records with their dam's records for the lactation in which the daughter was conceived. Linear and quadratic relationships of dam mean SCS with the daughter's age at first calving (AFC; n = 15,992 daughters, 4,366 herds), first- (n = 15,119 daughters, 4,213 herds) and second-lactation SCS (n = 3,570 daughters, 1,554 herds), first- and second-lactation mature-equivalent 305-d milk yield, and milk component yields were assessed using mixed linear regression models. We uncovered a phenomenon similar to those found in human and mouse models examining prenatal inflammation effects, whereby daughters born from dams with elevated SCS had poorer performance. Dam mean SCS was positively associated with daughter's AFC and first- and second-lactation mean SCS. Furthermore, for every 1-unit increase in dam mean SCS, daughter's first- and second-lactation mature-equivalent fat yield declined by 0.34% and 0.91% (-1.6 ± 0.49 kg, -4.0 ± 1.0 kg, respectively), although no effect was found on first- or second-lactation milk or milk protein yield. When accounting for genetics, daughter SCS, and AFC (first lactation only), dam mean SCS was associated with reduced second-lactation milk fat yield (-3.5 ± 1.8 kg/unit SCS), and a tendency was found for first-lactation milk fat yield (-1.9 ± 1.0 kg/unit SCS). Taken together, the association of greater dam mean SCS with lesser daughter milk fat yield is likely due to a few underlying mechanisms, in particular, a predisposition for mastitis and alterations in the epigenome controlling milk fat synthesis. As such, future studies should examine epigenetic mechanisms as a potential underpinning of this phenomenon.
Collapse
Affiliation(s)
- T H Swartz
- Department of Animal Science, Michigan State University, East Lansing 48824.
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J S Clay
- Dairy Records Management Systems, Raleigh, NC 27603
| |
Collapse
|
38
|
Barros M, Teixeira D, Vilanova M, Correia A, Teixeira N, Borges M. Vaccines in Congenital Toxoplasmosis: Advances and Perspectives. Front Immunol 2021; 11:621997. [PMID: 33658997 PMCID: PMC7917294 DOI: 10.3389/fimmu.2020.621997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 12/03/2022] Open
Abstract
Congenital toxoplasmosis has a high impact on human disease worldwide, inducing serious consequences from fetus to adulthood. Despite this, there are currently no human vaccines available to prevent this infection. Most vaccination studies against Toxoplasma gondii infection used animal models in which the infection was established by exogenous inoculation. Here, we review recent research on potential T. gondii vaccines using animal models in which infection was congenitally established. Endeavors in this field have so far revealed that live or subunit vaccines previously found to confer protection against extrinsically established infections can also protect, at least partially, from vertically transmitted infection. Nevertheless, there is no consensus on the more adequate immune response to protect the host and the fetus in congenital infection. Most of the vaccination studies rely on the assessment of maternal systemic immune responses, quantification of parasitic loads in the fetuses, and survival indexes and/or brain parasitic burden in the neonates. More research must be carried out not only to explore new vaccines but also to further study the nature of the elicited immune protection at the maternal-fetal interface. Particularly, the cellular and molecular effector mechanisms at the maternal-fetal interface induced by immunization remain poorly characterized. Deeper knowledge on the immune response at this specific location will certainly help to refine the vaccine-induced immunity and, consequently, to provide the most effective and safest protection against T. gondii vertical infection.
