1
|
Bozkurt I, Halici Z, Bahador Zirh E, Palabiyik-Yucelik SS. EGCG alleviates Ochratoxin A-induced pyroptosis in rat's kidney by inhibiting NLRP3/Caspase-1/GSDMD signaling pathway. Food Chem Toxicol 2024; 193:115006. [PMID: 39299375 DOI: 10.1016/j.fct.2024.115006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Ochratoxin A (OTA) exposure is inevitable due to its contamination in foods, and there is no treatment for the OTA induced organ toxicity. We evaluate the effect of epigallocatechin gallate (EGCG) on the nephrotoxicity caused by OTA, and to reveal the relationship of this effect with the NLRP3/Caspase-1/GSDMD pathway dependent pyroptosis. 40 male Wistar albino rats divided into 5 groups (n = 8, per group) 0.5 mg/kg/day OTA were administered to the rats and 50 mg/kg and 100 mg/kg EGCG were administered to the groups by gavage orally for 14 days. Serum urea and creatinine levels increased significantly with OTA exposure. Similarly, it was determined that significant changes in oxidative stress parameters with OTA exposure in kidney tissue. Also, there was a significant increase in kidney tissue TGF-β, NF-κB, IL-1β, IL-18, NLRP3, Caspase-1 and GSDMD mRNA expressions with OTA exposure. EGCG administration augmented a dose-dependent decrease in the aforementioned parameters. NLRP3/Caspase-1/GSDMD pathway is induced in the kidneys due to OTA exposure were shown with this study. Potent antioxidant EGCG could alleviate the pathways specified with this study in OTA nephrotoxicity and its supplementation may be effective strategies for the protection.
Collapse
Affiliation(s)
- Ilyas Bozkurt
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Elham Bahador Zirh
- Department of Histology and Embryology, Faculty of Medicine, TOBB University of Economics and Technology, 06510, Ankara, Turkey
| | | |
Collapse
|
2
|
Więckowska M, Cichon N, Szelenberger R, Gorniak L, Bijak M. Ochratoxin A and Its Role in Cancer Development: A Comprehensive Review. Cancers (Basel) 2024; 16:3473. [PMID: 39456567 PMCID: PMC11506779 DOI: 10.3390/cancers16203473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Ochratoxin A (OTA) is widely recognized for its broad spectrum of toxic effects and is classified as a potential human carcinogen, placed in group 2B by the International Agency for Research on Cancer (IARC). Its presence in food and beverages poses a significant health hazard. Extensive research has documented the efficient absorption and distribution of OTA throughout the body via the bloodstream and tissues, underscoring the associated health risk. Additionally, ongoing studies aim to clarify the link between OTA exposure and carcinogenesis. The obtained results indicate a strong correlation between OTA and renal cell carcinoma (RCC), with potential associations with other malignancies, including hepatocellular carcinoma (HCC), gallbladder cancer (GBC), and squamous cell carcinoma (SCC). OTA is implicated in oxidative stress, lipid peroxidation, apoptosis, DNA damage, adduct formation, miRNA deregulation, and distributions in the cell cycle, all of which may contribute to carcinogenesis. Conclusions: Despite significant research efforts, the topic remains inexhaustible and requires further investigation. The obtained results do not yield definitive conclusions, potentially due to species-specific differences in the animal models used and challenges in extrapolating these results to humans. In our review, we delve deeper into the potential mechanisms underlying OTA-induced carcinogenesis and discuss existing limitations, providing directions for future research.
Collapse
Affiliation(s)
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (L.G.); (M.B.)
| | | | | | | |
Collapse
|
3
|
Chu CS, Chen YT, Liang WZ. Investigation of the mechanisms behind ochratoxin A-induced cytotoxicity in human astrocytes and the protective effects of N-acetylcysteine. J Appl Toxicol 2024; 44:1454-1465. [PMID: 38812125 DOI: 10.1002/jat.4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Ochratoxin A (OTA) is a type of mycotoxin commonly found in raw and processed foods. It is essential to be aware of this toxin, as it can harm your health if consumed in high quantities. OTA can induce toxic effects in various cell models. However, a more comprehensive understanding of the harmful effects of OTA on human astrocytes is required. This study evaluated OTA's neurotoxic effects on the Gibco® Human Astrocyte (GHA) cell line, its underlying mechanisms, and the antioxidant N-acetylcysteine (NAC) ability to prevent them. OTA exposure within 5-30 μM has induced concentration-dependent cytotoxicity. In the OTA-treated cells, the levels of reactive oxygen species (ROS) were found to be significantly increased, while the glutathione (GSH) contents were found to decrease considerably. The western blotting of OTA-treated cells has revealed increased Bax, cleaved caspase-9/caspase-3 protein levels, and increased Bax/Bcl-2 ratio. In addition, exposure to OTA has resulted in the induction of antioxidant responses associated with the protein expressions of Nrf2, HO-1, and NQO1. On the other hand, the pretreatment with NAC has partially alleviated the significant toxic effects of OTA. In conclusion, our findings suggest that oxidative stress and apoptosis are involved in the OTA-induced cytotoxicity in GHA cells. NAC could act as a protective agent against OTA-induced oxidative damage.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ying-Tso Chen
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
4
|
Więckowska M, Szelenberger R, Niemcewicz M, Harmata P, Poplawski T, Bijak M. Ochratoxin A-The Current Knowledge Concerning Hepatotoxicity, Mode of Action and Possible Prevention. Molecules 2023; 28:6617. [PMID: 37764392 PMCID: PMC10534339 DOI: 10.3390/molecules28186617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.
Collapse
Affiliation(s)
- Magdalena Więckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| |
Collapse
|
5
|
Golomb BA, Han JH. Adverse effect propensity: A new feature of Gulf War illness predicted by environmental exposures. iScience 2023; 26:107363. [PMID: 37554469 PMCID: PMC10405325 DOI: 10.1016/j.isci.2023.107363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
A third of 1990-1 Gulf-deployed personnel developed drug/chemical-induced multisymptom illness, "Gulf War illness" (GWI). Veterans with GWI (VGWI) report increased drug/exposure adverse effects (AEs). Using previously collected data from a case-control study, we evaluated whether the fraction of exposures that engendered AEs ("AE Propensity") is increased in VGWI (it was); whether AE Propensity is related to self-rated "chemical sensitivity" (it did); and whether specific exposures "predicted" AE Propensity (they did). Pesticides and radiation exposure were significant predictors, with copper significantly "protective"-in the total sample (adjusted for GWI-status) and separately in VGWI and controls, on multivariable regression. Mitochondrial impairment and oxidative stress (OS) underlie AEs from many exposures irrespective of nominal specific mechanism. We hypothesize that mitochondrial toxicity and interrelated OS from pesticides and radiation position people on the steep part of the curve of mitochondrial impairment and OS versus symptom/biological disruption, amplifying impact of new exposures. Copper, meanwhile, is involved in critical OS detoxification processes.
