1
|
Bangura U, Davis C, Lamin J, Bangura J, Soropogui B, Davison AJ, Nichols J, Vucak M, Dawson M, Ansumana R, Sondufu D, Cadar D, Rieger T, Thomson E, Sahr F, Magassouba N, Ghersi B, Bird BH, Fichet-Calvet E. Spatio-temporal spread of Lassa virus and a new rodent host in the Mano River Union area, West Africa. Emerg Microbes Infect 2024; 13:2290834. [PMID: 38047354 PMCID: PMC10919312 DOI: 10.1080/22221751.2023.2290834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
The spread of Lassa virus (LASV) in Guinea, Liberia and Sierra Leone, which together are named the Mano River Union (MRU) area, was examined phylogeographically. To provide a reliable evolutionary scenario, new rodent-derived, whole LASV sequences were included. These were generated by metatranscriptomic next-generation sequencing from rodents sampled between 2003 and 2020 in 21 localities of Guinea and Sierra Leone. An analysis was performed using BEAST to perform continuous phylogeographic inference and EvoLaps v36 to visualize spatio-temporal spread. LASV was identified as expected in its primary host reservoir, the Natal multimammate mouse (Mastomys natalensis), and also in two Guinean multimammate mice (Mastomys erythroleucus) in northern Sierra Leone and two rusty-bellied brush-furred mice (Lophuromys sikapusi) in southern Sierra Leone. This finding is consistent with the latter two species being secondary host reservoirs. The strains in these three species were very closely related in LASV lineage IV. Phylogenetic analysis indicated that the most recent common ancestor of lineage IV existed 316-374 years ago and revealed distinct, well-supported clades from Sierra Leone (Bo, Kabala and Kenema), Guinea (Faranah, Kissidougou-Guekedou and Macenta) and Liberia (Phebe-Ganta). The phylogeographic scenario suggests southern Guinea as the point of origin of LASV in the MRU area, with subsequent spread to towards Mali, Liberia and Sierra Leone at a mean speed of 1.6 to 1.1 km/year.
Collapse
Affiliation(s)
- Umaru Bangura
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | | | - Joyce Lamin
- Mercy Hospital Research Laboratory, Bo, Sierra Leone
| | - James Bangura
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Barré Soropogui
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea
| | | | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matej Vucak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | | | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Emma Thomson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Foday Sahr
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | | | - Bruno Ghersi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Elisabeth Fichet-Calvet
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| |
Collapse
|
2
|
Wang X, Ye X, Li R, Zai X, Hu M, Wang S, Ren H, Jin Y, Xu J, Yue J. Spatio-temporal spread and evolution of Lassa virus in West Africa. BMC Infect Dis 2024; 24:314. [PMID: 38486143 PMCID: PMC10941413 DOI: 10.1186/s12879-024-09200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Lassa fever is a hemorrhagic disease caused by Lassa virus (LASV), which has been classified by the World Health Organization as one of the top infectious diseases requiring prioritized research. Previous studies have provided insights into the classification and geographic characteristics of LASV lineages. However, the factor of the distribution and evolution characteristics and phylodynamics of the virus was still limited. METHODS To enhance comprehensive understanding of LASV, we employed phylogenetic analysis, reassortment and recombination detection, and variation evaluation utilizing publicly available viral genome sequences. RESULTS The results showed the estimated the root of time of the most recent common ancestor (TMRCA) for large (L) segment was approximately 634 (95% HPD: [385879]), whereas the TMRCA for small (S) segment was around 1224 (95% HPD: [10301401]). LASV primarily spread from east to west in West Africa through two routes, and in route 2, the virus independently spread to surrounding countries through Liberia, resulting in a wider spread of LASV. From 1969 to 2018, the effective population size experienced two significant increased, indicating the enhanced genetic diversity of LASV. We also found the evolution rate of L segment was faster than S segment, further results showed zinc-binding protein had the fastest evolution rate. Reassortment events were detected in multiple lineages including sub-lineage IIg, while recombination events were observed within lineage V. Significant amino acid changes in the glycoprotein precursor of LASV were identified, demonstrating sequence diversity among lineages in LASV. CONCLUSION This study comprehensively elucidated the transmission and evolution of LASV in West Africa, providing detailed insights into reassortment events, recombination events, and amino acid variations.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
- Medical College of Guizhou University, Guiyang, 550025, China
| | - Xianwei Ye
- Medical College of Guizhou University, Guiyang, 550025, China
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ruihua Li
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Mingda Hu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shaoyan Wang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hongguang Ren
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yuan Jin
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Yue
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
3
|
Gorman J, Cheung CSF, Duan Z, Ou L, Wang M, Chen X, Cheng C, Biju A, Sun Y, Wang P, Yang Y, Zhang B, Boyington JC, Bylund T, Charaf S, Chen SJ, Du H, Henry AR, Liu T, Sarfo EK, Schramm CA, Shen CH, Stephens T, Teng IT, Todd JP, Tsybovsky Y, Verardi R, Wang D, Wang S, Wang Z, Zheng CY, Zhou T, Douek DC, Mascola JR, Ho DD, Ho M, Kwong PD. Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability. Nat Commun 2024; 15:285. [PMID: 38177144 PMCID: PMC10767048 DOI: 10.1038/s41467-023-44534-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Lassa virus (LASV) infection is expanding outside its traditionally endemic areas in West Africa, posing a pandemic biothreat. LASV-neutralizing antibodies, moreover, have proven difficult to elicit. To gain insight into LASV neutralization, here we develop a prefusion-stabilized LASV glycoprotein trimer (GPC), pan it against phage libraries comprising single-domain antibodies (nanobodies) from shark and camel, and identify one, D5, which neutralizes LASV. Cryo-EM analyses reveal D5 to recognize a cleavage-dependent site-of-vulnerability at the trimer apex. The recognized site appears specific to GPC intermediates, with protomers lacking full cleavage between GP1 and GP2 subunits. Guinea pig immunizations with the prefusion-stabilized cleavage-intermediate LASV GPC, first as trimer and then as a nanoparticle, induce neutralizing responses, targeting multiple epitopes including that of D5; we identify a neutralizing antibody (GP23) from the immunized guinea pigs. Collectively, our findings define a prefusion-stabilized GPC trimer, reveal an apex-situated site-of-vulnerability, and demonstrate elicitation of LASV-neutralizing responses by a cleavage-intermediate LASV trimer.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Zhijian Duan
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Biju
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaping Sun
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sam Charaf
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steven J Chen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haijuan Du
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Danyi Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhantong Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cheng-Yan Zheng
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Ladner JT, Sahl JW. Towards a post-pandemic future for global pathogen genome sequencing. PLoS Biol 2023; 21:e3002225. [PMID: 37527248 PMCID: PMC10393143 DOI: 10.1371/journal.pbio.3002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Pathogen genome sequencing has become a routine part of our response to active outbreaks of infectious disease and should be an important part of our preparations for future epidemics. In this Essay, we discuss the innovations that have enabled routine pathogen genome sequencing, as well as how genome sequences can be used to understand and control the spread of infectious disease. We also explore the impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic on the field of pathogen genomics and outline the challenges we must address to further improve the utility of pathogen genome sequencing in the future.