Collapse
Affiliation(s)
- Mariana Barros
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Daniela Teixeira
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Manuel Vilanova
- Immunobiology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Alexandra Correia
- Immunobiology Group, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Natercia Teixeira
- Applied Molecular Biosciences Unit/Rede de Química e Tecnologia (UCIBIO/REQUIMTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Margarida Borges
- Applied Molecular Biosciences Unit/Rede de Química e Tecnologia (UCIBIO/REQUIMTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Can what have we learnt about BCG vaccination in the last 20 years help us to design a better tuberculosis vaccine? Vaccine 2021; 40:1525-1533. [PMID: 33583672 PMCID: PMC8899334 DOI: 10.1016/j.vaccine.2021.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/22/2023]
Abstract
The BCG vaccine provides variable protection against tuberculosis. Correlates of protection remain elusive, but IFNγ can measure immunogenicity. BCG vaccination induces innate immune training as well as antigen-specific immunity. Many factors may contribute to the variable responses to BCG vaccination. Prior BCG vaccination or factors modulating its efficacy may affect new TB vaccines. Innate training may also provide non-specific protection against infectious diseases. New TB vaccines should not lose BCG's beneficial non-specific effects.
The BCG vaccine will, in 2021, have been in use for 100 years. Much remains to be understood, including the reasons for its variable efficacy against pulmonary tuberculosis in adults. This review will discuss what has been learnt about the BCG vaccine in the last two decades, and whether this new information can be exploited to improve its efficacy, by enhancing its ability to induce either antigen-specific and/or non-specific effects. Many factors affect both the immunogenicity of BCG and its protective efficacy, highlighting the challenges of working with a live vaccine in man, but new insights may enable us to exploit better what BCG can do.
Collapse
|
40
|
Semmes EC, Chen JL, Goswami R, Burt TD, Permar SR, Fouda GG. Understanding Early-Life Adaptive Immunity to Guide Interventions for Pediatric Health. Front Immunol 2021; 11:595297. [PMID: 33552052 PMCID: PMC7858666 DOI: 10.3389/fimmu.2020.595297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/04/2020] [Indexed: 01/16/2023] Open
Abstract
Infants are capable of mounting adaptive immune responses, but their ability to develop long-lasting immunity is limited. Understanding the particularities of the neonatal adaptive immune system is therefore critical to guide the design of immune-based interventions, including vaccines, in early life. In this review, we present a thorough summary of T cell, B cell, and humoral immunity in early life and discuss infant adaptive immune responses to pathogens and vaccines. We focus on the differences between T and B cell responses in early life and adulthood, which hinder the generation of long-lasting adaptive immune responses in infancy. We discuss how knowledge of early life adaptive immunity can be applied when developing vaccine strategies for this unique period of immune development. In particular, we emphasize the use of novel vaccine adjuvants and optimization of infant vaccine schedules. We also propose integrating maternal and infant immunization strategies to ensure optimal neonatal protection through passive maternal antibody transfer while avoiding hindering infant vaccine responses. Our review highlights that the infant adaptive immune system is functionally distinct and uniquely regulated compared to later life and that these particularities should be considered when designing interventions to promote pediatric health.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Medical Scientist Training Program, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Jui-Lin Chen
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Ria Goswami
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Trevor D. Burt
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
- Division of Neonatology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| |
Collapse
|
41
|
Cinicola B, Conti MG, Terrin G, Sgrulletti M, Elfeky R, Carsetti R, Fernandez Salinas A, Piano Mortari E, Brindisi G, De Curtis M, Zicari AM, Moschese V, Duse M. The Protective Role of Maternal Immunization in Early Life. Front Pediatr 2021; 9:638871. [PMID: 33996688 PMCID: PMC8113393 DOI: 10.3389/fped.2021.638871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
With birth, the newborn is transferred from a quasi-sterile environment to the outside world. At this time, the neonatal immune system is inexperienced and continuously subject to a process of development as it encounters different antigenic stimuli after birth. It is initially characterized by a bias toward T helper 2 phenotype, reduced T helper 1, and cytotoxic responses to microbial stimuli, low levels of memory, and effector T and B cells and a high production of suppressive T regulatory cells. The aim of this setting, during fetal life, is to maintain an anti-inflammatory state and immune-tolerance. Maternal antibodies are transferred during pregnancy through the placenta and, in the first weeks of life of the newborn, they represent a powerful tool for protection. Thus, optimization of vaccination in pregnancy represents an important strategy to reduce the burden of neonatal infections and sepsis. Beneficial effects of maternal immunization are universally recognized, although the optimal timing of vaccination in pregnancy remains to be defined. Interestingly, the dynamic exchange that takes place at the fetal-maternal interface allows the transfer not only of antibodies, but also of maternal antigen presenting cells, probably in order to stimulate the developing fetal immune system in a harmless way. There are still controversial effects related to maternal immunization including the so called "immunology blunting," i.e., a dampened antibody production following infant's vaccination in those infants who received placentally transferred maternal immunity. However, clinical relevance of this phenomenon is still not clear. This review will provide an overview of the evolution of the immune system in early life and discuss the benefits of maternal vaccination. Current maternal vaccination policies and their rationale will be summarized on the road to promising approaches to enhance immunity in the neonate.
