1
|
Maestri S, Scalzo D, Damaggio G, Zobel M, Besusso D, Cattaneo E. Navigating triplet repeats sequencing: concepts, methodological challenges and perspective for Huntington's disease. Nucleic Acids Res 2025; 53:gkae1155. [PMID: 39676657 PMCID: PMC11724279 DOI: 10.1093/nar/gkae1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The accurate characterization of triplet repeats, especially the overrepresented CAG repeats, is increasingly relevant for several reasons. First, germline expansion of CAG repeats above a gene-specific threshold causes multiple neurodegenerative disorders; for instance, Huntington's disease (HD) is triggered by >36 CAG repeats in the huntingtin (HTT) gene. Second, extreme expansions up to 800 CAG repeats have been found in specific cell types affected by the disease. Third, synonymous single nucleotide variants within the CAG repeat stretch influence the age of disease onset. Thus, new sequencing-based protocols that profile both the length and the exact nucleotide sequence of triplet repeats are crucial. Various strategies to enrich the target gene over the background, along with sequencing platforms and bioinformatic pipelines, are under development. This review discusses the concepts, challenges, and methodological opportunities for analyzing triplet repeats, using HD as a case study. Starting with traditional approaches, we will explore how sequencing-based methods have evolved to meet increasing scientific demands. We will also highlight experimental and bioinformatic challenges, aiming to provide a guide for accurate triplet repeat characterization for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Simone Maestri
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Davide Scalzo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Gianluca Damaggio
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Martina Zobel
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Street Giovanni Celoria, 26, 20133, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Street Francesco Sforza, 35, 20122, Milan, Italy
| |
Collapse
|
2
|
Yu L, Ding H, Liu M, Liu L, Zhang Q, Lu J, Guo F, Zhang Y. A novel 1p13.2 deletion associates with neurodevelopmental disorders in a three-generation pedigree. BMC Med Genomics 2023; 16:114. [PMID: 37221554 DOI: 10.1186/s12920-023-01534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND A multitude of studies have highlighted that copy number variants (CNVs) are associated with neurodevelopmental disorders (NDDs) characterized by a wide range of clinical characteristics. Benefiting from CNV calling from WES data, WES has emerged as a more powerful and cost-effective molecular diagnostic tool, which has been widely used for the diagnosis of genetic diseases, especially NDDs. To our knowledge, isolated deletions on chromosome 1p13.2 are rare. To date, only a few patients were reported with 1p13.2 deletions and most of them were sporadic. Besides, the correlation between 1p13.2 deletions and NDDs remained unclear. CASE PRESENTATION Here, we first reported five members in a three-generation Chinese family who presented with NDDs and carried a novel 1.41 Mb heterozygous 1p13.2 deletion with precise breakpoints. The diagnostic deletion contained 12 protein-coding genes and was observed to segregate with NDDs among the members of our reported family. Whether those genes contribute to the patient's phenotypes is still inconclusive. CONCLUSIONS We hypothesized that the NDD phenotype of our patients was caused by the diagnostic 1p13.2 deletion. However, further in-depth functional experiments are still needed to establish a 1p13.2 deletion-NDDs relationship. Our study might supplement the spectrum of 1p13.2 deletion-NDDs.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Min Liu
- Prenatal diagnostic center, Huizhou No2 Maternal and Children's Healthcare Hospital, Huizhou, China
| | - Ling Liu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Qi Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Jian Lu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Fangfang Guo
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Ranjan R, Jha S, Prajjwal P, Chaudhary A, Dudeja P, Vora N, Mateen MA, Yousuf MA, Chaudhary B. Neurological, Psychiatric, and Multisystemic Involvement of Fragile X Syndrome Along With Its Pathophysiology, Methods of Screening, and Current Treatment Modalities. Cureus 2023; 15:e35505. [PMID: 37007359 PMCID: PMC10050793 DOI: 10.7759/cureus.35505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2023] [Indexed: 03/01/2023] Open
Abstract
Fragile X syndrome (FXS) is a hereditary disease that predominantly leads to intellectual disability (ID) in boys. It is the second prominent cause of ID, which manifests as a result of the atypical development of the cytosine-guanine-guanine (CGG) region. This irregular extension of the CGG region gives rise to methylation and silencing of the fragile X mental retardation 1 (FMR1) gene, causing a loss of the fragile X mental retardation 1 protein (FMRP). This reduction or loss of FMRP is the main cause of ID. It has a multisystemic involvement showing neuropsychiatric features such as ID, speech and language delay, autism spectrum disorder, sensory hyperarousal, social anxiety, abnormal eye contact, shyness, and aggressive behaviour. It is also known to cause musculoskeletal symptoms, ocular symptoms, cardiac abnormalities, and gastrointestinal symptoms. The management is challenging, and there is no known cure for the disease; hence an early diagnosis of the condition is needed through prenatal screening offered to couples with familial history of ID before conception. The management rests on non-pharmacological modalities, including applied behaviour analysis, physical therapy, occupational therapy, speech-language therapy, and pharmacologic management through symptomatic treatment of comorbid behaviours and psychiatric problems and some forms of targeted therapy.
Collapse
|
4
|
Baker EK, Arpone M, Bui M, Kraan CM, Ling L, Francis D, Hunter MF, Rogers C, Field MJ, Santa María L, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Tissue mosaicism, FMR1 expression and intellectual functioning in males with fragile X syndrome. Am J Med Genet A 2023; 191:357-369. [PMID: 36349505 PMCID: PMC10952635 DOI: 10.1002/ajmg.a.63027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/13/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Fragile X syndrome (FXS) is caused by hypermethylation of the FMR1 promoter due to the full mutation expansion (full mutation [FM]: CGG ≥ 200 repeats) and silencing of FMR1. Assessment of mosaicism for active-unmethylated alleles has prognostic utility. This study examined relationships between FMR1 methylation in different tissues with FMR1 messenger ribonucleic acid (mRNA) and intellectual functioning in 87 males with FXS (1.89-43.17 years of age). Methylation sensitive Southern blot (mSB) and Methylation Specific-Quantitative Melt Aanalysis (MS-QMA) were used to examine FMR1 methylation. FMR1 mRNA levels in blood showed strong relationships with FMR1 methylation assessed using MS-QMA in blood (n = 68; R2 = 0.597; p = 1.4 × 10-10 ) and buccal epithelial cells (BEC) (n = 62; R2 = 0.24; p = 0.003), with these measures also showing relationships with intellectual functioning scores (p < 0.01). However, these relationships were not as strong for mSB, with ~40% of males with only FM alleles that were 100% methylated and non-mosaic by mSB, showing methylation mosaicism by MS-QMA. This was confirmed through presence of detectable levels of FMR1 mRNA in blood. In summary, FMR1 methylation levels in blood and BEC examined by MS-QMA were significantly associated with FMR1 mRNA levels and intellectual functioning in males with FXS. These relationships were not as strong for mSB, which underestimated prevalence of mosaicism.
Collapse
Affiliation(s)
- Emma K. Baker
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychology and Public HealthLa Trobe UniversityBundooraVictoriaAustralia
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Brain and Mind, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Claudine M. Kraan
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research InstituteThe Royal Children's HospitalMelbourneVictoriaAustralia
| | - Mathew F. Hunter
- Monash GeneticsMonash HealthClaytonVictoriaAustralia
- Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Carolyn Rogers
- Genetics of Learning Disability ServiceHunter GeneticsWaratahNew South WalesAustralia
| | - Michael J. Field
- Genetics of Learning Disability ServiceHunter GeneticsWaratahNew South WalesAustralia
| | - Lorena Santa María
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Víctor Faundes
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Bianca Curotto
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Paulina Morales
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Cesar Trigo
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | - Isabel Salas
- Molecular and Cytogenetics LaboratoryINTA University of ChileSantiagoChile
| | | | - David J. Amor
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Neurodisability and Rehabilitation, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - David E. Godler
- Diagnosis and Development, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
5
|
Grosso V, Marcolungo L, Maestri S, Alfano M, Lavezzari D, Iadarola B, Salviati A, Mariotti B, Botta A, D’Apice MR, Novelli G, Delledonne M, Rossato M. Characterization of FMR1 Repeat Expansion and Intragenic Variants by Indirect Sequence Capture. Front Genet 2021; 12:743230. [PMID: 34646309 PMCID: PMC8504923 DOI: 10.3389/fgene.2021.743230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional methods for the analysis of repeat expansions, which underlie genetic disorders, such as fragile X syndrome (FXS), lack single-nucleotide resolution in repeat analysis and the ability to characterize causative variants outside the repeat array. These drawbacks can be overcome by long-read and short-read sequencing, respectively. However, the routine application of next-generation sequencing in the clinic requires target enrichment, and none of the available methods allows parallel analysis of long-DNA fragments using both sequencing technologies. In this study, we investigated the use of indirect sequence capture (Xdrop technology) coupled to Nanopore and Illumina sequencing to characterize FMR1, the gene responsible of FXS. We achieved the efficient enrichment (> 200×) of large target DNA fragments (~60-80 kbp) encompassing the entire FMR1 gene. The analysis of Xdrop-enriched samples by Nanopore long-read sequencing allowed the complete characterization of repeat lengths in samples with normal, pre-mutation, and full mutation status (> 1 kbp), and correctly identified repeat interruptions relevant for disease prognosis and transmission. Single-nucleotide variants (SNVs) and small insertions/deletions (indels) could be detected in the same samples by Illumina short-read sequencing, completing the mutational testing through the identification of pathogenic variants within the FMR1 gene, when no typical CGG repeat expansion is detected. The study successfully demonstrated the parallel analysis of repeat expansions and SNVs/indels in the FMR1 gene at single-nucleotide resolution by combining Xdrop enrichment with two next-generation sequencing approaches. With the appropriate optimization necessary for the clinical settings, the system could facilitate both the study of genotype-phenotype correlation in FXS and enable a more efficient diagnosis and genetic counseling for patients and their relatives.
