1
|
Li B, Jiang H, Luo S, Zeng Z, Xu X, Li X, Zhang S, Chen Y, Ding S, Li X, Liu J, Chen W. Enzyme-accelerated catalytic DNA circuits enable rapid and one-pot detection of bacterial pathogens. Biosens Bioelectron 2025; 267:116822. [PMID: 39362139 DOI: 10.1016/j.bios.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Catalytic DNA circuits, serving as signal amplification strategies, can enable simple and accurate detection of pathogenic bacteria in complex matrices but suffer from low reaction rates and depths. Herein, we design an enzyme-accelerated catalytic hairpin assembly (EACHA) in which duplex DNA products are converted into hairpin reactants to continue participating in the next circuit reaction with the assistance of RNase H. Profiting from the high recyclability of the reactants, EACHA exhibits an approximately 37.6-fold enhancement in the rate constant and a two-order-of-magnitude improvement in sensitivity compared to conventional catalytic hairpin assembly (CHA). By integrating an allosteric probe with EACHA, a one-pot method is developed for rapid and direct detection of S. enterica Enteritidis (S. Enteritidis). This method is capable of detecting 15 CFU mL-1 of S. Enteritidis within 20 min, which is superior to that of real-time PCR. By testing 60 milk samples, we demonstrate this method's high accuracy in discriminating contaminated samples, with an area under the curve (AUC) of 0.997. Moreover, this method can be employed to accurately diagnose early-stage infected mice, with an AUC of 1.00 for feces samples and 0.986 for serum samples. Therefore, this study offers a simple and feasible method for identifying pathogens in complex matrices.
Collapse
Affiliation(s)
- Baolin Li
- School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, PR China; Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, 646000, Luzhou, PR China
| | - Hui Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, 646000, Luzhou, PR China
| | - Sijian Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, 646000, Luzhou, PR China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, 646000, Luzhou, PR China
| | - Xuejing Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, 646000, Luzhou, PR China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, PR China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, PR China
| | - Yirong Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, PR China
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, 400011, Chongqing, PR China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, 646000, Luzhou, PR China
| | - Wei Chen
- School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, PR China; Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, PR China.
| |
Collapse
|
2
|
Chanamé Pinedo LE, Meijs AP, Deng H, de Greeff SC, van Duijkeren E, Dierikx CM, Veldman KT, Sanders P, van den Beld MJ, Wullings B, Franz E, Pijnacker R, Mughini-Gras L. Temporal association of antimicrobial use in livestock with antimicrobial resistance in non-typhoid Salmonella human infections in the Netherlands, 2008-2019. One Health 2024; 19:100844. [PMID: 39021559 PMCID: PMC11254175 DOI: 10.1016/j.onehlt.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background Antimicrobial use (AMU) in livestock contributes to antimicrobial resistance (AMR) among zoonotic pathogens, such as non-typhoid Salmonella (NTS). Since 2009, the Netherlands has made substantial efforts to reduce AMU in livestock. Objectives To assess the association between AMU in livestock and AMR in NTS human isolates. Additionally, associations between AMU in broilers/pigs and AMR in NTS broiler/pig isolates, and between AMR in broilers/pigs and in human NTS isolates were assessed. The focus was on Salmonella Enteritidis (SE) and Salmonella Typhimurium including its monophasic variant (ST/STM). Methods A national population registry-based study was conducted in the Netherlands from 2008 to 2019. Multivariable logistic regression models were used to assess the associations between livestock AMU and NTS resistance proportion in humans and broilers/pigs, overall as well as per class-specific antimicrobials. Correlation analysis was performed to relate AMR proportions between human and broiler/pig NTS isolates. Results For SE, only a positive association between penicillins use in broilers and resistance to ampicillin among human isolates was significant. For ST/STM, most associations between AMU in livestock and AMR among human isolates were significantly positive, overall and per class-specific antimicrobials, namely for penicillins-ampicillin, tetracyclines-tetracycline and sulfonamides/trimethoprim-sulfamethoxazole/trimethoprim. Significantly positive associations between AMU in broilers/pigs and AMR in broiler/pig ST/STM isolates were also observed, but not between broiler/pig and human AMR levels. Conclusions Significant associations were generally found between livestock AMU and AMR in human and broiler/pig ST/STM isolates. However, confounding factors, such as imported meat and travel are of concern. To fully comprehend the impact of livestock AMU on resistance in human NTS isolates, it is imperative to enhance AMR surveillance of NTS.
Collapse
Affiliation(s)
- Linda E. Chanamé Pinedo
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anouk P. Meijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Huifang Deng
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Sabine C. de Greeff
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Engeline van Duijkeren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Cindy M. Dierikx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kees T. Veldman
- Wageningen Bioveterinary Research (WBVR), part of Wageningen University and Research, Lelystad, the Netherlands
| | - Pim Sanders
- The Netherlands Veterinary Medicines Institute (SDa), Utrecht, the Netherlands
| | - Maaike J.C. van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Bart Wullings
- Wageningen Food Safety Research (WFSR), part of Wageningen University and Research, Wageningen, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
3
|
Schadron T, van den Beld M, Mughini-Gras L, Franz E. Use of whole genome sequencing for surveillance and control of foodborne diseases: status quo and quo vadis. Front Microbiol 2024; 15:1460335. [PMID: 39345263 PMCID: PMC11427404 DOI: 10.3389/fmicb.2024.1460335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Improvements in sequencing quality, availability, speed and costs results in an increased presence of genomics in infectious disease applications. Nevertheless, there are still hurdles in regard to the optimal use of WGS for public health purposes. Here, we discuss the current state ("status quo") and future directions ("quo vadis") based on literature regarding the use of genomics in surveillance, hazard characterization and source attribution of foodborne pathogens. The future directions include the application of new techniques, such as machine learning and network approaches that may overcome the current shortcomings. These include the use of fixed genomic distances in cluster delineation, disentangling similarity or lack thereof in source attribution, and difficulties ascertaining function in hazard characterization. Although, the aforementioned methods can relatively easily be applied technically, an overarching challenge is the inference and biological/epidemiological interpretation of these large amounts of high-resolution data. Understanding the context in terms of bacterial isolate and host diversity allows to assess the level of representativeness in regard to sources and isolates in the dataset, which in turn defines the level of certainty associated with defining clusters, sources and risks. This also marks the importance of metadata (clinical, epidemiological, and biological) when using genomics for public health purposes.
Collapse
Affiliation(s)
- Tristan Schadron
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
4
|
Mather AE, Gilmour MW, Reid SWJ, French NP. Foodborne bacterial pathogens: genome-based approaches for enduring and emerging threats in a complex and changing world. Nat Rev Microbiol 2024; 22:543-555. [PMID: 38789668 DOI: 10.1038/s41579-024-01051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/26/2024]
Abstract
Foodborne illnesses pose a substantial health and economic burden, presenting challenges in prevention due to the diverse microbial hazards that can enter and spread within food systems. Various factors, including natural, political and commercial drivers, influence food production and distribution. The risks of foodborne illness will continue to evolve in step with these drivers and with changes to food systems. For example, climate impacts on water availability for agriculture, changes in food sustainability targets and evolving customer preferences can all have an impact on the ecology of foodborne pathogens and the agrifood niches that can carry microorganisms. Whole-genome and metagenome sequencing, combined with microbial surveillance schemes and insights from the food system, can provide authorities and businesses with transformative information to address risks and implement new food safety interventions across the food chain. In this Review, we describe how genome-based approaches have advanced our understanding of the evolution and spread of enduring bacterial foodborne hazards as well as their role in identifying emerging foodborne hazards. Furthermore, foodborne hazards exist in complex microbial communities across the entire food chain, and consideration of these co-existing organisms is essential to understanding the entire ecology supporting pathogen persistence and transmission in an evolving food system.
Collapse
Affiliation(s)
- Alison E Mather
- Quadram Institute Bioscience, Norwich, UK.
- University of East Anglia, Norwich, UK.
| | - Matthew W Gilmour
- Quadram Institute Bioscience, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Nigel P French
- Tāuwharau Ora, School of Veterinary Science, Te Kunenga Ki Pūrehuroa, Massey University, Papaioea, Palmerston North, Aotearoa New Zealand
| |
Collapse
|
5
|
Zucs P, Beauté J, Palm D, Spiteri G. Focus, vigilance, resilience: towards stronger infectious disease surveillance, threat detection and response in the EU/EEA. Euro Surveill 2024; 29:2400066. [PMID: 39176987 PMCID: PMC11367071 DOI: 10.2807/1560-7917.es.2024.29.34.2400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/22/2024] [Indexed: 08/24/2024] Open
Abstract
This perspective summarises and explains the long-term surveillance framework 2021-2027 for infectious diseases in the European Union/European Economic Area (EU/EEA) published in April 2023. It shows how shortcomings in the areas of public health focus, vigilance and resilience will be addressed through specific strategies in the coming years and how these strategies will lead to stronger surveillance systems for early detection and monitoring of public health threats as well as informing their effective prevention and control. A sharper public health focus is expected from a more targeted list of notifiable diseases, strictly public-health-objective-driven surveillance standards, and consequently, leaner surveillance systems. Vigilance should improve through mandatory event reporting, more automated epidemic intelligence processing and increased use of genomic surveillance. Finally, EU/EEA surveillance systems should become more resilient by modernising the underlying information technology infrastructure, expanding the influenza sentinel surveillance system to other respiratory viruses for better pandemic preparedness, and increasingly exploiting potentially more robust alternative data sources, such as electronic health records and wastewater surveillance. Continued close collaboration across EU/EEA countries will be key to ensuring the full implementation of this surveillance framework and more effective disease prevention and control.
Collapse
Affiliation(s)
- Phillip Zucs
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Julien Beauté
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Daniel Palm
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Gianfranco Spiteri
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| |
Collapse
|
6
|
Yan Y, Zheng X, Wu X, Wang L, He J, Hao B, Hu T, Wang S, Cui D. Battling Salmonella enteritidis infections: integrating proteomics and in vivo assessment of Galla Chinensis tannic acid. BMC Vet Res 2024; 20:179. [PMID: 38715123 PMCID: PMC11075308 DOI: 10.1186/s12917-024-04036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.
Collapse
Affiliation(s)
- Yuzhang Yan
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xiaohong Zheng
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xueqin Wu
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China
| | - Ling Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China
| | - Jiongjie He
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China
| | - Tingjun Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China.
| | - Dongan Cui
- Key Laboratory of New Animal Drug Project, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, No. 335, Jiangouyan Street, Qilihe District, Lanzhou, Gansu Province, 730050, P.R. China.
| |
Collapse
|
7
|
Peng S, Xiong H, Lu J, Luo F, Liu C, Zhou H, Tong W, Xia Z, Liu D. Epidemiological and Whole Genome Sequencing Analysis of Restaurant Salmonella Enteritidis Outbreak Associated with an Infected Food Handler in Jiangxi Province, China, 2023. Foodborne Pathog Dis 2024; 21:316-322. [PMID: 38354216 DOI: 10.1089/fpd.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
In China, Salmonella is one of the most frequent causes of bacterial gastroenteritis, and food handlers in restaurants as an important contaminated source were rarely reported. In May 2023, an outbreak of Salmonella enterica serovar Enteritidis infection in a restaurant in Jiangxi Province, China, was investigated. Cases were interviewed. Stool samples from cases, anal swabs from restaurant employees, suspicious raw food materials, and semifinished food were collected and examined. Pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed to determine the relatedness of the pathogen isolates. Antimicrobial resistance genes and virulence genes of isolates were analyzed by WGS. The antimicrobial profile of the isolates was detected by broth microdilution, which involved 20 different antibiotics. Among the 31 patrons, 26 showed gastrointestinal symptoms. Five Salmonella Enteritidis strains were isolated from patients (2), semifinished food (2), and food handler (1). The results of PFGE and single-nucleotide polymorphism showed that these five isolates were identical clones. These findings demonstrated that this outbreak was a restaurant Salmonella Enteritidis outbreak associated with an infected food handler. The rates of resistance to nalidixic acid and colistin and intermediate resistance to ciprofloxacin were 100%, 80%, and 100%, respectively. These outbreak isolates harbored point mutation gyrA p.D87G. The cause of inconsistency between the genotype and phenotype of resistance was deeply discussed. A total of 107 virulence genes were found in each isolate, with many being associated with Salmonella pathogenicity island (SPI)-1 and SPI-2. As an overlooked contamination source, infected food handlers can easily cause large-scale outbreaks. This outbreak highlighted that the government should enhance the training and supervision of food hygiene and safety for food handlers to prevent foodborne outbreaks.