Collapse
Affiliation(s)
- Beatrice A. Golomb
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun Hee Han
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Chen J, Yang S, Li P, Wu A, Nepovimova E, Long M, Wu W, Kuca K. MicroRNA regulates the toxicological mechanism of four mycotoxins in vivo and in vitro. J Anim Sci Biotechnol 2022; 13:37. [PMID: 35197116 PMCID: PMC8867758 DOI: 10.1186/s40104-021-00653-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Abstract
Mycotoxins can cause body poisoning and induce carcinogenesis, often with a high mortality rate. Therefore, it is of great significance to seek new targets that indicate mycotoxin activity and to diagnose and intervene in mycotoxin-induced diseases in their early stages. MicroRNAs (miRNAs) are physiological regulators whose dysregulation is closely related to the development of diseases. They are thus important markers for the occurrence and development of diseases. In this review, consideration is given to the toxicological mechanisms associated with four major mycotoxins (ochratoxin A, aflatoxin B1, deoxynivalenol, and zearalenone). The roles that miRNAs play in these mechanisms and the interactions between them and their target genes are explained, and summarize the important role of histone modifications in their toxicity. As a result, the ways that miRNAs are regulated in the pathogenicity signaling pathways are revealed which highlights the roles played by miRNAs in preventing and controlling the harmful effects of the mycotoxins. It is hoped that this review will provide a theoretical basis for the prevention and control of the damage caused by these mycotoxins.
Collapse
Affiliation(s)
- Jia Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuhua Yang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
7
|
Ochratoxin A-Induced Nephrotoxicity: Up-to-Date Evidence. Int J Mol Sci 2021; 22:ijms222011237. [PMID: 34681895 PMCID: PMC8539333 DOI: 10.3390/ijms222011237] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin widely found in various foods and feeds that have a deleterious effect on humans and animals. It has been shown that OTA causes multiorgan toxicity, and the kidney is the main target of OTA among them. This present article aims to review recent and latest intracellular molecular interactions and signaling pathways of OTA-induced nephrotoxicity. Pyroptosis, lipotoxicity, organic anionic membrane transporter, autophagy, the ubiquitin-proteasome system, and histone acetyltransferase have been involved in the renal toxicity caused by OTA. Meanwhile, the literature reviewed the alternative or method against OTA toxicity by reducing ROS production, oxidative stress, activating the Nrf2 pathway, through using nanoparticles, a natural flavonoid, and metal supplement. The present review discloses the molecular mechanism of OTA-induced nephrotoxicity, providing opinions and strategies against OTA toxicity.
Collapse
|
8
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Damiano S, Longobardi C, Andretta E, Prisco F, Piegari G, Squillacioti C, Montagnaro S, Pagnini F, Badino P, Florio S, Ciarcia R. Antioxidative Effects of Curcumin on the Hepatotoxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2021; 10:125. [PMID: 33477286 PMCID: PMC7830919 DOI: 10.3390/antiox10010125] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) is a powerful mycotoxin found in various foods and feedstuff, responsible for subchronic and chronic toxicity, such as nephrotoxicity, hepatotoxicity, teratogenicity, and immunotoxicity to both humans and several animal species. The severity of the liver damage caused depends on both dose and duration of exposure. Several studies have suggested that oxidative stress might contribute to increasing the hepatotoxicity of OTA, and several antioxidants, including curcumin (CURC), have been tested to counteract the toxic hepatic action of OTA in various classes of animals. Therefore, the present study was designed to evaluate the protective effect of CURC, a bioactive compound with different therapeutic properties on hepatic injuries caused by OTA in rat animal models. CURC effects were examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. At the end of the experiment, rats treated with OTA showed alterations in biochemical parameters and oxidative stress in the liver. CURC dosing significantly attenuated oxidative stress and lipid peroxidation versus the OTA group. Furthermore, liver histological tests showed that CURC reduced the multifocal lymphoplasmacellular hepatitis, the periportal fibrosis, and the necrosis observed in the OTA group. This study provides evidence that CURC can preserve OTA-induced oxidative damage in the liver of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Francesco Pagnini
- Unit of Radiology, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Paola Badino
- Department of Veterinary Science, University of Turin, L. go P. Braccini 2-5, 10095 Grugliasco, Italy;
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Via Federico Delpino n.1, 80137 Naples, Italy; (E.A.); (F.P.); (G.P.); (C.S.); (S.M.); (S.F.)
| |
Collapse
|
10
|
Maleki Dana P, Reiter RJ, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Melatonin as a potential inhibitor of kidney cancer: A survey of the molecular processes. IUBMB Life 2020; 72:2355-2365. [PMID: 32918860 DOI: 10.1002/iub.2384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Studies have shown that despite the decreasing mortality rates of kidney cancer patients, its incidence is increasing. Therefore, a comprehensive re-evaluation of treatment options is necessary to provide appropriate treatments for the increasing number of patients. Moreover, the side effects caused by surgery, which is the main treatment of this disease, may lead to higher morbidity rates. Consequently, new safer approaches must be examined and considered. Major advancements have been made in the field of targeted agents as well as treatments based on immunotherapy since renal cell carcinoma (RCC) does not respond well to chemotherapy. While the therapeutic options for this cancer are increasing, the resulting complexity of selecting the best strategy for treating the patients is daunting. Moreover, each therapeutic option must be evaluated concerning toxicity, cost, and clinical advantages. Several characteristics, which are beneficial for cancer therapies have been attributed to melatonin. For decades, investigations have explored the application of melatonin in the treatment of cancer; insufficient attention has been paid to this molecule at the clinical level. Melatonin plays a role in cancer therapy due to its anti-tumor effects as well as by enhancing the efficacy of other drugs as an adjuvant. In this review, we discuss different roles of melatonin in the treatment of kidney cancer. The studies concerned with the applications of melatonin as an adjuvant in the immunotherapy of patients with kidney cancer are summarized. Also, we highlight the apoptotic and anti-angiogenic effects of melatonin on renal cancer cells which are mediated by different molecules (e.g., HIF-1 and VEGF, ADAMTS1, and MMP-9) and signaling pathways (e.g., P56, P52, and JNK). Furthermore, we take a look into available data on melatonin's ability to reduce the toxicities caused by kidney carcinogens, including ochratoxin A, potassium bromate, and Fe-NTA.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Abstract
Fungi produce mycotoxins in the presence of appropriate temperature, humidity, sufficient nutrients and if the density of the mushroom mass is favorable. Although all mycotoxins are of fungal origin, all toxic compounds produced by fungi are not called mycotoxins. The interest in mycotoxins first started in the 1960s, and today the interest in mycotoxin-induced diseases has increased. To date, 400 mycotoxins have been identified and the most important species producing mycotoxins belongs to Aspergillus, Penicillium, Alternaria and Fusarium genera. Mycotoxins are classified as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins etc. In this review genotoxic and also other health effects of some major mycotoxin groups like Aflatoxins, Ochratoxins, Patulin, Fumonisins, Zearalenone, Trichothecenes and Ergot alkaloids were deeply analyzed.