Collapse
Affiliation(s)
- Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Denise Lavezzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Barbara Iadarola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Salviati
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Barbara Mariotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
- IRCCS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| |
Collapse
|
6
|
Berry-Kravis E, Zhou L, Jackson J, Tassone F. Diagnostic profile of the AmplideX Fragile X Dx and Carrier Screen Kit for diagnosis and screening of fragile X syndrome and other FMR1-related disorders. Expert Rev Mol Diagn 2021; 21:255-267. [PMID: 33666525 DOI: 10.1080/14737159.2021.1899812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: In 2009, a novel, CGG repeat primed FMR1 PCR assay was designed with primers flanking the triplet repeat region, as well as a third chimeric primer complementary to the (CGG)n repeat, that was capable of amplifying alleles throughout the repeat range. This assay for the first time allowed consistent detection of large full mutation alleles with PCR, resolution of heterozygosity in females and mapping of AGG interspersions.Areas Covered: The AmplideX Fragile X Dx and Carrier Screen Kit (Asuragen, Inc.) represents a refined assay that underwent validation with sensitivity analyses for FDA approval. Single-site precision, analytical sensitivity and specificity, limit of detection and diagnostic performance were assessed in comparison to reference methods at three independent sites. Single-site precision across all genotype categories showed 100% agreement at 20 ng input across multiple operators, days, instruments and kit lots. Compared to Southern Blot analysis, the overall percent agreement was over 98% for all expanded alleles.Expert Opinion: Limitations include no methylation assessment and hard to see full mutation peaks in some mosaic samples, but overall the assay is considered a highly accurate and time-efficient assay for FMR1 allele size determination.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Jonathan Jackson
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
7
|
Pešić M, Dragašević Mišković N, Marjanović A, Dobričić V, Maksimović N, Svetel M, Perović D, Novaković I, Cirković S, Stanković I, Kostić V. Premutations in the FMR1 gene in Serbian patients with undetermined tremor, ataxia and parkinsonism. Neurol Res 2021; 43:321-326. [PMID: 33403926 DOI: 10.1080/01616412.2020.1863697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction: Although one of the most common monogenic late-onset neurodegenerative disorders, fragile-X-associated tremor/ataxia syndrome (FXTAS) is still underdiagnosed. The aim of the present study was to estimate the frequency of premutation carriers in patients with unexplained degenerative ataxias, action tremor or parkinsonism, and action tremor with or without associated cognitive impairment.Methods: The study comprised 100 consecutive patients with the disease onset >49 years who had any form of unexplained action tremor, cerebellar ataxia, followed by parkinsonism with or without incipient dementia, and in whom the FMR1 repeats size was determined.Results: Premutation in the FMR1 was identified in two patients (2%): the first, male patient had 83 CGG repeats and the second, female patient had 32 and 58 CGG repeats.Discussion/Conclusion: FXTAS was relatively rare among older patients with unexplained ataxia and action tremor, with or without parkinsonism and/or cognitive impairment. Tremor and ataxia were major clinical features in our two patients, although parkinsonism, autonomic dysfunction and psychiatric problems might be an important part of the spectrum. Probable FXTAS should be considered in the differential diagnosis of patients with unexplained action tremor and ataxia, and undetermined parkinsonism, especially when there was a positive family history for involuntary movement disorders in other family members and/or autism spectrum disorders in younger cousins.
Collapse
Affiliation(s)
- Milica Pešić
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Dragašević Mišković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Ana Marjanović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Valerija Dobričić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Nela Maksimović
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Svetel
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Dijana Perović
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novaković
- Faculty of Medicine, Institute of Human Genetics, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Cirković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Mother and Child Health Care Institute of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Iva Stanković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Kostić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Faculty of Medicine, Neurology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
8
|
Ramos C, Ocampos M, Barbato IT, Graça Bicalho MD, Nisihara R. Molecular analysis of FMR1 gene in a population in Southern Brazil: Comparison of four methods. Pract Lab Med 2020; 21:e00162. [PMID: 32426440 PMCID: PMC7225725 DOI: 10.1016/j.plabm.2020.e00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 12/01/2022] Open
Abstract
Objectives Fragile X syndrome (FXS) is caused by expansion of the number of cytosine-guanine-guanine (CGG) repeats in the regulatory region of the gene fragile X mental retardation 1 (FMR1). The molecular diagnoses of FXS can be performed using two tests based on two different techniques, namely polymerase chain reaction (PCR) and Southern blotting (SB). However, both of these techniques have limitations. The purpose of this study was to evaluate the performance of the commercial FragilEase™ PCR kit for FXS diagnosis comparing to other laboratory methods. Design and methods: This study had a retrospective design. We analyzed the performance of the FragilEase™ PCR kit using 90 DNA samples from patients with clinical suspicion of FXS or a family history of the syndrome using capillary electrophoresis and compared with the results obtained for the same samples using PCR, SB, and AmplideX FMR1 PCR. Results FragilEase™ PCR kit displayed high concordance with the results obtained using PCR, SB, and AmplideX FMR1 PCR regarding the detection of normal, intermediate/gray zone, premutation, and full mutation alleles, as well as female homozygosity and mosaicism. The replicate sizes found using the FragilEase™ PCR assay varied on average by two CGG repeats. Conclusion FragilEase™ PCR, as well as other commercially available kits, efficiently detect FMR1 mutations and simplify the workflow in laboratories that performing FXS diagnoses. Southern Blot is the gold standard for FXS diagnosis, however, is a time-consuming method and requires a large amount of DNA. PCR determines the number of CGG repeats, however, it does not differentiate homozygous alleles in women. Commercial PCR-based kits aimed to simplify the workflow in FXS diagnosis with high accuracy.
Collapse
Affiliation(s)
- Cinthia Ramos
- Post Graduate Program in Gynecology and Obstetrics, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Maristela Ocampos
- Neurogene Laboratory of Human Citogenetics and Molecular Genetics, Florianópolis, Brazil
| | - Ingrid Tremel Barbato
- Neurogene Laboratory of Human Citogenetics and Molecular Genetics, Florianópolis, Brazil
| | - Maria da Graça Bicalho
- Post Graduate Program in Gynecology and Obstetrics, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renato Nisihara
- Post Graduate Program in Gynecology and Obstetrics, Universidade Federal do Paraná, Curitiba, Brazil
- Department of Medicine, Positivo University, Curitiba, Paraná, Brazil
- Corresponding author.Department of Medicine, Positivo University, R. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, 81280-330, Brazil.
| |
Collapse
|
9
|
FMR1 mRNA from full mutation alleles is associated with ABC-C FX scores in males with fragile X syndrome. Sci Rep 2020; 10:11701. [PMID: 32678152 PMCID: PMC7367290 DOI: 10.1038/s41598-020-68465-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a hypermethylated full mutation (FM) expansion with ≥ 200 CGG repeats, and a decrease in FMR1 mRNA and its protein. However, incomplete silencing from FM alleles has been associated with more severe autism features in FXS males. This study compared scores on the Aberrant Behavior Checklist-Community-FXS version (ABC-CFX) in 62 males affected with FXS (3 to 32 years) stratified based on presence or absence of mosaicism and/or FMR1 mRNA silencing. Associations between ABC-CFX subscales and FMR1 mRNA levels, assessed using real-time PCR relative standard curve method, were also examined. The FXS group mosaic for premutation (PM: 55–199 CGGs) and FM alleles had lower irritability (p = 0.014) and inappropriate speech (p < 0.001) scores compared to males with only FM alleles and complete loss of FMR1 mRNA. The PM/FM mosaic group also showed lower inappropriate speech scores compared to the incomplete silencing (p = 0.002) group. Increased FMR1 mRNA levels were associated with greater irritability (p < 0.001), and lower health-related quality of life scores (p = 0.004), but only in the incomplete silencing FM-only group. The findings suggest that stratification based on CGG sizing and FMR1 mRNA levels may be warranted in future research and clinical trials utilising ABC-CFX subscales as outcome measures.
Collapse
|
10
|
Rodriguez CM, Wright SE, Kearse MG, Haenfler JM, Flores BN, Liu Y, Ifrim MF, Glineburg MR, Krans A, Jafar-Nejad P, Sutton MA, Bassell GJ, Parent JM, Rigo F, Barmada SJ, Todd PK. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nat Neurosci 2020; 23:386-397. [PMID: 32066985 PMCID: PMC7668390 DOI: 10.1038/s41593-020-0590-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5'-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.
Collapse
Affiliation(s)
- Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Michael G Kearse
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, Ohio State University, Columbus, OH, USA
| | - Jill M Haenfler
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Brittany N Flores
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Yu Liu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Marius F Ifrim
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mary R Glineburg
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | | | - Michael A Sutton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Baker EK, Arpone M, Vera SA, Bretherton L, Ure A, Kraan CM, Bui M, Ling L, Francis D, Hunter MF, Elliott J, Rogers C, Field MJ, Cohen J, Maria LS, Faundes V, Curotto B, Morales P, Trigo C, Salas I, Alliende AM, Amor DJ, Godler DE. Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. J Neurodev Disord 2019; 11:41. [PMID: 31878865 PMCID: PMC6933737 DOI: 10.1186/s11689-019-9288-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Background Fragile X syndrome (FXS) is a common cause of intellectual disability and autism spectrum disorder (ASD) usually associated with a CGG expansion, termed full mutation (FM: CGG ≥ 200), increased DNA methylation of the FMR1 promoter and silencing of the gene. Mosaicism for presence of cells with either methylated FM or smaller unmethylated pre-mutation (PM: CGG 55–199) alleles in the same individual have been associated with better cognitive functioning. This study compares age- and sex-matched FM-only and PM/FM mosaic individuals on intellectual functioning, ASD features and maladaptive behaviours. Methods This study comprised a large international cohort of 126 male and female participants with FXS (aged 1.15 to 43.17 years) separated into FM-only and PM/FM mosaic groups (90 males, 77.8% FM-only; 36 females, 77.8% FM-only). Intellectual functioning was assessed with age appropriate developmental or intelligence tests. The Autism Diagnostic Observation Schedule-2nd Edition was used to examine ASD features while the Aberrant Behavior Checklist-Community assessed maladaptive behaviours. Results Comparing males and females (FM-only + PM/FM mosaic), males had poorer intellectual functioning on all domains (p < 0.0001). Although females had less ASD features and less parent-reported maladaptive behaviours, these differences were no longer significant after controlling for intellectual functioning. Participants with PM/FM mosaicism, regardless of sex, presented with better intellectual functioning and less maladaptive behaviours compared with their age- and sex-matched FM-only counterparts (p < 0.05). ASD features were similar between FM-only and PM/FM mosaics within each sex, after controlling for overall intellectual functioning. Conclusions Males with FXS had significantly lower intellectual functioning than females with FXS. However, there were no significant differences in ASD features and maladaptive behaviours, after controlling for intellectual functioning, independent of the presence or absence of mosaicism. This suggests that interventions that primarily target cognitive abilities may in turn reduce the severity of maladaptive behaviours including ASD features in FXS.