Collapse
Affiliation(s)
- Silu Peng
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Huomei Xiong
- Jiujiang Center for Disease Control and Prevention, Jiujiang, China
| | - Jun Lu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Fei Luo
- Jiujiang Center for Disease Control and Prevention, Jiujiang, China
| | - Chengwei Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Houde Zhou
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Wei Tong
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Zhilu Xia
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Daofeng Liu
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
8
|
Chowdhury G, Debnath F, Bardhan M, Deb AK, Bhuina R, Bhattacharjee S, Mondal K, Kitahara K, Miyoshi SI, Dutta S, Mukhopadhyay AK. Foodborne Outbreak by Salmonella enterica Serovar Weltevreden in West Bengal, India. Foodborne Pathog Dis 2024; 21:220-227. [PMID: 38190304 DOI: 10.1089/fpd.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Foodborne gastroenteritis outbreaks owing to Salmonella enterica serovar Weltevreden (Salmonella Weltevreden) represent a significant global public health problem. In the past two decades, Salmonella Weltevreden has emerged as a dominant foodborne pathogen, especially in South-East Asian countries. This report describes a community foodborne outbreak of gastroenteritis caused by Salmonella Weltevreden in August 2022 following consumption of panipuri from a street vendor in the Polba block in Hooghly district, West Bengal, India. This food item was consumed by 185 people, of whom 129 had acute watery diarrhea with other clinical symptoms and 65 of them were admitted to different District hospitals for treatment. Stool specimens collected from hospitalized cases were positive for S. enterica, and further serotyped as Salmonella Weltevreden. All the Salmonella Weltevreden strains possessed the Salmonella pathogenicity islands associated genes (invA/E, orgA, ttrc, ssaQ, mgtC, misL, spi4D), the enterotoxin (stn), and hyperinvasive locus gene (hilA). Except erythromycin, all the strains were susceptible for commonly used antimicrobials in the treatment of diarrhea. The XbaI-based pulsed-field gel electrophoresis analysis indicated that all the isolates responsible for the recent outbreak were similar, but diverged from other Salmonella Weltevreden that were previously reported in West Bengal. This report indicates that foodborne infection is a major public health concern in India and demands to strengthen capacity-building measures at the local health care levels for linking causative agents of outbreaks.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Department of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- Department of Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Falguni Debnath
- Department of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mainak Bardhan
- Department of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Alok Kumar Deb
- Department of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Rama Bhuina
- Department of Health and Family Welfare, Government of West Bengal, Kolkata, West Bengal, India
| | - Sudipta Bhattacharjee
- Department of Health and Family Welfare, Government of West Bengal, Kolkata, West Bengal, India
| | - Koushik Mondal
- Department of Health and Family Welfare, Government of West Bengal, Kolkata, West Bengal, India
| | - Kei Kitahara
- Department of Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Shin-Ichi Miyoshi
- Department of Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- Department of Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shanta Dutta
- Department of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Asish K Mukhopadhyay
- Department of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
9
|
Ayseli MT, Çetinkaya T, Ayseli YI. Innovative Food Safety Approaches and Nutraceuticals to Promote Children's Health on Future Outbreaks with the Reflection of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:349-369. [PMID: 39102208 DOI: 10.1007/978-3-031-61943-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
After the COVID-19 pandemic, innovative methods have emerged for the management of food safety, child nutrition has become more important than ever, and increasing attention has been paid to the consequences of COVID-19. For instance, since SARS-CoV-2 is an animal-based zoonotic virus, there is a changing trend in consumer preferences from conventional meat products to cultured meat and vegan supplementation. Due to the effects mentioned, this chapter provides strategic guidance on novel foods, food safety innovations, and novel health and safety procedures in public places such as restaurants or bars. There are also long-term health impacts on children in the aftermath of COVID-19. Since the risk of myopia is one of the important long-term effects to be considered, trending nutritional immunology approaches are presented to reduce emerging problems in child eye health. The enhancement of immune system remains problematic for many children considering that they cannot use the COVID-19 vaccine. Therefore, this chapter also emphasizes the importance of breastfeeding on the side effects of viral infections and new supplements, such as probiotic drops, to improve children's and babies' immune health. Additionally, efforts should be undertaken to improve nanoencapsulation techniques to prepare for future epidemics and pandemics. Nanomaterial-supported nutraceuticals, nanoencapsulation of functional ingredients or their nanoparticles, and nano-combination of phytochemicals, fatty acids, or probiotics should be investigated to improve the immunity of children. In this sense, detailed further research in this area needs to be adapted to innovative technologies for the treatment of infants and children against future zoonotic viruses.
Collapse
Affiliation(s)
- Mehmet Turan Ayseli
- Faculty of Hamidiye Pharmacy, University of Health Sciences Turkey, 34668, Istanbul, Türkiye.
- Genetris Consulting, 33281, Mersin, Türkiye.
| | - Turgay Çetinkaya
- Department of Aquatic Biotechnology, Faculty of Aquatic Sciences, Istanbul University, 34134, Istanbul, Türkiye
| | - Yasemin Ipek Ayseli
- Mezitli Merkez Family Health Center, 33330, Mersin, Türkiye
- Department of Health Management, Graduate Education Institute of Toros University, 33140, Mersin, Türkiye
| |
Collapse
|
10
|
Wang Y, Xu X, Zhu B, Lyu N, Liu Y, Ma S, Jia S, Wan B, Du Y, Zhang G, Gao GF. Genomic analysis of almost 8,000 Salmonella genomes reveals drivers and landscape of antimicrobial resistance in China. Microbiol Spectr 2023; 11:e0208023. [PMID: 37787535 PMCID: PMC10714754 DOI: 10.1128/spectrum.02080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE We established the largest Salmonella genome database from China and presented the landscape and spatiotemporal dynamics of antimicrobial resistance genes. We also found that economic, climatic, and social factors can drive the rise of antimicrobial resistance. The Chinese local Salmonella genome database version 2 was released as an open-access database (https://nmdc.cn/clsgdbv2) and thus can assist surveillance studies across the globe. This database will help inform interventions for AMR, food safety, and public health.
Collapse
Affiliation(s)
- Yanan Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Na Lyu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yue Liu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shulei Jia
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Samper-Cativiela C, Prieto ME, Collado S, De Frutos C, Branscum AJ, Saez JL, Alvarez J. Risk Factors for Salmonella Detection in Commercial Layer Flocks in Spain. Animals (Basel) 2023; 13:3181. [PMID: 37893905 PMCID: PMC10603648 DOI: 10.3390/ani13203181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Trends in Salmonella human infections are assumed to be related to the distribution of the pathogen in the animal reservoir/food products, and cases in humans are most often linked to poultry and poultry products (eggs, meat). Therefore, ongoing Salmonella national control programs (NCPs) in European Union Member States have the objective of monitoring and reducing its prevalence in commercial poultry flocks. Results from NCPs have shown certain factors (housing systems, season of sampling and if sampling is conducted by food business operators (FBOps) or competent authorities (CAs), among others) can influence detection rates, but associations are often not consistent. Here, we analyzed data from the Spanish NCP on 7216 laying hen flocks subjected to 36,193 sampling events over a six-year period to characterize its performance and identify variables influencing detection rates. Overall, 1205 sampling events were positive for Salmonella spp. (any serovar) and 132 for S. Enteritidis-S. Typhimurium/monophasic. Bayesian multivariable models adjusting for multiple covariates concluded that sampling events later in the year, in caged flocks with older animals and conducted by CAs had increased odds of positivity for Salmonella spp., revealing aspects linked with a differential estimation of Salmonella levels in laying hen flocks.
Collapse
Affiliation(s)
- Clara Samper-Cativiela
- VISAVET Health Surveillance Centre, Universidad Complutense, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, 28040 Madrid, Spain
| | | | - Soledad Collado
- Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain (S.C.)
| | - Cristina De Frutos
- Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain (S.C.)
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Jose Luis Saez
- Ministerio de Agricultura, Pesca y Alimentación, 28010 Madrid, Spain (S.C.)
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
12
|
Rothstein AP, Jesser KJ, Feistel DJ, Konstantinidis KT, Trueba G, Levy K. Population genomics of diarrheagenic Escherichia coli uncovers high connectivity between urban and rural communities in Ecuador. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105476. [PMID: 37392822 PMCID: PMC10599324 DOI: 10.1016/j.meegid.2023.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Human movement may be an important driver of transmission dynamics for enteric pathogens but has largely been underappreciated except for international 'travelers' diarrhea or cholera. Phylodynamic methods, which combine genomic and epidemiological data, are used to examine rates and dynamics of disease matching underlying evolutionary history and biogeographic distributions, but these methods often are not applied to enteric bacterial pathogens. We used phylodynamics to explore the phylogeographic and evolutionary patterns of diarrheagenic E. coli in northern Ecuador to investigate the role of human travel in the geographic distribution of strains across the country. Using whole genome sequences of diarrheagenic E. coli isolates, we built a core genome phylogeny, reconstructed discrete ancestral states across urban and rural sites, and estimated migration rates between E. coli populations. We found minimal structuring based on site locations, urban vs. rural locality, pathotype, or clinical status. Ancestral states of phylogenomic nodes and tips were inferred to have 51% urban ancestry and 49% rural ancestry. Lack of structuring by location or pathotype E. coli isolates imply highly connected communities and extensive sharing of genomic characteristics across isolates. Using an approximate structured coalescent model, we estimated rates of migration among circulating isolates were 6.7 times larger for urban towards rural populations compared to rural towards urban populations. This suggests increased inferred migration rates of diarrheagenic E. coli from urban populations towards rural populations. Our results indicate that investments in water and sanitation prevention in urban areas could limit the spread of enteric bacterial pathogens among rural populations.
Collapse
Affiliation(s)
- Andrew P. Rothstein
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kelsey J. Jesser
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Dorian J. Feistel
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Benson HE, Reeve L, Findlater L, Vusirikala A, Pietzsch M, Olufon O, Matthews E, Hoban A, Painset A, Balasegaram S, Larkin L, Weir S, Heinsbroek E. Local Salmonella Enteritidis restaurant outbreak investigation in England provides further evidence for eggs as source in widespread international cluster, March to April 2023. Euro Surveill 2023; 28:2300309. [PMID: 37410382 PMCID: PMC10370042 DOI: 10.2807/1560-7917.es.2023.28.27.2300309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023] Open
Abstract
We report a 5-single nucleotide polymorphism cluster of Salmonella Enteriditis in England, part of a global cluster of S. Enteritidis ST11. Forty-seven confirmed cases have been investigated of whom 25 were linked to a restaurant. In addition, there were 18 probable cases with restaurant exposure. Epidemiological investigations suggested eggs or chicken as the most likely cause of the outbreak but were unable to distinguish between those two food vehicles. Ongoing food chain investigations indicated links to imported eggs from Poland.