Collapse
Affiliation(s)
- Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
5
|
Sulis G, Peebles A, Basta NE. Lassa fever vaccine candidates: A scoping review of vaccine clinical trials. Trop Med Int Health 2023; 28:420-431. [PMID: 37095630 PMCID: PMC10247453 DOI: 10.1111/tmi.13876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Lassa fever (LF) is caused by a viral pathogen with pandemic potential. LF vaccines have the potential to prevent significant disease in individuals at risk of infection, but no such vaccine has been licensed or authorised for use thus far. We conducted a scoping review to identify and compare registered phase 1, 2 or 3 clinical trials of LF vaccine candidates, and appraise the current trajectory of LF vaccine development. METHOD We systematically searched 24 trial registries, PubMed, relevant conference abstracts and additional grey literature sources up to 27 October 2022. After extracting key details about each vaccine candidate and each eligible trial, we qualitatively synthesised the evidence. RESULTS We found that four LF vaccine candidates (INO-4500, MV-LASV, rVSV∆G-LASV-GPC, and EBS-LASV) have entered the clinical stage of assessment. Five phase 1 trials (all focused on healthy adults) and one phase 2 trial (involving a broader age group from 18 months to 70 years) evaluating one of these vaccines have been registered to date. Here, we describe the characteristics of each vaccine candidate and trial and compare them to WHO's target product profile for Lassa vaccines. CONCLUSION Though LF vaccine development is still in early stages, current progress towards a safe and effective vaccine is encouraging.
Collapse
Affiliation(s)
- Giorgia Sulis
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alexandra Peebles
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Nicole E. Basta
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Whitlock AOB, Bird BH, Ghersi B, Davison AJ, Hughes J, Nichols J, Vučak M, Amara E, Bangura J, Lavalie EG, Kanu MC, Kanu OT, Sjodin A, Remien CH, Nuismer SL. Identifying the genetic basis of viral spillover using Lassa virus as a test case. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221503. [PMID: 36968239 PMCID: PMC10031424 DOI: 10.1098/rsos.221503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The rate at which zoonotic viruses spill over into the human population varies significantly over space and time. Remarkably, we do not yet know how much of this variation is attributable to genetic variation within viral populations. This gap in understanding arises because we lack methods of genetic analysis that can be easily applied to zoonotic viruses, where the number of available viral sequences is often limited, and opportunistic sampling introduces significant population stratification. Here, we explore the feasibility of using patterns of shared ancestry to correct for population stratification, enabling genome-wide association methods to identify genetic substitutions associated with spillover into the human population. Using a combination of phylogenetically structured simulations and Lassa virus sequences collected from humans and rodents in Sierra Leone, we demonstrate that existing methods do not fully correct for stratification, leading to elevated error rates. We also demonstrate, however, that the Type I error rate can be substantially reduced by confining the analysis to a less-stratified region of the phylogeny, even in an already-small dataset. Using this method, we detect two candidate single-nucleotide polymorphisms associated with spillover in the Lassa virus polymerase gene and provide generalized recommendations for the collection and analysis of zoonotic viruses.