Collapse
Affiliation(s)
- Emma K Baker
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia. .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. .,School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia.
| | - Marta Arpone
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Solange Aliaga Vera
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Lesley Bretherton
- Brain and Mind, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Alexandra Ure
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Pediatrics, Monash University, Clayton, VIC, Australia
| | - Claudine M Kraan
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, VIC, Australia
| | - Ling Ling
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David Francis
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Department of Pediatrics, Monash University, Clayton, VIC, Australia.,Monash Genetics, Monash Health, Melbourne, VIC, Australia
| | - Justine Elliott
- Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Carolyn Rogers
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Michael J Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Jonathan Cohen
- Fragile X Alliance Inc, Centre for Developmental Disability Health Victoria, Monash University, North Caulfield, Clayton, VIC, Australia
| | - Lorena Santa Maria
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Victor Faundes
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Bianca Curotto
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Paulina Morales
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Cesar Trigo
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Isabel Salas
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Angelica M Alliende
- Laboratory of Molecular Cytogenetics, Department of Genetics and Metabolic Diseases, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - David J Amor
- Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David E Godler
- Diagnosis and Development, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Pešović J, Perić S, Brkušanin M, Brajušković G, Rakočević-Stojanović V, Savić-Pavićević D. Repeat Interruptions Modify Age at Onset in Myotonic Dystrophy Type 1 by Stabilizing DMPK Expansions in Somatic Cells. Front Genet 2018; 9:601. [PMID: 30546383 PMCID: PMC6278776 DOI: 10.3389/fgene.2018.00601] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
CTG expansions in DMPK gene, causing myotonic dystrophy type 1 (DM1), are characterized by pronounced somatic instability. A large proportion of variability of somatic instability is explained by expansion size and patient's age at sampling, while individual-specific differences are attributed to additional factors. The age at onset is extremely variable in DM1, and inversely correlates with the expansion size and individual-specific differences in somatic instability. Three to five percent of DM1 patients carry repeat interruptions and some appear with later age at onset than expected for corresponding expansion size. Herein, we characterized somatic instability of interrupted DMPK expansions and the effect on age at onset in our previously described patients. Repeat-primed PCR showed stable structures of different types and patterns of repeat interruptions in blood cells over time and buccal cells. Single-molecule small-pool PCR quantification of somatic instability and mathematical modeling showed that interrupted expansions were characterized by lower level of somatic instability accompanied by slower progression over time. Mathematical modeling demonstrated that individual-specific differences in somatic instability had greater influence on age at onset in patients with interrupted expansions. Therefore, repeat interruptions have clinical importance for disease course in DM1 patients due to stabilizing effect on DMPK expansions in somatic cells.
Collapse
Affiliation(s)
- Jovan Pešović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stojan Perić
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakočević-Stojanović
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
14
|
Fragkos M, Bili H, Ntelios D, Tzimagiorgis G, Tarlatzis BC. Are expanded alleles of the FMR1 gene related to unexplained recurrent miscarriages? Hippokratia 2018; 22:132-136. [PMID: 31641334 PMCID: PMC6801122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND In women with recurrent miscarriages, up to 50 % of those cases remain unexplained. In this study, we evaluated the impact of Cytosine/Guanine/Guanine (CGG) trinucleotide expansions of the fragile-X mental retardation 1 (FMR1) gene in women with unexplained recurrent miscarriages. METHODS This is a prospective case-control pilot study involving 49 women with unexplained recurrent miscarriages and 49 age-matched controls with documented fertility. The case group consisted of women with a history of two or more consecutive miscarriages, in whom no known factor could be identified. The maximum age of recruitment was 40 years. We obtained blood samples that were checked, using polymerase chain reaction with electrophoresis, for the presence of expanded alleles of the FMR1 gene. We further evaluated using sequencing analysis, those women marked as positive. We set the limit at more than 40 repeats. RESULTS The repeat sizes of CGG expansion in the FMR1 gene differ significantly in the two population groups (p =0.027). We found four women in the miscarriage group and one in the control group positive for carrying premutation alleles (Odds ratio: 4.267, confidence interval: 0.459-39.629). All the positive cases involved intermediate zone carriers. We found no association between the number of abortions each woman had, and her respective CGG repeat number (p =0.255). CONCLUSIONS Many couples are desperately looking for the cause of their recurrent miscarriage suffering. The CGG expanded allele of the FMR1 gene is possibly to be blamed in some of these cases. More studies are needed to support the results of this prototype study. HIPPOKRATIA 2018, 22(3): 132-136.
Collapse
Affiliation(s)
- M Fragkos
- 1 Department of Obstetrics and Gynecology, Papageorgiou University Hospital, Thessaloniki, Greece
| | - H Bili
- 1 Department of Obstetrics and Gynecology, Papageorgiou University Hospital, Thessaloniki, Greece
| | - D Ntelios
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - B C Tarlatzis
- 1 Department of Obstetrics and Gynecology, Papageorgiou University Hospital, Thessaloniki, Greece
| |
Collapse
|
15
|
Cagnoli C, Brussino A, Mancini C, Ferrone M, Orsi L, Salmin P, Pappi P, Giorgio E, Pozzi E, Cavalieri S, Di Gregorio E, Ferrero M, Filla A, De Michele G, Gellera C, Mariotti C, Nethisinghe S, Giunti P, Stevanin G, Brusco A. Spinocerebellar Ataxia Tethering PCR: A Rapid Genetic Test for the Diagnosis of Spinocerebellar Ataxia Types 1, 2, 3, 6, and 7 by PCR and Capillary Electrophoresis. J Mol Diagn 2018; 20:289-297. [PMID: 29462666 DOI: 10.1016/j.jmoldx.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Spinocerebellar ataxia (SCA) types 1, 2, 3, 6, and 7, associated with a (CAG)n repeat expansion in coding sequences, are the most prevalent autosomal dominant ataxias worldwide (approximately 60% of the cases). In addition, the phenotype of SCA2 expansions has been now extended to Parkinson disease and amyotrophic lateral sclerosis. Their diagnosis is currently based on a PCR to identify small expanded alleles, followed by a second-level test whenever a false normal homozygous or a CAT interruption in SCA1 needs to be verified. Next-generation sequencing still does not allow efficient detection of these repeats. Here, we show the efficacy of a novel, rapid, and cost-effective method to identify and size pathogenic expansions in SCA1, 2, 3, 6, and 7 and recognize large alleles or interruptions without a second-level test. Twenty-five healthy controls and 33 expansion carriers were analyzed: alleles migrated consistently in different PCRs and capillary runs, and homozygous individuals were always distinguishable from heterozygous carriers of both common and large (>100 repeats) pathogenic CAG expansions. Repeat number could be calculated counting the number of peaks, except for the largest SCA2 and SCA7 alleles. Interruptions in SCA1 were always visible. Overall, our method allows a simpler, cost-effective, and sensibly faster SCA diagnostic protocol compared with the standard technique and to the still unadapted next-generation sequencing.
Collapse
Affiliation(s)
- Claudia Cagnoli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Cecilia Mancini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marina Ferrone
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Laura Orsi
- Department of Laboratory Medicine, and the Neurologic Division I, Department of Neuroscience and Mental Health, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Paola Salmin
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Patrizia Pappi
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Marta Ferrero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Caterina Mariotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Carlo Besta Neurological Institute, Milan, Italy
| | - Suran Nethisinghe
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Giovanni Stevanin
- INSERM, U 1127, Institut du Cerveau et de la Moelle epinière, Paris, France; Centre National de la Recherche Scientifique UMR 7225, Paris, France; UMRS 1127, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités, Paris, France; Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France; Centre de Référence de Neurogénétique, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy.
| |
Collapse
|
16
|
Wang XH, Song XH, Wang YL, Diao XH, Li T, Li QC, Zhang XH, Deng XH. Expanded alleles of the FMR1 gene are related to unexplained recurrent miscarriages. Biosci Rep 2017; 37:BSR20170856. [PMID: 29054962 PMCID: PMC5700269 DOI: 10.1042/bsr20170856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/09/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
Up to 50% of recurrent miscarriage cases in women occur without an underlying etiology. In the current prospective case-control study, we determined the impact of CGG trinucleotide expansions of the fragile-X mental retardation 1 (FMR1) gene in 49 women with unexplained recurrent miscarriages. Case group consisted of women with two or more unexplained consecutive miscarriages. Blood samples were obtained and checked for the presence of expanded alleles of the FMR1 gene using PCR. Patients harboring the expanded allele, with a threshold set to 40 repeats, were further evaluated by sequencing. The number of abortions each woman had, was not associated with her respective CGG repeat number (P=0.255). The repeat sizes of CGG expansion in the FMR1 gene were significantly different in the two population groups (P=0.027). All the positive cases involved intermediate zone carriers. Hence, the CGG expanded allele of the FMR1 gene might be associated with unexplained multiple miscarriages; whether such an association is coincidental or causal can be confirmed by future studies using a larger patient cohort.