Collapse
Affiliation(s)
- Helen E Benson
- East of England Health Protection Team, UK Health Security Agency, Cambridge, United Kingdom
| | - Lucy Reeve
- Field Service East of England, UK Health Security Agency, Cambridge United Kingdom
| | - Lucy Findlater
- Field Service South East and London, UK Health Security Agency, London, United Kingdom
| | - Amoolya Vusirikala
- Field Service South East and London, UK Health Security Agency, London, United Kingdom
| | - Maaike Pietzsch
- Field Service Rapid Investigation Team, UK Health Security Agency, London, United Kingdom
| | - Oluwakemi Olufon
- Field Service Rapid Investigation Team, UK Health Security Agency, London, United Kingdom
| | - Eve Matthews
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, London, United Kingdom
| | - Ann Hoban
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, London, United Kingdom
| | - Anaïs Painset
- Gastrointestinal Bacteria Reference Unit, Public Health Microbiology Division, UK Health Security Agency, London, United Kingdom
| | - Sooria Balasegaram
- Field Service South East and London, UK Health Security Agency, London, United Kingdom
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, London, United Kingdom
| | - Lesley Larkin
- Gastrointestinal Infections and Food Safety (One Health) Division, UK Health Security Agency, London, United Kingdom
| | - Sarah Weir
- East of England Health Protection Team, UK Health Security Agency, Cambridge, United Kingdom
| | - Ellen Heinsbroek
- Field Service East of England, UK Health Security Agency, Cambridge United Kingdom
| |
Collapse
|
14
|
Franzo G, Legnardi M, Faustini G, Tucciarone CM, Cecchinato M. When Everything Becomes Bigger: Big Data for Big Poultry Production. Animals (Basel) 2023; 13:1804. [PMID: 37889739 PMCID: PMC10252109 DOI: 10.3390/ani13111804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 08/13/2023] Open
Abstract
In future decades, the demand for poultry meat and eggs is predicted to considerably increase in pace with human population growth. Although this expansion clearly represents a remarkable opportunity for the sector, it conceals a multitude of challenges. Pollution and land erosion, competition for limited resources between animal and human nutrition, animal welfare concerns, limitations on the use of growth promoters and antimicrobial agents, and increasing risks and effects of animal infectious diseases and zoonoses are several topics that have received attention from authorities and the public. The increase in poultry production must be achieved mainly through optimization and increased efficiency. The increasing ability to generate large amounts of data ("big data") is pervasive in both modern society and the farming industry. Information accessibility-coupled with the availability of tools and computational power to store, share, integrate, and analyze data with automatic and flexible algorithms-offers an unprecedented opportunity to develop tools to maximize farm profitability, reduce socio-environmental impacts, and increase animal and human health and welfare. A detailed description of all topics and applications of big data analysis in poultry farming would be infeasible. Therefore, the present work briefly reviews the application of sensor technologies, such as optical, acoustic, and wearable sensors, as well as infrared thermal imaging and optical flow, to poultry farming. The principles and benefits of advanced statistical techniques, such as machine learning and deep learning, and their use in developing effective and reliable classification and prediction models to benefit the farming system, are also discussed. Finally, recent progress in pathogen genome sequencing and analysis is discussed, highlighting practical applications in epidemiological tracking, and reconstruction of microorganisms' population dynamics, evolution, and spread. The benefits of the objective evaluation of the effectiveness of applied control strategies are also considered. Although human-artificial intelligence collaborations in the livestock sector can be frightening because they require farmers and employees in the sector to adapt to new roles, challenges, and competencies-and because several unknowns, limitations, and open-ended questions are inevitable-their overall benefits appear to be far greater than their drawbacks. As more farms and companies connect to technology, artificial intelligence (AI) and sensing technologies will begin to play a greater role in identifying patterns and solutions to pressing problems in modern animal farming, thus providing remarkable production-based and commercial advantages. Moreover, the combination of diverse sources and types of data will also become fundamental for the development of predictive models able to anticipate, rather than merely detect, disease occurrence. The increasing availability of sensors, infrastructures, and tools for big data collection, storage, sharing, and analysis-together with the use of open standards and integration with pathogen molecular epidemiology-have the potential to address the major challenge of producing higher-quality, more healthful food on a larger scale in a more sustainable manner, thereby protecting ecosystems, preserving natural resources, and improving animal and human welfare and health.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Italy; (M.L.); (G.F.); (C.M.T.); (M.C.)
| | | | | | | | | |
Collapse
|
15
|
Janecko N, Zamudio R, Palau R, Bloomfield SJ, Mather AE. Repeated cross-sectional study identifies differing risk factors associated with microbial contamination in common food products in the United Kingdom. Food Microbiol 2023; 111:104196. [PMID: 36681400 DOI: 10.1016/j.fm.2022.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/01/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022]
Abstract
All foods carry microbes, many of which are harmless, but foods can also carry pathogens and/or microbial indicators of contamination. Limited information exists on the co-occurrence of microbes of food safety concern and the factors associated with their presence. Here, a population-based repeated cross-sectional design was used to determine the prevalence and co-occurrence of Escherichia coli, Klebsiella spp., Salmonella spp. and Vibrio spp. in key food commodities - chicken, pork, prawns, salmon and leafy greens. Prevalence in 1,369 food samples for these four target bacterial genera/species varied, while 25.6% of all samples had at least two of the target bacteria and eight different combinations of bacteria were observed as co-occurrence profiles in raw prawns. Imported frozen chicken was 6.4 times more likely to contain Salmonella than domestic chicken, and imported salmon was 5.5 times more likely to be contaminated with E. coli. Seasonality was significantly associated with E. coli and Klebsiella spp. contamination in leafy greens, with higher detection in summer and autumn. Moreover, the odds of Klebsiella spp. contamination were higher in summer in chicken and pork samples. These results provide insight on the bacterial species present on foods at retail, and identify factors associated with the presence of individual bacteria, which are highly relevant for food safety risk assessments and the design of surveillance programmes.
Collapse
Affiliation(s)
- Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Roxana Zamudio
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Samuel J Bloomfield
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom; University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
16
|
Shin H, La TM, Lee HJ, Kim T, Song SU, Park GH, Choi IS, Park SY, Lee JB, Lee SW. Characteristics of a Temperature-Sensitive Mutant Strain of Salmonella Enteritidis and Its Potential as a Live Vaccine Candidate. Vet Sci 2023; 10:vetsci10050313. [PMID: 37235396 DOI: 10.3390/vetsci10050313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Salmonella Enteritidis is a common foodborne pathogen transmitted through poultry products, which are its main carriers. Poultry are vaccinated against Salmonella Enteritidis in many countries, despite the absence of clinical symptoms, using commercially available live-attenuated vaccines. We previously constructed a highly attenuated temperature-sensitive (ts) Salmonella Enteritidis mutant, 2S-G10. In the present study, we describe the construction and attenuation-associated characteristics of 2S-G10. We infected 1-day-old chicks with 2S-G10 and the parental strains to evaluate the attenuation. One week after infection, 2S-G10 was not detected in the liver, cecum, or cecal tonsil tissues of the orally inoculated chicks, contrary to the parental strain. This indicates that 2S-G10 was highly attenuated when compared to the parental stain. In vitro experiments revealed the inability of 2S-G10 to grow at the normal body temperature of chickens and invade chicken liver epithelial cells. Moreover, single nucleotide polymorphism (SNP) analysis between the complete genome sequence of 2S-G10 and its parental strain revealed SNPs in bcsE, recG, rfaF, and pepD_1 genes, which are involved in epithelial cell invasion and persistence in host systems, growth, lipopolysaccharide core biosynthesis, and cellular survival under heat stress, respectively. These potential characteristics are consistent with the findings of in vitro experiments. Conclusively, chemical treatment-induced random genetic mutations highly attenuated 2S-G10, implying its potential to be developed as a novel live-attenuated vaccine against Salmonella Enteritidis.
Collapse
Affiliation(s)
- Hyunjin Shin
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Min La
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Jae Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Taesoo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Un Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu-Hyung Park
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - In-Soo Choi
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Bayliss SC, Locke RK, Jenkins C, Chattaway MA, Dallman TJ, Cowley LA. Rapid geographical source attribution of Salmonella enterica serovar Enteritidis genomes using hierarchical machine learning. eLife 2023; 12:e84167. [PMID: 37042517 PMCID: PMC10147375 DOI: 10.7554/elife.84167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the most frequent causes of Salmonellosis globally and is commonly transmitted from animals to humans by the consumption of contaminated foodstuffs. In the UK and many other countries in the Global North, a significant proportion of cases are caused by the consumption of imported food products or contracted during foreign travel, therefore, making the rapid identification of the geographical source of new infections a requirement for robust public health outbreak investigations. Herein, we detail the development and application of a hierarchical machine learning model to rapidly identify and trace the geographical source of S. Enteritidis infections from whole genome sequencing data. 2313 S. Enteritidis genomes, collected by the UKHSA between 2014-2019, were used to train a 'local classifier per node' hierarchical classifier to attribute isolates to four continents, 11 sub-regions, and 38 countries (53 classes). The highest classification accuracy was achieved at the continental level followed by the sub-regional and country levels (macro F1: 0.954, 0.718, 0.661, respectively). A number of countries commonly visited by UK travelers were predicted with high accuracy (hF1: >0.9). Longitudinal analysis and validation with publicly accessible international samples indicated that predictions were robust to prospective external datasets. The hierarchical machine learning framework provided granular geographical source prediction directly from sequencing reads in <4 min per sample, facilitating rapid outbreak resolution and real-time genomic epidemiology. The results suggest additional application to a broader range of pathogens and other geographically structured problems, such as antimicrobial resistance prediction, is warranted.
Collapse
Affiliation(s)
- Sion C Bayliss
- Bristol Veterinary School, University of BristolBristolUnited Kingdom
| | - Rebecca K Locke
- Milner Centre for Evolution, Life Sciences Department, University of BathBathUnited Kingdom
- Genomic Laboratory Hub (GLH), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | - Claire Jenkins
- Gastrointestinal Reference Services, UK Health Security AgencyLondonUnited Kingdom
| | - Marie Anne Chattaway
- Gastrointestinal Reference Services, UK Health Security AgencyLondonUnited Kingdom
| | - Timothy J Dallman
- Institute for Risk Assessment Sciences, Utrecht UniversityUtrechtNetherlands
| | - Lauren A Cowley
- Milner Centre for Evolution, Life Sciences Department, University of BathBathUnited Kingdom
| |
Collapse
|
18
|
Chan SH, Liau SH, Low YJ, Chng KR, Wu Y, Chan JSH, Tan LK. A Real-Time PCR Approach for Rapid Detection of Viable Salmonella Enteritidis in Shell Eggs. Microorganisms 2023; 11:microorganisms11040844. [PMID: 37110268 PMCID: PMC10143610 DOI: 10.3390/microorganisms11040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Rapid and robust detection assays for Salmonella Enteritidis (SE) in shell eggs are essential to enable a quick testing turnaround time (TAT) at the earliest checkpoint and to ensure effective food safety control. Real-time polymerase chain reaction (qPCR) assays provide a workaround for the protracted lead times associated with conventional Salmonella diagnostic testing. However, DNA-based analysis cannot reliably discriminate between signals from viable and dead bacteria. We developed a strategy based on an SE qPCR assay that can be integrated into system testing to accelerate the detection of viable SE in egg-enriched cultures and verify the yielded SE isolates. The specificity of the assay was evaluated against 89 Salmonella strains, and SE was accurately identified in every instance. To define the indicator for a viable bacteria readout, viable or heat-inactivated SE were spiked into shell egg contents to generate post-enriched, artificially contaminated cultures to establish the quantification cycle (Cq) for viable SE. Our study has demonstrated that this technique could potentially be applied to accurately identify viable SE during the screening stage of naturally contaminated shell eggs following enrichment to provide an early alert, and that it consistently identified the serotypes of SE isolates in a shorter time than conventional testing.
