1
|
White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev 2024:e0010924. [PMID: 39404268 DOI: 10.1128/cmr.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.
Collapse
Affiliation(s)
- N J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - K Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Sanogo D, Toure M, Keita M, Kane F, Keita S, Sanogo I, Diawara SI, Coulibaly H, Thiam SM, Diakite M, Sogoba N, Doumbia S. Plasmodium falciparum infection status in children less than 10 years old under seasonal malaria chemoprevention and risk of clinical malaria in the Koulikoro health district, Mali. RESEARCH SQUARE 2024:rs.3.rs-4613312. [PMID: 39070642 PMCID: PMC11275994 DOI: 10.21203/rs.3.rs-4613312/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Introduction Seasonal malaria chemoprevention (SMC) with Sulfadoxine pyrimethamine plus amodiaquine (SP + AQ) consist of a monthly administration of therapeutic dose to children under five years of age during the high risk of malaria in area where malaria is highly seasonal. According to SMC recommendation, both non-infected and asymptomatic Plasmodium falciparum infected children will receive similar treatment. The gap in our knowledge is how the effect of asymptomatic infection on the efficacy of SMC in preventing clinical malaria over a four-week period. Thus, this study aimed to assess the risk of clinical malaria and its association with children's infection status when SMC treatment is given. Methodology The study was carried out in the Koulikoro health district in Mali and concerned children under 10 years of age. A total of 726 and 1452 children were randomly selected and followed over the SMC campaign in the years 2019 and 2020 respectively. Prevalence of asymptomatic P. falciparum infection was determined each round by microscopy before SMC drugs intake. Children were passively followed over a four-week period to determine incidence of clinical malaria. R-Studio software was used for analysis. The risk of clinical malaria by infection status was estimated using a logistic regression. A Kaplan-Meier curve was used to determine the survival time between infected and uninfected children. The Pearson Chi-square test was used to compare proportions with the significant level at p< 0.05. Results The average prevalence of asymptomatic infection was 11.0% both years, and it was higher among children aged 5 to 9 years old in 2019 (p<0.001) and 2020 (p=0.016). The risk of clinical malaria was significantly higher among asymptomatic infected children 2019: (RR=3.05, CI [2.04-4.72]) and 2020 (RR=1.43, CI [1.04-1.97]) transmission seasons. Likewise, the time of the first malaria occurrence was statistically lower among infected children regardless the year (p<0.001 in 2019 and p=0.01 in 2020). Conclusion Results show a high risk of clinical malaria in asymptomatic infected children during SMC delivery. Screening for P. falciparum infection before the SMC treatment could significantly enhance the impact of the strategy on malaria morbidity in endemic areas.
Collapse
Affiliation(s)
- Daouda Sanogo
- University of Sciences, Techniques and Technologies of Bamako
| | | | - Moussa Keita
- University of Sciences, Techniques and Technologies of Bamako
| | - Fousseyni Kane
- University of Sciences, Techniques and Technologies of Bamako
| | - Soumba Keita
- University of Sciences, Techniques and Technologies of Bamako
| | - Ibrahim Sanogo
- University of Sciences, Techniques and Technologies of Bamako
| | | | | | | | | | - Nafomon Sogoba
- University of Sciences, Techniques and Technologies of Bamako
| | - Seydou Doumbia
- University of Sciences, Techniques and Technologies of Bamako
| |
Collapse
|
3
|
Fola AA, Kobayashi T, Shields T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Juliano JJ, Bailey JA. Temporal genomic analysis of Plasmodium falciparum reveals increased prevalence of mutations associated with delayed clearance following treatment with artemisinin-lumefantrine in Choma District, Southern Province, Zambia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308497. [PMID: 38883763 PMCID: PMC11178023 DOI: 10.1101/2024.06.05.24308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013-2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample carrying K13 R622I, none of the isolates carried other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations in K13. However, 13% (CI, 9.6-17.2) of isolates had the AP2MU S160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015-2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | | | | | - Ben Katowa
- Macha Research Trust, Choma District, Zambia
| | | | | | - Douglas E. Norris
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - Jonathan J. Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, NC, USA, 27599
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, USA, 27599
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
| |
Collapse
|
4
|
Thu AM, Phyo AP, Pateekhum C, Rae JD, Landier J, Parker DM, Delmas G, Watthanaworawit W, McLean ARD, Arya A, Reyes A, Li X, Miotto O, Soe K, Ashley EA, Dondorp A, White NJ, Day NP, Anderson TJC, Imwong M, Nosten F, Smithuis F. Molecular markers of artemisinin resistance during falciparum malaria elimination in Eastern Myanmar. Malar J 2024; 23:138. [PMID: 38720269 PMCID: PMC11078751 DOI: 10.1186/s12936-024-04955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.
Collapse
Affiliation(s)
- Aung Myint Thu
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Chanapat Pateekhum
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Jade D Rae
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jordi Landier
- IRD, Aix Marseille Univ, INSERM, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, Department of Epidemiology & Biostatistics, University of California, Irvine, CE, 92617, USA
| | - Gilles Delmas
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Wanitda Watthanaworawit
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
| | - Alistair R D McLean
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar
| | - Ann Arya
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Kyaw Soe
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tim J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, P. O. Box 760549, San Antonio, TX, USA
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, P. O. Box 10400, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Mae Sot, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Frank Smithuis
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, P. O. Box 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Medical Action Myanmar, Yangon, Myanmar
- Myanmar Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar
| |
Collapse
|
5
|
Nguyen TD, Tran TNA, Parker DM, White NJ, Boni MF. Antimalarial mass drug administration in large populations and the evolution of drug resistance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002200. [PMID: 37494337 PMCID: PMC10370688 DOI: 10.1371/journal.pgph.0002200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Mass drug administration (MDA) with antimalarials has been shown to reduce prevalence and interrupt transmission in small populations, in populations with reliable access to antimalarial drugs, and in populations where sustained improvements in diagnosis and treatment are possible. In addition, when MDA is effective it eliminates both drug-resistant parasites and drug-sensitive parasites, which has the long-term benefit of extending the useful therapeutic life of first-line therapies for all populations, not just the focal population where MDA was carried out. However, in order to plan elimination measures effectively, it is necessary to characterize the conditions under which failed MDA could exacerbate resistance. We use an individual-based stochastic model of Plasmodium falciparum transmission to evaluate this risk for MDA using dihydroartemisinin-piperaquine (DHA-PPQ), in populations where access to antimalarial treatments may not be uniformly high and where re-importation of drug-resistant parasites may be common. We find that artemisinin-resistance evolution at the kelch13 locus can be accelerated by MDA when all three of the following conditions are met: (1) strong genetic bottlenecking that falls short of elimination, (2) re-importation of artemisinin-resistant genotypes, and (3) continued selection pressure during routine case management post-MDA. Accelerated resistance levels are not immediate but follow the rebound of malaria cases post-MDA, if this is allowed to occur. Crucially, resistance is driven by the selection pressure during routine case management post-MDA and not the selection pressure exerted during the MDA itself. Second, we find that increasing treatment coverage post-MDA increases the probability of local elimination in low-transmission regions (prevalence < 2%) in scenarios with both low and high levels of drug-resistance importation. This emphasizes the importance of planning for and supporting high coverage of diagnosis and treatment post-MDA.
Collapse
Affiliation(s)
- Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, Department of Epidemiology and Biostatistics, University of California, Irvine, Irvine, CA, United States of America
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Research Unit, Wellcome Trust Major Overseas Programme, Mahidol University, Bangkok, Thailand
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, PA, United States of America
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Barber BE, Abd-Rahman AN, Webster R, Potter AJ, Llewellyn S, Marquart L, Sahai N, Leelasena I, Birrell GW, Edstein MD, Shanks GD, Wesche D, Moehrle JJ, McCarthy JS. Characterizing the Blood-Stage Antimalarial Activity of Tafenoquine in Healthy Volunteers Experimentally Infected With Plasmodium falciparum. Clin Infect Dis 2023; 76:1919-1927. [PMID: 36795050 PMCID: PMC10249991 DOI: 10.1093/cid/ciad075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The long-acting 8-aminoquinoline tafenoquine may be a good candidate for mass drug administration if it exhibits sufficient blood-stage antimalarial activity at doses low enough to be tolerated by glucose 6-phosphate dehydrogenase (G6PD)-deficient individuals. METHODS Healthy adults with normal levels of G6PD were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Different single oral doses of tafenoquine were administered on day 8. Parasitemia and concentrations of tafenoquine and the 5,6-orthoquinone metabolite in plasma/whole blood/urine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 48 ± 2. Outcomes were parasite clearance kinetics, pharmacokinetic and pharmacokinetic/pharmacodynamic (PK/PD) parameters from modelling, and dose simulations in a theoretical endemic population. RESULTS Twelve participants were inoculated and administered 200 mg (n = 3), 300 mg (n = 4), 400 mg (n = 2), or 600 mg (n = 3) tafenoquine. The parasite clearance half-life with 400 mg or 600 mg (5.4 hours and 4.2 hours, respectively) was faster than with 200 mg or 300 mg (11.8 hours and 9.6 hours, respectively). Parasite regrowth occurred after dosing with 200 mg (3/3 participants) and 300 mg (3/4 participants) but not after 400 mg or 600 mg. Simulations using the PK/PD model predicted that 460 mg and 540 mg would clear parasitaemia by a factor of 106 and 109, respectively, in a 60-kg adult. CONCLUSIONS Although a single dose of tafenoquine exhibits potent P. falciparum blood-stage antimalarial activity, the estimated doses to effectively clear asexual parasitemia will require prior screening to exclude G6PD deficiency. Clinical Trials Registration. Australian and New Zealand Clinical Trials Registry (ACTRN12620000995976).