Collapse
Affiliation(s)
- Xin-hua Wang
- Department of Reproductive Medical Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xiao-hua Song
- Department of Obstetrics and Gynecology, Binzhou People’s Hospital, Binzhou, Shandong 256610, China
| | - Yan-lin Wang
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xing-hua Diao
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Tong Li
- Xinshijie Zhongxing Eye Hospital, Shanghai 200050, China
| | - Qing-chun Li
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xiang-hui Zhang
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xiao-hui Deng
- Department of Reproductive Medical Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
17
|
Pešović J, Perić S, Brkušanin M, Brajušković G, Rakočević-Stojanović V, Savić-Pavićević D. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics 2017; 18:207-218. [DOI: 10.1007/s10048-017-0523-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
|
18
|
Hayward BE, Kumari D, Usdin K. Recent advances in assays for the fragile X-related disorders. Hum Genet 2017; 136:1313-1327. [PMID: 28866801 DOI: 10.1007/s00439-017-1840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
Abstract
The fragile X-related disorders are a group of three clinical conditions resulting from the instability of a CGG-repeat tract at the 5' end of the FMR1 transcript. Fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI) are disorders seen in carriers of FMR1 alleles with 55-200 repeats. Female carriers of these premutation (PM) alleles are also at risk of having a child who has an FMR1 allele with >200 repeats. Most of these full mutation (FM) alleles are epigenetically silenced resulting in a deficit of the FMR1 gene product, FMRP. This results in fragile X Syndrome (FXS), the most common heritable cause of intellectual disability and autism. The diagnosis and study of these disorders is challenging, in part because the detection of alleles with large repeat numbers has, until recently, been either time-consuming or unreliable. This problem is compounded by the mosaicism for repeat length and/or DNA methylation that is frequently seen in PM and FM carriers. Furthermore, since AGG interruptions in the repeat tract affect the risk that a FM allele will be maternally transmitted, the ability to accurately detect these interruptions in female PM carriers is an additional challenge that must be met. This review will discuss some of the pros and cons of some recently described assays for these disorders, including those that detect FMRP levels directly, as well as emerging technologies that promise to improve the diagnosis of these conditions and to be useful in both basic and translational research settings.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, Building 8, Room 2A19, National Institutes of Health, 8 Center Drive MSC 0830, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Bobokova TS, Lemskaya NA, Kolesnikova IS, Yudkin DV. Method for the molecular cytogenetic visualization of fragile site FRAXA. Mol Biol 2017. [DOI: 10.1134/s0026893317040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña M, Alliende M. Clinical, molecular, and pharmacological aspects of FMR1 -related disorders. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2014.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S. Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 2017; 43:39. [PMID: 28420439 PMCID: PMC5395755 DOI: 10.1186/s13052-017-0355-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background Fragile X Syndrome (FXS) is the second cause of intellectual disability after Down syndrome and the most prevalent cause of intellectual disability in males, affecting 1:5000–7000 men and 1:4000–6000 women. It is caused by an alteration of the FMR1 gene, which maps at the Xq27.3 band: more than 99% of individuals have a CGG expansion (>200 triplets) in the 5′ UTR of the gene, and FMR1 mutations and duplication/deletion are responsible for the remaining (<1%) molecular diagnoses of FXS. The aim of this review was to gather the current clinical and molecular knowledge about FXS to provide clinicians with a tool to guide the initial assessment and follow-up of FXS and to offer to laboratory workers and researchers an update about the current diagnostic procedures. Discussion FXS is a well-known condition; however, most of the studies thus far have focused on neuropsychiatric features. Unfortunately, some of the available studies have limitations, such as the paucity of patients enrolled or bias due to the collection of the data in a single-country population, which may be not representative of the average global FXS population. In recent years, insight into the adult presentation of the disease has progressively increased. Pharmacological treatment of FXS is essentially symptom based, but the growing understanding of the molecular and biological mechanisms of the disease are paving the way to targeted therapy, which may reverse the effects of FMRP deficiency and be a real cure for the disease itself, not just its symptoms. Conclusions The clinical spectrum of FXS is wide, presenting not only as an isolated intellectual disability but as a multi-systemic condition, involving predominantly the central nervous system but potentially affecting any apparatus. Given the relative high frequency of the condition and its complex clinical management, FXS appears to have an important economic and social burden.
Collapse
Affiliation(s)
- Claudia Ciaccio
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Laura Fontana
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Silvia Tabano
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, Loc. S. Andrea delle Fratte, 06132, Perugia, Italy.
| |
Collapse
|
22
|
Macpherson JN, Murray A. Development of Genetic Testing for Fragile X Syndrome and Associated Disorders, and Estimates of the Prevalence of FMR1 Expansion Mutations. Genes (Basel) 2016; 7:genes7120110. [PMID: 27916885 PMCID: PMC5192486 DOI: 10.3390/genes7120110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022] Open
Abstract
The identification of a trinucleotide (CGG) expansion as the chief mechanism of mutation in Fragile X syndrome in 1991 heralded a new chapter in molecular diagnostic genetics and generated a new perspective on mutational mechanisms in human genetic disease, which rapidly became a central paradigm (“dynamic mutation”) as more and more of the common hereditary neurodevelopmental disorders were ascribed to this novel class of mutation. The progressive expansion of a CGG repeat in the FMR1 gene from “premutation” to “full mutation” provided an explanation for the “Sherman paradox,” just as similar expansion mechanisms in other genes explained the phenomenon of “anticipation” in their pathogenesis. Later, FMR1 premutations were unexpectedly found associated with two other distinct phenotypes: primary ovarian insufficiency and tremor-ataxia syndrome. This review will provide a historical perspective on procedures for testing and reporting of Fragile X syndrome and associated disorders, and the population genetics of FMR1 expansions, including estimates of prevalence and the influence of AGG interspersions on the rate and probability of expansion.
Collapse
Affiliation(s)
- James N Macpherson
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury District Hospital, Salisbury SP2 8BJ, UK.
| | - Anna Murray
- Medical School, University of Exeter, RILD Level 3, Royal Devon & Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
23
|
Molecular Correlates and Recent Advancements in the Diagnosis and Screening of FMR1-Related Disorders. Genes (Basel) 2016; 7:genes7100087. [PMID: 27754417 PMCID: PMC5083926 DOI: 10.3390/genes7100087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability and autism. Molecular diagnostic testing of FXS and related disorders (fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS)) relies on a combination of polymerase chain reaction (PCR) and Southern blot (SB) for the fragile X mental retardation 1 (FMR1) CGG-repeat expansion and methylation analyses. Recent advancements in PCR-based technologies have enabled the characterization of the complete spectrum of CGG-repeat mutation, with or without methylation assessment, and, as a result, have reduced our reliance on the labor- and time-intensive SB, which is the gold standard FXS diagnostic test. The newer and more robust triplet-primed PCR or TP-PCR assays allow the mapping of AGG interruptions and enable the predictive analysis of the risks of unstable CGG expansion during mother-to-child transmission. In this review, we have summarized the correlation between several molecular elements, including CGG-repeat size, methylation, mosaicism and skewed X-chromosome inactivation, and the extent of clinical involvement in patients with FMR1-related disorders, and reviewed key developments in PCR-based methodologies for the molecular diagnosis of FXS, FXTAS and FXPOI, and large-scale (CGG)n expansion screening in newborns, women of reproductive age and high-risk populations.
Collapse
|
24
|
Dean DD, Muthuswamy S, Agarwal S. Fragile X syndrome: Current insight. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
A modified MS-PCR approach to diagnose patients with Prader-Willi and Angelman syndrome. Mol Biol Rep 2016; 43:1221-1225. [PMID: 27535666 DOI: 10.1007/s11033-016-4055-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/08/2016] [Indexed: 02/08/2023]
Abstract
Prader-Willi (PWS) and Angelman (AS) syndromes are clinically distinct neurodevelopmental genetic diseases with multiple phenotypic manifestations. They are one of the most common genetic syndromes caused by non-Mendelian inheritance in the form of genomic imprinting, and can be attributable to the loss of gene expression due to imprinting within the chromosomal region 15q11-q13. Clinical diagnosis of PWS and AS is challenging, and the use of molecular and cytomolecular studies is recommended to help in determining the diagnosis of these conditions. The methylation analysis is a sensible approach; however there are several techniques for this purpose, such as the methylation-sensitive polymerase chain reaction (MS-PCR). This study aims to optimize the MS-PCR assay for the diagnosis of potential PWS and AS patients using DNA modified by sodium bisulfite. We used the MS-PCR technique of PCR described by Kosaki et al. (1997) adapted with betaine. All different concentrations of betaine used to amplify the methylated and unmethylated chromosomal region 15q11-q13 on the gene SNRPN showed amplification results, which increased proportionally to the concentration of betaine. The methylation analysis is a technically robust and reproducible screening method for PWS and AS. The MS-PCR assures a faster, cheaper and more efficient method for the primary diagnosis of the SNRPN gene in cases with PWS and AS, and may detect all of the three associated genetic abnormalities: deletion, uniparental disomy or imprinting errors.
Collapse
|
26
|
FMR1 gene mutations in patients with fragile X syndrome and obligate carriers: 30 years of experience in Chile. Genet Res (Camb) 2016; 98:e11. [PMID: 27350105 DOI: 10.1017/s0016672316000082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and co-morbid autism. It is caused by an amplification of the CGG repeat (>200), which is known as the full mutation, within the 5'UTR of the FMR1 gene. Expansions between 55-200 CGG repeats are termed premutation and are associated with a greater risk for fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency. Intermediate alleles, also called the grey zone, include approximately 45-54 repeats and are considered borderline. Individuals with less than 45 repeats have a normal FMR1 gene. We report the occurrence of CGG expansions of the FMR1 gene in Chile among patients with ID and families with a known history of FXS. Here, we present a retrospective review conducted on 2321 cases (2202 probands and 119 relatives) referred for FXS diagnosis and cascade screening at the Institute of Nutrition and Food Technology (INTA), University of Chile. Samples were analysed using traditional cytogenetic methods and/or PCR. Southern blot was used to confirm the diagnosis. Overall frequency of FMR1 expansions observed among probands was 194 (8·8%), the average age of diagnosis was 8·8 ± 5·4 years. Of 119 family members studied, 72 (60%) were diagnosed with a CGG expansion. Our results indicated that the prevalence of CGG expansions of the FMR1 gene among probands is relatively higher than other populations. The average age of diagnosis is also higher than reference values. PCR and Southern blot represent a reliable molecular technique in the diagnosis of FXS.
Collapse
|
27
|
Molecular characterization of X chromosome fragility in idiopathic mental retardation. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Aliaga SM, Slater HR, Francis D, Du Sart D, Li X, Amor DJ, Alliende AM, Santa Maria L, Faundes V, Morales P, Trigo C, Salas I, Curotto B, Godler DE. Identification of Males with Cryptic Fragile X Alleles by Methylation-Specific Quantitative Melt Analysis. Clin Chem 2016; 62:343-52. [DOI: 10.1373/clinchem.2015.244681] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023]
Abstract
Abstract
BACKGROUND
FMR1 full mutations (FMs) (CGG expansion >200) in males mosaic for a normal (<45 CGG) or gray-zone (GZ) (45–54 CGG) allele can be missed with the standard 2-step fragile X syndrome (FXS) testing protocols, largely because the first-line PCR tests showing a normal or GZ allele are not reflexed to the second-line test that can detect FM.