Collapse
Affiliation(s)
- Siew Herng Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Sock Hwee Liau
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Ying Jia Low
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Kern Rei Chng
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Joanne Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Department of Food Science and Technology, National University of Singapore, S14 Level 5 Science Drive 2, Singapore 117542, Singapore
| | - Li Kiang Tan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Correspondence: ; Tel.: +65-6019-5826
| |
Collapse
|
19
|
Genomic Epidemiology and Multilevel Genome Typing of Australian Salmonella enterica Serovar Enteritidis. Microbiol Spectr 2023; 11:e0301422. [PMID: 36625638 PMCID: PMC9927265 DOI: 10.1128/spectrum.03014-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the leading causes of salmonellosis in Australia. In this study, a total of 568 S. Enteritidis isolates from two Australian states across two consecutive years were analyzed and compared to international strains, using the S. Enteritidis multilevel genome typing (MGT) database, which contained 40,390 publicly available genomes from 99 countries. The Australian S. Enteritidis isolates were divided into three phylogenetic clades (A, B, and C). Clades A and C represented 16.4% and 3.5% of the total isolates, respectively, and were of local origin. Clade B accounted for 80.1% of the isolates which belonged to seven previously defined lineages but was dominated by the global epidemic lineage. At the MGT5 level, three out of five top sequence types (STs) in Australia were also top STs in Asia, suggesting that a fair proportion of Australian S. Enteritidis cases may be epidemiologically linked with Asian strains. In 2018, a large egg-associated local outbreak was caused by a recently defined clade B lineage prevalent in Europe and was closely related, but not directly linked, to three European isolates. Additionally, over half (54.8%) of predicted multidrug resistance (MDR) isolates belonged to 10 MDR-associated MGT-STs, which were also frequent in Asian S. Enteritidis . Overall, this study investigated the genomic epidemiology of S. Enteritidis in Australia, including the first large local outbreak, using MGT. The open MGT platform enables a standardized and sharable nomenclature that can be effectively applied to public health for unified surveillance of S. Enteritidis nationally and globally. IMPORTANCE Salmonella enterica serovar Enteritidis is a leading cause of foodborne infections. We previously developed a genomic typing database (MGTdb) for S. Enteritidis to facilitate global surveillance of this pathogen. In this study, we examined the genomic features of Australian S. Enteritidis using the MGTdb and found that Australian S. Enteritidis is mainly epidemiologically linked with Asian strains (especially strains carrying antimicrobial resistance genes), followed by European strains. The first large-scale egg-associated local outbreak in Australia was caused by a recently defined lineage prevalent in Europe, and three European isolates in the MGTdb were closely related but not directly linked to this outbreak. In summary, the S. Enteritidis MGTdb open platform is shown to be a potentially powerful tool for national and global public health surveillance of this pathogen.
Collapse
|
20
|
Evaluation of Genomic Typing Methods in the Salmonella Reference Laboratory in Public Health, England, 2012-2020. Pathogens 2023; 12:pathogens12020223. [PMID: 36839496 PMCID: PMC9966477 DOI: 10.3390/pathogens12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
We aim to provide an evidence-based evaluation of whole genome sequence (WGS) methods, employed at the Salmonella reference laboratory in England, in terms of its impact on public health and whether these methods remain a fit for purpose test under UKAS ISO 15189. The evaluation of the genomic methods were mapped against the value of detecting microbiological clusters to support the investigation of food-borne outbreaks of Salmonella in England between 2012-2020. The analysis of WGS with both SNP- and allelic-based methods provided an unprecedented level of strain discrimination and detection of additional clusters when comparing to all of the previous typing methods. The robustness of the routine genomic sequencing at the reference laboratory ensured confidence in the microbiological identifications, even in large outbreaks with complex international food distribution networks. There was evidence that the phylogeny derived from the WGS data can be used to inform the provenance of strains and support discrimination between domestic and non-domestic transmission events. Further insight on the evolutionary context of the emerging pathogenic strains was enabled with a deep dive of the phylogenetic data, including the detection of nested clusters. The public availability of the WGS data linked to the clinical, epidemiological and environmental context of the sequenced strains has improved the trace-back investigations during outbreaks. The global expansion in the use of WGS-based typing in reference laboratories has shown that the WGS methods are a fit for purpose test in public health as it has ensured the rapid implementation of interventions to protect public health, informed risk assessment and has facilitated the management of national and international food-borne outbreaks of Salmonella.
Collapse
|
21
|
Teunis PFM. Dose response for Salmonella Typhimurium and Enteritidis and other nontyphoid enteric salmonellae. Epidemics 2022; 41:100653. [PMID: 36436317 DOI: 10.1016/j.epidem.2022.100653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
This dose response assessment combines data from 6 human challenge studies and 44 outbreaks to determine infectivity and pathogenicity of several serotypes of nontyphoid Salmonella. Outcomes focus on the major serotypes Salmonella Enteritidis and Typhimurium, showing that Typhimurium is less infectious and has a lower probability of causing acute illness in infected subjects. The dose response relation of Salmonella Enteritidis is less steep than that of Typhimurium, indicating greater heterogeneity in infectivity and pathogenicity. This study revisits an older study with less flexible methods that could not combine the widely different outcomes of challenge studies and outbreaks, and had limited capability for dealing with missing information. Reported outcomes are in a format that allows use in calculations of uncertainty for quantitative risk assessment.
Collapse
Affiliation(s)
- Peter F M Teunis
- Center for Global Safe WASH, Rollins School of Public Health, Emory University, 1518 Clifton Rd, CNR Bldg. 6050 Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
Kanaan MHG, Khalil ZK, Khashan HT, Ghasemian A. Occurrence of virulence factors and carbapenemase genes in Salmonella enterica serovar Enteritidis isolated from chicken meat and egg samples in Iraq. BMC Microbiol 2022; 22:279. [PMID: 36418940 PMCID: PMC9682753 DOI: 10.1186/s12866-022-02696-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Food-borne infections mainly due to Salmonella enterica serovar Enteritidis (S. Enteritidis) are major concerns worldwide. S. Enteritidis isolates may serve as reservoirs for spreading antimicrobial drug resistance genes including carbapenemases. This study aimed to screen the occurrence of virulence factors, carbapenemases, and antibiotic resistance genes in S. Enteritidis isolated from chicken meat and eggs in Iraq. RESULTS In total, 1000 non-duplicated chicken meat and 1000 egg samples were collected during 2019-2020. Presumptive S. Enteritidis isolates were initially identified by standard bacteriology tests and then were confirmed using polymerase chain reaction (PCR). Carbapenem resistance was detected using the disk diffusion method. Virulence and carbapenemase genes were screened using the PCR method. In total, 100 (5.0%) S. Enteritidis isolates were identified from 2000 samples collected using phenotypic and molecular methods. These isolates were identified from 4.9% chicken meat (n = 49/1000) and 5.1% egg (n = 51/1000) samples, respectively. The most and the least susceptibility was found to gentamicin and ceftazidime antibiotics, respectively. The prevalence of different virulence factors were as follows: phoP/Q (40.0%), traT (30.0%), stn (22.0%), slyA (11.0%), and sopB (9.0%). Among 20 carbapenem-resistant S. Enteritidis isolates, the most predominant carbapenemase gene was blaIMP (35.0%, n = 7), followed by blaOXA-48-like (25.0%, n = 5), and blaNDM (10.0%, n = 2), while the blaKPC and blaVIM genes were not detected. The coexistence of blaIMP, blaOXA-48-like, and blaNDM genes was determined in two isolates. The prevalence of different antibiotic resistance genes were as follows: tetA (87.1%), tetB (87.1%), dfrA1 (77.6%), and sul1 (83.6%). CONCLUSION Considering the existence of carbapenem-resistant S. Enteritidis harboring different virulence and antibiotic resistance genes in chicken meat and egg samples, adherence to proper hygienic conditions should be considered.
Collapse
Affiliation(s)
- Manal Hadi Ghaffoori Kanaan
- grid.510261.10000 0004 7474 9372Department of Agriculture, Technical Institute of Suwaria, Middle Technical University, Baghdad, Iraq
| | - Zena Kassem Khalil
- grid.510261.10000 0004 7474 9372Optometry Department, Medical Technical Institute Al-Mansor, Middle Technical University, Baghdad, Iraq
| | - Hawazin Thamir Khashan
- grid.411498.10000 0001 2108 8169Department of Veterinary Public Health, Food Hygiene, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Abdolmajid Ghasemian
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
23
|
Pijnacker R, van den Beld M, van der Zwaluw K, Verbruggen A, Coipan C, Segura AH, Mughini-Gras L, Franz E, Bosch T. Comparing Multiple Locus Variable-Number Tandem Repeat Analyses with Whole-Genome Sequencing as Typing Method for Salmonella Enteritidis Surveillance in The Netherlands, January 2019 to March 2020. Microbiol Spectr 2022; 10:e0137522. [PMID: 36121225 PMCID: PMC9603844 DOI: 10.1128/spectrum.01375-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
In the Netherlands, whole-genome sequencing (WGS) was implemented as routine typing tool for Salmonella Enteritidis isolates in 2019. Multiple locus variable-number tandem repeat analyses (MLVA) was performed in parallel. The objective was to determine the concordance of MLVA and WGS as typing methods for S. Enteritidis isolates. We included S. Enteritidis isolates from patients that were subtyped using MLVA and WGS-based core-genome Multilocus Sequence Typing (cgMLST) as part of the national laboratory surveillance of Salmonella during January 2019 to March 2020. The concordance of clustering based on MLVA and cgMLST, with a distance of ≤5 alleles, was assessed using the Fowlkes-Mallows (FM) index, and their discriminatory power using Simpson's diversity index. Of 439 isolates in total, 404 (92%) were typed as 32 clusters based on MLVA, with a median size of 4 isolates (range:2 to 141 isolates). Based on cgMLST, 313 (71%) isolates were typed as 48 clusters, with a median size of 3 isolates (range:2 to 39 isolates). The FM index was 0.34 on a scale from 0 to 1, where a higher value indicates greater similarity between the typing methods. The Simpson's diversity index of MLVA and cgMLST was 0.860 and 0.974, respectively. The median cgMLST distance between isolates with the same MLVA type was 27 alleles (interquartile range [IQR]:17 to 34 alleles), and 2 alleles within cgMLST clusters (IQR:1-5 alleles). This study shows the higher discriminatory power of WGS over MLVA and a poor concordance between both typing methods regarding clustering of S. Enteritidis isolates. IMPORTANCE Salmonella is the most frequently reported agent causing foodborne outbreaks and the second most common zoonoses in the European Union. The incidence of the most dominant serotype Enteritidis has increased in recent years. To differentiate between Salmonella isolates, traditional typing methods such as pulsed-field gel electrophoresis (PFGE) and multiple locus variable-number tandem repeat analyses (MLVA) are increasingly replaced with whole-genome sequencing (WGS). This study compared MLVA and WGS-based core-genome Multilocus Sequence Typing (cgMLST) as typing tools for S. Enteritidis isolates that were collected as part of the national Salmonella surveillance in the Netherlands. We found a higher discriminatory power of WGS-based cgMLST over MLVA, as well as a poor concordance between both typing methods regarding clustering of S. Enteritidis isolates. This is especially relevant for cluster delineation in outbreak investigations and confirmation of the outbreak source in trace-back investigations.