Collapse
|
12
|
Koohsari M, Ahangar N, Mohammadi E, Shaki F. Ameliorative Effect of Melatonin Against Reproductive Toxicity of Tramadol in Rats via the Regulation of Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis-related Gene Expression Signaling Pathway. ADDICTION & HEALTH 2020; 12:118-129. [PMID: 32782734 PMCID: PMC7395930 DOI: 10.22122/ahj.v12i2.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of the present study was to investigate the protective properties of melatonin (MT) against oxidative stress, mitochondrial dysfunction, and apoptosis induced by tramadol-reproductive toxicity in male rats. METHODS The rats were divided into the 7 groups of control, melatonin (1.5 mg/kg), tramadol (50 mg/kg), and melatonin (1, 1.5 and 2.5 mg/kg) administered 30 minutes before tramadol and vitamin C group (100 mg/kg). All injections were performed intraperitoneally. After administration for 3 consecutive weeks, the animals were killed and testis tissues were used for assessment of oxidative stress markers including lipid peroxidation (LPO), glutathione (GSH) content and protein carbonyl (PrC), and sperm analysis. Mitochondria were isolated from rat's testis using differential centrifugation technique and were studied in terms of mitochondrial viability, mitochondrial membrane potential (MMP), and mitochondrial swelling. The other part of the tissue sample was placed in RNA protector solution for assessment of Bax and Bcl-2 gene expression through real-time polymerase chain reaction (real-time PCR) assay. FINDINGS Tramadol caused a significant decline in epidermal sperm count, motility, and morphology, as well as a significant decrease in GSH level and mitochondrial function, and a significant evaluation of LPO, PrC, MMP, and mitochondrial swelling. In addition, tramadol induced a significant decrease in Bcl-2 gene expression, and increase in Bax gene expression. However, pretreatment of rats with MT improved sperm analysis, and testicular antioxidative status, and mitochondrial function. Furthermore, MT pretreatment regulated testicular Bcl-2 and Bax expressions. CONCLUSION Considering the protective effects of MT against reproductive toxicity induced by tramadol, this compound can be used as a possible agent for the prevention and treatment of tramadol-induced reproductive toxicity.
Collapse
Affiliation(s)
- Motahareh Koohsari
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Shaki
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute AND Department of Toxicology and Pharmacology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
13
|
Crupi R, Palma E, Siracusa R, Fusco R, Gugliandolo E, Cordaro M, Impellizzeri D, De Caro C, Calzetta L, Cuzzocrea S, Di Paola R. Protective Effect of Hydroxytyrosol Against Oxidative Stress Induced by the Ochratoxin in Kidney Cells: in vitro and in vivo Study. Front Vet Sci 2020; 7:136. [PMID: 32296717 PMCID: PMC7136456 DOI: 10.3389/fvets.2020.00136] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
Ochratoxin-A (OTA) is a mycotoxin that is a common contaminant of food products for both humans and animals. This mycotoxin has several toxic effects. In particular, ochratoxin has significant nephrotoxic potential. In fact, OTA has been described as being responsible for naturally occurring animal and human kidney disorders. The toxicity of this mycotoxin involves the induction of the oxidative stress pathways. Therefore, in the present study, we wanted to evaluate the potential protective effects of hydroxytyrosol (HT), a phenolic constituent with potent antioxidant activity, of extra virgin olive oil in three different renal cell lines, the Madin-Darby canine kidney cell line (MDCK), a pig kidney cell line (LLC-PK1), and a rabbit kidney cell line (RK 13), and in rats. Our results clearly showed that renal cells respond to OTA exposure by reducing cell proliferation and the induction of oxidative stress. Pre-incubation of the cells with HT prevented the cellular cytotoxicity and increased reactive oxygen species (ROS) levels induced by OTA. In addition, the antioxidative activity of HT was studied by measuring malondialdehyde (MDA) and lactate dehydrogenase (LDH) levels and nitrosative stress. Finally, we investigated the capability of HT (20 mg/kg, intraperitoneally) to act in vivo. In rats, HT reduced oxidative stress and collagen accumulation in the kidney and counteracted the augmentations in AST, ALT, and creatinine levels following OTA induction (250 μg/kg for 90 days orally). In conclusion, our findings demonstrate that HT is able to protect three renal cell lines from the damage induced by OTA and protect the kidneys of rats. Therefore, the use of this compound could be an important strategy for the treatment and prevention of this type of kidney dysfunction.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Carmen De Caro
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Luigino Calzetta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,School of Medicine, St. Louis, Mo, United States
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
14
|
Juan-García A, Carbone S, Ben-Mahmoud M, Sagratini G, Mañes J. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species and glutathione. Food Chem Toxicol 2020; 139:111247. [PMID: 32165234 DOI: 10.1016/j.fct.2020.111247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 01/22/2023]
Abstract
The co-presence of more than one mycotoxin in food is being evidenced in last food surveys as reported in the literature. Beauvericin (BEA) is a non-legislated emergent mycotoxin while Ochratoxin A (OTA) has been widely studied and legislated. Concentration range individually studied was from 2.5 to 0.3 μM for BEA and from 25 to 3.1 μM for OTA; binary mixture [BEA + OTA] comprised concentrations of 1:10 ratio from [2.5 + 25] to [3.1 + 0.3] μM. Potential of toxicity of BEA in HepG2 cells was the highest at all times assayed (24, 48 and 72h). LPO was performed through malondyaldehyde (MDA) detection denoting in the binary mixture for [1.25 + 12.5] μM and at 24 and 72h the highest disturbance values. ROS denoted differences respect to the control at different times specially for OTA, while in binary combination only for few point times was denoted. Effects detected for ROS and LPO were connected with alterations detected for glutathione levels of oxidized and reduced form. A real scenario of consumers chronically exposed to different mycotoxins and their mixtures is here presented highlighting the good methodology to assess the risk from exposure to combinations of chemicals in food.