METHODS
We used methylation-specific quantitative melt analysis (MS-QMA) to determine the prevalence of cryptic FM alleles in 2 independent cohorts of male patients (994 from Chile and 2392 from Australia) referred for FXS testing from 2006 to 2013. All MS-QMA–positive cases were retested with commercial triplet primed PCR, methylation-sensitive Southern blot, and a methylation-specific EpiTYPER-based test.
RESULTS
All 38 FMs detected with the standard 2-step protocol were detected with MS-QMA. However, MS-QMA identified methylation mosaicism in an additional 15% and 11% of patients in the Chilean and Australian cohorts, respectively, suggesting the presence of a cryptic FM. Of these additional patients, 57% were confirmed to carry cryptic expanded alleles in blood, buccal mucosa, or saliva samples. Further confirmation was provided by identifying premutation (CGG 55–199) alleles in mothers of probands with methylation-sensitive Southern blot. Neurocognitive assessments showed that low-level mosaicism for cryptic FM alleles was associated with cognitive impairment or autism.
CONCLUSIONS
A substantial number of mosaic FM males who have cognitive impairment or autism are not diagnosed with the currently recommended 2-step testing protocol and can be identified with MS-QMA as a first-line test.
Collapse
Affiliation(s)
- Solange M Aliaga
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Howard R Slater
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David Francis
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Desiree Du Sart
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Xin Li
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David J Amor
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Angelica M Alliende
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Lorena Santa Maria
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Víctor Faundes
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Paulina Morales
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Cesar Trigo
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Isabel Salas
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - Bianca Curotto
- Cytogenetics and Molecular Laboratory, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
- Centre for Diagnosis and Treatment of Fragile X Syndrome, INTA University of Chile, Santiago, Chile
| | - David E Godler
- Cyto-molecular Diagnostic Research Laboratory, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Musova Z, Hancarova M, Havlovicova M, Pourova R, Hrdlicka M, Kraus J, Trkova M, Stejskal D, Sedlacek Z. Expanded DMPK repeats in dizygotic twins referred for diagnosis of autism versus absence of expanded DMPK repeats at screening of 330 children with autism. Neuropsychiatr Dis Treat 2016; 12:2367-2372. [PMID: 27695335 PMCID: PMC5034902 DOI: 10.2147/ndt.s113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) belongs to the broad spectrum of genetic disorders associated with autism spectrum disorders (ASD). ASD were reported predominantly in congenital and early childhood forms of DM1. We describe dizygotic twin boys with ASD who were referred for routine laboratory genetic testing and in whom karyotyping, FMR1 gene testing, and single nucleotide polymorphism array analysis yielded negative results. The father of the boys was later diagnosed with suspected DM1, and testing revealed characteristic DMPK gene expansions in his genome as well as in the genomes of both twins and their elder brother, who also suffered from ASD. In accord with previous reports on childhood forms of DM1, our patients showed prominent neuropsychiatric phenotypes characterized especially by hypotonia, developmental and language delay, emotional and affective lability, lowered adaptability, and social withdrawal. The experience with this family and multiple literature reports of ASD in DM1 on the one side but the lack of literature data on the frequency of DMPK gene expansions in ASD patients on the other side prompted us to screen the DMPK gene in a sample of 330 patients with ASD who were first seen by a geneticist before they were 10 years of age, before the muscular weakness, which may signal DM1, usually becomes obvious. The absence of any DMPK gene expansions in this cohort indicates that targeted DMPK gene testing can be recommended only in ASD patients with specific symptoms or family history suggestive of DM1.
Collapse
Affiliation(s)
| | | | | | | | | | - Josef Kraus
- Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol
| | - Marie Trkova
- Gennet, Centre for Fetal Medicine, Prague, Czech Republic
| | - David Stejskal
- Gennet, Centre for Fetal Medicine, Prague, Czech Republic
| | | |
Collapse
|
30
|
Abstract
Fragile X syndrome (FXS), a trinucleotide repeat disorder, is the most common heritable form of cognitive impairment. Since the discovery of the FMR1 gene in 1991, great strides have been made in the field of molecular diagnosis for FXS. Cytogenetic analysis, which was the method of diagnosis in the early 1990, was replaced by Southern blot and PCR analysis albeit with some limitations. In the past few years many PCR-based methodologies, able to amplify large full mutation expanded alleles, with or without methylation, have been proposed. Reviewed here are the advantages, disadvantages and limitations of the most recent developments in the field of FXS diagnosis.
Collapse
Affiliation(s)
- Flora Tassone
- a Department of Biochemistry and Molecular Medicine , University of California, Davis, School of Medicine , Davis , CA 95616 , USA.,b MIND Institute , University of California Davis Medical Center , Sacramento , CA 95817 , USA
| |
Collapse
|
31
|
Ballinger EC, Cordeiro L, Chavez AD, Hagerman RJ, Hessl D. Emotion potentiated startle in fragile X syndrome. J Autism Dev Disord 2015; 44:2536-46. [PMID: 24816942 DOI: 10.1007/s10803-014-2125-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Social avoidance and anxiety are prevalent in fragile X syndrome (FXS) and are potentially mediated by the amygdala, a brain region critical for social behavior. Unfortunately, functional brain resonance imaging investigation of the amygdala in FXS is limited by the difficulties experienced by intellectually impaired and anxious participants. We investigated the relationship between social avoidance and emotion-potentiated startle, a probe of amygdala activation, in children and adolescents with FXS, developmental disability without FXS (DD), and typical development. Individuals with FXS or DD demonstrated significantly reduced potentiation to fearful faces than a typically developing control group (p < .05). However, among individuals with FXS, social avoidance correlated positively with fearful-face potentiation (p < .05). This suggests that general intellectual disability blunts amygdalar response, but differential amygdala responsiveness to social stimuli contributes to phenotypic variability among individuals with FXS.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Graduate Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | | | | | | | | |
Collapse
|
32
|
Huang W, Xia Q, Luo S, He H, Zhu T, Du Q, Duan R. Distribution of fragile X mental retardation 1 CGG repeat and flanking haplotypes in a large Chinese population. Mol Genet Genomic Med 2015; 3:172-81. [PMID: 26029703 PMCID: PMC4444158 DOI: 10.1002/mgg3.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome is mainly caused by a CGG repeat expansion within the 5' UTR of the fragile X mental retardation 1 (FMR1) gene. Previous analyses of the FMR1 CGG repeat patterns and flanking haplotypes in Caucasians and African Americans have identified several factors that may influence repeat instability. However, the CGG repeat patterns and distribution for FRAXAC2 have not yet been investigated in mainland Chinese. We surveyed the CGG repeat lengths in 1113 Han Chinese (534 males and 579 females), and the CGG repeat patterns of 534 males were determined by sequence analysis. We also explored the flanking haplotypes (DXS548-FRAXAC1-FRAXAC2) in 566 unaffected and 28 unrelated fragile X Chinese males. The most frequent alleles for DXS548 and FRAXAC1 were identical between our Chinese population and other Asian populations. We identified several low-abundance alleles for DXS548 and FRAXAC1 not found in previous studies in mainland Chinese and Taiwanese cohorts. The most frequent allele was (CGG)29 followed by (CGG)30, and the most frequent patterns were 9 + 9 + 9, 10 + 9 + 9, and 9 + 9 + 6 + 9, similar to those in Singaporeans. We identified only one premutation female carrier with 89 CGG repeats in the 1113 Han Chinese. A few associations between the CGG repeat patterns and flanking haplotypes were determined in this study. In general, the Chinese population had a smaller number of alleles and lower expected heterozygosity for all three STR markers and FRAXA locus when compared with Caucasians and African Americans. We identified a novel haplotype 7-3-5 + that is significantly associated with the full mutation.
Collapse
Affiliation(s)
- Wen Huang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University Changsha, 410078, Hunan, China
| | - Qiuping Xia
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University Changsha, 410078, Hunan, China
| | - Shiyu Luo
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University Changsha, 410078, Hunan, China
| | - Hua He
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University Changsha, 410078, Hunan, China
| | - Ting Zhu
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University Changsha, 410078, Hunan, China
| | - Qian Du
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University Changsha, 410078, Hunan, China
| | - Ranhui Duan
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University Changsha, 410078, Hunan, China
| |
Collapse
|
33
|
Simplified strategy for rapid first-line screening of fragile X syndrome: closed-tube triplet-primed PCR and amplicon melt peak analysis. Expert Rev Mol Med 2015; 17:e7. [PMID: 25936533 PMCID: PMC4836207 DOI: 10.1017/erm.2015.5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Premutation and full-mutation hyperexpansion of CGG-triplets in the X-linked Fragile X Mental Retardation 1 (FMR1) gene have been implicated in fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X syndrome (FXS), respectively. The currently available molecular diagnostic tests are either costly or labour-intensive, which prohibits their application as a first-line FMR1 test in large-scale population-based screening programs. In this study, we demonstrate the utility of a simplified closed-tube strategy for rapid first-line screening of FXS based on melt peak temperature (Tm) analysis of direct triplet-primed polymerase chain reaction amplicons (dTP-PCR MCA). In addition, we also evaluated the correlation between Tm and CGG-repeat size based on capillary electrophoresis (CE) of dTP-PCR amplicons. The assays were initially tested on 29 FMR1 reference DNA samples, followed by a blinded validation on 107 previously characterised patient DNA samples. The dTP-PCR MCA produced distinct melt profiles of higher Tm for samples carrying an expanded allele. Among the samples tested, we also observed a good correlation between Tm and CGG-repeat size. In the blinded validation study, dTP-PCR MCA accurately classified all normal and expansion carriers, and the FMR1 genotypic classification of all samples was completely concordant with the previously determined genotypes as well as the dTP-PCR CE results. This simple and cost-effective MCA-based assay may be useful as a first-line FXS screening tool that could rapidly screen out the large majority of unaffected individuals, thus minimising the number of samples that need to be analysed by Southern blot analysis.