Collapse
Affiliation(s)
- Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maaike van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kim van der Zwaluw
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anjo Verbruggen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Claudia Coipan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Alejandra Hernandez Segura
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
24
|
Biggel M, Horlbog J, Nüesch-Inderbinen M, Chattaway MA, Stephan R. Epidemiological links and antimicrobial resistance of clinical Salmonella enterica ST198 isolates: a nationwide microbial population genomic study in Switzerland. Microb Genom 2022; 8:mgen000877. [PMID: 36301086 PMCID: PMC9676052 DOI: 10.1099/mgen.0.000877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/15/2022] [Indexed: 07/20/2023] Open
Abstract
Salmonella is a leading cause of foodborne outbreaks and systemic infections worldwide. Emerging multi-drug resistant Salmonella lineages such as a ciprofloxacin-resistant subclade (CIPR) within Salmonella enterica serovar Kentucky ST198 threaten the effective prevention and treatment of infections. To understand the genomic diversity and antimicrobial resistance gene content associated with S. Kentucky in Switzerland, we whole-genome sequenced 70 human clinical isolates obtained between 2010 and 2020. Most isolates belonged to ST198-CIPR. High- and low-level ciprofloxacin resistance among CIPR isolates was associated with variable mutations in ramR and acrB in combination with stable mutations in quinolone-resistance determining regions (QRDRs). Analysis of isolates from patients with prolonged ST198 colonization indicated subclonal adaptions with the ramR locus as a mutational hotspot. SNP analyses identified multiple clusters of near-identical isolates, which were often associated with travel but included spatiotemporally linked isolates from Switzerland. The largest SNP cluster was associated with travellers returning from Indonesia, and investigation of global data linked >60 additional ST198 salmonellosis isolates to this cluster. Our results emphasize the urgent need for implementing whole-genome sequencing as a routine tool for Salmonella surveillance and outbreak detection.
Collapse
Affiliation(s)
- Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zürich, Switzerland
| | - Jule Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zürich, Switzerland
- National Reference Center for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | | | | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zürich, Zürich, Switzerland
| |
Collapse
|
25
|
Chen J, Ed-Dra A, Zhou H, Wu B, Zhang Y, Yue M. Antimicrobial resistance and genomic investigation of non-typhoidal Salmonella isolated from outpatients in Shaoxing city, China. Front Public Health 2022; 10:988317. [PMID: 36176509 PMCID: PMC9513250 DOI: 10.3389/fpubh.2022.988317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Human non-typhoidal salmonellosis is among the leading cause of morbidity and mortality worldwide, resulting in huge economic losses and threatening the public health systems. To date, epidemiological characteristics of non-typhoidal Salmonella (NTS) implicated in human salmonellosis in China are still obscure. Herein, we investigate the antimicrobial resistance and genomic features of NTS isolated from outpatients in Shaoxing city in 2020. Eighty-seven Salmonella isolates were recovered and tested against 28 different antimicrobial agents, representing 12 categories. The results showed high resistance to cefazolin (86.21%), streptomycin (81.61%), ampicillin (77.01%), ampicillin-sulbactam (74.71%), doxycycline (72.41%), tetracycline (71.26%), and levofloxacin (70.11%). Moreover, 83.91% of isolates were resistant to ≥3 categories, which were considered multi-drug resistant (MDR). Whole-genome sequencing (WGS) combined with bioinformatic analysis was used to predict serovars, MLST types, plasmid replicons, antimicrobial resistance genes, and virulence genes, in addition to the construction of phylogenomic to determine the epidemiological relatedness between isolates. Fifteen serovars and 16 STs were identified, with the dominance of S. I 4, [5], 12:i:- ST34 (25.29%), S. Enteritidis ST11 (22.99%), and S. Typhimurium ST19. Additionally, 50 resistance genes representing ten categories were detected with a high prevalence of aac(6')-Iaa (100%), bla TEM-1B (65.52%), and tet(A) (52.87%), encoding resistance to aminoglycosides, β-lactams, and tetracyclines, respectively; in addition to chromosomic mutations affecting gyrA gene. Moreover, we showed the detection of 18 different plasmids with the dominance of IncFIB(S) and IncFII(S) (39.08%). Interestingly, all isolates harbor the typical virulence genes implicated in the virulence mechanisms of Salmonella, while one isolate of S. Jangwani contains the cdtB gene encoding typhoid toxin production. Furthermore, the phylogenomic analysis showed that all isolates of the same serovar are very close to each other and clustered together in the same clade. Together, we showed a high incidence of MDR among the studied isolates which is alarming for public health services and is a major threat to the currently available treatments to deal with human salmonellosis; hence, efforts should be gathered to further introduce WGS in routinely monitoring of AMR Salmonella in the medical field in order to enhance the effectiveness of surveillance systems and to limit the spread of MDR clones.
Collapse
Affiliation(s)
- Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Haiyang Zhou
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Yunyi Zhang
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Min Yue
| |
Collapse
|
26
|
Kang R, Wang W, Liu Y, Huang S, Xu J, Zhao L, Zhang J, Ji C, Wang Z, Hu Y, Ma Q. Dietary selenium sources alleviate immune challenge induced by Salmonella Enteritidis potentially through improving the host immune response and gut microbiota in laying hens. Front Immunol 2022; 13:928865. [PMID: 36016957 PMCID: PMC9396296 DOI: 10.3389/fimmu.2022.928865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effects of different selenium (Se) sources on the immune responses and gut microbiota of laying hens challenged with Salmonella enteritidis (S. Enteritidis). A total of 240 45-week-old layers were randomly divided into eight groups with six replicates per group according to a 4 × 2 factorial design, including a blank diet without Se supplementation (CON group) and three diets with 0.3 mg/kg Se supplementation from sodium selenite (IS group), yeast Se (YS group), and selenium-enriched yeast culture (SYC group), respectively. After 8 weeks of feeding, half of them were orally challenged with 1.0 ml suspension of 109 colony-forming units per milliliter of S. Enteritidis daily for 3 days. The serum was collected on days 3, 7, and 14, and the cecum content was collected on day 14 after challenge. There was no significant difference in laying performance among the eight groups before challenge. The S. Enteritidis challenge significantly decreased the laying performance, egg quality, GSH-Px, IgG, and IgM and increased the ratio of feed and egg, malondialdehyde (MDA), Salmonella-specific antibody (SA) titers, IL-6, IL-2, IL-1β, and INF-γ. However, SYC increased the level of GSH-Px and IgG and decreased IL-6, while YS decreased the level of IL-2 and IL-1β. What is more, Se supplementation decreased the SA titers to varying degrees and reduced the inflammatory cell infiltration in the lamina propria caused by S. Enteritidis infection. In addition, the S. Enteritidis challenge disrupted the intestinal flora balance by reducing the abundance of the genera Clostridium innocuum, Lachnospiraceae, and Bifidobacterium and increasing the genera Butyricimonas and Brachyspira, while Se supplementation increased the gut microbial alpha diversity whether challenged or not. Under the S. Enteritidis challenge condition, the alteration of microbial composition by the administration of different Se sources mainly manifested as IS increased the relative abundance of the genera Lachnospiraceae and Christensenellaceae, YS increased the relative abundance of the genera Megamonas and Sphingomonas, and SYC increased the genera Fusobacterium and Lactococcus. The alteration of gut microbial composition had a close relationship with antioxidant or immune response. To summarize, different Se sources can improve the egg quality of layers challenged by S. Enteritidis that involves elevating the immunity level and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- Ruifen Kang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Weihan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yafei Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Jiawei Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
27
|
Kipper D, Mascitti AK, De Carli S, Carneiro AM, Streck AF, Fonseca ASK, Ikuta N, Lunge VR. Emergence, Dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 2022; 9:405. [PMID: 36006320 PMCID: PMC9415136 DOI: 10.3390/vetsci9080405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella infects poultry, and it is also a human foodborne pathogen. This bacterial genus is classified into several serovars/lineages, some of them showing high antimicrobial resistance (AMR). The ease of Salmonella transmission in farms, slaughterhouses, and eggs industries has made controlling it a real challenge in the poultry-production chains. This review describes the emergence, dissemination, and AMR of the main Salmonella serovars and lineages detected in Brazilian poultry. It is reported that few serovars emerged and have been more widely disseminated in breeders, broilers, and layers in the last 70 years. Salmonella Gallinarum was the first to spread on the farms, remaining as a concerning poultry pathogen. Salmonella Typhimurium and Enteritidis were also largely detected in poultry and foods (eggs, chicken, turkey), being associated with several human foodborne outbreaks. Salmonella Heidelberg and Minnesota have been more widely spread in recent years, resulting in frequent chicken/turkey meat contamination. A few more serovars (Infantis, Newport, Hadar, Senftenberg, Schwarzengrund, and Mbandaka, among others) were also detected, but less frequently and usually in specific poultry-production regions. AMR has been identified in most isolates, highlighting multi-drug resistance in specific poultry lineages from the serovars Typhimurium, Heidelberg, and Minnesota. Epidemiological studies are necessary to trace and control this pathogen in Brazilian commercial poultry production chains.
Collapse
Affiliation(s)
- Diéssy Kipper
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Andréa Karoline Mascitti
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
| | - Andressa Matos Carneiro
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | - André Felipe Streck
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
| | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Rio Grande do Sul, Brazil; (D.K.); (A.K.M.); (A.M.C.); (A.F.S.)
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-350, Rio Grande do Sul, Brazil;
- Simbios Biotecnologia, Cachoeirinha 94940-030, Rio Grande do Sul, Brazil; (A.S.K.F.); (N.I.)
| |
Collapse
|
28
|
Outbreak dynamics of foodborne pathogen Vibrio parahaemolyticus over a seventeen year period implies hidden reservoirs. Nat Microbiol 2022; 7:1221-1229. [PMID: 35918422 DOI: 10.1038/s41564-022-01182-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022]
Abstract
Controlling foodborne diseases requires robust outbreak detection and a comprehensive understanding of outbreak dynamics. Here, by integrating large-scale phylogenomic analysis of 3,642 isolates and epidemiological data, we performed 'data-driven' outbreak detection and described the long-term outbreak dynamics of the leading seafood-associated pathogen, Vibrio parahaemolyticus, in Shenzhen, China, over a 17-year period. Contradictory to the widely accepted notion that sporadic patients and independent point-source outbreaks dominated foodborne infections, we found that 71% of isolates from patients grouped into within-1-month clusters that differed by ≤6 single nucleotide polymorphisms, indicating putative outbreaks. Furthermore, we showed that despite the long time spans between clusters, 70% of them were genomically closely related and were inferred to arise from a small number of common sources, which provides evidence that hidden persistent reservoirs generated most of the outbreaks rather than independent point-sources. Phylogeographical analysis further revealed the geographical heterogeneity of outbreaks and identified a coastal district as the potential hotspot of outbreaks and as the hub and major source of cross-district spread events. Our findings provide a comprehensive picture of the long-term spatiotemporal dynamics of foodborne outbreaks and present a different perspective on the major source of foodborne infections, which will inform the design of future disease control strategies.