Collapse
Affiliation(s)
- Bianca Cinicola
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy.,Ph.D. Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, United Kingdom.,Infection, Immunity & Inflammation Department, Institute of Child Health, University College London (UCL), London, United Kingdom
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ane Fernandez Salinas
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Brindisi
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mario De Curtis
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Policlinico Tor Vergata, Rome, Italy.,Department Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Marzia Duse
- Department of Maternal and Child Health and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
42
|
Kakuru A, Roh ME, Kajubi R, Ochieng T, Ategeka J, Ochokoru H, Nakalembe M, Clark TD, Ruel T, Staedke SG, Chandramohan D, Havlir DV, Kamya MR, Dorsey G, Jagannathan P. Infant sex modifies associations between placental malaria and risk of malaria in infancy. Malar J 2020; 19:449. [PMID: 33272281 PMCID: PMC7713316 DOI: 10.1186/s12936-020-03522-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023] Open
Abstract
Background Placental malaria (PM) has been associated with a higher risk of malaria during infancy. However, it is unclear whether this association is causal, and is modified by infant sex, and whether intermittent preventive treatment in pregnancy (IPTp) can reduce infant malaria by preventing PM. Methods Data from a birth cohort of 656 infants born to HIV-uninfected mothers randomised to IPTp with dihydroartemisinin–piperaquine (DP) or Sulfadoxine–pyrimethamine (SP) was analysed. PM was categorized as no PM, active PM (presence of parasites), mild-moderate past PM (> 0–20% high powered fields [HPFs] with pigment), or severe past PM (> 20% HPFs with pigment). The association between PM and incidence of malaria in infants stratified by infant sex was examined. Causal mediation analysis was used to test whether IPTp can impact infant malaria incidence via preventing PM. Results There were 1088 malaria episodes diagnosed among infants during 596.6 person years of follow-up. Compared to infants born to mothers with no PM, the incidence of malaria was higher among infants born to mothers with active PM (adjusted incidence rate ratio [aIRR] 1.30, 95% CI 1.00–1.71, p = 0.05) and those born to mothers with severe past PM (aIRR 1.28, 95% CI 0.89–1.83, p = 0.18), but the differences were not statistically significant. However, when stratifying by infant sex, compared to no PM, severe past PM was associated a higher malaria incidence in male (aIRR 2.17, 95% CI 1.45–3.25, p < 0.001), but not female infants (aIRR 0.74, 95% CI 0.46–1.20, p = 0.22). There were no significant associations between active PM or mild-moderate past PM and malaria incidence in male or female infants. Male infants born to mothers given IPTp with DP had significantly less malaria in infancy than males born to mothers given SP, and 89.7% of this effect was mediated through prevention of PM. Conclusion PM may have more severe consequences for male infants, and interventions which reduce PM could mitigate these sex-specific adverse outcomes. More research is needed to better understand this sex-bias between PM and infant malaria risk. Trial registration ClinicalTrials.gov, NCT02793622. Registered 8 June 2016, https://clinicaltrials.gov/ct2/show/NCT02793622
Collapse
Affiliation(s)
- Abel Kakuru
- London School of Hygiene and Tropical Medicine, London, UK. .,Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda.