Collapse
|
34
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña MI, Alliende MA. Clinical, molecular, and pharmacological aspects of FMR1 related disorders. Neurologia 2014; 32:241-252. [PMID: 25529181 DOI: 10.1016/j.nrl.2014.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/08/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fragile X syndrome, the most common inherited cause of intellectual disability, is associated with a broad spectrum of disorders across different generations of a single family. This study reviews the clinical manifestations of fragile X-associated disorders as well as the spectrum of mutations of the fragile X mental retardation 1 gene (FMR1) and the neurobiology of the fragile X mental retardation protein (FMRP), and also provides an overview of the potential therapeutic targets and genetic counselling. DEVELOPMENT This disorder is caused by expansion of the CGG repeat (>200 repeats) in the 5 prime untranslated region of FMR1, resulting in a deficit or absence of FMRP. FMRP is an RNA-binding protein that regulates the translation of several genes that are important in synaptic plasticity and dendritic maturation. It is believed that CGG repeat expansions in the premutation range (55 to 200 repeats) elicit an increase in mRNA levels of FMR1, which may cause neuronal toxicity. These changes manifest clinically as developmental problems such as autism and learning disabilities as well as neurodegenerative diseases including fragile X-associated tremor/ataxia syndrome (FXTAS). CONCLUSIONS Advances in identifying the molecular basis of fragile X syndrome may help us understand the causes of neuropsychiatric disorders, and they will probably contribute to development of new and specific treatments.
Collapse
Affiliation(s)
- A Pugin
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - V Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
| | - L Santa María
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - B Curotto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - S Aliaga
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - I Salas
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - P Soto
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - P Bravo
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - M I Peña
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - M A Alliende
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Lozano R, Summers S, Lozano C, Mu Y, Hessl D, Nguyen D, Tassone F, Hagerman R. Association between macroorchidism and intelligence in FMR1 premutation carriers. Am J Med Genet A 2014; 164A:2206-11. [PMID: 24903624 DOI: 10.1002/ajmg.a.36624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/01/2014] [Indexed: 11/08/2022]
Abstract
Characteristics of fragile X syndrome include macroorchidism and intellectual disability, which are associated with decreased FMRP levels. FMRP is highly expressed in many tissues, but primarily in the brain and testis. The relationship between these two characteristics has not previously been studied in the premutation or carrier state. To examine this among premutation carriers and a possible association with IQ, we evaluated macroorchidism status among 213 males including 142 premutation carriers and 71 controls. The prevalence of macroorchidism among premutation carriers was 32.4% (46 out of 142), and 5.6% among controls (4 out of 71, P < 0.0001). Among premutation carriers, the age-adjusted odds ratio (OR) of macroorchidism was significantly increased with increasing FMR1 mRNA (OR 1.84, 95% confidence interval [CI] 1.04-3.25; P = 0.035). With respect to the association between macroorchidism and IQ, after adjustment for number of CGG repeats and age, premutation carriers with macroorchidism had lower verbal IQ (104.67 ± 15.86, P = 0.0152) and full scale IQ (102.98 ± 15.78, P = 0.0227) than premutation carriers without macroorchidism (verbal IQ 112.38 ± 14.14, full scale IQ 110.24 ± 14.21). Similar associations were observed for both verbal IQ (P = 0.034) and full scale IQ (P = 0.039) after being adjusted for age and FMR1 mRNA. These preliminary data support a correlation between macroorchidism and lower verbal and full scale IQ in a relevant proportion of premutation carrier males. Whether this is due to higher levels of FMR1 mRNA or to lower FMRP levels it remains to be established.
Collapse
Affiliation(s)
- Reymundo Lozano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, UC Davis Medical Center, Sacramento, California; Departments of Pediatrics, UC Davis Medical Center, Sacramento, California
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Juang BT, Ludwig AL, Benedetti KL, Gu C, Collins K, Morales C, Asundi A, Wittmann T, L'Etoile N, Hagerman PJ. Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans. Hum Mol Genet 2014; 23:4945-59. [PMID: 24821701 PMCID: PMC4140470 DOI: 10.1093/hmg/ddu210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a severe neurodegenerative disorder that affects carriers of premutation CGG-repeat expansion alleles of the fragile X mental retardation 1 (FMR1) gene; current evidence supports a causal role of the expanded CGG repeat within the FMR1 mRNA in the pathogenesis of FXTAS. Though the mRNA has been observed to induce cellular toxicity in FXTAS, the mechanisms are unclear. One common neurophysiological characteristic of FXTAS patients is their inability to properly attenuate their response to an auditory stimulus upon receipt of a small pre-stimulus. Therefore, to gain genetic and cell biological insight into FXTAS, we examined the effect of expanded CGG repeats on the plasticity of the olfactory response of the genetically tractable nematode, Caenorhabditis elegans (C. elegans). While C. elegans is innately attracted to odors, this response can be downregulated if the odor is paired with starvation. We found that expressing expanded CGG repeats in olfactory neurons interfered with this plasticity without affecting either the innate odor-seeking response or the olfactory neuronal morphology. Interrogation of three RNA regulatory pathways indicated that the expanded CGG repeats act via the C. elegans microRNA (miRNA)-specific Argonaute ALG-2 to diminish olfactory plasticity. This observation suggests that the miRNA-Argonaute pathway may play a pathogenic role in subverting neuronal function in FXTAS.
Collapse
Affiliation(s)
- Bi-Tzen Juang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chen Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kimberly Collins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Morales
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noelle L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| |
Collapse
|
37
|
Loomis EW, Sanz LA, Chédin F, Hagerman PJ. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 2014; 10:e1004294. [PMID: 24743386 PMCID: PMC3990486 DOI: 10.1371/journal.pgen.1004294] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/21/2014] [Indexed: 11/24/2022] Open
Abstract
Expansion of a trinucleotide (CGG) repeat element within the 5′ untranslated region (5′UTR) of the human FMR1 gene is responsible for a number of heritable disorders operating through distinct pathogenic mechanisms: gene silencing for fragile X syndrome (>200 CGG) and RNA toxic gain-of-function for FXTAS (∼55–200 CGG). Existing models have focused almost exclusively on post-transcriptional mechanisms, but co-transcriptional processes could also contribute to the molecular dysfunction of FMR1. We have observed that transcription through the GC-rich FMR1 5′UTR region favors R-loop formation, with the nascent (G-rich) RNA forming a stable RNA:DNA hybrid with the template DNA strand, thereby displacing the non-template DNA strand. Using DNA:RNA (hybrid) immunoprecipitation (DRIP) of genomic DNA from cultured human dermal fibroblasts with both normal (∼30 CGG repeats) and premutation (55<CGG<200 repeats) alleles, we provide evidence for FMR1 R-loop formation in human genomic DNA. Using a doxycycline (DOX)-inducible episomal system in which both the CGG-repeat and transcription frequency can be varied, we further show that R-loop formation increases with higher expression levels. Finally, non-denaturing bisulfite mapping of the displaced single-stranded DNA confirmed R-loop formation at the endogenous FMR1 locus and further indicated that R-loops formed over CGG repeats may be prone to structural complexities, including hairpin formation, not commonly associated with other R-loops. These observations introduce a new molecular feature of the FMR1 gene that is directly affected by CGG-repeat expansion and is likely to be involved in the associated cellular dysfunction. Expansion of a CGG-repeat element within the human FMR1 gene is responsible for multiple human diseases, including fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). These diseases occur in separate ranges of repeat length and are characterized by profoundly different molecular mechanisms. Fragile X syndrome results from FMR1 gene silencing, whereas FXTAS is associated with an increase in transcription and toxicity of the CGG-repeat-containing mRNA. This study introduces a previously unknown molecular feature of the FMR1 locus, namely the co-transcriptional formation of three-stranded R-loop structures upon re-annealing of the nascent FMR1 transcript to the template DNA strand. R-loops are involved in the normal function of human CpG island promoters in that they contribute to protecting these sequences from DNA methylation. However, excessive R-loop formation can lead to activation of the DNA damage response and result in genomic instability. We used antibody recognition and chemical single-stranded DNA footprinting to show that R-loops form at the FMR1 locus with increasing frequency and greater structural complexity as the CGG-repeat length increases. This discovery provides a missing piece of both the complex FMR1 molecular puzzle and the diseases resulting from CGG-repeat expansion.
Collapse
Affiliation(s)
- Erick W. Loomis
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Lionel A. Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- MIND Institute, University of California, Davis, Health System, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ludwig AL, Espinal GM, Pretto DI, Jamal AL, Arque G, Tassone F, Berman RF, Hagerman PJ. CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum Mol Genet 2014; 23:3228-38. [PMID: 24463622 DOI: 10.1093/hmg/ddu032] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large expansions of a CGG-repeat element (>200 repeats; full mutation) in the fragile X mental retardation 1 (FMR1) gene cause fragile X syndrome (FXS), the leading single-gene form of intellectual disability and of autism spectrum disorder. Smaller expansions (55-200 CGG repeats; premutation) result in the neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). Whereas FXS is caused by gene silencing and insufficient FMR1 protein (FMRP), FXTAS is thought to be caused by 'toxicity' of expanded-CGG-repeat mRNA. However, as FMRP expression levels decrease with increasing CGG-repeat length, lowered protein may contribute to premutation-associated clinical involvement. To address this issue, we measured brain Fmr1 mRNA and FMRP levels as a function of CGG-repeat length in a congenic (CGG-repeat knock-in) mouse model using 57 wild-type and 97 expanded-CGG-repeat mice carrying up to ~250 CGG repeats. While Fmr1 message levels increased with repeat length, FMRP levels trended downward over the same range, subject to significant inter-subject variation. Human comparisons of protein levels in the frontal cortex of 7 normal and 17 FXTAS individuals revealed that the mild FMRP decrease in mice mirrored the more limited data for FMRP expression in the human samples. In addition, FMRP expression levels varied in a subset of mice across the cerebellum, frontal cortex, and hippocampus, as well as at different ages. These results provide a foundation for understanding both the CGG-repeat-dependence of FMRP expression and for interpreting clinical phenotypes in premutation carriers in terms of the balance between elevated mRNA and lowered FMRP expression levels.