Collapse
Affiliation(s)
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Bruno Ghersi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matej Vučak
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Emmanuel Amara
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - James Bangura
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Edwin G. Lavalie
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Marilyn C. Kanu
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Osman T. Kanu
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Anna Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, USA
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
7
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
8
|
Spengler JR, Kainulainen MH, Welch SR, Coleman-McCray JD, Harmon JR, Condrey JA, Scholte FEM, Nichol ST, Montgomery JM, Albariño CG, Spiropoulou CF. Lassa Virus Replicon Particle Vaccine Protects Strain 13/N Guinea Pigs Against Challenge With Geographically and Genetically Diverse Viral Strains. J Infect Dis 2022; 226:1545-1550. [PMID: 35099012 PMCID: PMC11268724 DOI: 10.1093/infdis/jiac028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 07/26/2024] Open
Abstract
Lassa virus (LASV) causes mild to severe hemorrhagic fever disease in humans. Strain 13/N guinea pigs are highly susceptible to infection with LASV strain Josiah (clade IV), providing a critical model system for therapeutics and vaccine development. To develop additional models of disease, we detail the clinical course in guinea pigs infected with 5 geographically and genetically diverse LASV strains. Two of the developed models (LASV clades II and III) were then used to evaluate efficacy of a virus replicon particle vaccine against heterologous LASV challenge, demonstrating complete protection against clinical disease after a single vaccination dose.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Markus H Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jillian A Condrey
- Comparative Medicine Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Beyond Lassa Fever: Systemic and structural barriers to disease detection and response in Sierra Leone. PLoS Negl Trop Dis 2022; 16:e0010423. [PMID: 35587495 PMCID: PMC9159599 DOI: 10.1371/journal.pntd.0010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 06/01/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Lassa fever (LF) often presents clinically as undifferentiated febrile illness. Lassa Fever cases in Sierra Leone have been falling since the 2014–2016 Ebola epidemic. Data from other LF endemic countries suggest that this is not a true reflection of local epidemiological decline, but rather a function of either health seeking behaviour or the health/referral system. In Sierra Leone, many other diseases present with a similar early clinical picture, including COVID-19 and Marburg Disease (which has recently emerged in neighbouring Guinea). This empirical study explores the implementation of health system processes associated with International Health Regulations (IHR) requirements for early detection and timely and effective responses to the spread of febrile disease, through the case study of LF in Sierra Leone. Methodology/Principal findings This study used a qualitative approach to analyse local policy and guidance documents, key informant interviews with policy and practice actors, and focus group discussions and in-depth interviews with health care workers (HCWs) and community health workers (CHWs) in Kenema District to examine the ways in which undifferentiated fever surveillance and response policies and processes were implemented in the post-Ebola period. Multiple challenges were identified, including: issues with the LF case definition, approaches to differential diagnosis, specimen transport and the provision of results, and ownership of laboratory data. These issues lead to delays in diagnosis, and potentially worse outcomes for individual patients, as well as affecting the system’s ability to respond to outbreak-prone disease. Conclusions/Significance Identification of ways to improve the system requires balancing vertical disease surveillance programmes against other population health needs. Therefore, health system challenges to early identification of LF specifically have implications for the effectiveness of the wider Integrated Disease Surveillance and Response (IDSR) system in Sierra Leone more generally. Sentinel surveillance or improved surveillance at maternity facilities would help improve viral haemorrhagic fever (VHF) surveillance, as well as knowledge of LF epidemiology. Strengthening surveillance for vertical disease programmes, if correctly targeted, could have downstream benefits for COVID-19 surveillance and response as well as the wider health system—and therefore patient outcomes more generally. Lassa fever (LF) often presents clinically as undifferentiated febrile illness. Lassa Fever cases in Sierra Leone have been falling since the 2014–2016 Ebola epidemic. Data from other LF-endemic countries suggest the drop in case numbers reflects reduced health seeking behaviour or issues within the surveillance, response and health systems. In Sierra Leone, many other diseases present with a similar early clinical picture, including COVID-19, meaning that findings from a case study of LF have wider applicability. There are no recent empirical studies of the functionality of Sierra Leone’s disease surveillance and response system. Qualitative analysis of policy documents and primary data collected from within the health system identified multiple challenges including: issues with the LF case definition, approaches to differential diagnosis, specimen transport and the provision of results, and ownership of laboratory data. These issues lead to delays in diagnosis, and potentially worse outcomes for individual patients, as well as affecting the system’s ability to respond to outbreak-prone disease.
Collapse
|
10
|
Negrón DA, Kang J, Mitchell S, Holland MY, Wist S, Voss J, Brinkac L, Jennings K, Guertin S, Goodwin BG, Sozhamannan S. Impact of SARS-CoV-2 Mutations on PCR Assay Sequence Alignment. Front Public Health 2022; 10:889973. [PMID: 35570946 PMCID: PMC9096222 DOI: 10.3389/fpubh.2022.889973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Real-time reverse transcription polymerase chain reaction (RT-PCR) assays are the most widely used molecular tests for the detection of SARS-CoV-2 and diagnosis of COVID-19 in clinical samples. PCR assays target unique genomic RNA regions to identify SARS-CoV-2 with high sensitivity and specificity. In general, assay development incorporates the whole genome sequences available at design time to be inclusive of all target species and exclusive of near neighbors. However, rapid accumulation of mutations in viral genomes during sustained growth in the population can result in signature erosion and assay failures, creating situational blind spots during a pandemic. In this study, we analyzed the signatures of 43 PCR assays distributed across the genome against over 1.6 million SARS-CoV-2 sequences. We present evidence of significant signature erosion emerging in just two assays due to mutations, while adequate sequence identity was preserved in the other 41 assays. Failure of more than one assay against a given variant sequence was rare and mostly occurred in the two assays noted to have signature erosion. Assays tended to be designed in regions with statistically higher mutations rates. in silico analyses over time can provide insights into mutation trends and alert users to the emergence of novel variants that are present in the population at low proportions before they become dominant. Such routine assessment can also potentially highlight false negatives in test samples that may be indicative of mutations having functional consequences in the form of vaccine and therapeutic failures. This study highlights the importance of whole genome sequencing and expanded real-time monitoring of diagnostic PCR assays during a pandemic.