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of the Sunshine Coast, Morayfield, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Nischal Sahai
- University of the Sunshine Coast, Morayfield, Australia
| | | | - Geoffrey W Birrell
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Michael D Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - G Dennis Shanks
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
7
|
Tripura R, von Seidlein L, Sovannaroth S, Peto TJ, Callery JJ, Sokha M, Ean M, Heng C, Conradis-Jansen F, Madmanee W, Peerawaranun P, Waithira N, Khonputsa P, Jongdeepaisal M, Pongsoipetch K, Chotthanawathit P, Soviet U, Pell C, Duanguppama J, Rekol H, Tarning J, Imwong M, Mukaka M, White NJ, Dondorp AM, Maude RJ. Antimalarial chemoprophylaxis for forest goers in southeast Asia: an open-label, individually randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:81-90. [PMID: 36174595 PMCID: PMC9763125 DOI: 10.1016/s1473-3099(22)00492-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Malaria in the eastern Greater Mekong subregion has declined to historic lows. Countries in the Greater Mekong subregion are accelerating malaria elimination in the context of increasing antimalarial drug resistance. Infections are now increasingly concentrated in remote, forested foci. No intervention has yet shown satisfactory efficacy against forest-acquired malaria. The aim of this study was to assess the efficacy of malaria chemoprophylaxis among forest goers in Cambodia. METHODS We conducted an open-label, individually randomised controlled trial in Cambodia, which recruited participants aged 16-65 years staying overnight in forests. Participants were randomly allocated 1:1 to antimalarial chemoprophylaxis, a 3-day course of twice-daily artemether-lumefantrine followed by the same daily dosing once a week while travelling in the forest and for a further 4 weeks after leaving the forest (four tablets per dose; 20 mg of artemether and 120 mg of lumefantrine per tablet), or a multivitamin with no antimalarial activity. Allocations were done according to a computer-generated randomisation schedule, and randomisation was in permuted blocks of size ten and stratified by village. Investigators and participants were not masked to drug allocation, but laboratory investigations were done without knowledge of allocation. The primary outcome was a composite endpoint of either clinical malaria with any Plasmodium species within 1-28, 29-56, or 57-84 days, or subclinical infection detected by PCR on days 28, 56, or 84 using complete-case analysis of the intention-to-treat population. Adherence to study drug was assessed primarily by self-reporting during follow-up visits. Adverse events were assessed in the intention-to-treat population as a secondary endpoint from self-reporting at any time, plus a physical examination and symptom questionnaire at follow-up. This trial is registered at ClinicalTrials.gov (NCT04041973) and is complete. FINDINGS Between March 11 and Nov 20, 2020, 1480 individuals were enrolled, of whom 738 were randomly assigned to artemether-lumefantrine and 742 to the multivitamin. 713 participants in the artemether-lumefantrine group and 714 in the multivitamin group had a PCR result or confirmed clinical malaria by rapid diagnostic test during follow-up. During follow-up, 19 (3%, 95% CI 2-4) of 713 participants had parasitaemia or clinical malaria in the artemether-lumefantrine group and 123 (17%, 15-20) of 714 in the multivitamin group (absolute risk difference 15%, 95% CI 12-18; p<0·0001). During follow-up, there were 166 malaria episodes caused by Plasmodium vivax, 14 by Plasmodium falciparum, and five with other or mixed species infections. The numbers of participants with P vivax were 18 (3%, 95% CI 2-4) in the artemether-lumefantrine group versus 112 (16%, 13-19) in the multivitamin group (absolute risk difference 13%, 95% CI 10-16; p<0·0001). The numbers of participants with P falciparum were two (0·3%, 95% CI 0·03-1·01) in the artemether-lumefantrine group versus 12 (1·7%, 0·9-2·9) in the multivitamin group (absolute risk difference 1·4%, 95% CI 0·4-2·4; p=0·013). Overall reported adherence to the full course of medication was 97% (95% CI 96-98; 1797 completed courses out of 1854 courses started) in the artemether-lumefantrine group and 98% (97-98; 1842 completed courses in 1885 courses started) in the multivitamin group. Overall prevalence of adverse events was 1·9% (355 events in 18 806 doses) in the artemether-lumefantrine group and 1·1% (207 events in 19 132 doses) in the multivitamin group (p<0·0001). INTERPRETATION Antimalarial chemoprophylaxis with artemether-lumefantrine was acceptable and well tolerated and substantially reduced the risk of malaria. Malaria chemoprophylaxis among high-risk groups such as forest workers could be a valuable tool for accelerating elimination in the Greater Mekong subregion. FUNDING The Global Fund to Fight AIDS, Tuberculosis and Malaria; Wellcome Trust.
Collapse
Affiliation(s)
- Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - James J Callery
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Meas Sokha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mom Ean
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chhouen Heng
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Wanassanan Madmanee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Panarasri Khonputsa
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Monnaphat Jongdeepaisal
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kulchada Pongsoipetch
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paphapisa Chotthanawathit
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ung Soviet
- Stung Treng Provincial Health Department, Stung Treng, Cambodia
| | - Christopher Pell
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, Netherlands; Department of Global Health, Amsterdam University Medical Centers, location Academic Medical Center, and Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, Netherlands
| | - Jureeporn Duanguppama
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Huy Rekol
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Open University, Milton Keynes, UK; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
8
|
Chuljerm H, Maneekesorn S, Punsawad C, Somsak V, Ma Y, Ruangsuriya J, Srichairatanakool S, Koonyosying P. Deferiprone-Resveratrol Hybrid, an Iron-Chelating Compound, Acts as an Antimalarial and Hepatoprotective Agent in Plasmodium berghei-Infected Mice. Bioinorg Chem Appl 2022; 2022:3869337. [PMID: 36466999 PMCID: PMC9715320 DOI: 10.1155/2022/3869337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Free heme in plasma acts as a prooxidant; thus, it is bound to hemopexin and eliminated by the liver. High iron content in the liver can support Plasmodium growth and cause oxidative liver injury. Inversely, the withholding of excessive iron can inhibit this growth and protect the liver against malaria infection. This study examined the effects of a deferiprone-resveratrol (DFP-RVT) hybrid on malaria parasites and its relevant hepatoprotective properties. Mice were infected with P. berghei, gavage DFP-RVT, deferiprone (DFP), and pyrimethamine (PYR) for 8 consecutive days. Blood and liver parameters were then evaluated. The presence of blood-stage parasites was determined using the microscopic Giemsa staining method. Subsequently, plasma liver enzymes, heme, and concentrations of thiobarbituric acid-reactive substances (TBARS) were determined. The liver tissue was examined pathologically and heme and TBARS concentrations were then quantified. The results indicate that the suppression potency against P. berghei growth occurred as follows: PYR > DFP-RVT hybrid > DFP. Importantly, DFP-RVT significantly improved RBC size, restored alanine aminotransferase and alkaline activities, and increased heme and TBARS concentrations. The compound also reduced the liver weight index, heme, and TBARS concentrations significantly when compared to mice that were untreated. Our findings support the contention that the hepatoprotective effect of DFP-RVT is associated with parasite burden, iron depletion, and lipid peroxidation in the host.
Collapse
Affiliation(s)
- Hataichanok Chuljerm
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Health Sciences Research, Research Institute for Health Sciences Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental and Occupational Health Sciences and Non Communicable Diseases Research Group (EOHS and NCD Research Group), Research Institute for Health Sciences Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yongmin Ma
- School of Pharmaceutical Sciences, Taizhou University, Zhejiang 318000, China
| | - Jetsada Ruangsuriya
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
White NJ. The assessment of antimalarial drug efficacy in vivo. Trends Parasitol 2022; 38:660-672. [PMID: 35680541 PMCID: PMC7613059 DOI: 10.1016/j.pt.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Currently recommended methods of assessing the efficacy of uncomplicated falciparum malaria treatment work less well in high-transmission than in low-transmission settings. There is also uncertainty how to assess intermittent preventive therapies and seasonal malaria chemoprevention (SMC), and Plasmodium vivax radical cure. A pharmacometric antimalarial resistance monitoring (PARM) approach is proposed specifically for evaluating slowly eliminated antimalarial drugs in areas of high transmission. In PARM antimalarial drug concentrations at recurrent parasitaemia are measured to identify outliers (i.e., recurrent parasitaemias in the presence of normally suppressive drug concentrations) and to evaluate changes over time. PARM requires characterization of pharmacometric profiles but should be simpler and more sensitive than current molecular genotyping-based methodologies. PARM does not require parasite genotyping and can be applied to the assessment of both prevention and treatment.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
10
|
Konopka JK, Chatterjee P, LaMontagne C, Brown J. Environmental impacts of mass drug administration programs: exposures, risks, and mitigation of antimicrobial resistance. Infect Dis Poverty 2022; 11:78. [PMID: 35773680 PMCID: PMC9243877 DOI: 10.1186/s40249-022-01000-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023] Open
Abstract
Mass drug administration (MDA) of antimicrobials has shown promise in the reduction and potential elimination of a variety of neglected tropical diseases (NTDs). However, with antimicrobial resistance (AMR) becoming a global crisis, the risks posed by widespread antimicrobial use need to be evaluated. As the role of the environment in AMR emergence and dissemination has become increasingly recognized, it is likewise crucial to establish the role of MDA in environmental AMR pollution, along with the potential impacts of such pollution. This review presents the current state of knowledge on the antimicrobial compounds, resistant organisms, and antimicrobial resistance genes in MDA trials, routes of these determinants into the environment, and their persistence and ecological impacts, particularly in low and middle-income countries where these trials are most common. From the few studies directly evaluating AMR outcomes in azithromycin MDA trials, it is becoming apparent that MDA efforts can increase carriage and excretion of resistant pathogens in a lasting way. However, research on these outcomes for other antimicrobials used in MDA trials is sorely needed. Furthermore, while paths of AMR determinants from human waste to the environment and their persistence thereafter are supported by the literature, quantitative information on the scope and likelihood of this is largely absent. We recommend some mitigative approaches that would be valuable to consider in future MDA efforts. This review stands to be a valuable resource for researchers and policymakers seeking to evaluate the impacts of MDA.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Pranab Chatterjee
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Connor LaMontagne
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7431, USA
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7431, USA
| |
Collapse
|
11
|
Chotsiri P, White NJ, Tarning J. Pharmacokinetic considerations in seasonal malaria chemoprevention. Trends Parasitol 2022; 38:673-682. [DOI: 10.1016/j.pt.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
12
|
Plowe CV. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar J 2022; 21:104. [PMID: 35331231 PMCID: PMC8943514 DOI: 10.1186/s12936-022-04115-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 01/19/2023] Open
Abstract
Chemoprevention strategies reduce malaria disease and death, but the efficacy of anti-malarial drugs used for chemoprevention is perennially threatened by drug resistance. This review examines the current impact of chemoprevention on the emergence and spread of drug resistant malaria, and the impact of drug resistance on the efficacy of each of the chemoprevention strategies currently recommended by the World Health Organization, namely, intermittent preventive treatment in pregnancy (IPTp); intermittent preventive treatment in infants (IPTi); seasonal malaria chemoprevention (SMC); and mass drug administration (MDA) for the reduction of disease burden in emergency situations. While the use of drugs to prevent malaria often results in increased prevalence of genetic mutations associated with resistance, malaria chemoprevention interventions do not inevitably lead to meaningful increases in resistance, and even high rates of resistance do not necessarily impair chemoprevention efficacy. At the same time, it can reasonably be anticipated that, over time, as drugs are widely used, resistance will generally increase and efficacy will eventually be lost. Decisions about whether, where and when chemoprevention strategies should be deployed or changed will continue to need to be made on the basis of imperfect evidence, but practical considerations such as prevalence patterns of resistance markers can help guide policy recommendations.
Collapse
|
13
|
Tian H, Li N, Li Y, Kraemer MUG, Tan H, Liu Y, Li Y, Wang B, Wu P, Cazelles B, Lourenço J, Gao D, Sun D, Song W, Li Y, Pybus OG, Wang G, Dye C. Malaria elimination on Hainan Island despite climate change. COMMUNICATIONS MEDICINE 2022; 2:12. [PMID: 35603266 PMCID: PMC9053252 DOI: 10.1038/s43856-022-00073-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022] Open
Abstract
Background Rigorous assessment of the effect of malaria control strategies on local malaria dynamics is a complex but vital step in informing future strategies to eliminate malaria. However, the interactions between climate forcing, mass drug administration, mosquito control and their effects on the incidence of malaria remain unclear. Methods Here, we analyze the effects of interventions on the transmission dynamics of malaria (Plasmodium vivax and Plasmodium falciparum) on Hainan Island, China, controlling for environmental factors. Mathematical models were fitted to epidemiological data, including confirmed cases and population-wide blood examinations, collected between 1995 and 2010, a period when malaria control interventions were rolled out with positive outcomes. Results Prior to the massive scale-up of interventions, malaria incidence shows both interannual variability and seasonality, as well as a strong correlation with climatic patterns linked to the El Nino Southern Oscillation. Based on our mechanistic model, we find that the reduction in malaria is likely due to the large scale rollout of insecticide-treated bed nets, which reduce the infections of P. vivax and P. falciparum malaria by 93.4% and 35.5%, respectively. Mass drug administration has a greater contribution in the control of P. falciparum (54.9%) than P. vivax (5.3%). In a comparison of interventions, indoor residual spraying makes a relatively minor contribution to malaria control (1.3%–9.6%). Conclusions Although malaria transmission on Hainan Island has been exacerbated by El Nino Southern Oscillation, control methods have eliminated both P. falciparum and P. vivax malaria from this part of China. Several malaria control strategies have been implemented on Hainan Island, China, and it is important to determine which of these have been effective to guide future efforts to control malaria. Here, we use mathematical and statistical methods to assess the effectiveness of control methods using data on malaria cases on Hainan, considering the impact of climate change simultaneously, since malaria transmission is affected by the climate. We observe time-related trends in malaria incidence and a strong relationship with climate before the large-scale rollout of malaria control interventions. We find that insecticide-treated bed nets are the most effective strategy in decreasing malaria incidence, while mass drug administration and indoor residual spraying also contribute to malaria control. Our findings provide evidence that a combination of strategies reduces the burden of malaria in affected regions. Tian et al. use mathematical modelling to estimate the impact of various interventions on malaria incidence on Hainan Island, also taking into account climate change. They find that although malaria transmission has been exacerbated by climate change, insecticide-treated bed nets and other interventions were effective in controlling the disease.