Collapse
Affiliation(s)
- Anna Lisa Ludwig
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Glenda M Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Dalyir I Pretto
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and
| | - Amanda L Jamal
- Department of Neurological Surgery, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Gloria Arque
- Department of Neurological Surgery, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and
| | - Robert F Berman
- MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and Department of Neurological Surgery, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and
| |
Collapse
|
39
|
Kecmanović M, Ristić AJ, Ercegovac M, Keckarević-Marković M, Keckarević D, Sokić D, Romac S. A Shared Haplotype Indicates a Founder Event in Unverricht–Lundborg Disease Patients from Serbia. Int J Neurosci 2013; 124:102-9. [DOI: 10.3109/00207454.2013.828723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Gatta V, Gennaro E, Franchi S, Cecconi M, Antonucci I, Tommasi M, Palka G, Coviello D, Stuppia L, Grasso M. MS-MLPA analysis for FMR1 gene: evaluation in a routine diagnostic setting. BMC MEDICAL GENETICS 2013; 14:79. [PMID: 23914933 PMCID: PMC3751107 DOI: 10.1186/1471-2350-14-79] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/23/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Fragile X Syndrome (FXS), the most common cause of familiar mental retardation, is associated in over 99% of cases to an expansion over 200 repeats of a CGG sequence in the 5' UTR of the FMR1 gene (Xq27.3), leading to the hypermethylation of the promoter. Molecular diagnosis of FXS have been so far based on the use of the Southern Blot (SB) analysis, a low throughput and time consuming technique. In order to update the diagnostic approach for FXS, we evaluated the usefulness of the Methylation-Specific Multiplex-Ligation-dependent Probe Amplification assay (MS-MLPA). METHODS The study was carried out by retrospectively analysing 44 male patients, 10 Chorionic Villus Sampling (CVS) samples and 10 females previously analyzed by SB. In addition, a prospective study on 98 male subjects, 20 females and 1 CVS sample was carried out for assessing the feasibility and the impact of MS-MLPA in a routine lab work. RESULT Results provided by both the retrospective and the prospective parts of this study strongly demonstrate the robustness and reproducibility of the MS-MLPA assay, able to correctly detect the methylation status in all normal and full mutation male samples analyzed, including CVS male samples. On the other hand, MS-MLPA analysis on females samples produced unreliable results. CONCLUSION Based on our results, we suggest the necessity of a separate workflow for male and female patients with suspected FXS in the routine diagnostic setting. MS-MLPA, in combination with CGG repeat sizing using a single-tube primed FMR1 PCR, represents a reliable diagnostic protocol in the molecular diagnosis of FXS male patients.
Collapse
Affiliation(s)
- Valentina Gatta
- Laboratory of Molecular Genetics, Department of Psychological, Humanities and Territorial Sciences, School of Medicine and Health Sciences, G, d'Annunzio University, via dei Vestini 31, Chieti, 66013, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bhagya CHWMRC, Wijesundera Sulochana WS, Hemamali NP. Polymerase chain reaction optimization for amplification of Guanine-Cytosine rich templates using buccal cell DNA. INDIAN JOURNAL OF HUMAN GENETICS 2013; 19:78-83. [PMID: 23901197 PMCID: PMC3722634 DOI: 10.4103/0971-6866.112898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CONTEXT Amplification of Guanine-Cytosine (GC) -rich sequences becomes important in screening and diagnosis of certain genetic diseases such as diseases arising due to expansion of GC-rich trinucleotide repeat regions. However, GC-rich sequences in the genome are refractory to standard polymerase chain reaction (PCR) amplification and require a special reaction conditions and/or modified PCR cycle parameters. AIM Optimize a cost effective PCR assay to amplify the GC-rich DNA templates. SETTINGS AND DESIGN Fragile X mental retardation gene (FMR 1) is an ideal candidate for PCR optimization as its GC content is more than 80%. Primers designed to amplify the GC rich 5' untranslated region of the FMR 1 gene, was selected for the optimization of amplification using DNA extracted from buccal mucosal cells. MATERIALS AND METHODS A simple and rapid protocol was used to extract DNA from buccal cells. PCR optimization was carried out using three methods, (a) substituting a substrate analog 7-deaza-dGTP to dGTP (b) in the presence of a single PCR additive and (c) using a combination of PCR additives. All PCR amplifications were carried out using a low-cost thermostable polymerase. RESULTS Optimum PCR conditions were achieved when a combination of 1M betaine and 5% dimethyl sulfoxide (DMSO) was used. CONCLUSIONS It was possible to amplify the GC rich region of FMR 1 gene with reproducibility in the presence of betaine and DMSO as additives without the use of commercially available kits for DNA extraction and the expensive thermostable polymerases.
Collapse
|
42
|
Curtis-Cioffi KMC, Rodrigueiro DA, Rodrigues VC, Cicarelli RMB, Scarel-Caminaga RM. Comparison between the polymerase chain reaction-based screening and the Southern blot methods for identification of fragile X syndrome. Genet Test Mol Biomarkers 2013; 16:1303-8. [PMID: 23101592 DOI: 10.1089/gtmb.2012.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fragile X syndrome (FXS), the most common cause of hereditary mental retardation, is caused by expansions of CGG repeats in the FMR1 gene. The gold-standard method to diagnose FXS is the Southern blot (SB). Because SB is laborious and costly, some adaptations in the polymerase chain reaction (PCR) method have been utilized for FXS screening. A previous PCR-based screening method for FXS identification utilizing small amounts of DNA was reported as simple and efficient. The aim of this study was to reproduce the mentioned PCR-based screening method for identification of expanded alleles of the FMR1 gene in Brazilian individuals and to investigate the efficiency of this method in comparison with SB. Utilizing the enzyme Expand Long Template PCR System, 78 individuals were investigated by that PCR-based screening method for FXS identification. Conclusive results were obtained for 75 samples. Considering all the allelic forms of FXS (normal [NL], premutation [PM], and full-mutation [FM]), the comparison of the PCR-based screening method with SB demonstrated 100% of accuracy, sensitivity, and specificity. However, when the PM and the FM were analyzed separately from each other, but together with the NL allele, the accuracy, sensitivity, and specificity decreased (to 42.9%-97.4%). We concluded that the PCR-based screening method was reproducible and capable of identifying all different FXS alleles, but because the differentiation between the PM and the FM alleles was not accurate, SB is still the gold-standard method for the molecular diagnosis of FXS.
Collapse
|
43
|
Meisler MH, Grant AE, Jones JM, Lenk GM, He F, Todd PK, Kamali M, Albin RL, Lieberman AP, Langenecker SA, McInnis MG. C9ORF72 expansion in a family with bipolar disorder. Bipolar Disord 2013; 15:326-32. [PMID: 23551834 PMCID: PMC3660726 DOI: 10.1111/bdi.12063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/13/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the role in bipolar disorder of the C9ORF72 hexanucleotide repeat expansion responsible for frontotemporal lobe dementia and amyotrophic lateral sclerosis. METHODS Eighty-nine subjects from a previously described panel of individuals with bipolar disorder ascertained for genetic studies were screened to detect expansion of the C9ORF72 repeat. One two-generation family with bipolar disorder and an expanded repeat was characterized in depth using molecular diagnostics, imaging, histopathology, and neurological and neuropsychological evaluation. RESULTS One proband, with the typical clinical presentation of bipolar disorder, carried an expanded C9ORF72 allele of heterogeneous length between 14 and 20 kilobases (kb) as assessed by Southern blot. The expanded allele was inherited from a parent with atypical, late onset clinical features of bipolar disorder, who subsequently progressed to frontotemporal lobe dementia. The expansion in peripheral blood of the parent ranged from 8.5 to 20 kb. Cultured lymphoblastoid cells from this parent exhibited a homogeneous expansion of only 8.5 kb. CONCLUSIONS The disease course in the two generations described here demonstrates that expansion of the C9ORF72 may be associated with a form of bipolar disorder that presents clinically with classic phenomenology and progression to neurodegenerative disease. The frequency in our bipolar disorder cohort was only 1%, indicating that C9ORF72 is not a major contributor to bipolar disorder. DNA from cultured cells may be biased towards shorter repeats and nonrepresentative of the endogenous C9ORF72 expansion.
Collapse
Affiliation(s)
- Miriam H Meisler
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109-5618, USA.
| | - Adrienne E Grant
- Department of Human Genetics, University of Michigan School of MedicineAnn Arbor, MI, USA
| | - Julie M Jones
- Department of Human Genetics, University of Michigan School of MedicineAnn Arbor, MI, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan School of MedicineAnn Arbor, MI, USA
| | - Fang He
- Department of Neurology, University of Michigan School of MedicineAnn Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan School of MedicineAnn Arbor, MI, USA
| | - Masoud Kamali
- Department of Psychiatry, University of Michigan School of MedicineAnn Arbor, MI, USA,University of Michigan Depression CenterAnn Arbor, MI, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan School of MedicineAnn Arbor, MI, USA,Geriatrics Research, Education and Clinical Center, VAAAHSAnn Arbor, MI, USA,Michigan Alzheimer Disease CenterAnn Arbor, MI, USA
| | - Andrew P Lieberman
- Michigan Alzheimer Disease CenterAnn Arbor, MI, USA,Department of Pathology, University of MichiganAnn Arbor, MI, USA
| | - Scott A Langenecker
- Department of Psychiatry, University of Michigan School of MedicineAnn Arbor, MI, USA,University of Michigan Depression CenterAnn Arbor, MI, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan School of MedicineAnn Arbor, MI, USA,University of Michigan Depression CenterAnn Arbor, MI, USA
| |
Collapse
|
44
|
Esposito G, Ruggiero R, Savarese G, Savarese M, Tremolaterra MR, Salvatore F, Carsana A. A 15-year case-mix experience for fragile X syndrome molecular diagnosis and comparison between conventional and alternative techniques leading to a novel diagnostic procedure. Clin Chim Acta 2013; 417:85-9. [PMID: 23279920 DOI: 10.1016/j.cca.2012.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/18/2012] [Accepted: 12/24/2012] [Indexed: 11/19/2022]
Abstract
Fragile X syndrome (FXS) is the main cause of heritable mental retardation. In most patients, it is associated with an increased number of CGG repeats (>200) within the 5'-untranslated region of the FMR1 gene, and with methylation of the expanded repeats and of the promoter. FXS female carriers and transmitting males have expansions of between 55 and 200 repeats (premutated alleles). Alleles with premutations are unstable in female meioses. Normal and premutated repeats are unmethylated in males and subject to lyonization in females. Here, we report the postnatal and prenatal molecular diagnoses of FXS made with conventional PCR and Southern blotting in a cohort of Italian patients and their families over a period of 15years. Moreover, we tested two novel high-performance PCR procedures (PCR with a chimeric primer, and the AmplideX™ FMR1 kit) in our patients and compared the results with our previous observations. We concluded that the high-performance PCR assays complement the results obtained by conventional methods, but they cannot replace the Southern blot procedure. Consequently, also based on cost-benefit considerations, our FXS diagnostic flowchart now consists of conventional PCR and Southern blotting plus the chimeric primer PCR procedure, whereas the AmplideX™ procedure is reserved for doubtful cases.