Collapse
Affiliation(s)
- Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain.
| | - Saverio Carbone
- Laboratory of Food Chemistry, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Maissa Ben-Mahmoud
- Laboratoire Matériaux, Molécules et Applications, Institut Préparatoire Aux Etudes Scientifiques et Techniques, Tunisia Polytechnic School BP 51, La Marsa, 2070, Tunisia
| | - Gianni Sagratini
- Laboratory of Food Chemistry, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés S/n, 46100, Burjassot, València, Spain
| |
Collapse
|
15
|
Nogaim QA, Sai Pratyusha Bugata L, PV P, Reddy UA, P MG, S IK, M M. Protective effect of Yemeni green coffee powder against the oxidative stress induced by Ochratoxin A. Toxicol Rep 2020; 7:142-148. [PMID: 31956515 PMCID: PMC6962656 DOI: 10.1016/j.toxrep.2019.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 01/24/2023] Open
Abstract
The current study focusses on knowing the antioxidant effects of green Yemeni coffee powder on reducing the oxidative stress that was induced by Ochratoxin A in kidney, liver and brain of rats. The grouping of female albino Wistar rats was into 5 groups (5 rats/group). Rats of Group 1 designated Vehicle Control (only water), Group2 (10 mg/kg Ochratoxin A); Group 3 designated Low dose (2000 mg/kg Coffee+10 mg/kg Ochratoxin A); Group 4 designated High dose (4000 mg/kg Coffee+10 mg/kg Ochratoxin A); Group 5 designated Coffee Control (1000 mg/kg Coffee) and orally administered with the above test materials repeatedly every day for 28 days. On termination of the study, liver, brain and kidney tissues were collected after dissection, oxidative stress biomarkers (Levels of Lipid Peroxidation and Reduced Glutathione, activities Superoxide Dismutase, Catalase and Glutathione Reductase enzymes) and histopathological studies were carried out. Treatment of Ochratoxin A alone (group 2 rats) significantly increased malondialdehyde content, catalase, and glutathione reductase activities with a decrease in the activity of superoxide dismutase enzyme and reduced glutathione level and in brain, kidney and liver. Whereas, low dose coffee (group 3) and high dose coffee (group 4) rats showed dose-dependent increase in antioxidant and less histopathological alterations. Concomitant treatment of Yemeni green coffee powder and Ochratoxin A brought dose-dependent protective effects against oxidative stress which was induced using Ochratoxin A in liver, brain, and kidney tissues of female rats.
Collapse
Affiliation(s)
- Qais A. Nogaim
- Food Science and Technology Department, Ibb University, Yemen
| | | | - Prabhakar PV
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Utkarsh A. Reddy
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Mangala Gowri P
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Indu Kumari S
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| | - Mahboob M
- Toxicology Unit, Applied Biology Division, CSIR Indian Institute of Chemical Technology, Hyderabad, T.S., India
| |
Collapse
|
16
|
Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y, Yang H, Ma H, Yao J, Lawler SE, Zhang X, Fu J, Rozental R, Aly H, Johnson MD, Chiocca EA, Wang X. The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 2019; 130:215-233. [PMID: 30315933 DOI: 10.1016/j.freeradbiomed.2018.10.402] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/01/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone associated with sleep and wakefulness and is mainly produced by the pineal gland. Numerous physiological functions of melatonin have been demonstrated including anti-inflammation, suppressing neoplastic growth, circadian and endocrine rhythm regulation, and its potent antioxidant activity as well as its role in regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others. In this review, we summarize the recent advances related to the multiple protective roles of melatonin receptor agonists, melatonin and N-acetylserotonin (NAS), in brain injury, liver damage, and bone health. Brain injury, including traumatic brain injury, ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and newborn perinatal hypoxia-ischemia encephalopathy, is a major cause of mortality and disability. Liver disease causes serious public health problems and various factors including alcohol, chemical pollutants, and drugs induce hepatic damage. Osteoporosis is the most common bone disease in humans. Due in part to an aging population, both the cost of care of fracture patients and the annual fracture rate have increased steadily. Despite the discrepancy in the pathophysiological processes of these disorders, time frames and severity, they may share several common molecular mechanisms. Oxidative stress is considered to be a critical factor in these pathogeneses. We update the current state of knowledge related to the molecular processes, mainly including anti-oxidative stress, anti-apoptosis, autophagy dysfunction, and anti-inflammation as well as other properties of melatonin and NAS. Particularly, the abilities of melatonin and NAS to directly scavenge oxygen-centered radicals and toxic reactive oxygen species, and indirectly act through antioxidant enzymes are disscussed. In this review, we summarize the similarities and differences in the protection provided by melatonin and/or NAS in brain, liver and bone damage. We analyze the involvement of melatonin receptor 1A (MT1), melatonin receptor 1B (MT2), and melatonin receptor 1C (MT3) in the protection of melatonin and/or NAS. Additionally, we evaluate their potential clinical applications. The multiple mechanisms of action and multiple organ-targeted properties of melatonin and NAS may contribute to development of promising therapies for clinical trials.