Collapse
|
14
|
Bharti H, Singal A, Saini M, Cheema PS, Raza M, Kundu S, Nag A. Repurposing the Pathogen Box compounds for identification of potent anti-malarials against blood stages of Plasmodium falciparum with PfUCHL3 inhibitory activity. Sci Rep 2022; 12:918. [PMID: 35042884 PMCID: PMC8766476 DOI: 10.1038/s41598-021-04619-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
Malaria has endured as a global epidemic since ages and its eradication poses an immense challenge due to the complex life cycle of the causative pathogen and its tolerance to a myriad of therapeutics. PfUCHL3, a member of the ubiquitin C-terminal hydrolase (UCH) family of deubiquitinases (DUBs) is cardinal for parasite survival and emerges as a promising therapeutic target. In this quest, we employed a combination of computational and experimental approaches to identify PfUCHL3 inhibitors as novel anti-malarials. The Pathogen Box library was screened against the crystal structure of PfUCHL3 (PDB ID: 2WE6) and its human ortholog (PDB ID: 1XD3). Fifty molecules with better comparative score, bioavailability and druglikeliness were subjected to in-vitro enzyme inhibition assay and among them only two compounds effectively inhibited PfUCHL3 activity at micro molar concentrations. Both MMV676603 and MMV688704 exhibited anti-plasmodial activity by altering the parasite phenotype at late stages of the asexual life cycle and inducing the accumulation of polyubiquitinated substrates. In addition, both the compounds were non-toxic and portrayed high selectivity window for the parasite over mammalian cells. This is the first comprehensive study to demonstrate the anti-malarial efficacy of PfUCHL3 inhibitors and opens new avenues to exploit UCH family of DUBs as a promising target for the development of next generation anti-malaria therapy.
Collapse
Affiliation(s)
- Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aakriti Singal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Saini
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Mohsin Raza
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
15
|
The Potential Role of Gymnema inodorum Leaf Extract Treatment in Hematological Parameters in Mice Infected with Plasmodium berghei. J Trop Med 2021; 2021:9989862. [PMID: 34257672 PMCID: PMC8260294 DOI: 10.1155/2021/9989862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant cause of death in tropical and subtropical regions by serious complications with hematological abnormalities consistent with high parasitemia. Hence, this study aimed to determine the efficacy of the Gymnema inodorum leaf extract (GIE) on hematological alteration in Plasmodium berghei infection in mice. Groups of ICR mice were infected intraperitoneally with parasitized red blood cells of P. berghei ANKA (PbANKA). They were administered orally by gavage of 100, 250, and 500 mg/kg of GIE for 4 consecutive days. Healthy and untreated groups were given distilled water, while 10 mg/kg of chloroquine was treated as the positive control. Hematological parameters including RBC count, hemoglobin (Hb), hematocrit (Hct), mean corpuscular volume (MCV), mean cell hemoglobin (MCH), mean cell hemoglobin concentration (MCHC), RBC distribution width (RDW), white blood cell (WBC) count, and WBC differential count were measured. The results showed that significant decreases of RBC count, Hb, Hct, MCV, MCH, MCHC, and reticulocytes were observed in the untreated group, while RDW was significantly increased compared with the healthy control. Furthermore, the WBC, neutrophil, monocyte, basophil, and eosinophil of untreated mice increased significantly, while the lymphocyte was significantly decreased compared with the healthy control. Interestingly, GIE normalized the hematological alteration induced by PbANKA infection in GIE-treated groups compared with healthy and untreated groups. The highest efficacy of GIE was observed at a dose of 500 mg/kg. Our results confirmed that GIE presented the potential role in the treatment of hematological alteration during malaria infection.
Collapse
|
16
|
McLean ARD, Indrasuta C, Khant ZS, Phyo AK, Maung SM, Heaton J, Aung H, Aung Y, Soe K, Swe MMM, von Seidlein L, Tun NN, Tun KM, Day NPJ, Ashley EA, Hlaing T, Kyaw TT, Dondorp AM, Imwong M, White NJ, Smithuis FM. Mass drug administration for the acceleration of malaria elimination in a region of Myanmar with artemisinin-resistant falciparum malaria: a cluster-randomised trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:1579-1589. [PMID: 34147154 PMCID: PMC7614510 DOI: 10.1016/s1473-3099(20)30997-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND To contain multidrug-resistant Plasmodium falciparum, malaria elimination in the Greater Mekong subregion needs to be accelerated while current antimalarials remain effective. We evaluated the safety, effectiveness, and potential resistance selection of dihydroartemisinin-piperaquine mass drug administration (MDA) in a region with artemisinin resistance in Myanmar. METHODS We did a cluster-randomised controlled trial in rural community clusters in Kayin (Karen) state in southeast Myanmar. Malaria prevalence was assessed using ultrasensitive quantitative PCR (uPCR) in villages that were operationally suitable for MDA (villages with community willingness, no other malaria control campaigns, and a population of 50-1200). Villages were eligible to participate if the prevalence of malaria (all species) in adults was greater than 30% or P falciparum prevalence was greater than 10% (or both). Contiguous villages were combined into clusters. Eligible clusters were paired based on P falciparum prevalence (estimates within 10%) and proximity. Community health workers provided routine malaria case management and distributed long-lasting insecticidal bed-nets (LLINs) in all clusters. Randomisation of clusters (1:1) to the MDA intervention group or control group was by public coin-flip. Group allocations were not concealed. Three MDA rounds (3 days of supervised dihydroartemisinin-piperaquine [target total dose 7 mg/kg dihydroartemisinin and 55 mg/kg piperaquine] and single low-dose primaquine [target dose 0·25 mg base per kg]) were delivered to intervention clusters. Parasitaemia prevalence was assessed at 3, 5, 10, 15, 21, 27, and 33 months. The primary outcomes were P falciparum prevalence at months 3 and 10. All clusters were included in the primary analysis. Adverse events were monitored from the first MDA dose until 1 month after the final dose, or until resolution of any adverse event occurring during follow-up. This trial is registered with ClinicalTrials.gov, NCT01872702. FINDINGS Baseline uPCR malaria surveys were done in January, 2015, in 43 villages that were operationally suitable for MDA (2671 individuals). 18 villages met the eligibility criteria. Three villages in close proximity were combined into one cluster because a border between them could not be defined. This gave a total of 16 clusters in eight pairs. In the intervention clusters, MDA was delivered from March 4 to March 17, from March 30 to April 10, and from April 27 to May 10, 2015. The weighted mean absolute difference in P falciparum prevalence in the MDA group relative to the control group was -10·6% (95% CI -15·1 to -6·1; p=0·0008) at month 3 and -4·5% (-10·9 to 1·9; p=0·14) at month 10. At month 3, the weighted P falciparum prevalence was 1·4% (0·6 to 3·6; 12 of 747) in the MDA group and 10·6% (7·0 to 15·6; 56 of 485) in the control group. Corresponding prevalences at month 10 were 3·2% (1·5 to 6·8; 34 of 1013) and 5·8% (2·5 to 12·9; 33 of 515). Adverse events were reported for 151 (3·6%) of 4173 treated individuals. The most common adverse events were dizziness (n=109) and rash or itching (n=20). No treatment-related deaths occurred. INTERPRETATION In this low-transmission setting, the substantial reduction in P falciparum prevalence resulting from support of community case management was accelerated by MDA. In addition to supporting community health worker case management and LLIN distribution, malaria elimination programmes should consider using MDA to reduce P falciparum prevalence rapidly in foci of higher transmission. FUNDING The Global Fund to Fight AIDS, Tuberculosis and Malaria.
Collapse
Affiliation(s)
- Alistair R D McLean
- Medical Action Myanmar, Yangon, Myanmar; Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Hein Aung
- Medical Action Myanmar, Yangon, Myanmar
| | - Ye Aung
- Medical Action Myanmar, Yangon, Myanmar
| | - Kyaw Soe
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | | | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ni Ni Tun
- Medical Action Myanmar, Yangon, Myanmar; Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Kyaw Myo Tun
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A Ashley
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thaung Hlaing
- Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Thar Tun Kyaw
- Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Frank M Smithuis
- Medical Action Myanmar, Yangon, Myanmar; Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Vilakati S, Mngadi N, Benjamin-Chung J, Dlamini N, Dufour MSK, Whittemore B, Bhangu K, Prach LM, Baltzell K, Nhlabathi N, Malambe C, Dlamini B, Helb D, Greenhouse B, Maphalala G, Pindolia D, Kalungero M, Tesfa G, Gosling R, Ntshalintshali N, Kunene S, Hsiang MS. Effectiveness and safety of reactive focal mass drug administration (rfMDA) using dihydroartemisinin-piperaquine to reduce malaria transmission in the very low-endemic setting of Eswatini: a pragmatic cluster randomised controlled trial. BMJ Glob Health 2021; 6:e005021. [PMID: 34193475 PMCID: PMC8246301 DOI: 10.1136/bmjgh-2021-005021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/30/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION To reduce malaria transmission in very low-endemic settings, screening and treatment near index cases (reactive case detection (RACD)), is widely practised, but the rapid diagnostic tests (RDTs) used miss low-density infections. Reactive focal mass drug administration (rfMDA) may be safe and more effective. METHODS We conducted a pragmatic cluster randomised controlled trial in Eswatini, a very low-endemic setting. 77 clusters were randomised to rfMDA using dihydroartemisin-piperaquine (DP) or RACD involving RDTs and artemether-lumefantrine. Interventions were delivered by the local programme. An intention-to-treat analysis was used to compare cluster-level cumulative confirmed malaria incidence among clusters with cases. Secondary outcomes included safety and adherence. RESULTS From September 2015 to August 2017, 222 index cases from 47 clusters triggered 46 RACD events and 64 rfMDA events. RACD and rfMDA were delivered to 1455 and 1776 individuals, respectively. Index case coverage was 69.5% and 62.4% for RACD and rfMDA, respectively. Adherence to DP was 98.7%. No serious adverse events occurred. For rfMDA versus RACD, cumulative incidences (per 1000 person-years) of all malaria were 2.11 (95% CI 1.73 to 2.59) and 1.97 (95% CI 1.57 to 2.47), respectively; and of locally acquired malaria, they were 1.29 (95% CI 1.00 to 1.67) and 0.97 (95% CI 0.71 to 1.34), respectively. Adjusting for imbalance in baseline incidence, incidence rate ratio for rfMDA versus RACD was 0.95 (95% CI 0.55 to 1.65) for all malaria and 0.82 (95% CI 0.40 to 1.71) for locally acquired malaria. Similar results were obtained in a per-protocol analysis that excluded clusters with <80% index case coverage. CONCLUSION In a very low-endemic, real-world setting, rfMDA using DP was safe, but did not lower incidence compared with RACD, potentially due to insufficient coverage and/or power. To assess impact of interventions in very low-endemic settings, improved coverage, complementary interventions and adaptive ring trial designs may be needed. TRIAL REGISTRATION NUMBER NCT02315690.