| | - Michelle E Roh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Teddy Ochieng
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - John Ategeka
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Harriet Ochokoru
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Miriam Nakalembe
- Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Tamara D Clark
- Department of Medicine, University of California, San Francisco, USA
| | - Theodore Ruel
- Department of Pediatrics, University of California, San Francisco, USA
| | | | | | - Diane V Havlir
- Department of Medicine, University of California, San Francisco, USA
| | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | | |
Collapse
|
43
|
Jain N. The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes 2020; 12:1824564. [PMID: 33043833 PMCID: PMC7781677 DOI: 10.1080/19490976.2020.1824564] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
The early life immune system is characterized by unique developmental milestones. Functionally diverse immune cells arise from distinct waves of hematopoietic stem cells, a phenomenon referred to as 'layered' immunity. This stratified development of immune cells extends to lineages of both innate and adaptive cells. The defined time window for the development of these immune cells lends itself to the influence of specific exposures typical of the early life period. The perinatal immune system develops in a relatively sterile fetal environment but emerges into one filled with a multitude of antigenic encounters. A major burden of this comes in the form of the microbiota that is being newly established at mucosal surfaces of the newborn. Accumulating evidence suggests that early life microbial exposures, including those arising in utero, can imprint long-lasting changes in the offspring's immune system and determine disease risk throughout life. In this review, I highlight unique features of early life immunity and explore the role of intestinal bacteria in educating the developing immune system.
Collapse
Affiliation(s)
- Nitya Jain
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA, USA
| |
Collapse
|
44
|
Kakuru A, Jagannathan P, Kajubi R, Ochieng T, Ochokoru H, Nakalembe M, Clark TD, Ruel T, Staedke SG, Chandramohan D, Havlir DV, Kamya MR, Dorsey G. Impact of intermittent preventive treatment of malaria in pregnancy with dihydroartemisinin-piperaquine versus sulfadoxine-pyrimethamine on the incidence of malaria in infancy: a randomized controlled trial. BMC Med 2020; 18:207. [PMID: 32772921 PMCID: PMC7416391 DOI: 10.1186/s12916-020-01675-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment of malaria during pregnancy (IPTp) with dihydroartemisinin-piperaquine (DP) significantly reduces the burden of malaria during pregnancy compared to sulfadoxine-pyrimethamine (SP), the current standard of care, but its impact on the incidence of malaria during infancy is unknown. METHODS We conducted a double-blind randomized trial to compare the incidence of malaria during infancy among infants born to HIV-uninfected pregnant women who were randomized to monthly IPTp with either DP or SP. Infants were followed for all their medical care in a dedicated study clinic, and routine assessments were conducted every 4 weeks. At all visits, infants with fever and a positive thick blood smear were diagnosed and treated for malaria. The primary outcome was malaria incidence during the first 12 months of life. All analyses were done by modified intention to treat. RESULTS Of the 782 women enrolled, 687 were followed through delivery from December 9, 2016, to December 5, 2017, resulting in 678 live births: 339 born to mothers randomized to SP and 339 born to those randomized to DP. Of these, 581 infants (85.7%) were followed up to 12 months of age. Overall, the incidence of malaria was lower among infants born to mothers randomized to DP compared to SP, but the difference was not statistically significant (1.71 vs 1.98 episodes per person-year, incidence rate ratio (IRR) 0.87, 95% confidence interval (CI) 0.73-1.03, p = 0.11). Stratifying by infant sex, IPTp with DP was associated with a lower incidence of malaria among male infants (IRR 0.75, 95% CI 0.58-0.98, p = 0.03) but not female infants (IRR 0.99, 95% CI 0.79-1.24, p = 0.93). CONCLUSION Despite the superiority of DP for IPTp, there was no evidence of a difference in malaria incidence during infancy in infants born to mothers who received DP compared to those born to mothers who received SP. Only male infants appeared to benefit from IPTp-DP suggesting that IPTp-DP may provide additional benefits beyond birth. Further research is needed to further explore the benefits of DP versus SP for IPTp on the health outcomes of infants. TRIAL REGISTRATION ClinicalTrials.gov, NCT02793622 . Registered on June 8, 2016.