Collapse
|
45
|
Abstract
The human fragile X mental retardation 1 (FMR1) gene contains a (CGG)n trinucleotide repeat in its 5′ untranslated region (5′UTR). Expansions of this repeat result in a number of clinical disorders with distinct molecular pathologies, including fragile X syndrome (FXS; full mutation range, greater than 200 CGG repeats) and fragile X–associated tremor/ataxia syndrome (FXTAS; premutation range, 55–200 repeats). Study of these diseases has been limited by an inability to sequence expanded CGG repeats, particularly in the full mutation range, with existing DNA sequencing technologies. Single-molecule, real-time (SMRT) sequencing provides an approach to sequencing that is fundamentally different from other “next-generation” sequencing platforms, and is well suited for long, repetitive DNA sequences. We report the first sequence data for expanded CGG-repeat FMR1 alleles in the full mutation range that reveal the confounding effects of CGG-repeat tracts on both cloning and PCR. A unique feature of SMRT sequencing is its ability to yield real-time information on the rates of nucleoside addition by the tethered DNA polymerase; for the CGG-repeat alleles, we find a strand-specific effect of CGG-repeat DNA on the interpulse distance. This kinetic signature reveals a novel aspect of the repeat element; namely, that the particular G bias within the CGG/CCG-repeat element influences polymerase activity in a manner that extends beyond simple nearest-neighbor effects. These observations provide a baseline for future kinetic studies of repeat elements, as well as for studies of epigenetic and other chemical modifications thereof.
Collapse
|
46
|
Distribution and frequency of intranuclear inclusions in female CGG KI mice modeling the fragile X premutation. Brain Res 2012; 1472:124-37. [PMID: 22796595 DOI: 10.1016/j.brainres.2012.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/12/2012] [Accepted: 06/29/2012] [Indexed: 11/21/2022]
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder caused by CGG trinucleotide repeat expansions in the fragile X mental retardation 1 (FMR1) gene. The neuropathological hallmark of FXTAS is the presence of ubiquitin-positive intranuclear inclusions in neurons and in astroglia. Intranuclear inclusions have also been reported in the neurons of male CGG KI mice carrying an expanded CGG trinucleotide repeat and used to model FXTAS, but no study has been carried out quantifying inclusions in female CGG KI mice heterozygous for the fragile X premutation. We used histologic and immunocytochemical methods to determine the pathological features of intranuclear inclusions in astroglia and neurons. In female CGG KI mice, ubiquitin-positive intranuclear inclusions were found in neurons and astroglia throughout the brain in cortical and subcortical regions. These inclusions increased in number and became larger with advanced age and increasing CGG repeat length, supporting hypotheses that these pathologic features are progressive across the lifespan. The number of inclusions in neurons was reduced by ∼25% in female CGG KI mice compared to male CGG KI mice, but not so low as the 50% predicted. These data emphasize the need to evaluate the neurocognitive and pathological features in female carriers of the fragile X premutation with and without FXTAS symptomatology is warranted, as this population shows similar neuropathological features present in male FXTAS patients.
Collapse
|
47
|
Hunsaker MR, Kim K, Willemsen R, Berman RF. CGG trinucleotide repeat length modulates neural plasticity and spatiotemporal processing in a mouse model of the fragile X premutation. Hippocampus 2012; 22:2260-75. [PMID: 22707411 DOI: 10.1002/hipo.22043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2012] [Indexed: 02/06/2023]
Abstract
The fragile X premutation is a CGG repeat expansion on the FMR1 gene between 55 and 200 repeats in length. It has been proposed that impaired spatiotemporal function underlies cognitive deficits in genetic disorders, including the fragile X premutation. This study characterized the role of the premutation for cognitive function by demonstrating CGG KI mice with 70-198 CGG repeats show deficits across tasks requiring spatial and temporal pattern separation. To elucidate mechanisms whereby CGG repeats affect spatiotemporal processing, hippocampal slices were evaluated for LTP, LTD, and mGluR1/5 LTD. Increasing CGG repeat length modulated the induction of LTP, LTD, and mGluR1/5 LTD, as well as behavioral tasks emphasizing spatiotemporal processing. Despite the deficits in the induction of all forms of plasticity, there were no differences in expression of plasticity once evoked. These data provide evidence for a neurocognitive endophenotype in the CGG KI mouse model of the premutation in which CGG repeat length negatively modulates plasticity and spatiotemporal attention.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, School of Medicine, University of California- Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
48
|
Hamlin AA, Sukharev D, Campos L, Mu Y, Tassone F, Hessl D, Nguyen DV, Loesch D, Hagerman RJ. Hypertension in FMR1 premutation males with and without fragile X-associated tremor/ataxia syndrome (FXTAS). Am J Med Genet A 2012; 158A:1304-9. [PMID: 22528549 DOI: 10.1002/ajmg.a.35323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/08/2012] [Indexed: 11/05/2022]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a late onset neurodegenerative disease that affects carriers of the fragile X premutation. This study seeks to assess hypertension risk and susceptibility in male premutation carriers with FXTAS. Although many symptoms and diagnostic criteria have been identified, hypertension risk has not been examined in this population. Data from 92 premutation carriers without FXTAS, 100 premutation carriers with FXTAS, and 186 controls was collected via patient medical interview. Age-adjusted logistic regression analysis was used to examine the relative odds of hypertension. We observed a significantly elevated odds ratio (OR) of hypertension relative to controls for premutation carriers with FXTAS (OR = 3.22, 95% CI: 1.72-6.04; P = 0.0003) among participants over 40-year old. The age-adjusted estimated odds of hypertension in premutation carriers without FXTAS in the over 40-year-old age group was higher compared to controls (OR = 1.61, 95% CI: 0.82-3.16), but was not statistically significant (P = 0.164). Chronic hypertension contributes to cardiovascular complications, dementia, and increased risk of stroke. Our results indicate that the risk of hypertension is significantly elevated in male premutation carriers with FXTAS compared with carriers without FXTAS and controls. Thus, evaluation of hypertension in patients diagnosed with FXTAS should be a routine part of the treatment monitoring and intervention for this disease.
Collapse
Affiliation(s)
- Alyssa A Hamlin
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Orpana AK, Ho TH, Stenman J. Multiple heat pulses during PCR extension enabling amplification of GC-rich sequences and reducing amplification bias. Anal Chem 2012; 84:2081-7. [PMID: 22220596 DOI: 10.1021/ac300040j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PCR amplification over GC-rich and/or long repetitive sequences is challenging because of thermo-stable structures resulting from incomplete denaturation, reannealing, and self-annealing of target sequences. These structures block the DNA polymerase during the extension step, leading to formation of incomplete extension products and favoring amplification of nonspecific products rather than specific ones. We have introduced multiple heat pulses in the extension step of a PCR cycling protocol to temporarily destabilize such blocking structures, in order to enhance DNA polymerase extension over GC-rich sequences. With this novel type of protocol, we were able to amplify all expansions of CGG repeats in five Fragile X cell lines, as well as extremely GC-rich nonrepetitive segments of the GNAQ and GP1BB genes. The longest Fragile X expansion contained 940 CGG repeats, corresponding to about 2.8 kilo bases of 100% GC content. For the GNAQ and GP1BB genes, different length PCR products in the range of 700 bases to 2 kilobases could be amplified without addition of cosolvents. As this technique improves the balance of amplification efficiencies between GC-rich target sequences of different length, we were able to amplify all of the allelic expansions even in the presence of the unexpanded allele.
Collapse
Affiliation(s)
- Arto K Orpana
- HUSLAB, Laboratory of Genetics and Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
50
|
Hamlin A, Liu Y, Nguyen DV, Tassone F, Zhang L, Hagerman RJ. Sleep apnea in fragile X premutation carriers with and without FXTAS. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:923-8. [PMID: 21932336 PMCID: PMC4109408 DOI: 10.1002/ajmg.b.31237] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/24/2011] [Indexed: 11/09/2022]
Abstract
This report seeks to establish the prevalence of sleep apnea in patients with the fragile X mental retardation 1 (FMR1) premutation with and without fragile X-associated tremor/ataxia syndrome (FXTAS) and to determine any correlation between CGG repeat and FMR1 mRNA levels with sleep apnea prevalence. Demographic and medical data from 430 (229 males, 201 females) participants were used in this analysis. Participants included premutation carriers with (n = 118) and without FXTAS (n = 174) as well as controls without the premutation (n = 123). Logistic regression models were employed to estimate the odds ratio of sleep apnea relative to controls, adjusted for age and gender, and also to examine potential association with CGG size and FMR1 mRNA expression level. The observed proportion of sleep apnea in premutation carriers with and without FXTAS and controls are 31.4% (37/118), 8.6% (15/174), and 13.8% (17/123), respectively. The adjusted odds of sleep apnea for premutation carriers with FXTAS is about 3.4 times that compared to controls (odds ratio, OR = 3.4, 95% confidence interval (CI) 1.8-7.4; P = 0.001), and similarly relative to premutation carriers without FXTAS (OR = 2.9, 95% CI 1.2-6.9; P = 0.014). The risk of sleep apnea was not different between controls and premutation carriers without FXTAS. The presence of sleep apnea is not associated with CGG repeat numbers nor FMR1 mRNA expression level among premutation carriers. Our data supports a higher prevalence and risk of sleep apnea in patients with FXTAS. We recommend that all patients diagnosed with FXTAS be screened for sleep apnea given the negative and perhaps accelerative impact sleep apnea may have on their FXTAS progression.
Collapse
Affiliation(s)
- Alyssa Hamlin
- M.I.N.D. Institute, University of California at Davis Medical Center, Sacramento, California,Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California
| | - Ying Liu
- Department of Neurology, Dalian Municipal Friendship Hospital, Dalian, People’s Republic of China 116001
| | - Danh V. Nguyen
- Department of Public Health Sciences, Division of Biostatistics, University of California at Davis
| | - Flora Tassone
- M.I.N.D. Institute, University of California at Davis Medical Center, Sacramento, California,Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Davis, California
| | - Lin Zhang
- Department of Neurology, University of California Davis School of Medicine, Sacramento, California,Northern California VA Medical Center, Sacramento, California
| | - Randi J. Hagerman
- M.I.N.D. Institute, University of California at Davis Medical Center, Sacramento, California,Department of Pediatrics, University of California at Davis Medical Center, Sacramento, California
| |
Collapse
|