Collapse
Affiliation(s)
| | | | - Jade Benjamin-Chung
- Epidemiology & Biostatistics, University of California, Berkeley, California, USA
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Nomcebo Dlamini
- National Malaria Program, Ministry of Health, Manzini, Eswatini
| | - Mi-Suk Kang Dufour
- Epidemiology & Biostatistics, University of California, Berkeley, California, USA
- Medicine, University of California, San Francisco, California, USA
| | - Brooke Whittemore
- Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Lisa M Prach
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Kimberly Baltzell
- Family Health Care Nursing, University of California, San Francisco, California, USA
| | | | | | | | - Danica Helb
- Medicine, University of California, San Francisco, California, USA
| | - Bryan Greenhouse
- Medicine, University of California, San Francisco, California, USA
| | - Gugu Maphalala
- National Clinical Laboratory Services, Mbabane, Swaziland
| | | | | | - Getahun Tesfa
- Paediatrics, Raleigh Fitkin Memorial Hospital, Manzini, Swaziland
| | - Roly Gosling
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | | | - Simon Kunene
- National Malaria Program, Ministry of Health, Manzini, Eswatini
| | - Michelle S Hsiang
- Malaria Elimination Initiative, University of California, San Francisco, California, USA
- Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Pediatrics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Looman L, Pell C. End-user perspectives on preventive antimalarials: A review of qualitative research. Glob Public Health 2021; 17:753-767. [PMID: 33617406 DOI: 10.1080/17441692.2021.1888388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antimalarials have been administered widely to prevent clinical malaria and researchers have explored how end-users' perspectives influence uptake and adherence. Drawing on a systematic search, this review aims to synthesise qualitative research on end-user perceptions of antimalarials for disease prevention. Searches were undertaken in PubMed and ISI Web of Knowledge. After applying exclusion criteria, identified sources underwent thematic analysis. Identified sources were published between 2000 and 2020 and drew on studies undertaken across Africa, Asia, Europe, Oceania and America. The sources revealed end-user concerns about the potential benefits and harms of preventive treatment that are entwined with broader understandings of the disease, the intervention, its implementation, accompanying information, and how it is embedded in wider healthcare and social relationships. The implications for antimalarials as preventive therapy encompass the need to build trust, including interpersonal trust, engage diverse stakeholders and to address broader health and wellbeing concerns during implementation.
Collapse
Affiliation(s)
- Lisanne Looman
- Department of Global Health Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christopher Pell
- Department of Global Health Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands.,Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Keys H, Ureña K, Reyes J, Bardosh K, Pell C, Puello J, Blount S, Noland GS. Rapid ethnographic assessment for potential anti-malarial mass drug administration in an outbreak area of Santo Domingo, Dominican Republic. Malar J 2021; 20:76. [PMID: 33557830 PMCID: PMC7869078 DOI: 10.1186/s12936-021-03594-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the Dominican Republic, a recent outbreak of malaria in the capital, Santo Domingo, threatens efforts to eliminate the disease. Mass drug administration (MDA) has been proposed as one strategy to reduce transmission. The success of MDA is contingent upon high levels of acceptance among the target population. To inform the design of future MDA campaigns, this rapid ethnographic assessment examined malaria-related knowledge and attitudes toward malaria MDA among residents of a transmission focus in Santo Domingo. METHODS In October 2019, a rapid ethnographic assessment was conducted in the Los Tres Brazos transmission focus, which had not previously received MDA. National malaria programme staff conducted 61 structured interviews with key informants, recorded observations, and held 72 informal conversations. Using a grounded theory approach, data were analysed during three workshop sessions with research team members. RESULTS Among those who had heard of malaria in the structured interviews (n = 39/61; 64%), understanding of the disease was largely based on personal experience from past outbreaks or through word-of-mouth. Community health workers (promotores) were trusted for health information and malaria diagnosis more so than professional clinicians. No participant (0%) was familiar with malaria MDA. After learning about MDA, almost all study participants (92%) said that they would participate, seeing it as a way to care for their community. Reasons for not participating in future MDA included not trusting drug administrators, feeling reluctant to take unprescribed medicine, and fear of missing work. Additional identified challenges to MDA included reaching specific demographic groups, disseminating effective MDA campaign messages, and managing misinformation and political influence. CONCLUSION Residents appear accepting of MDA despite a lack of prior familiarity. Successful MDA will depend on several factors: fostering relationships among community-based health workers, clinicians, community leaders, and others; developing clear health messages that use local terms and spreading them through a variety of media and social networks; and contextualizing MDA as part of a broader effort to promote community health.
Collapse
Affiliation(s)
- Hunter Keys
- Department of Anthropology, University of Amsterdam, Building B-REC B 8.01, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands.
| | - Keyla Ureña
- Centro de Prevención y Control de Enfermedades Transmitidas por Vectores y Zoonosis (CECOVEZ), Av. Juan Pablo Duarte No. 269, 10301, Santo Domingo, Dominican Republic
| | - Jhefres Reyes
- Colegio de Abogados de la Republica Dominicana, Santo Domingo, Dominican Republic
| | - Kevin Bardosh
- Center for One Health Research, School of Public Health, University of Washington, Washington, USA
| | - Christopher Pell
- Amsterdam Institute for Global Health and Development (AIGHD), Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jose Puello
- Centro de Prevención y Control de Enfermedades Transmitidas por Vectores y Zoonosis (CECOVEZ), Av. Juan Pablo Duarte No. 269, 10301, Santo Domingo, Dominican Republic
| | - Stephen Blount
- The Carter Center, 453 Freedom Parkway, Atlanta, GA, 30307, USA
| | | |
Collapse
|
20
|
Imwong M, Dhorda M, Myo Tun K, Thu AM, Phyo AP, Proux S, Suwannasin K, Kunasol C, Srisutham S, Duanguppama J, Vongpromek R, Promnarate C, Saejeng A, Khantikul N, Sugaram R, Thanapongpichat S, Sawangjaroen N, Sutawong K, Han KT, Htut Y, Linn K, Win AA, Hlaing TM, van der Pluijm RW, Mayxay M, Pongvongsa T, Phommasone K, Tripura R, Peto TJ, von Seidlein L, Nguon C, Lek D, Chan XHS, Rekol H, Leang R, Huch C, Kwiatkowski DP, Miotto O, Ashley EA, Kyaw MP, Pukrittayakamee S, Day NPJ, Dondorp AM, Smithuis FM, Nosten FH, White NJ. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. THE LANCET. INFECTIOUS DISEASES 2020; 20:1470-1480. [PMID: 32679084 PMCID: PMC7689289 DOI: 10.1016/s1473-3099(20)30228-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Greater Mekong subregion is a recurrent source of antimalarial drug resistance in Plasmodium falciparum malaria. This study aimed to characterise the extent and spread of resistance across this entire region between 2007 and 2018. METHODS P falciparum isolates from Myanmar, Thailand, Laos, and Cambodia were obtained from clinical trials and epidemiological studies done between Jan 1, 2007, and Dec 31, 2018, and were genotyped for molecular markers (pfkelch, pfcrt, pfplasmepsin2, and pfmdr1) of antimalarial drug resistance. Genetic relatedness was assessed using microsatellite and single nucleotide polymorphism typing of flanking sequences around target genes. FINDINGS 10 632 isolates were genotyped. A single long pfkelch Cys580Tyr haplotype (from -50 kb to +31·5 kb) conferring artemisinin resistance (PfPailin) now dominates across the eastern Greater Mekong subregion. Piperaquine resistance associated with pfplasmepsin2 gene amplification and mutations in pfcrt downstream of the Lys76Thr chloroquine resistance locus has also developed. On the Thailand-Myanmar border a different pfkelch Cys580Tyr lineage rose to high frequencies before it was eliminated. Elsewhere in Myanmar the Cys580Tyr allele remains widespread at low allele frequencies. Meanwhile a single artemisinin-resistant pfkelch Phe446Ile haplotype has spread across Myanmar. Despite intense use of dihydroartemisinin-piperaquine in Kayin state, eastern Myanmar, both in treatment and mass drug administrations, no selection of piperaquine resistance markers was observed. pfmdr1 amplification, a marker of resistance to mefloquine, remains at low prevalence across the entire region. INTERPRETATION Artemisinin resistance in P falciparum is now prevalent across the Greater Mekong subregion. In the eastern Greater Mekong subregion a multidrug resistant P falciparum lineage (PfPailin) dominates. In Myanmar a long pfkelch Phe446Ile haplotype has spread widely but, by contrast with the eastern Greater Mekong subregion, there is no indication of artemisinin combination therapy (ACT) partner drug resistance from genotyping known markers, and no evidence of spread of ACT resistant P falciparum from the east to the west. There is still a window of opportunity to prevent global spread of ACT resistance. FUNDING Thailand Science Research and Innovation, Initiative 5%, Expertise France, Wellcome Trust.
Collapse
Affiliation(s)
- Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Worldwide Antimalarial Resistance Network, Bangkok, Thailand
| | - Kyaw Myo Tun
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suttipat Srisutham
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jureeporn Duanguppama
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Aungkana Saejeng
- Bureau of Vector-borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Rungniran Sugaram
- Bureau of Vector-borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Nongyao Sawangjaroen
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Kreepol Sutawong
- Buntharik Hospital, Amphoe Buntharik, Ubon Ratchathani, Thailand
| | - Kay Thwe Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Ye Htut
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Khin Linn
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Aye Aye Win
- Department of Tropical and Infectious Diseases, University of Medicine 1, Yangon, Myanmar
| | - Tin M Hlaing
- Defence Services Medical Research Centre, Naypyitaw, Myanmar
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mayfong Mayxay
- Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Laos; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Phonsavangnuea village, Kaysone-Phomvihan district, Savannakhet, Laos
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chea Nguon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Dysoley Lek
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Xin Hui S Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Huy Rekol
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Cheah Huch
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK; Medical Research Council Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Wellcome Sanger Institute, Hinxton, UK; Medical Research Council Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Myat Phone Kyaw
- Department of Medical Research, Myanmar Health Network Organization, Yangon, Myanmar
| | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frank M Smithuis
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Medical Action Myanmar, Yangon, Myanmar
| | - Francois H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Miller JM, Eisele TP, Fraser MS, Lewis MT, Slutsker L, Chizema Kawesha E. Moving from Malaria Burden Reduction toward Elimination: An Evaluation of Mass Drug Administration in Southern Province, Zambia. Am J Trop Med Hyg 2020; 103:3-6. [PMID: 32618265 PMCID: PMC7416971 DOI: 10.4269/ajtmh.19-0669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
From December 2014 to February 2016, a cluster randomized controlled trial was carried out in 60 health facility catchment areas along Lake Kariba in Zambia's Southern Province. The trial sought to evaluate the impact of four rounds of a mass drug administration (MDA) intervention with dihydroartemisinin-piperaquine (DHAP) or focal MDA with DHAP at the household level compared with a control population that received the standard of care. This study was the first randomized controlled trial with DHAP for MDA in sub-Saharan Africa and was conducted through a collaboration between the National Malaria Elimination Programme in the Zambian Ministry of Health, the PATH Malaria Control and Elimination Partnership in Africa, and the Center for Applied Malaria Research and Evaluation at Tulane University. This article serves as an introduction to a collection of articles designed to explore different aspects of the intervention. By describing the recent history of malaria control in Zambia leading up to the trial-from the scale-up of point-of-care diagnosis and treatment, vector control, and indoor residual spraying early in the twenty-first century, to the efforts made to sustain the gains achieved with that approach-it provides a rationale for the implementation of a trial that has informed a new national strategic plan and solidified malaria elimination as Zambia's national goal.