Collapse
Affiliation(s)
- Abel Kakuru
- London School of Hygiene and Tropical Medicine, London, UK. .,Infectious Diseases Research Collaboration, Kampala, Uganda.
| | | | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Teddy Ochieng
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Miriam Nakalembe
- Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Tamara D Clark
- Department of Medicine, University of California, San Francisco, USA
| | - Theodore Ruel
- Department of Paediatrics, University of California, San Francisco, USA
| | | | | | - Diane V Havlir
- Department of Medicine, University of California, San Francisco, USA
| | - Moses R Kamya
- School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| |
Collapse
|
45
|
Saso A, Kampmann B. Maternal Immunization: Nature Meets Nurture. Front Microbiol 2020; 11:1499. [PMID: 32849319 PMCID: PMC7396522 DOI: 10.3389/fmicb.2020.01499] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccinating women in pregnancy (i.e., maternal immunization) has emerged as a promising tool to tackle infant morbidity and mortality worldwide. This approach nurtures a 'gift of nature,' whereby antibody is transferred from mother to fetus transplacentally during pregnancy, or postnatally in breast milk, thereby providing passive, antigen-specific protection against infections in the first few months of life, a period of increased immune vulnerability for the infant. In this review, we briefly summarize the rationale for maternal immunization programs and the landscape of vaccines currently in use or in the pipeline. We then direct the focus to the underlying biological phenomena, including the main mechanisms by which maternally derived antibody is transferred efficiently to the infant, at the placental interface or in breast milk; important research models and methodological approaches to interrogate these processes, particularly in the context of recent advances in systems vaccinology; the potential biological and clinical impact of high maternal antibody titres on neonatal ontogeny and subsequent infant vaccine responses; and key vaccine- and host-related factors influencing the maternal-infant dyad across different environments. Finally, we outline important gaps in knowledge and suggest future avenues of research on this topic, proposing potential strategies to ensure optimal testing, delivery and implementation of maternal vaccination programs worldwide.
Collapse
Affiliation(s)
- Anja Saso
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| | - Beate Kampmann
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Vaccines and Immunity Theme, MRC Unit The Gambia at LSHTM, Banjul, Gambia
| |
Collapse
|
46
|
Fievet N, Ezinmegnon S, Agbota G, Sossou D, Ladekpo R, Gbedande K, Briand V, Cottrell G, Vachot L, Yugueros Marcos J, Pachot A, Textoris J, Blein S, Lausten-Thomsen U, Massougbodji A, Bagnan L, Tchiakpe N, d'Almeida M, Alao J, Dossou-Dagba I, Tissieres P. SEPSIS project: a protocol for studying biomarkers of neonatal sepsis and immune responses of infants in a malaria-endemic region. BMJ Open 2020; 10:e036905. [PMID: 32709653 PMCID: PMC7380952 DOI: 10.1136/bmjopen-2020-036905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Neonatal sepsis outreaches all causes of neonatal mortality worldwide and remains a major societal burden in low and middle income countries. In addition to limited resources, endemic morbidities, such as malaria and prematurity, predispose neonates and infants to invasive infection by altering neonatal immune response to pathogens. Nevertheless, thoughtful epidemiological, diagnostic and immunological evaluation of neonatal sepsis and the impact of gestational malaria have never been performed. METHODS AND ANALYSIS A prospective longitudinal multicentre follow-up of 580 infants from birth to 3 months of age in urban and suburban Benin will be performed. At delivery, and every other week, all children will be examined and clinically evaluated for occurrence of sepsis. At delivery, cord blood systematic analysis of selected plasma and transcriptomic biomarkers (procalcitonin, interleukin (IL)-6, IL-10, IP10, CD74 and CX3CR1) associated with sepsis pathophysiology will be evaluated in all live births as well as during the follow-up, and when sepsis will be suspected. In addition, whole blood response to selected innate stimuli and extensive peripheral blood mononuclear cells phenotypic characterisation will be performed. Reference intervals specific to sub-Saharan neonates will be determined from this cohort and biomarkers performances for neonatal sepsis diagnosis and prognosis tested. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Comité d'Ethique de la Recherche - Institut des Sciences Biomédicales Appliquées (CER-ISBA 85 - 5 April 2016, extended on 3 February 2017). Results will be disseminated through international presentations at scientific meetings and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER ClinicalTrials.gov registration number: NCT03780712.