Collapse
Affiliation(s)
- Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye, Hubei, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiying Jiang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University Texas Health Science Center, San Antonio, TX, USA
| | - Pallab Bhattacharya
- National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Yongchun Cui
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongwei Yang
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sean E Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinmu Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Renato Rozental
- Lab Neuroproteção & Estratégias Regenerativas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Mark D Johnson
- Department of Neurosurgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Rašić D, Micek V, Klarić MS, Peraica M. Oxidative stress as a mechanism of combined OTA and CTN toxicity in rat plasma, liver and kidney. Hum Exp Toxicol 2018; 38:434-445. [DOI: 10.1177/0960327118819049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) and citrinin (CTN) commonly coexist in grains. Aiming to evaluate oxidative stress in OTA + CTN toxicity, male Wistar rats were orally treated with two doses of OTA (0.125 and 0.250 mg kg−1 of body weight (b.w.)), CTN (2 mg kg−1 of b.w.) and resveratrol (RSV; 20 mg kg−1 of b.w.) and combined daily during 3 weeks. Protein carbonyl concentrations were measured in kidneys and liver; catalytic activity of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) level in plasma, kidneys and liver, while malondialdehyde (MDA) concentration was measured in plasma, kidneys, liver and urine. Mycotoxin treatment significantly increased MDA concentration in plasma and kidney and decreased SOD activity in the liver. Rats treated with CTN and OTA125 + CTN had lower plasma GPx activity. Concentration of GSH in the kidney and protein carbonyls in the kidney and liver as well as GPx activity in the kidney and liver, SOD activity in the kidney and CAT activity in the liver were not affected. Protective effect of RSV was observed on GSH in the kidney and plasma and MDA in the kidney, plasma and urine. Oxidative stress is involved in OTA + CTN toxicity in vivo because such treatment affects parameters of oxidative stress, particularly in plasma. RSV can reduce but not overcome oxidative stress induced by combined OTA and CTN treatment.
Collapse
Affiliation(s)
- D Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - V Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - MS Klarić
- Department of Microbiology, University of Zagreb, Zagreb, Croatia
| | - M Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
18
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
19
|
Khatoon A, Abidin ZU. Mycotoxicosis – diagnosis, prevention and control: past practices and future perspectives. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1485701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aisha Khatoon
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
20
|
Enciso JM, López de Cerain A, Pastor L, Azqueta A, Vettorazzi A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem Toxicol 2018; 116:379-387. [DOI: 10.1016/j.fct.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
|
21
|
Effects of combined treatment with ochratoxin A and citrinin on oxidative damage in kidneys and liver of rats. Toxicon 2018. [DOI: 10.1016/j.toxicon.2018.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative‐induced liver injuries: A review. J Cell Physiol 2017; 233:4015-4032. [DOI: 10.1002/jcp.26209] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Keywan Mortezaee
- Department of AnatomySchool of MedicineKurdistan University of Medical SciencesSanandajIran
| | - Neda Khanlarkhani
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
23
|
Sutken E, Aral E, Ozdemir F, Uslu S, Alatas O, Colak O. Protective Role of Melatonin and Coenzyme Q10 in Ochratoxin A Toxicity in Rat Liver and Kidney. Int J Toxicol 2017; 26:81-7. [PMID: 17365150 DOI: 10.1080/10915810601122893] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Melatonin (MEL) and coenzyme Q10 (CoQ10) both display antioxidant and free radical scavenger properties. In the present study, the effect of MEL and CoQ10 on the oxidative stress and fibrosis induced by ochratoxin A (OTA) administration in rats was investigated. Rats were divided into five equal groups, each consisting of seven rats: (1) controls; (2) OTA-treated rats (289 μg/kg/day); (3) OTA+MEL–treated rats (289 μg/kg/day OTA + 10 mg/kg/day MEL); and (4) OTA+CoQ10–treated rats (289 μg/kg/day OTA +1 mg/100 g/day body weight (bw) CoQ10). After 4 weeks of treatment, the level of malondialdehyde (MDA), glutathione peroxidase (GPx), and hydroxyproline (Hyp) were measured in the homogenates of liver and kidney. In the OTA-treated group, the levels of MDA and Hyp in both liver and kidney were significantly increased when compared with the levels of control, whereas GPx activities decreased. In OTA+MEL–treated rats, the levels of MDA and Hyp in both liver and kidney were significantly decreased when compared with the levels of OTA-treated rats; however; GPX activities increased. In the OTA+CoQ10–treated group, the levels of MDA and Hyp were decreased when compared with the levels of OTA-treated rats, whereas GPx activities increased. In the OTA+CoQ 10–treated group, the levels of MDA, Hyp, and GPx were not significantly changed in kidney when compared with OTA-treated group. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and fibrosis both liver and kidney. Although CoQ10 has protective effect against OTA toxicity in liver tissue, it has no effect in kidney tissue.
Collapse
Affiliation(s)
- Emine Sutken
- Department of Biochemistry, Medical School, Osmangazi University, Eskisehir, Turkey
| | | | | | | | | | | |
Collapse
|
24
|
Damiano S, Puzio MV, Squillacioti C, Mirabella N, Zona E, Mancini A, Borrelli A, Astarita C, Boffo S, Giordano A, Avallone L, Florio S, Ciarcia R. Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats. J Cell Biochem 2017; 119:424-430. [PMID: 28590009 DOI: 10.1002/jcb.26197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that represent toxic real threat for human beings and animal health. In this study we evaluated the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) on oxidative stress and on the alterations of fluid reabsorption in renal proximal tubule (PT) as possible causes of OTA nephrotoxicity. Finally, we have measured the concentration of O2- in the kidney through dihydroethidium assay (DHE) and nitric oxide (NO) concentration through nitrites and nitrates assay. Male Sprague Dawley rats weighing 120-150 g were treated for 14 days by gavage, as follows: Control group, 12 rats received a corresponding amount of saline solution (including 10% DMSO); rMnSOD group, 12 rats treated with rMnSOD (10 µg/kg bw); OTA group, 12 rats treated with OTA (0.5 mg/kg bw) dissolved in 10% DMSO and then scaled to required volume with corn oil; rMnSOD + OTA, 12 rats treated with rMnSOD (10 µg/kg bw) plus OTA (0.5 mg/kg bw). Our results have shown that rMnSOD restores the alteration of reabsorption in PT in rats treated with OTA plus rMnSOD, probably through the response to pressure natriuresis, where nitric oxide plays a key role. Moreover, rMnSOD prevents the nephrotoxicity induced by OTA probably restoring the balance between superoxide and NO that is most probably the cause of hypertension and renal functional alterations through the inhibition of NO synthase. In conclusion these data provide important information for understanding of mechanism of toxic action of OTA. J. Cell. Biochem. 119: 424-430, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Maria V Puzio
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Caterina Squillacioti
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Enrica Zona
- Department of Cardio-Thoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Aldo Mancini
- Laedhexa Biotechnologies Inc., Laedhexa Biotechnologies Inc., San Francisco, California
| | - Antonella Borrelli
- Department of Molecular Biology and Biotherapy, National Cancer Institute "G. Pascale" Naples, Naples, Italy
| | - Carlo Astarita
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Luigi Avallone
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine, Animal Productions, University of Naples "Federico II," 80137, Naples, Italy
| |
Collapse
|
25
|
A Review: Epigenetic Mechanism in Ochratoxin A Toxicity Studies. Toxins (Basel) 2017; 9:toxins9040113. [PMID: 28333080 PMCID: PMC5408187 DOI: 10.3390/toxins9040113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
Ochratoxin A (OTA) is a natural contaminant that has displayed nephrotoxicity and hepatotoxicity in mammals. It contaminates a great variety of foodstuffs and threatens people's lives. The molecular mechanism of OTA-induced toxicity has been studied since 1965. Moreover, epigenetic mechanisms are also studied in OTA-induced toxicity. Additionally, the mode of OTA epigenetic research has been advanced in research hotspots. However, there is still no epigenetic study of OTA-induced toxicity. In this review, we discuss the relationship between these epigenetic mechanisms and OTA-induced toxicity. We found that studies on the epigenetic mechanisms of OTA-induced toxicity all chose the whole kidney or liver as the model, which cannot reveal the real change in DNA methylation or miRNAs or histone in the target sites of OTA. Our recommendations are as follows: (1) the specific target site of OTA should be detected by advanced technologies; and (2) competing endogenous RNAs (ceRNA) should be explored with OTA.