Collapse
Affiliation(s)
| | - June Kang
- Noblis, Inc., Reston, VA, United States
| | | | | | | | - Jameson Voss
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD, United States
| | | | | | | | - Bruce G. Goodwin
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD, United States
| | - Shanmuga Sozhamannan
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies (JPL CBRND EB), Frederick, MD, United States
- Logistics Management Institute, Tysons, VA, United States
| |
Collapse
|
11
|
Wood R, Bangura U, Mariën J, Douno M, Fichet-Calvet E. Detection of Lassa virus in wild rodent feces: Implications for Lassa fever burden within households in the endemic region of Faranah, Guinea. One Health 2021; 13:100317. [PMID: 34522759 PMCID: PMC8424210 DOI: 10.1016/j.onehlt.2021.100317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
Lassa arenavirus (LASV) is the cause of Lassa Fever in humans in West Africa. The multimammate mouse (Mastomys natalensis) is a reservoir host of LASV and the primary source of human infections. Humans are assumed to become infected due to contact with this animal or its excretions. Thus far, the available literature does not describe the sampling of feces as a means to detect LASV in M. natalensis populations. More evidence is needed to know if feces of naturally infected M. natalensis can be LASV-positive and an exposure risk to humans. This study sampled feces deposits in households from three villages in the LASV-endemic region of Faranah, Guinea. PCR analysis found 10 out of 88 samples to be positive for LASV, and sequencing showed clustering to previously identified Yarawelia and Dalafilani strains. We conclude that feces sampling is a viable, non-invasive method for the determination and sequencing of LASV strains.
Collapse
Affiliation(s)
- Rebekah Wood
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Umaru Bangura
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium.,Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Moussa Douno
- Laboratoire des Fièvres Hémorragiques de Guinée, Centre de Recherche en Virologie, Université Gamal Abdel Nasser de Conakry, Conakry, Guinée
| | | |
Collapse
|
12
|
Shieh WJ, Demby A, Jones T, Goldsmith CS, Rollin PE, Ksiazek TG, Peters CJ, Zaki SR. Pathology and Pathogenesis of Lassa Fever: Novel Immunohistochemical Findings in Fatal Cases and Clinico-pathologic Correlation. Clin Infect Dis 2021; 74:1821-1830. [PMID: 34463715 DOI: 10.1093/cid/ciab719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lassa fever is a zoonotic, acute viral illness first identified in Nigeria in 1969. An estimate shows that the "at risk" seronegative population (in Sierra Leone, Guinea, and Nigeria) may be as high as 59 million, with an annual incidence of all illnesses of three million, and fatalities up to 67,000, demonstrating the serious impact of the disease on the region and global health. METHODS Histopathologic evaluation, immunohistochemical assay, and electron microscopic examination were performed on postmortem tissue samples from 12 confirmed Lassa fever cases. RESULTS Lassa fever virus antigens and viral particles were observed in multiple organ systems and cells, including cells in the mononuclear phagocytic system and other specialized cells where it had not been described previously. CONCLUSIONS The immunolocalization of Lassa fever virus antigens in fatal cases provides novel insightful information with clinical and pathogenetic implications. The extensive involvement of the mononuclear phagocytic system, including tissue macrophages and endothelial cells suggests participation of inflammatory mediators from this lineage with the resulting vascular dilatation and increasing permeability. Other findings indicate the pathogenesis of LF is multifactorial and additional studies are needed.
Collapse
Affiliation(s)
- Wun-Ju Shieh
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,All the work described in this manuscript was done at CDC, Atlanta, Georgia
| | - Austin Demby
- Ministry of Health and Sanitation, Sierra Leone.,All the work described in this manuscript was done at CDC, Atlanta, Georgia
| | - Tara Jones
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogen and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cynthia S Goldsmith
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogen and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Pierre E Rollin
- All the work described in this manuscript was done at CDC, Atlanta, Georgia
| | - Thomas G Ksiazek
- Department of Pathology and Microbiology and Immunology, Galveston National Laboratory University of Texas Medical Branch, Galveston, Texas.,All the work described in this manuscript was done at CDC, Atlanta, Georgia
| | - Clarence J Peters
- All the work described in this manuscript was done at CDC, Atlanta, Georgia
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogen and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
13
|
Mateo M, Reynard S, Journeaux A, Germain C, Hortion J, Carnec X, Picard C, Baillet N, Borges-Cardoso V, Merabet O, Vallve A, Barron S, Jourjon O, Lacroix O, Duthey A, Dirheimer M, Jouvion G, Moreau PH, Fellmann L, Carbonnelle C, Raoul H, Tangy F, Baize S. A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains. Sci Transl Med 2021; 13:13/597/eabf6348. [PMID: 34108251 DOI: 10.1126/scitranslmed.abf6348] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
A safe and protective Lassa virus vaccine is crucially needed in Western Africa to stem the recurrent outbreaks of Lassa virus infections in Nigeria and the emergence of Lassa virus in previously unaffected countries, such as Benin and Togo. Major challenges in developing a Lassa virus vaccine include the high diversity of circulating strains and their reemergence from 1 year to another. To address each of these challenges, we immunized cynomolgus monkeys with a measles virus vector expressing the Lassa virus glycoprotein and nucleoprotein of the prototypic Lassa virus strain Josiah (MeV-NP). To evaluate vaccine efficacy against heterologous strains of Lassa virus, we challenged the monkeys a month later with heterologous strains from lineage II or lineage VII, finding that the vaccine was protective against these strains. A second cohort of monkeys was challenged 1 year later with the homologous Josiah strain, finding that a single dose of MeV-NP was sufficient to protect all vaccinated monkeys. These studies demonstrate that MeV-NP can generate both long-lasting immune responses and responses that are able to protect against diverse strains of Lassa virus.