Collapse
Affiliation(s)
- Nadine Fievet
- Institut de Recherche pour le Développement (IRD), Mère et enfant face aux infections tropicales (UMR216), Paris, France
- COMUE Sorbonne Paris Cité, Universite Paris Descartes, Paris, Île-de-France, France
| | - Sem Ezinmegnon
- Department of Microbiology, Institut de Biologie Integrative de la Cellule, Gif-sur-Yvette, France
- Medical Diagnostic Discovery Department (MD3), bioMerieux SA, Marcy l'Etoile, Rhône-Alpes, France
| | - Gino Agbota
- UMR216-MERIT, French National Research Institute for Sustainable Development (IRD), Université Paris Descartes, Paris, France
- Institut de Recherche Clinique du Bénin, Calavi, Benin
| | - Darius Sossou
- Institut de Recherche Clinique du Bénin, Calavi, Benin
| | | | - Komi Gbedande
- Institut de Recherche Clinique du Benin, Cotonou, Benin
| | - Valerie Briand
- Institut de Recherche pour le Développement (IRD), Mère et enfant face aux infections tropicales (UMR216), Paris, France
| | - Gilles Cottrell
- UMR216, Institut de Recherche pour le Développement, Cotonou, Benin
- Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Laurence Vachot
- Medical Diagnostic Discovery Department (MD3), bioMerieux SA, Marcy l'Etoile, Rhône-Alpes, France
| | - Javier Yugueros Marcos
- Medical Diagnostic Discovery Department (MD3), bioMerieux SA, Marcy l'Etoile, Rhône-Alpes, France
| | - Alexandre Pachot
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, bioMerieux, LYON cedex 03, France
| | - Julien Textoris
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, bioMerieux, LYON cedex 03, France
- Département d'Anesthésie et de Réanimation, Hospices Civils de Lyon, LYON Cedex 03, France
| | - Sophie Blein
- Medical Diagnostic Discovery Department (MD3), bioMerieux SA, Marcy l'Etoile, Rhône-Alpes, France
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, bioMerieux, LYON cedex 03, France
| | - Ulrik Lausten-Thomsen
- Pediatric Intensive Care, Hopitaux Universitaires Paris-Sud, Le Kremlin-Bicetre, France
| | | | - Lehila Bagnan
- Institut de Recherche Clinique du Bénin, Calavi, Benin
- Department of Paediatric, National University Hospital Center (CNHU), Cotonou, Benin
| | - Nicole Tchiakpe
- Institut de Recherche Clinique du Bénin, Calavi, Benin
- Department of Paediatric, Centre Hospitalier Universitaire de la Mère et de l'Enfant Lagune (CHUMEL), Cotonou, Benin
| | - Marceline d'Almeida
- Department of Paediatric, National University Hospital Center (CNHU), Cotonou, Benin
- Institut de Recherche Clinique du Benin, Calavi, Île-de-France, Benin
| | | | | | - Pierre Tissieres
- Department of Microbiology, Institut de Biologie Integrative de la Cellule, Gif-sur-Yvette, France
- Pediatric Intensive Care, Hopitaux Universitaires Paris-Sud, Le Kremlin-Bicetre, France
| |
Collapse
|
47
|
Impact of Helminth Infections during Pregnancy on Vaccine Immunogenicity in Gabonese Infants. Vaccines (Basel) 2020; 8:vaccines8030381. [PMID: 32664597 PMCID: PMC7563176 DOI: 10.3390/vaccines8030381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Helminth infections are common in sub-Saharan Africa. Besides direct clinical effects, a bias towards a T helper type 2 (Th2) cell immune response is observed. The consequences of parasite infection during pregnancy for the mother and particularly for the fetus and the newborn can be severe and may include impaired immune response during acute infection and vaccination. Here, we present data of immune responses to vaccines given within the expanded program on immunization (EPI) of infants born to helminth infected or non-infected mothers. The study was conducted in Lambaréné and surroundings, Gabon. Maternal helminth infection was diagnosed microscopically using the Kato-Katz method for soil-transmitted helminths (STH), urine filtration for Schistosoma haematobium infections and the saponin-based method for filarial infections. Plasma antibody levels to different vaccine antigens were measured in mothers and their offspring by enzyme-linked immunosorbent assay (ELISA) at different timepoints. We found 42.3% of the mothers to be infected with at least one helminth species. Significantly lower anti-tetanus toxoid immunoglobulin (Ig) G was detected in the cord blood of infants born to helminth infected mothers. Following vaccination, immune responses of the infants to EPI vaccines were similar between the two groups at nine and 12 months. Even though infection with helminths is still common in pregnant women in Gabon, in our setting, there was no evidence seen for a substantial effect on infants’ immune responses to vaccines given as part of the EPI.