Collapse
Affiliation(s)
- John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | | | | | | | | |
Collapse
|
22
|
Gupta H, Galatas B, Chidimatembue A, Huijben S, Cisteró P, Matambisso G, Nhamussua L, Simone W, Bassat Q, Ménard D, Ringwald P, Rabinovich NR, Alonso PL, Saúte F, Aide P, Mayor A. Effect of mass dihydroartemisinin-piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance. PLoS One 2020; 15:e0240174. [PMID: 33075062 PMCID: PMC7571678 DOI: 10.1371/journal.pone.0240174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mass drug administration (MDA) can rapidly reduce the burden of Plasmodium falciparum (Pf). However, concerns remain about its contribution to select for antimalarial drug resistance. METHODS We used Sanger sequencing and real-time PCR to determine the proportion of molecular markers associated with antimalarial resistance (k13, pfpm2, pfmdr1 and pfcrt) in Pf isolates collected before (n = 99) and after (n = 112) the implementation of two monthly MDA rounds with dihydroartemisinin-piperaquine (DHAp) for two consecutive years in Magude district of Southern Mozambique. RESULTS None of the k13 polymorphisms associated with artemisinin resistance were observed in the Pf isolates analyzed. The proportion of Pf isolates with multiple copies of pfpm2, an amplification associated with piperaquine resistance, was similar in pre- (4.9%) and post-MDA groups (3.4%; p = 1.000). No statistically significant differences were observed between pre- and post-MDA groups in the proportion of Pf isolates neither with mutations in pfcrt and pfmdr1 genes, nor with the carriage of pfmdr1 multiple copies (p>0.05). CONCLUSIONS This study does not show any evidence of increased frequency of molecular makers of antimalarial resistance after MDA with DHAp in southern Mozambique where markers of antimalarial resistance were absent or low at the beginning of the intervention.
Collapse
Affiliation(s)
- Himanshu Gupta
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Galatas
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | | | - Silvie Huijben
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Pau Cisteró
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Didier Ménard
- Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Pascal Ringwald
- World Health Organization (WHO), Global Malaria Programme, Geneva, Switzerland
| | - N. Regina Rabinovich
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro L. Alonso
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- National Institute of Health, Ministry of Health, Manhica, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
| |
Collapse
|
23
|
Sharma N, Gupta Y, Bansal M, Singh S, Pathak P, Shahbaaz M, Mathur R, Singh J, Kashif M, Grishina M, Potemkin V, Rajendran V, Poonam, Kempaiah P, Singh AP, Rathi B. Multistage antiplasmodial activity of hydroxyethylamine compounds, in vitro and in vivo evaluations. RSC Adv 2020; 10:35516-35530. [PMID: 35686031 PMCID: PMC9127639 DOI: 10.1039/d0ra03997g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Malaria, a global threat to the human population, remains a challenge partly due to the fast-growing drug-resistant strains of Plasmodium species. New therapeutics acting against the pathogenic asexual and sexual stages, including liver-stage malarial infection, have now attained more attention in achieving malaria eradication efforts. In this paper, two previously identified potent antiplasmodial hydroxyethylamine (HEA) compounds were investigated for their activity against the malaria parasite's multiple life stages. The compounds exhibited notable activity against the artemisinin-resistant strain of P. falciparum blood-stage culture with 50% inhibitory concentrations (IC50) in the low micromolar range. The compounds' cytotoxicity on HEK293, HepG2 and Huh-7 cells exhibited selective killing activity with IC50 values > 170 μM. The in vivo efficacy was studied in mice infected with P. berghei NK65, which showed a significant reduction in the blood parasite load. Notably, the compounds were active against liver-stage infection, mainly compound 1 with an IC50 value of 1.89 μM. Mice infected with P. berghei sporozoites treated with compound 1 at 50 mg kg−1 dose had markedly reduced liver stage infection. Moreover, both compounds prevented ookinete maturation and affected the developmental progression of gametocytes. Further, systematic in silico studies suggested both the compounds have a high affinity towards plasmepsin II with favorable pharmacological properties. Overall, the findings demonstrated that HEA and piperidine possessing compounds have immense potential in treating malarial infection by acting as multistage inhibitors. Malaria, a global threat to the human population, remains a challenge partly due to the fast-growing drug-resistant strains of Plasmodium species.![]()
Collapse
|
24
|
Ethics and Antimalarial Drug Resistance. ETHICS AND DRUG RESISTANCE: COLLECTIVE RESPONSIBILITY FOR GLOBAL PUBLIC HEALTH 2020. [PMCID: PMC7586435 DOI: 10.1007/978-3-030-27874-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There has been impressive progress in malaria control and treatment over the past two decades. One of the most important factors in the decline of malaria-related mortality has been the development and deployment of highly effective treatment in the form of artemisinin-based combination therapies (ACTs). However, recent reports suggest that these gains stand the risk of being reversed due to the emergence of ACT resistance in the Greater Mekong Subregion and the threat of this resistance spreading to Africa, where the majority of the world’s malaria cases occur, with catastrophic consequences. This chapter provides an overview of strategies proposed by malaria experts to tackle artemisinin-resistant malaria, and some of the most important practical ethical issues presented by each of these interventions. The proposed strategies include mass antimalarial drug administrations in selected populations, and mandatory screening of possibly infected individuals prior to entering an area free of artemisinin-resistant malaria. We discuss ethical issues such as tensions between the wishes of individuals versus the broader goal of malaria elimination, and the risks of harm to interventional populations, and conclude by proposing a set of recommendations.
Collapse
|
25
|
Kobylinski KC, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Pantuwatana K, Phasomkusolsil S, Davidson SA, Winterberg M, Hoglund RM, Mukaka M, van der Pluijm RW, Dondorp A, Day NPJ, White NJ, Tarning J. Safety, Pharmacokinetics, and Mosquito-Lethal Effects of Ivermectin in Combination With Dihydroartemisinin-Piperaquine and Primaquine in Healthy Adult Thai Subjects. Clin Pharmacol Ther 2019; 107:1221-1230. [PMID: 31697848 PMCID: PMC7285759 DOI: 10.1002/cpt.1716] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
Mass administration of antimalarial drugs and ivermectin are being considered as potential accelerators of malaria elimination. The safety, tolerability, pharmacokinetics, and mosquito‐lethal effects of combinations of ivermectin, dihydroartemisinin‐piperaquine, and primaquine were evaluated. Coadministration of ivermectin and dihydroartemisinin‐piperaquine resulted in increased ivermectin concentrations with corresponding increases in mosquito‐lethal effect across all subjects. Exposure to piperaquine was also increased when coadministered with ivermectin, but electrocardiograph QT‐interval prolongation was not increased. One subject had transiently impaired liver function. Ivermectin mosquito‐lethal effect was greater than predicted previously against the major Southeast Asian malaria vectors. Both Anopheles dirus and Anopheles minimus mosquito mortality was increased substantially (20‐fold and 35‐fold increase, respectively) when feeding on volunteer blood after ivermectin administration compared with in vitro ivermectin‐spiked blood. This suggests the presence of ivermectin metabolites that impart mosquito‐lethal effects. Further studies of this combined approach to accelerate malaria elimination are warranted.
Collapse
Affiliation(s)
- Kevin C Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Podjanee Jittamala
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Kanchana Pantuwatana
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriporn Phasomkusolsil
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Silas A Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Kagaya W, Gitaka J, Chan CW, Kongere J, Md Idris Z, Deng C, Kaneko A. Malaria resurgence after significant reduction by mass drug administration on Ngodhe Island, Kenya. Sci Rep 2019; 9:19060. [PMID: 31836757 PMCID: PMC6910941 DOI: 10.1038/s41598-019-55437-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Although WHO recommends mass drug administration (MDA) for malaria elimination, further evidence is required for understanding the obstacles for the optimum implementation of MDA. Just before the long rain in 2016, two rounds of MDA with artemisinin/piperaquine (Artequick) and low-dose primaquine were conducted with a 35-day interval for the entire population of Ngodhe Island (~500 inhabitants) in Lake Victoria, Kenya, which is surrounded by areas with moderate and high transmission. With approximately 90% compliance, Plasmodium prevalence decreased from 3% to 0% by microscopy and from 10% to 2% by PCR. However, prevalence rebounded to 9% by PCR two months after conclusion of MDA. Besides the remained local transmission, parasite importation caused by human movement likely contributed to the resurgence. Analyses of 419 arrivals to Ngodhe between July 2016 and September 2017 revealed Plasmodium prevalence of 4.6% and 16.0% by microscopy and PCR, respectively. Risk factors for infection among arrivals included age (0 to 5 and 11 to 15 years), and travelers from Siaya County, located to the north of Ngodhe Island. Parasite importation caused by human movement is one of major obstacles to sustain malaria elimination, suggesting the importance of cross-regional initiatives together with local vector control.
Collapse
Affiliation(s)
- Wataru Kagaya
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Jesse Gitaka
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Chim W Chan
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden.,Department of Anthropology, Binghamton University, Binghamton, NY, 13905, USA
| | - James Kongere
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, PO Box 19993-00202, Nairobi, Kenya
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden.,Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Changsheng Deng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Akira Kaneko
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden. .,Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
27
|
Cheaveau J, Mogollon DC, Mohon MAN, Golassa L, Yewhalaw D, Pillai DR. Asymptomatic malaria in the clinical and public health context. Expert Rev Anti Infect Ther 2019; 17:997-1010. [PMID: 31718324 DOI: 10.1080/14787210.2019.1693259] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Historically, the global community has focused on the control of symptomatic malaria. However, interest in asymptomatic malaria has been growing, particularly in the context of malaria elimination.Areas covered: We undertook a comprehensive PubMed literature review on asymptomatic malaria as it relates to detection and elimination with emphasis between 2014 and 2019. Diagnostic tools with a low limit of detection (LOD) have allowed us to develop a more detailed understanding of asymptomatic malaria and its impact. These highly sensitive diagnostics have demonstrated that the prevalence of asymptomatic malaria is greater than previously thought. In addition, it is now possible to detect the malaria reservoir in the community, something that was previously not feasible. Asymptomatic malaria has previously not been treated, but research has begun to examine whether treating individuals with asymptomatic malaria may lead to health benefits. Finally, we have begun to understand the importance of asymptomatic malaria in ongoing transmission.Expert opinion: Therefore, with malaria elimination back on the agenda, asymptomatic malaria can no longer be ignored, especially in light of new ultra-sensitive diagnostic tools.