Collapse
|
26
|
Zhang JJ, Meng X, Li Y, Zhou Y, Xu DP, Li S, Li HB. Effects of Melatonin on Liver Injuries and Diseases. Int J Mol Sci 2017; 18:ijms18040673. [PMID: 28333073 PMCID: PMC5412268 DOI: 10.3390/ijms18040673] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
27
|
Tabassum H, Ashafaq M, Parvez S, Raisuddin S. Role of melatonin in mitigating nonylphenol-induced toxicity in frontal cortex and hippocampus of rat brain. Neurochem Int 2016; 104:11-26. [PMID: 28012845 DOI: 10.1016/j.neuint.2016.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023]
Abstract
Nonylphenol (NP), an environmental endocrine disruptor mimics estrogen and is a potential toxicant both under in vitro and in vivo conditions. In this study, the effect of melatonin on NP- induced neurotoxicity and cognitive alteration was investigated in adult male Wistar rats. Melatonin supplementation has been known to protect cells from neurotoxic injury. The animals were divided into three groups namely, control (vehicle) which received olive oil orally and treated rats received NP (25 mg/kg, per os) thrice a week for 45 days while the third group i.e., NP + melatonin, animals were co-administered melatonin (10 mg/kg, i.p.) along with NP. On the 46th day, rats were assessed for anxiety, motor co-ordination, grip strength and cognitive performance using Morris water maze test and then sacrificed for biochemical and histopathological assays in brain tissues. Melatonin improved the behavioral performance in NP exposed group. The results showed that NP significantly decreased the activity of acetylcholine esterase (AchE), monoamine oxidase (MAO) and Na+/K+-ATPase, in rat brain tissue along with other enzymes of antioxidant milieu. The outcome of the study shows that NP, like other persistent endocrine disrupting pollutants, creates a potential risk of cognitive, neurochemical and histopathological perturbations as a result of environmental exposure. Taken together, our study demonstrates that melatonin is protective against NP-induced neurotoxicity.
Collapse
Affiliation(s)
- Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Mohammad Ashafaq
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India.
| |
Collapse
|
28
|
Limited Link between Oxidative Stress and Ochratoxin A-Induced Renal Injury in an Acute Toxicity Rat Model. Toxins (Basel) 2016; 8:toxins8120373. [PMID: 27983637 PMCID: PMC5198567 DOI: 10.3390/toxins8120373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD) and livers (SOD and GSH). DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.
Collapse
|
29
|
Cariddi LN, Escobar FM, Sabini MC, Campra NA, Bagnis G, Decote-Ricardo D, Freire-de-Lima CG, Mañas F, Sabini LI, Dalcero AM. Phenolic acid protects of renal damage induced by ochratoxin A in a 28-days-oral treatment in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:105-111. [PMID: 26987112 DOI: 10.1016/j.etap.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
The present study aimed to characterize the chlorogenic acid (ChlA) capacity to reverse the toxic effects induced by ochratoxin A (OTA) in a subacute toxicity test in rats. Male Wistar rats were fed orally by gavage for 28 days with OTA (0.4mg/kg bw/day), ChlA (5mg/kg bw/day) or the combination OTA (0.4mg/kg bw/day)+ChlA (5mg/kg bw/day). No deaths, no decrease in feed intake or body weight in any experimental group were recorded. The negative control group and the animals treated with ChlA alone showed no changes in any parameters evaluated. In OTA-treated group significant changes such as decrease in urine volume, proteinuria, occult blood, increase in serum creatinine values; decrease in absolute and relative kidney weight and characteristics histopathological lesions that indicated kidney damage were observed. However, limited effect on oxidative stress parameters were detected in kidneys of OTA-treated group. Animals treated with the combination OTA+ChlA were showed as negative control group in the evaluation of several parameters of toxicity. In conclusion, ChlA, at given concentration, improved biochemical parameters altered in urine and serum and pathological damages in kidneys induced by OTA exposure, showing a good protective activity, but not by an apparent antioxidant mechanism.
Collapse
Affiliation(s)
- L N Cariddi
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina.