Collapse
|
29
|
Pinedo LC, Mughini-Gras L, Franz E, Hald T, Pires SM. Sources and trends of human salmonellosis in Europe, 2015–2019: An analysis of outbreak data. Int J Food Microbiol 2022; 379:109850. [DOI: 10.1016/j.ijfoodmicro.2022.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
30
|
Jiang M, Yang C, Kwan PSL, Zhang L, Fan H, Jin Y, Sun L, Chen H, Li B, Chen Q, Wu Y, Guo Y, Shi Y, Liao M, Shi X, Liu J, Jiang L, Cai R, Deng Y, Sun Q, Yang R, Zhang Q, Cui Y, Hu Q. Rapid Multilateral and Integrated Public Health Response to a Cross-City Outbreak of Salmonella Enteritidis Infections Combining Analytical, Molecular, and Genomic Epidemiological Analysis. Front Microbiol 2022; 13:772489. [PMID: 35602015 PMCID: PMC9117964 DOI: 10.3389/fmicb.2022.772489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
On September 21, 2019, the Shenzhen and Dongguan Centers for Disease Control and Prevention received notification of a large cluster of suspected gastroenteritis involving primarily children who sought medical care at hospitals throughout two adjacent cities in China, Shenzhen, and Dongguan. A joint outbreak response was promptly initiated across jurisdictions in a concerted effort between clinical microbiologists, epidemiologists, and public health scientists. Concurrently, multiplex PCRs were used for rapid laboratory diagnosis of suspected cases; epidemiological investigations were conducted to identify the outbreak source, complemented by near real-time multicenter whole-genome analyses completed within 34 h. Epidemiological evidence indicated that all patients had consumed egg sandwiches served on September 20 as snacks to children and staff at a nursery in Dongguan, located near Shenzhen. Salmonella Enteritidis was isolated from case-patients, food handlers, kitchenware, and sandwiches with kitchen-made mayonnaise. Whole-genome single-nucleotide polymorphism (SNP)-based phylogenetic analysis demonstrated a well-supported cluster with pairwise distances of ≤1 SNP between genomes for outbreak-associated isolates, providing the definitive link between all samples. In comparison with historical isolates from the same geographical region, the minimum pairwise distance was >14 SNPs, suggesting a non-local outbreak source. Genomic source tracing revealed the possible transmission dynamics of a S. Enteritidis clone throughout a multi-provincial egg distribution network. The efficiency and scale with which multidisciplinary and integrated approaches were coordinated in this foodborne disease outbreak response was unprecedented in China, leading to the timely intervention of a large cross-jurisdiction Salmonella outbreak.
Collapse
Affiliation(s)
- Min Jiang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chao Yang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Patrick S L Kwan
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liping Zhang
- Microbiology Laboratory, Dongguan Center for Disease Control and Prevention, Guangdong, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujuan Jin
- Microbiology Laboratory, Longgang District Center for Disease Control and Prevention, Shenzhen, China
| | - Lifang Sun
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongyu Chen
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Baisheng Li
- Microbiology Laboratory, Guangdong Center for Disease Control and Prevention, Guangdong, China
| | - Qiuxia Chen
- Microbiology Laboratory, Guangdong Center for Disease Control and Prevention, Guangdong, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanguo Shi
- Division of Biohazard Inspection and Testing, Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, China
| | - Min Liao
- Division of Biohazard Inspection and Testing, Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianping Liu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lijuan Jiang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinhua Deng
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiaoli Zhang
- Microbiology Laboratory, Dongguan Center for Disease Control and Prevention, Guangdong, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qinghua Hu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
31
|
Larkin L, Pardos de la Gandara M, Hoban A, Pulford C, Jourdan-Da Silva N, de Valk H, Browning L, Falkenhorst G, Simon S, Lachmann R, Dryselius R, Karamehmedovic N, Börjesson S, van Cauteren D, Laisnez V, Mattheus W, Pijnacker R, van den Beld M, Mossong J, Ragimbeau C, Vergison A, Thorstensen Brandal L, Lange H, Garvey P, Nielsen CS, Herrera León S, Varela C, Chattaway M, Weill FX, Brown D, McKeown P. Investigation of an international outbreak of multidrug-resistant monophasic Salmonella Typhimurium associated with chocolate products, EU/EEA and United Kingdom, February to April 2022. Euro Surveill 2022; 27. [PMID: 35426359 PMCID: PMC9012091 DOI: 10.2807/1560-7917.es.2022.27.15.2200314] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An extensive multi-country outbreak of multidrug-resistant monophasic Salmonella Typhimurium infection in 10 countries with 150 reported cases, predominantly affecting young children, has been linked to chocolate products produced by a large multinational company. Extensive withdrawals and recalls of multiple product lines have been undertaken. With Easter approaching, widespread product distribution and the vulnerability of the affected population, early and effective real-time sharing of microbiological and epidemiological information has been of critical importance in effectively managing this serious food-borne incident.
Collapse
Affiliation(s)
- Lesley Larkin
- Gastrointestinal Infections and Food Safety (One Health Unit), UK Health Security Agency, London, United Kingdom
| | - Maria Pardos de la Gandara
- Institut Pasteur, Université Paris Cité, Centre National de Référence des E. coli, Shigella et Salmonella, Unité des Bactéries pathogènes entériques, Paris, France
| | - Ann Hoban
- Gastrointestinal Infections and Food Safety (One Health Unit), UK Health Security Agency, London, United Kingdom
| | - Caisey Pulford
- Gastrointestinal Infections and Food Safety (One Health Unit), UK Health Security Agency, London, United Kingdom
| | | | - Henriette de Valk
- Sante Publique France, Direction des Maladies Infectieuses Unité EAZ, Paris, France
| | - Lynda Browning
- Clinical and Protecting Health Directorate, Public Health Scotland, Glasgow, United Kingdom
| | - Gerhard Falkenhorst
- Robert Koch Institute, Department of Infectious Disease Epidemiology FG 35 - Gastrointestinal Infections, Zoonoses and Tropical Infections, Berlin, Germany
| | - Sandra Simon
- Robert Koch Institute, Department of Infectious Diseases, Unit for Enteropathogenic Bacteria and Legionella / National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Raskit Lachmann
- Robert Koch Institute, Department of Infectious Disease Epidemiology FG 35 - Gastrointestinal Infections, Zoonoses and Tropical Infections, Berlin, Germany
| | - Rikard Dryselius
- Public Health Agency of Sweden, Unit for Zoonoses and Antibiotic Resistance, Stockholm, Sweden
| | - Nadja Karamehmedovic
- Public Health Agency of Sweden, Unit for laboratory surveillance of bacterial pathogens, Stockholm, Sweden
| | - Stefan Börjesson
- Public Health Agency of Sweden, Unit for Zoonoses and Antibiotic Resistance, Stockholm, Sweden
| | - Dieter van Cauteren
- Epidemiology of infectious diseases, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Valeska Laisnez
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- Epidemiology of infectious diseases, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Wesley Mattheus
- National Reference Centre for Salmonella and Shigella, Sciensano, Brussels, Belgium
| | - Roan Pijnacker
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, Netherlands
| | - Maaike van den Beld
- National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, Netherlands
| | - Joël Mossong
- Health Inspection, Health Directorate, Luxembourg
| | - Catherine Ragimbeau
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | | | - Lin Thorstensen Brandal
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Lange
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Charlotte Salgaard Nielsen
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- HSE -Health Protection Surveillance Centre, Dublin, Ireland
| | - Silvia Herrera León
- Instituto de Salud Carlos III. Centro Nacional de Microbiología, Madrid, Spain
| | - Carmen Varela
- Instituto de Salud Carlos III. CIBER epidemiología y salud pública. Madrid, Spain
| | - Marie Chattaway
- Specialist Scientific Reference Service (Salmonella), Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, London, United Kingdom
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Centre National de Référence des E. coli, Shigella et Salmonella, Unité des Bactéries pathogènes entériques, Paris, France
| | - Derek Brown
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - Paul McKeown
- HSE -Health Protection Surveillance Centre, Dublin, Ireland
| |
Collapse
|
32
|
Mihalache OA, Teixeira P, Nicolau AI. Raw-egg based-foods consumption and food handling practices: A recipe for foodborne diseases among Romanian and Portuguese consumers. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Jørgensen F, McLauchlin J, Verlander NQ, Aird H, Balasegaram S, Chattaway MA, Dallman T, Herdman MT, Hoban A, Lai S, Larkin L, McCormick J, Reeves LS, Willis C. Levels and genotypes of Salmonella and levels of Escherichia coli in frozen ready-to-cook chicken and turkey products in England tested in 2020 in relation to an outbreak of S. Enteritidis. Int J Food Microbiol 2022; 369:109609. [DOI: 10.1016/j.ijfoodmicro.2022.109609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
34
|
Abstract
Salmonella is a gram-negative, motile, nonsporulating, facultative anaerobic bacillus, belongs to the family Enterobacteriaceae. The bacteria were first identified in 1884. It is transmitted through direct contact with an infected person or indirect contact by the consumption of contaminated food and water. More than 2500 serotypes of Salmonella enterica have been identified but less than 100 serotypes are known to cause infections in humans. S. enterica serovar typhi (S. typhi) and S. enterica serovar paratyphi (S. paratyphi A B C) cause enteric fever, whereas nontyphoidal Salmonella serotypes (NTS) cause diarrhea. NTS commonly presents with gastroenteritis and is a self-limiting disease. Enteric fever is a potentially life-threatening acute febrile systemic infection and is diagnosed by isolating a pathogen on culture. With the emergence of the extensive drug-resistant (XDR) S. typhi clone, limited treatment options are available. Vaccination of persons at risk, improvement of sanitation, promotion of food hygiene, and detection and control of chronic carriers are essential preventive control measures of enteric fever.
Collapse
Affiliation(s)
- Farah Naz Qamar
- Department of Paediatrics & Child Health, The Aga Khan University Hospital, Stadium Road, P.O Box 3500, Karachi 74800, Pakistan.
| | - Wajid Hussain
- Department of Paediatrics & Child Health, The Aga Khan University Hospital, Stadium Road, P.O Box 3500, Karachi 74800, Pakistan
| | - Sonia Qureshi
- Department of Paediatrics & Child Health, The Aga Khan University Hospital, Stadium Road, P.O Box 3500, Karachi 74800, Pakistan
| |
Collapse
|
35
|
Friesema IHM, Slegers-Fitz-James IA, Wit B, Franz E. Surveillance and characteristics of food-borne outbreaks in the Netherlands, 2006 to 2019. Euro Surveill 2022; 27. [PMID: 35057901 PMCID: PMC8804662 DOI: 10.2807/1560-7917.es.2022.27.3.2100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
A wide variety of pathogens can cause disease in humans via consumption of contaminated food. Although food-borne outbreaks only account for a small part of the food-borne disease burden, outbreak surveillance can provide insights about the pathogens, food products implied as vehicle, points of contamination, and the settings in which transmission occurs.
Aim
To describe the characteristics of food-borne outbreaks registered between 2006 and 2019 in the Netherlands.
Methods
All reported outbreaks in which the first case occurred during 2006–19 were analysed. We examined the number of outbreaks, cases and setting by year, aetiology, type of evidence and food commodities.
Results
In total, 5,657 food-borne outbreaks with 27,711 cases were identified. The contaminated food product could be confirmed in 152 outbreaks (2.7%); in 514 outbreaks (9.1%), a pathogen was detected in cases and/or environmental swabs. Norovirus caused most outbreaks (205/666) and most related cases (4,436/9,532), followed by Salmonella spp. (188 outbreaks; 3,323 cases) and Campylobacter spp. (150 outbreaks; 601 cases). Bacillus cereus was most often found in outbreaks with a confirmed food vehicle (38/152). Additionally, a connection was seen between some pathogens and food commodities. Public eating places were most often mentioned as a setting where the food implicated in the outbreak was prepared.
Conclusion
Long-term analysis of food-borne outbreaks confirms a persistent occurrence. Control and elimination of food-borne illness is complicated since multiple pathogens can cause illness via a vast array of food products and, in the majority of the outbreaks, the pathogen remains unknown.