Collapse
Affiliation(s)
- James Cheaveau
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada
| | - Daniel Castaneda Mogollon
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada
| | - Md Abu Naser Mohon
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Dylan R Pillai
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Canada, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Deng C, Huang B, Wang Q, Wu W, Zheng S, Zhang H, Li D, Feng D, Li G, Xue L, Yang T, Tuo F, Mohadji F, Su XZ, Xu Q, Wu Z, Lin L, Zhou J, Yan H, Bacar A, Said Abdallah K, Kéké RA, Msa Mliva A, Mohamed M, Wang X, Huang S, Oithik F, Li XB, Lu F, Fay MP, Liu XH, Wellems TE, Song J. Large-scale Artemisinin-Piperaquine Mass Drug Administration With or Without Primaquine Dramatically Reduces Malaria in a Highly Endemic Region of Africa. Clin Infect Dis 2019; 67:1670-1676. [PMID: 29846536 DOI: 10.1093/cid/ciy364] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Background Mass drug administration (MDA), with or without low-dose primaquine (PMQLD), is being considered for malaria elimination programs. The potential of PMQLD to block malaria transmission by mosquitoes must be balanced against liabilities of its use. Methods Artemisinin-piperaquine (AP), with or without PMQLD, was administered in 3 monthly rounds across Anjouan Island, Union of Comoros. Plasmodium falciparum malaria rates, mortality, parasitemias, adverse events, and PfK13 Kelch-propeller gene polymorphisms were evaluated. Results Coverage of 85 to 93% of the Anjouan population was achieved with AP plus PMQLD (AP+PMQLD) in 2 districts (population 97164) and with AP alone in 5 districts (224471). Between the months of April-September in both 2012 and 2013, average monthly malaria hospital rates per 100000 people fell from 310.8 to 2.06 in the AP+PMQLD population (ratio 2.06/310.8 = 0.66%; 95% CI: 0.02%, 3.62%; P = .00007) and from 412.1 to 2.60 in the AP population (ratio 0.63%; 95% CI: 0.11%, 1.93%; P < .00001). Effectiveness of AP+PMQLD was 0.9908 (95% CI: 0.9053, 0.9991), while effectiveness of AP alone was 0.9913 (95% CI: 0.9657, 0.9978). Both regimens were well tolerated, without severe adverse events. Analysis of 52 malaria samples after MDA showed no evidence for selection of PfK13 Kelch-propeller mutations. Conclusions Steep reductions of malaria cases were achieved by 3 monthly rounds of either AP+PMQLD or AP alone, suggesting potential for highly successful MDA without PMQLD in epidemiological settings such as those on Anjouan. A major challenge is to sustain and expand the public health benefits of malaria reductions by MDA.
Collapse
Affiliation(s)
| | - Bo Huang
- Institute of Tropical Medicine, People's Republic of China
| | - Qi Wang
- Institute of Tropical Medicine, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Wanting Wu
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Hongying Zhang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Di Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Danghong Feng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Guoming Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Linlu Xue
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Tao Yang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Fei Tuo
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Fouad Mohadji
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Qin Xu
- Institute of Tropical Medicine, People's Republic of China
| | - Zhibing Wu
- First Affiliated Hospital, People's Republic of China
| | - Li Lin
- First Affiliated Hospital, People's Republic of China
| | - Jiuyao Zhou
- Traditional Chinese Medicine College, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Hong Yan
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Affane Bacar
- National Malaria Control Programme, Moroni, Union of Comoros, People's Republic of China
| | - Kamal Said Abdallah
- National Malaria Control Programme, Moroni, Union of Comoros, People's Republic of China
| | - Rachadi A Kéké
- National Malaria Control Programme, Moroni, Union of Comoros, People's Republic of China
| | - Ahamada Msa Mliva
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Moussa Mohamed
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Xinhua Wang
- Guangzhou Medical University, People's Republic of China
| | - Shiguang Huang
- School of Stomatology, Jinan University, People's Republic of China
| | - Fatihou Oithik
- Ministry of Health Comoros, Moroni, Union of Comoros, Bethesda, Maryland
| | - Xiao-Bo Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, People's Republic of China.,Key Laboratory of Tropical Disease Control in Ministry of Education, Sun Yat-sen University, Guangdong, People's Republic of China
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Xiao-Hong Liu
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianping Song
- Institute of Tropical Medicine, People's Republic of China.,Science and Technology Park, Guangzhou University of Chinese Medicine, Guangdong, People's Republic of China
| |
Collapse
|
29
|
Eisele TP. Mass drug administration can be a valuable addition to the malaria elimination toolbox. Malar J 2019; 18:281. [PMID: 31438950 PMCID: PMC6704699 DOI: 10.1186/s12936-019-2906-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022] Open
Abstract
The Global Technical Strategy 2016-2030 of the World Health Organization (WHO) has the ambitious goal of malaria being eliminated from at least 35 countries by 2030. However, in areas with once-stable malaria transmission, the reservoir of human infection may be intermittently symptomatic or fully silent yet still lead to transmission, posing a serious challenge to elimination. Mass drug administration (MDA), defined as the provision of a therapeutic dose of an effective anti-malarial drug to the entire target population, irrespective of infection status or symptoms, is one strategy to combat the silent human reservoir of infection. MDA is currently recommended by the WHO as a potential strategy for the elimination of Plasmodium falciparum malaria in areas approaching interruption of transmission, given the prerequisites of good access to case management, effective vector control and surveillance, and limited potential for reintroduction. Recent community randomized controlled trials of MDA with dihydroartemisinin-piperaquine, implemented as part of a comprehensive package of interventions, have shown this strategy to be safe and effective in significantly lowering the malaria burden in pre-elimination settings. Here it is argued that effectively implemented MDA should be kept in the elimination toolbox as a potential strategy for P. falciparum elimination in a variety of settings, including islands, appropriate low transmission settings, and in epidemics and complex emergencies. Effectively implemented MDA using an ACT has been shown to be safe, unrelated to the emergence of drug resistance, and may play an important role in sufficiently lowering the malaria burden to allow malaria transmission foci to be more easily identified, and to allow elimination programmes to more feasibly implement case-based surveillance and follow-up activities. To be most impactful and guard against drug resistance, MDA should use an ACT, achieve high programmatic coverage and adherence, be implemented when transmission is lowest in areas of limited risk of immediate parasite reintroduction, and must always be implemented only once good access to case management, high coverage of effective vector control, and strong surveillance have been achieved. If these considerations are taken into account, MDA should prove to be a valuable tool for the malaria elimination toolbox.
Collapse
Affiliation(s)
- Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| |
Collapse
|
30
|
Akinsolu FT, Nemieboka PO, Njuguna DW, Ahadji MN, Dezso D, Varga O. Emerging Resistance of Neglected Tropical Diseases: A Scoping Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1925. [PMID: 31151318 PMCID: PMC6603949 DOI: 10.3390/ijerph16111925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Background: Antimicrobial resistance (AMR) is a global public health threat with the potential to cause millions of deaths. There has been a tremendous increase in the use of antimicrobials, stemming from preventive chemotherapy elimination and control programs addressing neglected tropical diseases (NTDs). This study aims to identify the frequency of drug resistance for 11 major NTDs and 20 treatment drugs within a specific period by systematically analyzing the study design, socio-demographic factors, resistance, and countries of relevant studies. Methods: Adhering to PRISMA guidelines, we performed systematic reviews of the major 11 NTDs to identify publications on drug resistance between 2000 and 2016. A quality assessment tool adapted for evaluating observational and experimental studies was applied to assess the quality of eligible studies. Results: One of the major findings is that six NTDs have information on drug resistance, namely human African trypanosomiasis, leishmaniasis, onchocerciasis, schistosomiasis, soil-transmitted helminths, and trachoma. Many studies recorded resistance due to diagnostic tests, and few studies indicated clinical resistance. Although most studies were performed in Africa where there is the occurrence of several NTDs, there was no link between disease burden and locations of study. Conclusions: Based on this study we deduce that monitoring and surveillance systems need to be strengthened to enable the early detection of AMR and the mitigation of its global spread.
Collapse
Affiliation(s)
- Folahanmi T Akinsolu
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, H-4002 Debrecen, Hungary.
| | - Priscilla O Nemieboka
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, H-4002 Debrecen, Hungary.
| | - Diana W Njuguna
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, H-4002 Debrecen, Hungary.
| | - Makafui N Ahadji
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, H-4002 Debrecen, Hungary.
| | - Dora Dezso
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, H-4002 Debrecen, Hungary.
| | - Orsolya Varga
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, H-4002 Debrecen, Hungary.
| |
Collapse
|
31
|
Bogoch II, Utzinger J, Lo NC, Andrews JR. Antibacterial mass drug administration for child mortality reduction: Opportunities, concerns, and possible next steps. PLoS Negl Trop Dis 2019; 13:e0007315. [PMID: 31120903 PMCID: PMC6532835 DOI: 10.1371/journal.pntd.0007315] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Isaac I. Bogoch
- Divisions of General Internal Medicine and Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathan C. Lo
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Epidemiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
32
|
von Seidlein L, Peto TJ, Tripura R, Pell C, Yeung S, Kindermans JM, Dondorp A, Maude R. Novel Approaches to Control Malaria in Forested Areas of Southeast Asia. Trends Parasitol 2019; 35:388-398. [PMID: 31076353 DOI: 10.1016/j.pt.2019.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 12/27/2022]
Abstract
The emergence and spread of drug resistance in the Greater Mekong Subregion (GMS) have added urgency to accelerate malaria elimination while reducing the treatment options. The remaining foci of malaria transmission are often in forests, where vectors tend to bite during daytime and outdoors, thus reducing the effectiveness of insecticide-treated bed nets. Limited periods of exposure suggest that chemoprophylaxis could be a promising strategy to protect forest workers against malaria. Here we discuss three major questions in optimizing malaria chemoprophylaxis for forest workers: which antimalarial drug regimens are most appropriate, how frequently the chemoprophylaxis should be delivered, and how to motivate forest workers to use, and adhere to, malaria prophylaxis.
Collapse
Affiliation(s)
- Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher Pell
- Centre for Social Sciences and Global Health, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Shunmay Yeung
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Arjen Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
33
|
Korhonen PK, Hall RS, Young ND, Gasser RB. Common workflow language (CWL)-based software pipeline for de novo genome assembly from long- and short-read data. Gigascience 2019; 8:giz014. [PMID: 30821816 PMCID: PMC6451199 DOI: 10.1093/gigascience/giz014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/03/2018] [Accepted: 01/25/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Here, we created an automated pipeline for the de novoassembly of genomes from Pacific Biosciences long-read and Illumina short-read data using common workflow language (CWL). To evaluate the performance of this pipeline, we assembled the nuclear genomes of the eukaryotes Caenorhabditis elegans (∼100 Mb), Drosophila melanogaster (∼138 Mb), and Plasmodium falciparum (∼23 Mb) directly from publicly accessible nucleotide sequence datasets and assessed the quality of the assemblies against curated reference genomes. FINDINGS We showed a dependency of the accuracy of assembly on sequencing technology and GC content and repeatedly achieved assemblies that meet the high standards set by the National Human Genome Research Institute, being applicable to gene prediction and subsequent genomic analyses. CONCLUSIONS This CWL pipeline overcomes current challenges of achieving repeatability and reproducibility of assembly results and offers a platform for the re-use of the workflow and the integration of diverse datasets. This workflow is publicly available via GitHub (https://github.com/vetscience/Assemblosis) and is currently applicable to the assembly of haploid and diploid genomes of eukaryotes.