| | - F M Escobar
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| | - M C Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| | - N A Campra
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - G Bagnis
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - D Decote-Ricardo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F Mañas
- Cátedra de Farmacología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - L I Sabini
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina
| | - A M Dalcero
- Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, CP 5800 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Rivadavia 1917, Ciudad Autónoma de Buenos Aires, CP C1033AAJ, Argentina
| |
Collapse
|
30
|
Mehrzadi S, Kamrava SK, Dormanesh B, Motevalian M, Hosseinzadeh A, Hosseini Tabatabaei SMT, Ghaznavi H. Melatonin synergistically enhances protective effect of atorvastatin against gentamicin-induced nephrotoxicity in rat kidney. Can J Physiol Pharmacol 2016; 94:265-71. [DOI: 10.1139/cjpp-2015-0277] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of serious side-effects such as nephrotoxicity is the principal limitation of gentamicin (GEN) therapeutic efficacy. Oxidative stress is considered to be an important mediator of GEN-induced nephrotoxicity. The present study was designed to evaluate the efficacy of the combination of melatonin (MT) plus atorvastatin (ATO) against GEN-induced nephrotoxicity in rats. We utilized 30 male Wistar albino rats allocated in 5 groups, each containing 6 rats: control, GEN (100 mg/kg/day), ATO (10 mg/kg/day) + GEN, MT (20 mg/kg/day) + GEN, and ATO (10 mg/kg/day) plus MT (20 mg/kg/day) + GEN. Kidney weight, serum creatinine and urea concentration, renal ROS, MDA, GSH levels, SOD, and CAT activity were determined. GEN-induced nephrotoxicity was evidenced by marked elevations in serum urea and creatinine, kidney weight, renal ROS, and MDA levels and reduction in renal GSH level, SOD and CAT activity. MT pretreatment significantly lowered the elevated serum creatinine concentration, kidney weight, renal ROS and MDA levels. However ATO could not reduce these parameters, but similarly to MT, it was able to enhance the renal GSH level, CAT and SOD activity. In addition, a combination therapy of MT plus ATO enhanced the beneficial effects of ATO, while not changing the effects of MT effects or even improving them. The present study indicates that a combination therapy of MT plus ATO can attenuate renal injury in rats treated with GEN, possibly by reducing oxidative stress, and it seems that MT can enhance the beneficial effects of ATO.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT- Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Banafshe Dormanesh
- Department of Pediatric Nephrology, AJA University of Medical Science, Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Habib Ghaznavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
31
|
Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative approach of complementary endpoints. Food Chem Toxicol 2016; 87:65-76. [DOI: 10.1016/j.fct.2015.11.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 01/26/2023]
|
32
|
Ghaznavi H, Mehrzadi S, Dormanesh B, Tabatabaei SMTH, Vahedi H, Hosseinzadeh A, Pazoki-Toroudi H, Rashidian A. Comparison of the Protective Effects of Melatonin and Silymarin Against Gentamicin-Induced Nephrotoxicity in Rats. J Evid Based Complementary Altern Med 2015; 21:NP49-55. [PMID: 26703224 DOI: 10.1177/2156587215621672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 01/21/2023] Open
Abstract
This study compared the possible protective effects of silymarin and melatonin against gentamicin (GEN)-induced nephrotoxicity in rats. Rats were allocated to 6 groups: Group I, control group; Groups II and III, administered with silymarin or melatonin; Group IV, injected with GEN; and Groups V and VI, administered with silymarin or melatonin, and then injected with GEN. Compared with the rats in the control group, all rats injected with GEN significantly presented elevated levels of serum creatinine and urea that was accompanied by an increase in relative kidney weight, increase in renal reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and reduction in renal glutathione (GSH) level and superoxide dismutase (SOD) activity. Silymarin and melatonin pretreatment significantly lowered the elevated serum urea and creatinine concentration, kidney weight, and renal ROS and MDA levels. In addition, silymarin and melatonin significantly enhanced renal GSH level and SOD activity. This study indicates that silymarin and melatonin can attenuate renal injury in rats treated with GEN possibly by reducing the ROS level.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Banafshe Dormanesh
- Department of Pediatric Nephrology, AJA University of Medical Sciences, Tehran, Iran
| | | | - Habib Vahedi
- Health Sciences Research Center, Department of Food and Nutrition, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azam Hosseinzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Tanekhy M. Lead poisoning in Nile tilapia (Oreochromis niloticus): oxidant and antioxidant relationship. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:154. [PMID: 25732982 DOI: 10.1007/s10661-015-4387-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Selenium and vitamin E are very effective antioxidant agents which play important roles in improving and development of aquaculture sector. This study was conducted to determine the protective and treatment effects of vitamin E and selenium against lead toxicity. Administration of both vitamin E and selenium ameliorated the adverse effects of lead acetate toxicity through significant increase in hemoglobin, packed cell volume, RBC count, WBC count, and lymphocytes compared to lead acetate-exposed groups especially after the 10th week. Also, it is revealed that severe decrease of total protein, calcium, phosphorous, and magnesium in lead acetate intoxicated group. On contrary, significant increase of blood parameters upon addition of vitamin E and selenium combined with/without lead. On the other hand, insignificant decreases of sAST, sALT, urea, and creatinine in group fed on vitamin E and selenium, while increase in lead acetate intoxicated group. Lead acetate caused increasing of lipid peroxidation level (malondialdehyde) and decreasing of superoxide dismutase activity and reduced glutathione level. From these results, it is concluded that exposure to lead acetate is considered as hepatotoxic environmental pollutant. Exposure to lead acetate induced significant effects on antioxidant status. Antioxidants (vitamin E and selenium) showed important roles to protect body against lipid peroxidation, which considered as the first step of cell membrane damage, in addition to the improvement of the endogenous antioxidant enzyme activities.
Collapse
Affiliation(s)
- Mahmoud Tanekhy
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Rosetta, 22758, Egypt,
| |
Collapse
|
34
|
Qi X, Yu T, Zhu L, Gao J, He X, Huang K, Luo Y, Xu W. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicol Appl Pharmacol 2014; 280:543-9. [PMID: 25218026 DOI: 10.1016/j.taap.2014.08.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity.
Collapse
Affiliation(s)
- Xiaozhe Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
35
|
Reljic Z, Zlatovic M, Savic-Radojevic A, Pekmezovic T, Djukanovic L, Matic M, Pljesa-Ercegovac M, Mimic-Oka J, Opsenica D, Simic T. Is increased susceptibility to Balkan endemic nephropathy in carriers of common GSTA1 (*A/*B) polymorphism linked with the catalytic role of GSTA1 in ochratoxin a biotransformation? Serbian case control study and in silico analysis. Toxins (Basel) 2014; 6:2348-62. [PMID: 25111321 PMCID: PMC4147586 DOI: 10.3390/toxins6082348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/17/2022] Open
Abstract
Although recent data suggest aristolochic acid as a putative cause of Balkan endemic nephropathy (BEN), evidence also exists in favor of ochratoxin A (OTA) exposure as risk factor for the disease. The potential role of xenobiotic metabolizing enzymes, such as the glutathione transferases (GSTs), in OTA biotransformation is based on OTA glutathione adducts (OTHQ-SG and OTB-SG) in blood and urine of BEN patients. We aimed to analyze the association between common GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms and BEN susceptibility, and thereafter performed an in silico simulation of particular GST enzymes potentially involved in OTA transformations. GSTA1, GSTM1, GSTT1 and GSTP1 genotypes were determined in 207 BEN patients and 138 non-BEN healthy individuals from endemic regions by polymerase chain reaction (PCR). Molecular modeling in silico was performed for GSTA1 protein. Among the GST polymorphisms tested, only GSTA1 was significantly associated with a higher risk of BEN. Namely, carriers of the GSTA1*B gene variant, associated with lower transcriptional activation, were at a 1.6-fold higher BEN risk than those carrying the homozygous GSTA1*A/*A genotype (OR = 1.6; p = 0.037). In in silico modeling, we found four structures, two OTB-SG and two OTHQ-SG, bound in a GSTA1 monomer. We found that GSTA1 polymorphism was associated with increased risk of BEN, and suggested, according to the in silico simulation, that GSTA1-1 might be involved in catalyzing the formation of OTHQ-SG and OTB-SG conjugates.