Collapse
Affiliation(s)
- Ingrid HM Friesema
- Epidemiology and Surveillance of Infectious Diseases, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Ben Wit
- Dutch Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Eelco Franz
- Epidemiology and Surveillance of Infectious Diseases, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
36
|
Review: Production factors affecting the quality of chicken table eggs and egg products in Europe. Animal 2021; 16 Suppl 1:100425. [PMID: 34955388 DOI: 10.1016/j.animal.2021.100425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
The hen's egg (Gallus gallus) is an animal product of great agronomic interest, with a world production of 70.9 million tonnes in 2018. China accounted for 35% of world production, followed by North America (12% of world production), the European Union (7.0 million tonnes, 10% of world production) and India (5.0 million tonnes, 7% of world production). In France, 16-17 billion eggs are produced annually (14.5 billion for table eggs) and more than 1 200 billion worldwide. In 2019, egg production increased by 3.3% compared to 2018, mainly due to the increase in Asian production, which has risen by 42% since 2000. Chicken eggs are widely used either as a low-cost, high nutritional quality food cooked by the consumer (more than 100 billion eggs consumed in Europe), or incorporated as an ingredient in many food products. The various production methods have changed considerably over the last 15 years with the consideration of animal welfare and changes in European regulations. In Europe, fewer and fewer eggs are produced in confinement and there has been a strong growth in the number of systems giving access to an outdoor run. In this review, we describe the different ways in which eggs are produced and processed into egg products to meet the growing demand for ready-to-use food products. We analyse the effect of this evolution of hen-rearing systems on the set of characteristics of eggs and egg products that determine their quality. We describe the risks and benefits associated with these new production methods and their influence or lack of influence on commercial, nutritional, microbial and chemical contamination risk characteristics, as well as the evolution of the image for the consumer. The latter covers the ethical, cultural and environmental dimensions associated with the way the egg is produced.
Collapse
|
37
|
Abstract
The public health measures implemented to control coronavirus disease 2019 (COVID-19) may influence also other infectious diseases. Using national laboratory surveillance data, we assessed the impact of the COVID-19 pandemic on human salmonellosis in the Netherlands until March 2021. Salmonellosis incidence decreased significantly after March 2020: in the second, third and fourth quarters of 2020, and in the first quarter of 2021, the incidence decreased by 55%, 57%, 47% and 37%, respectively, compared to the same quarters of 2016-2019. The decrease was strongest among travel-related cases (94%, 84%, 79% and 93% in the aforementioned quarters, respectively). Other significant changes were: increased proportion of cases among older adults and increased proportion of invasive infections, decreased proportion of trimethoprim resistance and increased proportion of serovar Typhimurium monophasic variant vs. Enteritidis. This led to decreased contributions of laying hens and increased contributions of pigs and cattle as sources of human infections. The observed changes probably reflect a combination of reduced exposure to Salmonella due to restrictions on international travels and gatherings, closure of dine-in restaurants, catering and hospitality sectors at large and changes in healthcare-seeking and diagnostic behaviours.
Collapse
|
38
|
Sarno E, Pezzutto D, Rossi M, Liebana E, Rizzi V. A Review of Significant European Foodborne Outbreaks in the Last Decade. J Food Prot 2021; 84:2059-2070. [PMID: 34197583 DOI: 10.4315/jfp-21-096] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/30/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Foodborne diseases remain a global public health challenge worldwide. The European surveillance system of multistate foodborne outbreaks integrates elements from public and animal health and the food chain for early detection, assessment, and control. This review includes descriptions of the significant outbreaks that occurred in Europe in the last decade. Their significance and relevance to public health is derived from the changes, improvements, and novelties that pushed toward building a safer food system in the European Union, certainly driven by the One Health approach. In 2011, a point source monoclonal outbreak of infections caused by Escherichia coli serotype O104:H4 in sprouted seeds resulted in hundreds of cases of hemolytic uremic syndrome and several fatalities. In 2015, a prolonged outbreak of Listeria monocytogenes infections caused by contamination of frozen corn in Europe resulted in 47 cases and nine deaths. In 2016, a persistent polyclonal outbreak of Salmonella Enteritidis was linked to the consumption of eggs and was associated with hundreds of cases. The outbreak evaluations highlight the importance of rapid sharing of data (e.g., sequencing and tracing data) and the need for harmonizing bioinformatics outputs and computational approaches to facilitate detection and investigation of foodborne illnesses. These outbreaks led to development of a legal framework for a European collaboration platform for sharing whole genome sequence data and enabled the enforcement of existing hygiene and food safety provisions and the development of new hygiene guidelines and best practices. This review also briefly touches on the new trends in information technologies that are being explored for food traceability and safety. These technologies could enhance the traceability of food throughout the supply chain and redirect the conventional tracing system toward a digitized supply chain. HIGHLIGHTS
Collapse
Affiliation(s)
- Eleonora Sarno
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Denise Pezzutto
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Mirko Rossi
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Ernesto Liebana
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Valentina Rizzi
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| |
Collapse
|
39
|
Pulsed Light (PL) Treatments on Almond Kernels: Salmonella enteritidis Inactivation Kinetics and Infrared Thermography Insights. FOOD BIOPROCESS TECH 2021; 14:2323-2335. [PMID: 34751231 PMCID: PMC8566968 DOI: 10.1007/s11947-021-02725-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/22/2021] [Indexed: 11/05/2022]
Abstract
Abstract Extending the shelf-life and ensuring microbiological safety of food products while preserving the nutritional properties are key aspects that must be addressed. Heat processing of food matrices has been the golden standard during the last decades, while certain non-thermal processing options have recently gained ground. In the present study, experimental pulsed light (PL) surface inactivation treatments of Salmonella enteritidis on almonds kernels are performed. The PL system is set to test different operative conditions, namely power (1000, 1250, and 1500 W) and frequency (1.8, 3.0, and 100.0 Hz) at different treatment times (from 5 to 250 s), which result in applied fluence doses in the 0–100 J·cm−2 range. Additionally, temperature measurements are collected at each operative condition on the almond surface (using infrared (IR) thermography) and at the superficial layer of the almond (1-mm depth using a thermocouple). The observed PL inactivation kinetics are then modelled using four different models. The best goodness-of-fit is found for the two-parameter Weibull model (R2 > 0.98 and RMSE < 0.33 for all cases). The maximum achieved log-CFU reductions are 6.02 for the 1.8-Hz system, 4.69 for the 3.0-Hz system, and 3.66 for 100.0-Hz system. The offset between the collected temperature readings by the two sensors is contrasted against the inactivation rate (following the two-parameter Weibull model). It was found that the highest inactivation rate corresponds approximately to the point where the infrared camera detects a slowdown in the surface heating. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11947-021-02725-9.
Collapse
|
40
|
Brown B, Allard M, Bazaco MC, Blankenship J, Minor T. An economic evaluation of the Whole Genome Sequencing source tracking program in the U.S. PLoS One 2021; 16:e0258262. [PMID: 34614029 PMCID: PMC8494326 DOI: 10.1371/journal.pone.0258262] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
The U.S. Food and Drug Administration (FDA) created the GenomeTrakr Whole Genome Sequencing (WGS) Network in 2013, as a tool to improve food safety. This study presents an analysis of Whole Genome source tracking implementation on potential food contamination and related illnesses through theoretical, empirical, and cost benefit analyses. We conduct empirical tests using data from FDA regulated food commodity outbreaks garnering FDA response from 1999 through 2019 and examine the effect of the National Center for Biotechnology Information (NCBI) Pathogen detection program of source tracking WGS isolates collected in the U.S. on outbreak illnesses for three pilot pathogens (E. coli, Listeria, and Salmonella). Empirical results are consistent with the theoretical model and suggest that each additional 1,000 WGS isolates added to the public NCBI database is associated with a reduction of approximately 6 illnesses per WGS pathogen, per year. Empirical results are connected to existing literature for a Monte Carlo analysis to estimate benefits and costs. By 2019, annual health benefits are estimated at nearly $500 million, compared to an approximately $22 million investment by public health agencies. Even under conservative assumptions, the program likely broke even in its second year of implementation and could produce increasing public health benefits as the GenomeTrakr network matures.
Collapse
Affiliation(s)
- Brad Brown
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| | - Marc Allard
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| | - Michael C. Bazaco
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| | - Joseph Blankenship
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| | - Travis Minor
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland, United States of America
| |
Collapse
|
41
|
Khan S, McWhorter AR, Moyle TS, Chousalkar KK. Refrigeration of eggs influences the virulence of Salmonella Typhimurium. Sci Rep 2021; 11:18026. [PMID: 34504138 PMCID: PMC8429434 DOI: 10.1038/s41598-021-97135-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Salmonella Typhimurium is a human pathogen associated with eggs and egg-derived products. In Australia, it is recommended that eggs should be refrigerated to prevent condensation that can enhance bacterial penetration across the eggshell. Except for the United States, the guidelines on egg refrigeration are not prescriptive. In the current study, in-vitro and in-vivo experiments were conducted to understand the role of egg storage temperatures (refrigerated vs ambient) on bacterial load and the virulence genes expression of Salmonella Typhimurium. The in-vitro egg study showed that the load of Salmonella Typhimurium significantly increased in yolk and albumen stored at 25 °C. The gene expression study showed that ompR, misL, pefA, spvA, shdA, bapA, and csgB were significantly up-regulated in the egg yolk stored at 5 °C and 25 °C for 96 h; however, an in-vivo study revealed that mice infected with egg yolk stored at 25 °C, developed salmonellosis from day 3 post-infection (p.i.). Mice fed with inoculated egg yolk, albumen, or eggshell wash stored at refrigerated temperature did not show signs of salmonellosis during the period of the experiment. Data obtained in this study highlighted the importance of egg refrigeration in terms of improving product safety.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Andrea R McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Talia S Moyle
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, 5371, Australia.
| |
Collapse
|
42
|
Li S, He Y, Mann DA, Deng X. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat Commun 2021; 12:5109. [PMID: 34433807 PMCID: PMC8387372 DOI: 10.1038/s41467-021-25319-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
A pandemic of Salmonella enterica serotype Enteritidis emerged in the 1980s due to contaminated poultry products. How Salmonella Enteritidis rapidly swept through continents remains a historical puzzle as the pathogen continues to cause outbreaks and poultry supply becomes globalized. We hypothesize that international trade of infected breeding stocks causes global spread of the pathogen. By integrating over 30,000 Salmonella Enteritidis genomes from 98 countries during 1949-2020 and international trade of live poultry from the 1980s to the late 2010s, we present multifaceted evidence that converges on a high likelihood, global scale, and extended protraction of Salmonella Enteritidis dissemination via centralized sourcing and international trade of breeding stocks. We discovered recent, genetically near-identical isolates from domestically raised poultry in North and South America. We obtained phylodynamic characteristics of global Salmonella Enteritidis populations that lend spatiotemporal support for its dispersal from centralized origins during the pandemic. We identified concordant patterns of international trade of breeding stocks and quantitatively established a driving role of the trade in the geographic dispersal of Salmonella Enteritidis, suggesting that the centralized origins were infected breeding stocks. Here we demonstrate the value of integrative and hypothesis-driven data mining in unravelling otherwise difficult-to-probe pathogen dissemination from hidden origins.
Collapse
Affiliation(s)
- Shaoting Li
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Yingshu He
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - David Ames Mann
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, USA.
| |
Collapse
|
43
|
Zhang Y, Song L, Hou L, Cao Z, Vongsangnak W, Zhu G, Xu Q, Chen G. Dual Transcriptomic Analyses Unveil Host-Pathogen Interactions Between Salmonella enterica Serovar Enteritidis and Laying Ducks ( Anas platyrhynchos). Front Microbiol 2021; 12:705712. [PMID: 34421865 PMCID: PMC8374152 DOI: 10.3389/fmicb.2021.705712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella enteritidis (SE) is a pathogen that can readily infect ovarian tissues and colonize the granulosa cell layer such that it can be transmitted via eggs from infected poultry to humans in whom it can cause food poisoning. Ducks are an important egg-laying species that are susceptible to SE infection, yet the host–pathogen interactions between SE and ducks have not been thoroughly studied to date. Herein, we performed dual RNA-sequencing analyses of these two organisms in a time-resolved infection model of duck granulosa cells (dGCs) by SE. In total, 10,510 genes were significantly differentially expressed in host dGCs, and 265 genes were differentially expressed in SE over the course of infection. These differentially expressed genes (DEGs) of dGCs were enriched in the cytokine–cytokine receptor interaction pathway via KEGG analyses, and the DEGs in SE were enriched in the two-component system, bacterial secretion system, and metabolism of pathogen factors pathways as determined. A subsequent weighted gene co-expression network analysis revealed that the cytokine–cytokine receptor interaction pathway is mostly enriched at 6 h post-infection (hpi). Moreover, a number of pathogenic factors identified in the pathogen–host interaction database (PHI-base) are upregulated in SE, including genes encoding the pathogenicity island/component, type III secretion, and regulators of systemic infection. Furthermore, an intracellular network associated with the regulation of SE infection in ducks was constructed, and 16 cytokine response-related dGCs DEGs (including IL15, CD40, and CCR7) and 17 pathogenesis-related factors (including sseL, ompR, and fliC) were identified, respectively. Overall, these results not only offer new insights into the mechanisms underlying host–pathogen interactions between SE and ducks, but they may also aid in the selection of potential targets for antimicrobial drug development.