Collapse
Affiliation(s)
- Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross S Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Singh S, Rajendran V, He J, Singh AK, Achieng AO, Vandana, Pant A, Nasamu AS, Pandit M, Singh J, Quadiri A, Gupta N, Poonam, Ghosh PC, Singh BK, Narayanan L, Kempaiah P, Chandra R, Dunn BM, Pandey KC, Goldberg DE, Singh AP, Rathi B. Fast-Acting Small Molecules Targeting Malarial Aspartyl Proteases, Plasmepsins, Inhibit Malaria Infection at Multiple Life Stages. ACS Infect Dis 2019; 5:184-198. [PMID: 30554511 DOI: 10.1021/acsinfecdis.8b00197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eradication of malaria remains challenging due to the complex life cycle of Plasmodium and the rapid emergence of drug-resistant forms of Plasmodium falciparum and Plasmodium vivax. New, effective, and inexpensive antimalarials against multiple life stages of the parasite are urgently needed to combat the spread of malaria. Here, we synthesized a set of novel hydroxyethylamines and investigated their activities in vitro and in vivo. All of the compounds tested had an inhibitory effect on the blood stage of P. falciparum at submicromolar concentrations, with the best showing 50% inhibitory concentrations (IC50) of around 500 nM against drug-resistant P. falciparum parasites. These compounds showed inhibitory actions against plasmepsins, a family of malarial aspartyl proteases, and exhibited a marked killing effect on blood stage Plasmodium. In chloroquine-resistant Plasmodium berghei and P. berghei ANKA infected mouse models, treating mice with both compounds led to a significant decrease in blood parasite load. Importantly, two of the compounds displayed an inhibitory effect on the gametocyte stages (III-V) of P. falciparum in culture and the liver-stage infection of P. berghei both in in vitro and in vivo. Altogether, our findings suggest that fast-acting hydroxyethylamine-phthalimide analogs targeting multiple life stages of the parasite could be a valuable chemical lead for the development of novel antimalarial drugs.
Collapse
Affiliation(s)
- Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Vinoth Rajendran
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Jiang He
- Institute for Medical Engineering and Science, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amit K. Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Angela O. Achieng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Vandana
- Host−Parasite Interaction Biology Group, National Institute of Malaria Research, Lab. No. 219, Sector-8 Dwarka, New Delhi 110077, India
| | - Akansha Pant
- Host−Parasite Interaction Biology Group, National Institute of Malaria Research, Lab. No. 219, Sector-8 Dwarka, New Delhi 110077, India
| | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Mansi Pandit
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi South Campus, New Delhi 110021, India
| | - Jyoti Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Afshana Quadiri
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nikesh Gupta
- Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi North Campus, Delhi 110007, India
| | - Prahlad C. Ghosh
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | | | - Latha Narayanan
- Bioinformatics Infrastructure Facility, Sri Venkateswara College, University of Delhi South Campus, New Delhi 110021, India
| | - Prakasha Kempaiah
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
- Department of Medicine, Loyola University Stritch School of Medicine, 2160 South First Avenue, Chicago, Illinois 60153, United States
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ben M. Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, P.O. Box 100245, Gainesville, Florida 32610, United States
| | - Kailash C. Pandey
- Host−Parasite Interaction Biology Group, National Institute of Malaria Research, Lab. No. 219, Sector-8 Dwarka, New Delhi 110077, India
- Department of Biochemistry, National Institute for Research in Environmental Health, ICMR, Bhopal 462001, India
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Macintyre F, Ramachandruni H, Burrows JN, Holm R, Thomas A, Möhrle JJ, Duparc S, Hooft van Huijsduijnen R, Greenwood B, Gutteridge WE, Wells TNC, Kaszubska W. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar J 2018; 17:402. [PMID: 30384848 PMCID: PMC6211409 DOI: 10.1186/s12936-018-2549-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Over the last 15 years, the majority of malaria drug discovery and development efforts have focused on new molecules and regimens to treat patients with uncomplicated or severe disease. In addition, a number of new molecular scaffolds have been discovered which block the replication of the parasite in the liver, offering the possibility of new tools for oral prophylaxis or chemoprotection, potentially with once-weekly dosing. However, an intervention which requires less frequent administration than this would be a key tool for the control and elimination of malaria. Recent progress in HIV drug discovery has shown that small molecules can be formulated for injections as native molecules or pro-drugs which provide protection for at least 2 months. Advances in antibody engineering offer an alternative approach whereby a single injection could potentially provide protection for several months. Building on earlier profiles for uncomplicated and severe malaria, a target product profile is proposed here for an injectable medicine providing long-term protection from this disease. As with all of such profiles, factors such as efficacy, cost, safety and tolerability are key, but with the changing disease landscape in Africa, new clinical and regulatory approaches are required to develop prophylactic/chemoprotective medicines. An overall framework for these approaches is suggested here.
Collapse
Affiliation(s)
- Fiona Macintyre
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - René Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anna Thomas
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | | | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Timothy N C Wells
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland.
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| |
Collapse
|
36
|
Cluster-randomized trial of monthly malaria prophylaxis versus focused screening and treatment: a study protocol to define malaria elimination strategies in Cambodia. Trials 2018; 19:558. [PMID: 30326952 PMCID: PMC6192281 DOI: 10.1186/s13063-018-2931-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 09/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains a critical public health problem in Southeast Asia despite intensive containment efforts. The continued spread of multi-drug-resistant Plasmodium falciparum has led to calls for malaria elimination on the Thai-Cambodian border. However, the optimal approach to elimination in difficult-to-reach border populations, such as the Military, remains unclear. METHODS/DESIGN A two-arm, cluster-randomized controlled, open-label pilot study is being conducted in military personnel and their families at focal endemic areas on the Thai-Cambodian border. The primary objective is to compare the effectiveness of monthly malaria prophylaxis (MMP) with dihydroartemisinin-piperaquine and weekly primaquine for 12 weeks compared with focused screening and treating (FSAT) following current Cambodian national treatment guidelines. Eight separate military encampments, making up approximately 1000 military personnel and their families, undergo randomization to the MMP or FSAT intervention for 3 months, with an additional 3 months' follow-up. In addition, each treatment cluster of military personnel and civilians is also randomly assigned to receive either permethrin- or sham (water)-treated clothing in single-blind fashion. The primary endpoint is risk reduction for malaria infection in geographically distinct military encampments based on their treatment strategy. Monthly malaria screening in both arms is done via microscopy, PCR, and rapid diagnostic testing to compare both the accuracy and cost-effectiveness of diagnostic modalities to detect asymptomatic infection. Universal glucose-6-phosphate dehydrogenase (G6PD) deficiency screening is done at entry, comparing the results from a commercially available rapid diagnostic test, the fluorescence spot test, and quantitative testing for accuracy and cost-effectiveness. The comparative safety of the interventions chosen is also being evaluated. DISCUSSION Despite the apparent urgency, the key operational elements of proposed malaria elimination strategies in Southeast Asian mobile and migrant populations, including the Military, have yet to be rigorously tested in a well-controlled clinical study. Here, we present a protocol for the primary evaluation of two treatment paradigms - monthly malaria prophylaxis and focused screening and treatment - to achieve malaria elimination in a Cambodian military population. We will also assess the feasibility and incremental benefit of outdoor-biting vector intervention - permethrin-treated clothing. In the process, we aim to define the cost-effectiveness of the inputs required for success including a responsive information system, skilled human resource and laboratory infrastructure requirements, and quality management. Despite being a relatively low transmission area, the complexities of multi-drug-resistant malaria and the movement of vulnerable populations require an approach that is not only technically sound, but simple enough to be achievable. TRIAL REGISTRATION ClinicalTrials.gov, ID: NCT02653898 . Registered on 13 January 2016.
Collapse
|
37
|
Malaria burden and treatment targets in Kachin Special Region II, Myanmar from 2008 to 2016: A retrospective analysis. PLoS One 2018; 13:e0195032. [PMID: 29614088 PMCID: PMC5882093 DOI: 10.1371/journal.pone.0195032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/15/2018] [Indexed: 01/02/2023] Open
Abstract
Although drug-based treatment is the primary intervention for malaria control and elimination, optimal use of targeted treatments remains unclear. From 2008 to 2016, three targeted programs on treatment were undertaken in Kachin Special Region II (KR2), Myanmar. Program I (2008–2011) treated all confirmed, clinical and suspected cases; program II (2012–2013) treated confirmed and clinical cases; and program III (2014–2016) targeted confirmed cases only. This study aims to evaluate the impacts of the three programs on malaria burden individually based on the annual parasite incidence (API), slide positivity rate (SPR) and their relative values. The API is calculated from original collected data and the incidence rate ratio (IRR) for each year is calculated by using the first-year API as a reference in each program phase across the KR2. Same method is applied to calculate SPR and risk ratio (RR) at the sentinel hospital too. During program I (2008–2011), malaria burden was reduced by 61% (95%CI: 58%-74%) and the actual API decreased from 9.8 (95%CI: 9.6–10.1) per 100 person-years in 2008 to 3.8 (3.6–4.1) per 100 person-years in 2011. Amid program II (2012–2013), the malaria burden increased by 33% (95%CI: 22%-46%) and the actual API increased from 2.1(95%CI: 2.0–2.3) per 100 person-years in 2012 to 2.8 (95%CI: 2.7–2.9) per 100 person-years in 2013. During program III (2014–2016) the malaria burden increased furtherly by 60% (95%CI: 51% - 69%) and the actual API increased from 3.2(95%CI: 3.0–3.3) per 100 person-years in 2014 to 5.1 (95%CI: 4.9–5.2) per 100 person-years in 2016. Results of the slide positivity of the sentinel hospital also confirm these results. Resurgence of malaria was mainly due to Plasmodium vivax during program II and III. This study indicates that strategy adopted in program I (2008–2011) should be more appropriate for the KR2. Quality-assured treatment of all confirmed, clinical and suspected malaria cases may be helpful for the reduction of malaria burden.
Collapse
|
38
|
Zuber JA, Takala-Harrison S. Multidrug-resistant malaria and the impact of mass drug administration. Infect Drug Resist 2018. [PMID: 29535546 PMCID: PMC5840189 DOI: 10.2147/idr.s123887] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Based on the emergence and spread throughout the Greater Mekong Subregion (GMS) of multiple artemisinin-resistant lineages, the prevalence of multidrug resistance leading to high rates of artemisinin-based combination treatment failure in parts of the GMS, and the declining malaria burden in the region, the World Health Organization has recommended complete elimination of falciparum malaria from the GMS. Mass drug administration (MDA) is being piloted as one elimination intervention to be employed as part of this effort. However, concerns remain as to whether MDA might exacerbate the already prevalent problem of multidrug resistance in the region. In this review, we briefly discuss challenges of MDA, the use of MDA in the context of multidrug-resistant malaria, and the potential of different drug combinations and drug-based elimination strategies for mitigating the emergence and spread of resistance.