Collapse
|
48
|
Abstract
Neonates are particularly susceptible to infection. This vulnerability occurs despite their responsiveness to most vaccines. However, current vaccines do not target the pathogens responsible for most of the severe neonatal infections, and the time it takes to induce protective pathogen-specific immunity after vaccination limits protection in the first days to weeks of life. Alternative strategies include using vaccines to broadly stimulate neonatal immunity in a pathogen-agnostic fashion or vaccinating women during pregnancy to induce protective antibodies that are vertically transferred to offspring within their window of vulnerability. Protection may be further improved by integrating these approaches, namely vaccinating the neonate under the cover of vertically transferred maternal immunity. The rationale for and knowledge gaps related to each of these alternatives are discussed.
Collapse
Affiliation(s)
- Tobias R Kollmann
- Systems Vaccinology, Telethon Kids Institute, Nedlands, WA 6009, Australia.
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Sing Sing Way
- Center for Inflammation and Tolerance and Division of Infectious Disease, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA.
| |
Collapse
|
49
|
Goetghebuer T, Smolen KK, Adler C, Das J, McBride T, Smits G, Lecomte S, Haelterman E, Barlow P, Piedra PA, van der Klis F, Kollmann TR, Lauffenburger DA, Alter G, Levy J, Marchant A. Initiation of Antiretroviral Therapy Before Pregnancy Reduces the Risk of Infection-related Hospitalization in Human Immunodeficiency Virus-exposed Uninfected Infants Born in a High-income Country. Clin Infect Dis 2020; 68:1193-1203. [PMID: 30215689 DOI: 10.1093/cid/ciy673] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/10/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Epidemiological studies conducted in low- and high-income countries showed that infants exposed to maternal human immunodeficiency virus (HIV) have a high risk of severe infections. Immune alterations during fetal life have been proposed as a possible mechanism. METHODS This prospective study assessed the relative risk of hospitalization for infection in HIV-exposed uninfected (HEU) infants as compared to HIV-unexposed (HU) infants born in a high-income country (HIC). Markers of monocyte activation and levels of pathogen-specific antibodies were measured at birth to identify correlates of infant susceptibility. RESULTS There were 27 of 132 HEU infants and 14 of 123 HU infants hospitalized for infection during the first year of life (adjusted hazard ratio [aHR] 2.33, 95% confidence interval [CI] 1.10-4.97). Most of this increased risk was associated with the time of initiation of maternal antiretroviral therapy (ART). As compared to HU infants, the risk of hospitalization for infection of HEU infants was 4-fold higher when mothers initiated ART during pregnancy (aHR 3.84, 95% CI 1.69-8.71) and was not significantly increased when ART was initiated before pregnancy (aHR 1.42, 95% CI 0.58-3.48). The activation of newborn monocytes and the reduced transfer of maternal antibodies were most intense following ART initiation during pregnancy, and predicted the risk of infant hospitalization. CONCLUSIONS These observations indicate that initiation of maternal ART before pregnancy reduces the susceptibility of HEU infants born in a HIC to severe infections, and that this effect could be related to the prevention of immune alterations during fetal life.