Collapse
Affiliation(s)
- Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Nicolas Baillet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Virginie Borges-Cardoso
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Othmann Merabet
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France.,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| | - Audrey Vallve
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Stéphane Barron
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Ophélie Jourjon
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Orianne Lacroix
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Aurélie Duthey
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Manon Dirheimer
- INSERM, Délégation Régionale Auvergne Rhône-Alpes, 69500 Bron, France
| | - Gregory Jouvion
- Ecole Nationale Vétérinaire d'Alfort, Unité d'Histologie et d'Anatomie Pathologique, 94700 Maisons-Alfort, France.,Dynamic Research Group, Université Paris Est Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, 94700 Maisons-Alfort, France
| | | | - Lyne Fellmann
- SILABE, Université de Strasbourg, Fort Foch, 67207 Niederhausbergen, France
| | | | - Hervé Raoul
- Laboratoire P4 INSERM-Jean Mérieux, INSERM US003, 69007 Lyon, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination, Institut Pasteur, CNRS UMR-3569, 75015 Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, 69007 Lyon, France. .,Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, 69007 Lyon, France
| |
Collapse
|
14
|
Arruda LB, Haider N, Olayemi A, Simons D, Ehichioya D, Yinka-Ogunleye A, Ansumana R, Thomason MJ, Asogun D, Ihekweazu C, Fichet-Calvet E, Kock RA. The niche of One Health approaches in Lassa fever surveillance and control. Ann Clin Microbiol Antimicrob 2021; 20:29. [PMID: 33894784 PMCID: PMC8067790 DOI: 10.1186/s12941-021-00431-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa.
Collapse
Affiliation(s)
- Liã Bárbara Arruda
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Nigeria
| | - David Simons
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Deborah Ehichioya
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Microbiology, Ambrose Alli University, Ekpoma, Nigeria
| | | | - Rashid Ansumana
- School of Community Health Sciences, Njala University, Bo, Sierra Leone
| | - Margaret J Thomason
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Danny Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | | | - Richard A Kock
- The Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
15
|
Yadouleton A, Picard C, Rieger T, Loko F, Cadar D, Kouthon EC, Job EO, Bankolé H, Oestereich L, Gbaguidi F, Pahlman M, Becker-Ziaja B, Journeaux A, Pannetier D, Mély S, Mundweiler S, Thomas D, Kohossi L, Saizonou R, Kakaï CG, Da Silva M, Kossoubedie S, Kakonku AL, M'Pelé P, Gunther S, Baize S, Fichet-Calvet E. Lassa fever in Benin: description of the 2014 and 2016 epidemics and genetic characterization of a new Lassa virus. Emerg Microbes Infect 2021; 9:1761-1770. [PMID: 32723007 PMCID: PMC7473144 DOI: 10.1080/22221751.2020.1796528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report two outbreaks of Lassa fever that occurred in Benin in 2014 and 2016 with 20 confirmed cases and 50% (10/20) mortality. Benin was not previously considered to be an endemic country for Lassa fever, resulting in a delay to diagnose the disease and its human transmission. Molecular investigations showed the viral genomes to be similar to that of the Togo strain, which is genetically very different from other known strains and confirms the existence of a new lineage. Endemic circulation of Lassa virus in a new territory and the genetic diversity thus confirm that this virus represents a growing threat for West African people. Given the divergence of the Benin strain from the prototypic Josiah Sierra Leone strain frequently used to generate vaccine candidates, the efficacy of vaccine candidates should also be demonstrated with this strain.
Collapse
Affiliation(s)
| | - Caroline Picard
- Virology Department, Institut Pasteur CNR des fièvres hémorragiques virales (CNR FHV), Lyon, France
| | - Toni Rieger
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Daniel Cadar
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | - Lisa Oestereich
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Meike Pahlman
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beate Becker-Ziaja
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Stéphane Mély
- INSERM - Jean Mérieux BSL4Laboratory, CNR FHV, Lyon, France
| | | | - Damien Thomas
- INSERM - Jean Mérieux BSL4Laboratory, CNR FHV, Lyon, France
| | | | | | | | | | | | | | | | - Stephan Gunther
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sylvain Baize
- Laboratoire des Fièvres Hémorragiques Virales, Cotonou, Benin
| | | |
Collapse
|
16
|
McEntire CRS, Song KW, McInnis RP, Rhee JY, Young M, Williams E, Wibecan LL, Nolan N, Nagy AM, Gluckstein J, Mukerji SS, Mateen FJ. Neurologic Manifestations of the World Health Organization's List of Pandemic and Epidemic Diseases. Front Neurol 2021; 12:634827. [PMID: 33692745 PMCID: PMC7937722 DOI: 10.3389/fneur.2021.634827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
The World Health Organization (WHO) monitors the spread of diseases globally and maintains a list of diseases with epidemic or pandemic potential. Currently listed diseases include Chikungunya, cholera, Crimean-Congo hemorrhagic fever, Ebola virus disease, Hendra virus infection, influenza, Lassa fever, Marburg virus disease, Neisseria meningitis, MERS-CoV, monkeypox, Nipah virus infection, novel coronavirus (COVID-19), plague, Rift Valley fever, SARS, smallpox, tularemia, yellow fever, and Zika virus disease. The associated pathogens are increasingly important on the global stage. The majority of these diseases have neurological manifestations. Those with less frequent neurological manifestations may also have important consequences. This is highlighted now in particular through the ongoing COVID-19 pandemic and reinforces that pathogens with the potential to spread rapidly and widely, in spite of concerted global efforts, may affect the nervous system. We searched the scientific literature, dating from 1934 to August 2020, to compile data on the cause, epidemiology, clinical presentation, neuroimaging features, and treatment of each of the diseases of epidemic or pandemic potential as viewed through a neurologist's lens. We included articles with an abstract or full text in English in this topical and scoping review. Diseases with epidemic and pandemic potential can be spread directly from human to human, animal to human, via mosquitoes or other insects, or via environmental contamination. Manifestations include central neurologic conditions (meningitis, encephalitis, intraparenchymal hemorrhage, seizures), peripheral and cranial nerve syndromes (sensory neuropathy, sensorineural hearing loss, ophthalmoplegia), post-infectious syndromes (acute inflammatory polyneuropathy), and congenital syndromes (fetal microcephaly), among others. Some diseases have not been well-characterized from a neurological standpoint, but all have at least scattered case reports of neurological features. Some of the diseases have curative treatments available while in other cases, supportive care remains the only management option. Regardless of the pathogen, prompt, and aggressive measures to control the spread of these agents are the most important factors in lowering the overall morbidity and mortality they can cause.