Collapse
Affiliation(s)
- Yu Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lina Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lie Hou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhengfeng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
44
|
Luo L, Payne M, Kaur S, Hu D, Cheney L, Octavia S, Wang Q, Tanaka MM, Sintchenko V, Lan R. Elucidation of global and national genomic epidemiology of Salmonella enterica serovar Enteritidis through multilevel genome typing. Microb Genom 2021; 7. [PMID: 34292145 PMCID: PMC8477392 DOI: 10.1099/mgen.0.000605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a major cause of foodborne Salmonella infections and outbreaks in humans. Effective surveillance and timely outbreak detection are essential for public health control. Multilevel genome typing (MGT) with multiple levels of resolution has been previously demonstrated as a promising tool for this purpose. In this study, we developed MGT with nine levels for S. Enteritidis and characterised the genomic epidemiology of S. Enteritidis in detail. We examined 26 670 publicly available S. Enteritidis genome sequences from isolates spanning 101 years from 86 countries to reveal their spatial and temporal distributions. Using the lower resolution MGT levels, globally prevalent and regionally restricted sequence types (STs) were identified; avian associated MGT4-STs were found that were common in human cases in the USA; temporal trends were observed in the UK with MGT5-STs from 2014 to 2018 revealing both long lived endemic STs and the rapid expansion of new STs. Using MGT3 to MGT6, we identified multidrug resistance (MDR) associated STs at various MGT levels, which improves precision of detection and global tracking of MDR clones. We also found that the majority of the global S. Enteritidis population fell within two predominant lineages, which had significantly different propensity of causing large scale outbreaks. An online open MGT database has been established for unified international surveillance of S. Enteritidis. We demonstrated that MGT provides a flexible and high-resolution genome typing tool for S. Enteritidis surveillance and outbreak detection.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Liam Cheney
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, New South Wales, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Development and evaluation of an outbreak surveillance system integrating whole genome sequencing data for non-typhoidal Salmonella in London and South East of England, 2016-17. Epidemiol Infect 2021; 149:e164. [PMID: 34196266 PMCID: PMC8314958 DOI: 10.1017/s0950268821001400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An outbreak surveillance system for Salmonella integrating whole genome sequencing (WGS) and epidemiological data was developed in South East and London in 2016–17 to assess local WGS clusters for triage and investigation. Cases genetically linked within a 5 single-nucleotide polymorphism (SNP) single linkage cluster were assessed using a set of locally agreed thresholds based on time, person and place, for reporting to local health protection teams (HPTs). Between September 2016 and September 2017, 230 unique 5-SNP clusters (442 weekly reports) of non-typhoidal Salmonella 5-SNP WGS clusters were identified, of which 208 unique 5-SNP clusters (316 weekly reports) were not reported to the HPTs. In the remaining 22 unique clusters (126 weekly clusters) reported to HPTs, nine were known active outbreak investigations, seven were below locally agreed thresholds and six exceeded local thresholds. A common source or vehicle was identified in four of six clusters that exceeded locally agreed thresholds. This work demonstrates that a threshold-based surveillance system, taking into account time, place and genetic relatedness, is feasible and effective in directing the use of local public health resources for risk assessment and investigation of non-typhoidal Salmonella clusters.
Collapse
|
46
|
Savelli CJ, Garcia Acevedo RF, Simpson J, Mateus C. The utilisation of tools to facilitate cross-border communication during international food safety events, 1995-2020: a realist synthesis. Global Health 2021; 17:65. [PMID: 34167571 PMCID: PMC8222958 DOI: 10.1186/s12992-021-00715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Efficient communication and coordination are needed between countries to prevent, detect and respond to international food safety events. While communication tools, networks and systems exist, current evidence suggests that they are only useful within particular contexts and several only target specific geographic areas. There is a need to unpack and explore the mechanisms of how and in what context such communication tools and their components are effective at facilitating international communication and coordination to keep food safe and mitigate the burden of foodborne disease around the world. A realist synthesis was undertaken to understand how and why certain processes and structures of communication tools, used during international food safety events, influence their utility and effectiveness according to different contextual factors. The focus of this review was explanatory and aimed to develop and refine theory regarding how contextual factors trigger specific processes and mechanisms to produce outcomes. Using the realist context–mechanism–outcome configuration of theory development, a range of sources was used to develop an initial programme theory, including the authors’ experience, a scoping review of published papers and grey literature and input from an expert reference committee. Literature was then systematically located and synthesised from several databases with input from the expert reference committee to refine the programme theory. The programme theory developed indicates that when a country has interests in food import or export, has the technical infrastructure to detect and respond to food safety events, and is governed in accordance with regional and/or global laws and regulations relating to food control and global health security, then specific mechanisms will facilitate various outcomes. Mechanisms include trust, experience, support, awareness, understanding, a sense of community, standardisation and intersectoral collaboration. The outcomes include using communication tools to relay information abroad and the prevention of foodborne diseases, among others. Components of such communication tools may be adapted according to different contextual factors to promote, support and improve their use. Improving international coordination and communication during international food safety events is in the interest of global health security and can mitigate the global burden of foodborne disease.
Collapse
Affiliation(s)
- Carmen Joseph Savelli
- World Health Organization, Nutrition and Food Safety, Avenue Appia 20, 1211, Geneva, Switzerland. .,Lancaster University, Faculty of Health and Medicine, Division of Health Research, Bailrigg, Lancaster, LA1 4YW, UK.
| | | | - Jane Simpson
- Lancaster University, Faculty of Health and Medicine, Division of Health Research, Bailrigg, Lancaster, LA1 4YW, UK
| | - Céu Mateus
- Lancaster University, Faculty of Health and Medicine, Division of Health Research, Bailrigg, Lancaster, LA1 4YW, UK
| |
Collapse
|
47
|
Jiang M, Zhu F, Yang C, Deng Y, Kwan PS, Li Y, Lin Y, Qiu Y, Shi X, Chen H, Cui Y, Hu Q. Whole-Genome Analysis of Salmonella enterica Serovar Enteritidis Isolates in Outbreak Linked to Online Food Delivery, Shenzhen, China, 2018. Emerg Infect Dis 2021; 26:789-792. [PMID: 32186505 PMCID: PMC7101132 DOI: 10.3201/eid2604.191446] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In July 2018, an outbreak of 10 cases of Salmonella enterica serovar Enteritidis infection occurred in Shenzhen, China. Outbreak investigation complemented by whole-genome sequencing traced the source to food ordered online. Our investigation highlights the role of online food delivery platforms as a new mode of foodborne disease transmission.
Collapse
|
48
|
Evidence of on-going transmission of Shiga toxin-producing Escherichia coli O157:H7 following a foodborne outbreak. Epidemiol Infect 2021; 149:e147. [PMID: 34096488 PMCID: PMC8251666 DOI: 10.1017/s0950268821001278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In August 2019, public health surveillance systems in Scotland and England identified seven, geographically dispersed cases infected with the same strain (defined as isolates that fell within the same five single nucleotide polymorphism single linage cluster) of Shiga toxin-producing Escherichia coli O157:H7. Epidemiological analysis of enhanced surveillance questionnaire data identified handling raw beef and shopping from the same national retailer (retailer A) as the common exposure. Concurrently, a microbiological survey of minced beef at retail identified the same strain in a sample of minced beef sold by retailer A, providing microbiological evidence of the link. Between September and November 2019, a further four primary and two secondary cases infected with the same strain were identified; two cases developed haemolytic uraemic syndrome. None of the four primary cases reported consumption of beef from retailer A and the transmission route of these subsequent cases was not identified, although all four primary cases visited the same petting farm. Generally, outbreaks of STEC O157:H7 in the UK appear to be distinct, short-lived events; however, on-going transmission linked to contaminated food, animals or environmental exposures and person-to-person contact do occur. Although outbreaks of STEC caused by contaminated fresh produce are increasingly common, undercooked meat products remain a risk of infection.
Collapse
|
49
|
Tracking Salmonella enterica by whole genome sequencing of isolates recovered from broiler chickens in a poultry production system. Int J Food Microbiol 2021; 350:109246. [PMID: 34034079 DOI: 10.1016/j.ijfoodmicro.2021.109246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 01/12/2023]
Abstract
Salmonella enterica is a major cause of foodborne diseases, and is also an important pathogenic bacterium in poultry industry. Whole genome sequencing (WGS) has become a crucial molecular typing technology used for the surveillance of the pathogenic bacteria. In the present study, we adopted WGS for tracking transmission of S. enterica in the production chain of broiler chickens. A total of 74 S. enterica strains were isolated from the different steps of breeding and slaughtering in a large production enterprise in Sichuan Province, China. The isolation rate of Salmonella was the highest in procedure of defeathering (50.0%) and evisceration (36.7%). Serotype identification showed that 74 Salmonella isolates included 7 serotypes, among which Mbandaka accounted for the highest proportions (35.1%). WGS revealed that 74 strains belonged to 7 different sequence types (STs), as well as 7 different ribosomal STs and 35 core genome STs. cgMLST-based Minimum Spanning Trees and phylogenetic tree based on the SNPs indicated that three serotypes, Mbandaka, Indiana and Kentucky, could be clonally transmitted between broiler farm and slaughterhouse. Heterogeneous resistant phenotypes and genotypes were found in two serotypes, Indiana and Kentucky. Our study indicated WGS in an accurate tool for molecular typing of S. enterica. Routine surveillance of S. enterica in the production chain of broiler chickens is needed.
Collapse
|
50
|
Díaz-Gavidia C, Álvarez FP, Munita JM, Cortés S, Moreno-Switt AI. Perspective on Clinically-Relevant Antimicrobial Resistant Enterobacterales in Food: Closing the Gaps Using Genomics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance is one of the most important public health concerns—it causes 700,000 deaths annually according to the World Health Organization (WHO). Enterobacterales such as E. coli and Klebsiella pneumoniae, have become resistant to many relevant antimicrobials including carbapenems and extended spectrum cephalosporins. These clinically relevant resistant Enterobacterales (CRRE) members are now globally distributed in the environment including different food types (meats, produce, dairy). Unlike known foodborne pathogens, CRRE are not usually part of most food surveillance systems. However, numerous reports of CRRE highlight the importance of these bacteria in food and have been shown to contribute to the overall crisis of antimicrobial resistance. This is especially important in the context of carriage of these pathogens by immuno-compromised individuals. CRRE infections upon consumption of contaminated food could colonize the human gastrointestinal tract and eventually be a source of systemic infections such as urinary tract infections or septicemia. While different aspects need to be considered to elucidate this, whole genome sequencing along with metadata could be used to understand genomic relationships of CRRE obtained from foods and humans, including isolates from clinical infections. Once robust scientific data is available on the role of CRRE in food, countries could move forward to better survey and control CRRE in food.
Collapse
|