Collapse
Affiliation(s)
| | - Kinga K Smolen
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | | | - Jishnu Das
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Trevor McBride
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Gaby Smits
- National Institute of Health and the Environment, Bilthoven, The Netherlands
| | - Sandra Lecomte
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | | | - Patricia Barlow
- Department of Obstetrics and Gynecology, Hôpital Saint-Pierre, Brussels, Belgium
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Fiona van der Klis
- National Institute of Health and the Environment, Bilthoven, The Netherlands
| | - Tobias R Kollmann
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Jack Levy
- Department of Pediatrics, Hôpital Saint-Pierre, Brussels
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
50
|
Pollara J, Edwards RW, Jha S, Lam CYK, Liu L, Diedrich G, Nordstrom JL, Huffman T, Pickeral JA, Denny TN, Permar SR, Ferrari G. Redirection of Cord Blood T Cells and Natural Killer Cells for Elimination of Autologous HIV-1-Infected Target Cells Using Bispecific DART® Molecules. Front Immunol 2020; 11:713. [PMID: 32373131 PMCID: PMC7186435 DOI: 10.3389/fimmu.2020.00713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Mother-to-child transmission of HIV-1 remains a major global health challenge. Currently, HIV-1-infected infants require strict lifelong adherence to antiretroviral therapy to prevent replication of virus from reservoirs of infected cells, and to halt progression of disease. There is a critical need for immune interventions that can be deployed shortly after infection to eliminate HIV-1-infected cells in order to promote long-term remission of viremia, or to potentially cure pediatric HIV-1-infection. Bispecific HIV × CD3 DART® molecules able to co-engage the HIV-1 envelope protein on the surface of infected cells and CD3 on cytolytic T cells have been previously shown to eliminate HIV-1 infected cells in vitro and are candidates for passive immunotherapy to reduce the virus reservoir. However, their potential utility as therapy for infant HIV-1 infection is unclear as the ability of these novel antibody-based molecules to work in concert with cells of the infant immune system had not been assessed. Here, we use human umbilical cord blood as a model of the naïve neonatal immune system to evaluate the ability of HIV x CD3 DART molecules to recruit and redirect neonatal effector cells for elimination of autologous CD4+ T cells infected with HIV-1 encoding an envelope gene sequenced from a mother-to-child transmission event. We found that HIV × CD3 DART molecules can redirect T cells present in cord blood for elimination of HIV-infected CD4+ T cells. However, we observed reduced killing by T cells isolated from cord blood when compared to cells isolated from adult peripheral blood-likely due to the absence of the memory and effector CD8+ T cells that are most cytolytic when redirected by bispecific DART molecules. We also found that newly developed HIV × CD16 DART molecules were able to recruit CD16-expressing natural killer cells from cord blood to eliminate HIV-infected cells, and the activity of cord blood natural killer cells could be substantially increased by priming with IL-15. Our results support continued development of HIV-specific DART molecules using relevant preclinical animal models to optimize strategies for effective use of this immune therapy to reduce HIV-1 infection in pediatric populations.
Collapse
Affiliation(s)
- Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - R Whitney Edwards
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | | | - Liqin Liu
- Macrogenics, Inc., Rockville, MD, United States
| | | | | | - Tori Huffman
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Joy A Pickeral
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Thomas N Denny
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sallie R Permar
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States.,Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|