Collapse
Affiliation(s)
- Caleb R. S. McEntire
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Kun-Wei Song
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Robert P. McInnis
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - John Y. Rhee
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Michael Young
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Erika Williams
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Leah L. Wibecan
- Massachusetts General Hospital (MGH)-Brigham Pediatric Neurology Residency Program, Boston, MA, United States
| | - Neal Nolan
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Amanda M. Nagy
- Massachusetts General Hospital (MGH)-Brigham Pediatric Neurology Residency Program, Boston, MA, United States
| | - Jeffrey Gluckstein
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Shibani S. Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Farrah J. Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
17
|
Tang H, Abouleila Y, Mashaghi A. Lassa hemorrhagic shock syndrome-on-a-chip. Biotechnol Bioeng 2020; 118:1405-1410. [PMID: 33241859 PMCID: PMC7983903 DOI: 10.1002/bit.27636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Lack of experimental human models hinders research on Lassa hemorrhagic fever and the development of treatment strategies. Here, we report the first chip-based model for Lassa hemorrhagic syndrome. The chip features a microvessel interfacing collagen network as a simple mimic for extracellular matrix, allowing for quantitative and real-time vascular integrity assessment. Luminal infusion of Lassa virus-like particles led to a dramatic increase in vascular permeability in a viral load-dependent manner. Using this platform, we showed that Fibrin-derived peptide FX06 can be used to suppress the vascular integrity loss. This simple chip-based model proved promising in the assessment of disease severity and provides an easy-to-use platform for future investigation of Lassa pathogenesis and drug development in a human-like setting.
Collapse
Affiliation(s)
- Huaqi Tang
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yasmine Abouleila
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Sci Rep 2020; 10:16030. [PMID: 32994446 PMCID: PMC7525497 DOI: 10.1038/s41598-020-72539-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic disease that is endemic in West Africa. Seven genetically distinct LASV lineages have been identified. As part of CEPI's (Coalition for Epidemic Preparedness Innovations) Lassa vaccine development program, we assessed the potential of the human immune system to mount cross-reactive and cross-protective humoral immune responses to antigens from the most prevalent LASV lineages, which are lineages II and III in Nigeria and lineage IV in Sierra Leone. IgG and IgM present in the blood of Lassa fever survivors from Nigeria or Sierra Leone exhibited substantial cross-reactivity for binding to LASV nucleoprotein and two engineered (linked and prefusion) versions of the glycoproteins (GP) of lineages II-IV. There was less cross-reactivity for the Zinc protein. Serum or plasma from Nigerian Lassa fever survivors neutralized LASV pseudoviruses expressing lineage II GP better than they neutralized lineage III or IV GP expressing pseudoviruses. Sierra Leonean survivors did not exhibit a lineage bias. Neutralization titres determined using LASV pseudovirus assays showed significant correlation with titres determined by plaque reduction with infectious LASV. These studies provide guidance for comparison of humoral immunity to LASV of distinct lineages following natural infection or immunization.