Collapse
Affiliation(s)
- Janie Anne Zuber
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Babatunde KA, Mbagwu S, Hernández-Castañeda MA, Adapa SR, Walch M, Filgueira L, Falquet L, Jiang RHY, Ghiran I, Mantel PY. Malaria infected red blood cells release small regulatory RNAs through extracellular vesicles. Sci Rep 2018; 8:884. [PMID: 29343745 PMCID: PMC5772623 DOI: 10.1038/s41598-018-19149-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
The parasite Plasmodium falciparum causes the most severe form of malaria. Cell communication between parasites is an important mechanism to control population density and differentiation. The infected red blood cells (iRBCs) release small extracellular vesicles (EVs) that transfer cargoes between cells. The EVs synchronize the differentiation of the asexual parasites into gametocytes to initiate the transmission to the mosquito. Beside their role in parasite communication, EVs regulate vascular function. So far, the exact cargoes responsible for cellular communication remain unknown. We isolated EVs from cultured iRBCs to determine their small RNA content. We identified several types of human and plasmodial regulatory RNAs. While the miRNAs and tRNA-derived fragments were the most abundant human RNAs, we also found Y-RNAs, vault RNAs, snoRNAs and piRNAs. Interestingly, we found about 120 plasmodial RNAs, including mRNAs coding for exported proteins and proteins involved in drug resistance, as well as non-coding RNAs, such as rRNAs, small nuclear (snRNAs) and tRNAs. These data show, that iRBC-EVs carry small regulatory RNAs. A role in cellular communication is possible since the RNAs were transferred to endothelial cells. Furthermore, the presence of Plasmodium RNAs, in EVs suggests that they may be used as biomarker to track and detect disease.
Collapse
Affiliation(s)
| | - Smart Mbagwu
- Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | | | - Swamy R Adapa
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Michael Walch
- Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Luis Filgueira
- Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Rays H Y Jiang
- Department of Global Health (GH) & Center for Drug Discovery and Innovation (CDDI), College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Ionita Ghiran
- Division of Allergy and Infection, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Pierre-Yves Mantel
- Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
40
|
Huang J, Xiong K, Zhang H, Zhao Y, Cao J, Gong H, Zhou Y, Zhou J. Molecular characterization of Babesia microti thioredoxin (BmTrx2) and its expression patterns induced by antiprotozoal drugs. Parasit Vectors 2018; 11:38. [PMID: 29335000 PMCID: PMC5769273 DOI: 10.1186/s13071-018-2619-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 11/10/2022] Open
Abstract
Background Human babesiosis is an infectious disease that is epidemic in various regions all over the world. The predominant causative pathogen of this disease is the intra-erythrocytic parasite Babesia microti. The thioredoxin system is one of the major weapons that is used in the resistance to the reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced by host immune system. In other intra-erythrocytic apicomplexans like the malaria parasite Plasmodium falciparum, anti-oxidative proteins are promising targets for the development of anti-parasitic drugs. However, to date, the sequences and biological properties of thioredoxins and thioredoxin-like molecules of B. microti remain unknown. Understanding the molecular characterization and function of B. microti thioredoxins may help to develop anti-Babesia drugs and controlling babesiosis. Methods The full-length B. microti thioredoxin 2 (BmTrx2) gene was obtained using a rapid amplification of cDNA ends (RACE) method, and the deduced BmTrx2 amino acid sequence was analyzed using regular bioinformatics tools. Recombinant BmTrx2 protein was expressed in vitro and purified using His-tag protein affinity chromatography resins. Reverse transcription PCR, quantitative real-time PCR and Western blot were employed to detect the expression and native proteins of BmTrx2. Indirect immunofluorescence assay was used to localize BmTrx2 in B. microti. Bovine insulin reduction assays were used to determine the enzyme activity of the purified recombinant BmTrx2 protein. Results The full-length BmTrx2 was 564 bp with a 408 bp open reading frame encoding a protein of 135 amino acids. The predicted molecular weight of the protein was 15.5 kDa. A conserved thioredoxin-like family domain was found in BmTrx2. The expression of BmTrx2 was upregulated on both the third and eighth day post-infection in mice, whereas expression was downregulated during the beginning and later stages. The results of Western blot analysis showed the native BmTrx2 in parasite lysates could be detected by mouse anti-BmTrx2 serum and that the recombinant BmTrx2 protein could be recognized by serum of B. microti-infected mice. Immunofluorescence microscopy showed that BmTrx2 localized in the cell cytoplasm of B. microti merozoites in B. microti-infected red blood cells. The results of bovine insulin reduction assay indicated the purified recombinant BmTrx2 protein possesses antioxidant enzyme activity. Dihydroartemisinin and quinine, known anti-malaria drugs, and clindamycin, a known anti-babesiosis drug, induced significantly higher upregulation of BmTrx2 mRNA. Conclusions Our results indicate that BmTrx2 is a functional enzyme with antioxidant activity and may be involved in the response of B. microti to anti-parasite drugs. Electronic supplementary material The online version of this article (10.1186/s13071-018-2619-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingwei Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kang Xiong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanzhen Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
41
|
The role of antimalarial quality in the emergence and transmission of resistance. Med Hypotheses 2017; 111:49-54. [PMID: 29406996 DOI: 10.1016/j.mehy.2017.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/14/2017] [Accepted: 12/13/2017] [Indexed: 11/23/2022]
Abstract
The emergence and transmission of antimalarial resistance is hampering malaria eradication efforts and is shortening the useful therapeutic life of currently available antimalarials. Drug selection pressure has been identified as a contributing factor to the emergence and transmission of resistance, especially population treatment coverage and sub-therapeutic concentrations of active pharmaceutical ingredient (API) in the bloodstream. Medicine quality can be defined as good quality or poor quality. Poor quality antimalarials can be falsified, substandard or degraded and are estimated to make up between 10 and 50% of the antimalarial market in developing countries, and can be a source of sub-therapeutic doses of antimalarial API(s). The availability and use of poor quality antimalarials and the non-recommended use of quality assured monotherapies have historically been linked to treatment failure and in some cases, have coincided with the emergence and transmission of resistance in regions. We propose and outline the hypotheses that the use of poor quality antimalarial treatments and non-recommended quality assured monotherapies promote the (i) emergence and/or (ii) transmission of antimalarial resistance.
Collapse
|
42
|
Huang Q, Cao J, Zhou Y, Huang J, Gong H, Zhang H, Zhu XQ, Zhou J. Babesia microti Aldo-keto Reductase-Like Protein Involved in Antioxidant and Anti-parasite Response. Front Microbiol 2017; 8:2006. [PMID: 29075254 PMCID: PMC5641555 DOI: 10.3389/fmicb.2017.02006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 09/29/2017] [Indexed: 11/14/2022] Open
Abstract
The intraerythrocytic apicomplexan Babesia microti is the primary causative agent of human babesiosis, which is an infectious disease that occurs in various regions around the world. Although the aldo-keto reductases (AKRs) of this parasite have been sequenced and annotated, their biological properties remain unknown. AKRs are a superfamily of enzymes with diverse functions in the reduction of aldehydes and ketones. In the present study, we cloned the full-length cDNA of a B. microti aldo-keto reductase-like protein (BmAKR) and analyzed the deduced amino acid sequence of the BmAKR protein. This protein has a conserved AKR domain with an N-terminal signal sequence. Bmakr was upregulated on the 8th day after infection, whereas it was downregulated during the later stages. The recombinant protein of BmAKR was expressed in a glutathione S-transferase-fused soluble form in Escherichia coli. Western blot analysis showed that the mouse anti-BmAKR antibody recognized native BmAKR from a parasite lysate. Immunofluorescence microscopy localized BmAKR to the cytoplasm of B. microti merozoites in mouse RBCs in this study. Bmakr expression was significantly upregulated in the presence of oxidant stress. Atovaquone, a known anti-babesiosis drug, and robenidine, a known anti-coccidiosis drug, induced upregulation of Bmakr mRNA, thereby suggesting that Bmakr may be involved in anti-parasite drug response.
Collapse
Affiliation(s)
- Qiang Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingwei Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
43
|
Bretscher MT, Griffin JT, Ghani AC, Okell LC. Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment. Malar J 2017; 16:341. [PMID: 28814310 PMCID: PMC5559805 DOI: 10.1186/s12936-017-1988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Background Anti-malarial drugs are an important tool for malaria control and elimination. Alongside their direct benefit in the treatment of disease, drug use has a community-level effect, clearing the reservoir of infection and reducing onward transmission of the parasite. Different compounds potentially have different impacts on transmission—with some providing periods of prolonged chemoprophylaxis whilst others have greater transmission-blocking potential. The aim was to quantify the relative benefit of such properties for transmission reduction to inform target product profiles in the drug development process and choice of first-line anti-malarial treatment in different endemic settings. Methods A mathematical model of Plasmodium falciparum epidemiology was used to estimate the transmission reduction that can be achieved by using drugs of varying chemoprophylactic (protection for 3, 30 or 60 days) or transmission-blocking activity (blocking 79, 92 or 100% of total onward transmission). Simulations were conducted at low, medium or high transmission intensity (slide-prevalence in 2–10 year olds being 1, 10 or 40%, respectively), with drugs administered either via case management or mass drug administration (MDA). Results Transmission reductions depend strongly on deployment strategy, treatment coverage and endemicity level. Transmission-blocking was most effective at low endemicity, whereas chemoprophylaxis was most useful at high endemicity levels. Increasing the duration of protection as much as possible was beneficial. Increasing transmission-blocking activity from the level of ACT to a 100% transmission-blocking drug (close to the effect estimated for ACT combined with primaquine) produced moderate impact but was not as effective as increasing the duration of protection in medium-to-high transmission settings (slide prevalence 10–40%). Combining both good transmission-blocking activity (e.g. as achieved by ACT or ACT + primaquine) and a long duration of protection (30 days or more, such as provided by piperaquine or mefloquine) within a drug regimen can substantially increase impact compared with drug regimens with only one of these properties in medium to high transmission areas (slide-prevalence in 2–10 year olds ~10 to 40%). These results applied whether the anti-malarials were used for case management or for MDA. Discussion These results emphasise the importance of increasing access to treatment for routine case management, and the potential value of choosing first-line anti-malarial treatment policies according to local malaria epidemiology to maximise impact on transmission. There is no indication that the optimal drug choice should differ between delivery via case management or MDA. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1988-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael T Bretscher
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jamie T Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Azra C Ghani
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK
| | - Lucy C Okell
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.
| |
Collapse
|
44
|
Abstract
Malaria is caused in humans by five species of single-celled eukaryotic Plasmodium parasites (mainly Plasmodium falciparum and Plasmodium vivax) that are transmitted by the bite of Anopheles spp. mosquitoes. Malaria remains one of the most serious infectious diseases; it threatens nearly half of the world's population and led to hundreds of thousands of deaths in 2015, predominantly among children in Africa. Malaria is managed through a combination of vector control approaches (such as insecticide spraying and the use of insecticide-treated bed nets) and drugs for both treatment and prevention. The widespread use of artemisinin-based combination therapies has contributed to substantial declines in the number of malaria-related deaths; however, the emergence of drug resistance threatens to reverse this progress. Advances in our understanding of the underlying molecular basis of pathogenesis have fuelled the development of new diagnostics, drugs and insecticides. Several new combination therapies are in clinical development that have efficacy against drug-resistant parasites and the potential to be used in single-dose regimens to improve compliance. This ambitious programme to eliminate malaria also includes new approaches that could yield malaria vaccines or novel vector control strategies. However, despite these achievements, a well-coordinated global effort on multiple fronts is needed if malaria elimination is to be achieved.
Collapse
Affiliation(s)
- Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | | | | | | | - Wesley C Van Voorhis
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Seattle, Washington, USA
| | | |
Collapse
|