Collapse
|
19
|
Maljkovic Berry I, Rutvisuttinunt W, Voegtly LJ, Prieto K, Pollett S, Cer RZ, Kugelman JR, Bishop-Lilly KA, Morton L, Waitumbi J, Jarman RG. A Department of Defense Laboratory Consortium Approach to Next Generation Sequencing and Bioinformatics Training for Infectious Disease Surveillance in Kenya. Front Genet 2020; 11:577563. [PMID: 33101395 PMCID: PMC7546821 DOI: 10.3389/fgene.2020.577563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Epidemics of emerging and re-emerging infectious diseases are a danger to civilian and military populations worldwide. Health security and mitigation of infectious disease threats is a priority of the United States Government and the Department of Defense (DoD). Next generation sequencing (NGS) and Bioinformatics (BI) enhances traditional biosurveillance by providing additional data to understand transmission, identify resistance and virulence factors, make predictions, and update risk assessments. As more and more laboratories adopt NGS and BI technologies they encounter challenges in building local capacity. In addition to choosing the right sequencing platform and approach, considerations must also be made for the complexity of bioinformatics analyses, data storage, as well as personnel and computational requirements. To address these needs, a comprehensive training program was developed covering wet lab and bioinformatics approaches to NGS. The program is meant to be modular and adaptive to meet both common and individualized needs of medical research and public health laboratories across the DoD. The training program was first deployed internationally to the Basic Science Laboratory of the US Army Medical Research Directorate-Africa in Kisumu, Kenya, which is an overseas Lab of the Walter Reed Army Institute of Research (WRAIR). A week-long workshop with intensive focus on targeted sequencing and the bioinformatics of genome assembly (n = 24 participants) was held. Post-workshop self-assessment (completed by 21 participants) noted significant median gains in knowledge domains related to NGS targeted sequencing, bioinformatics for genome assembly, and sequence quality assessment. The participants also reported that the information on study design, sample preparation, sequencing quality control, data quality assessment, reporting, and basic and advanced bioinformatics analysis were the most useful information presented in the training. While longer-term evaluations are planned, the training resulted in significant short-term improvement of a laboratory’s self-reported wet lab and bioinformatics capabilities. This framework can be used for future DoD laboratory development in the area of NGS and BI for infectious disease surveillance, ultimately enhancing this global DoD capability.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Office of Genomics and Advanced Technologies National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Logan J Voegtly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Karla Prieto
- College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States.,Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Regina Z Cer
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States.,Leidos, Reston, VA, United States
| | - Jeffrey R Kugelman
- Center for Genomic Studies, United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, United States
| | - Kimberly A Bishop-Lilly
- Genomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD, United States
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, MD, United States
| | - John Waitumbi
- Basic Science Laboratory, US Army Medical Research Directorate-Africa/Kenya Medical Research Institute, Kisumu, Kenya
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
20
|
Magassouba N, Koivogui E, Conde S, Kone M, Koropogui M, Soropogui B, Kekoura I, Hinzmann J, Günther S, Keita S, Duraffour S, Fichet-Calvet E. A Sporadic and Lethal Lassa Fever Case in Forest Guinea, 2019. Viruses 2020; 12:v12101062. [PMID: 32977629 PMCID: PMC7598168 DOI: 10.3390/v12101062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Lassa fever is a rodent-borne disease caused by Lassa virus (LASV). It causes fever, dizziness, vertigo, fatigue, coughing, diarrhea, internal bleeding and facial edema. The disease has been known in Guinea since 1960 but only anectodical acute cases have been reported to date. In January 2019, a 35-year-old man, a wood merchant from Kissidougou, Forest Guinea, presented himself at several health centers with persistent fever, frequent vomiting and joint pain. He was repeatedly treated for severe malaria, and died three weeks later in Mamou regional hospital. Differential diagnosis identified LASV as the cause of death. No secondary cases were reported. The complete LASV genome was obtained using next-generation sequencing. Phylogenetic analysis showed that this strain, namely the Kissidougou strain, belongs to the clade IV circulating in Guinea and Sierra Leone, and is thought to have emerged some 150 years ago. Due to the similarity of symptoms with malaria, Lassa fever is still a disease that is difficult to recognize and that may remain undiagnosed in health centers in Guinea.
Collapse
Affiliation(s)
- N’Faly Magassouba
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Enogo Koivogui
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Sory Conde
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Moussa Kone
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Michel Koropogui
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Barrè Soropogui
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Ifono Kekoura
- Laboratoire des Fièvres Hémorragiques en Guinée, Conakry, Guinea; (N.M.); (M.K.); (B.S.); (I.K.)
| | - Julia Hinzmann
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
| | - Stephan Günther
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
| | - Sakoba Keita
- Agence Nationale de Sécurité Sanitaire, Ministry of Health, Conakry, Guinea; (E.K.); (S.C.); (M.K.); (S.K.)
| | - Sophie Duraffour
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
| | - Elisabeth Fichet-Calvet
- Virology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (J.H.); (S.G.); (S.D.)
- Virology Department, German Center for Infection Research (DZIF), partner site Hamburg–Lübeck–Borstel–Riems, 20359 Hamburg, Germany
- Correspondence: ; Tel.: +49-4042-818-942
| |
Collapse
|
21
|
Abstract
Lassa fever was first described as a clinical entity fifty years ago. The causative agent Lassa virus was isolated from these first known cases. This chapter reviews the key publications on Lassa fever research that appeared in the scientific literature at that time and over the ensuing decades.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70118, USA. .,Zalgen Labs, LLC, 20271 Goldenrod Lane, Suite 2083, Germantown, MD, 20876, USA.
| |
Collapse
|
22
|
Boisen ML, Uyigue E, Aiyepada J, Siddle KJ, Oestereich L, Nelson DKS, Bush DJ, Rowland MM, Heinrich ML, Eromon P, Kayode AT, Odia I, Adomeh DI, Muoebonam EB, Akhilomen P, Okonofua G, Osiemi B, Omoregie O, Airende M, Agbukor J, Ehikhametalor S, Aire CO, Duraffour S, Pahlmann M, Böhm W, Barnes KG, Mehta S, Momoh M, Sandi JD, Goba A, Folarin OA, Ogbaini-Emovan E, Asogun DA, Tobin EA, Akpede GO, Okogbenin SA, Okokhere PO, Grant DS, Schieffelin JS, Sabeti PC, Günther S, Happi CT, Branco LM, Garry RF. Field evaluation of a Pan-Lassa rapid diagnostic test during the 2018 Nigerian Lassa fever outbreak. Sci Rep 2020; 10:8724. [PMID: 32457420 PMCID: PMC7250850 DOI: 10.1038/s41598-020-65736-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever (LF), an often-fatal hemorrhagic disease. LF is endemic in Nigeria, Sierra Leone and other West African countries. Diagnosis of LASV infection is challenged by the genetic diversity of the virus, which is greatest in Nigeria. The ReLASV Pan-Lassa Antigen Rapid Test (Pan-Lassa RDT) is a point-of-care, in vitro diagnostic test that utilizes a mixture of polyclonal antibodies raised against recombinant nucleoproteins of representative strains from the three most prevalent LASV lineages (II, III and IV). We compared the performance of the Pan-LASV RDT to available quantitative PCR (qPCR) assays during the 2018 LF outbreak in Nigeria. For patients with acute LF (RDT positive, IgG/IgM negative) during initial screening, RDT performance was 83.3% sensitivity and 92.8% specificity when compared to composite results of two qPCR assays. 100% of samples that gave Ct values below 22 on both qPCR assays were positive on the Pan-Lassa RDT. There were significantly elevated case fatality rates and elevated liver transaminase levels in subjects whose samples were RDT positive compared to RDT negative.
Collapse
Affiliation(s)
| | - Eghosa Uyigue
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - John Aiyepada
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Katherine J Siddle
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- The Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | | | | | | | | | - Philomena Eromon
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
| | - Adeyemi T Kayode
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Ikponmwosa Odia
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Donatus I Adomeh
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekene B Muoebonam
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Patience Akhilomen
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Grace Okonofua
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Blessing Osiemi
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Omigie Omoregie
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Michael Airende
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Jacqueline Agbukor
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Solomon Ehikhametalor
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Chris Okafi Aire
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sophie Duraffour
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Meike Pahlmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Wiebke Böhm
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Kayla G Barnes
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Samar Mehta
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Division of Infectious Diseases, Boston, MA, USA
| | - Mambu Momoh
- Eastern Polytechnic Institute, Kenema, Sierra Leone
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - John Demby Sandi
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Augustine Goba
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Onikepe A Folarin
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Ephraim Ogbaini-Emovan
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Danny A Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Ekaete A Tobin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - George O Akpede
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Sylvanus A Okogbenin
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
| | - Peter O Okokhere
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
- The Department of Medicine, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria
- The Department of Medicine, Faculty of Clinical Sciences, Ambrose Alli University, Ekpoma, Edo State, Nigeria
| | - Donald S Grant
- Viral Hemorrhagic Fever Program, Kenema Government Hospital, Kenema, Sierra Leone
- Ministry of Health and Sanitation, Freetown, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - John S Schieffelin
- Sections of Infectious Disease, Departments of Pediatrics and Internal Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Pardis C Sabeti
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA, USA
- The Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg, Germany
| | - Christian T Happi
- The African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Osun State, Nigeria.
- Department of Biological Sciences, College of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria.
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | | | - Robert F Garry
- Zalgen Labs, LLC, Germantown, MD, USA.
- Tulane Health Sciences Center, Tulane University, New Orleans, LA, USA.
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA, USA.
| |
Collapse
|
23
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
24
|
Population structure of Lassa Mammarenavirus in West Africa. Viruses 2020; 12:v12040437. [PMID: 32294960 PMCID: PMC7232344 DOI: 10.3390/v12040437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 01/01/2023] Open
Abstract
Lassa mammarenavirus (LASV) is the etiologic agent of Lassa fever. In endemic regions in West Africa, LASV genetic diversity tends to cluster by geographic area. Seven LASV lineages are recognized, but the role of viral genetic determinants on disease presentation in humans is uncertain. We investigated the geographic structure and distribution of LASV in West Africa. We found strong spatial clustering of LASV populations, with two major east–west and north–south diversity gradients. Analysis of ancestry components indicated that known LASV lineages diverged from an ancestral population that most likely circulated in Nigeria, although alternative locations, such as Togo, cannot be excluded. Extant sequences carrying the largest contribution of this ancestral population include the prototype Pinneo strain, the Togo isolates, and a few viruses isolated in Nigeria. The LASV populations that experienced the strongest drift circulate in Mali and the Ivory Coast. By focusing on sequences form a single LASV sublineage (IIg), we identified an ancestry component possibly associated with protection from a fatal disease outcome. Although the same ancestry component tends to associate with lower viral loads in plasma, the small sample size requires that these results are treated with extreme caution.
Collapse
|
25
|
Ibukun FI. Inter-Lineage Variation of Lassa Virus Glycoprotein Epitopes: A Challenge to Lassa Virus Vaccine Development. Viruses 2020; 12:v12040386. [PMID: 32244402 PMCID: PMC7232328 DOI: 10.3390/v12040386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV), which causes considerable morbidity and mortality annually, has a high genetic diversity across West Africa. LASV glycoprotein (GP) expresses this diversity, but most LASV vaccine candidates utilize only the Lineage IV LASV Josiah strain GP antigen as an immunogen and homologous challenge with Lineage IV LASV. In addition to the sequence variation amongst the LASV lineages, these lineages are also distinguished in their presentations. Inter-lineage variations within previously mapped B-cell and T-cell LASV GP epitopes and the breadth of protection in LASV vaccine/challenge studies were examined critically. Multiple alignments of the GP primary sequence of strains from each LASV lineage showed that LASV GP has diverging degrees of amino acid conservation within known epitopes among LASV lineages. Conformational B-cell epitopes spanning different sites in GP subunits were less impacted by LASV diversity. LASV GP diversity should influence the approach used for LASV vaccine design. Expression of LASV GP on viral vectors, especially in its prefusion configuration, has shown potential for protective LASV vaccines that can overcome LASV diversity. Advanced vaccine candidates should demonstrate efficacy against all LASV lineages for evidence of a pan-LASV vaccine.
Collapse
Affiliation(s)
- Francis Ifedayo Ibukun
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| |
Collapse
|
26
|
Sironi M, de la Torre JC. The chameleonic genetics of Lassa virus. THE LANCET. INFECTIOUS DISEASES 2019; 19:1276-1277. [PMID: 31588043 DOI: 10.1016/s1473-3099(19)30528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Manuela Sironi
- Bioinformatics Unit, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Juan C de la Torre
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|