Collapse
Affiliation(s)
- Zorica Reljic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Mario Zlatovic
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia.
| | - Ana Savic-Radojevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | | | - Ljubica Djukanovic
- Clinic of Nephrology, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Marija Matic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Marija Pljesa-Ercegovac
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Jasmina Mimic-Oka
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Dejan Opsenica
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia.
| | - Tatjana Simic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| |
Collapse
|
36
|
The carotenoid lycopene protects rats against DNA damage induced by Ochratoxin A. Toxicon 2013; 73:96-103. [DOI: 10.1016/j.toxicon.2013.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
|
37
|
Dehghan F, Khaksari Hadad M, Asadikram G, Najafipour H, Shahrokhi N. Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: role of oxidative stresses. Arch Med Res 2013; 44:251-8. [PMID: 23608674 DOI: 10.1016/j.arcmed.2013.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/15/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Traumatic brain injury (TBI) is one of the main causes of brain edema and increased intracranial pressure (ICP). In the clinic it is essential to limit the development of ICP after TBI. In the present study, the effects of melatonin on these parameters at different time points and alterations of oxidant factors as one of the probable involved mechanisms have been evaluated. METHODS Albino N-Mary rats were divided into five groups of sham, TBI, TBI + vehicle, TBI + Mel5 and TBI + Mel20. Brain injury was induced by Marmarou method. Melatonin was injected i.p. at 1, 24, 48 and 72 h after brain trauma. Brain water and Evans blue dye contents as well as oxidant/antioxidant factors were measured 72 h after TBI. ICP and neurological scores were determined at -1, 1, 24, 48 and 72 h post-TBI. RESULTS Brain water and Evans blue dye contents in melatonin-treated groups decreased as compared to the TBI + vehicle group (p <0.001). Veterinary coma scale (VCS) at 24, 48 and 72 h after TBI showed a significant increase in melatonin groups (TBI + Mel5: p <0.01 and TBI + Mel20: p <0.001) in comparison to the TBI + vehicle group. ICP at 24, 48 and 72 h after TBI decreased in melatonin groups as compared to the TBI + vehicle group (p <0.001). Superoxide dismutase and glutathione peroxidase activities showed a significant increase, whereas malondialdehyde level in these groups was significantly lower in melatonin groups in comparison to the TBI + vehicle group (p <0.001). CONCLUSION Melatonin decreases brain edema, BBB permeability and ICP, but increases VCS after TBI. These effects are probably due to inhibition of oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | |
Collapse
|
38
|
Palabiyik SS, Erkekoglu P, Zeybek ND, Kizilgun M, Baydar DE, Sahin G, Giray BK. Protective effect of lycopene against ochratoxin A induced renal oxidative stress and apoptosis in rats. ACTA ACUST UNITED AC 2013; 65:853-61. [PMID: 23332503 DOI: 10.1016/j.etp.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/27/2012] [Accepted: 12/14/2012] [Indexed: 12/15/2022]
Abstract
This study was designed to investigate the possible protective effect of lycopene against the renal toxic effects of OTA. Male Sprague-Dawley rats (<200 g, n=6) were treated with OTA (0.5 mg/kg/day) and/or lycopene (5 mg/kg/day) by gavage for 14 days. Histopathological examinations were performed and apoptotic cell death in both cortex and medulla was evaluated by TUNEL assay. Besides, biochemical parameters and activities of renal antioxidant selenoenzymes [glutathione peroxidase 1 (GPx1), thioredoxin reductase (TrxR)], catalase (CAT), superoxide dismutase (SOD); concentrations of total glutathione (GSH), and malondialdehyde (MDA) levels were measured. OTA treatment was found to induce oxidative stress in rat kidney, as evidenced by marked decreases in CAT (35%) activity and GSH levels (44%) as well as increase in SOD activity (22%) vs control group. Furthermore, TUNEL analysis revealed a significant increase in the number of TUNEL-positive cells in cortex (49%) and medulla (75%) in OTA administrated group compared to control (p<0.05). Lycopene supplementation with OTA increased GPx1 activity and GSH levels, and decreased apoptotic cell death in both cortex and medulla vs. control. The results of this study showed that at least one of the mechanisms underlying the renal toxicity of OTA is oxidative stress and apoptosis is the major form of cell death caused by OTA. Besides, our data indicate that the natural antioxidant lycopene might be partially protective against OTA-induced nephrotoxicity and oxidative stress in rat.
Collapse
Affiliation(s)
- S Sezin Palabiyik
- Hacettepe University, Faculty of Pharmacy, Department of Toxicology, 06100 Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
39
|
Saad EA. Kidney response to L-arginine treatment of carbon tetrachloride-induced hepatic injury in mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ns.2013.51001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Palabiyik S, Erkekoglu P, Zeybek N, Kızılgun M, Sahin G, Giray BK. Ochratoxin A causes oxidative stress and cell death in rat liver. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2012.1446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of ochratoxin A (OTA) on oxidant/antioxidant status and on histopathological changes and apoptotic cell death in livers of male Sprague-Dawley rats has been investigated. OTA (0.5 mg/kg body weight/day) was administered by oral route for 14 days. Plasma biochemical parameters, activities of liver selenoenzymes (glutathione peroxidase-1, thioredoxin reductase) and antioxidant enzymes (catalase, superoxide dismutase, glutathione S-transferase), and levels of total glutathione and thiobarbituric acid reactive substance in hepatic tissue were measured. In addition, histopathological examinations were performed and apoptotic cell death of hepatocytes was evaluated by the TdT-mediated dUTP nick-end labelling (TUNEL) assay. OTA exposure was found to induce focal necrosis of hepatocytes and mononuclear cell infiltration. Besides, exposure to OTA caused an imbalance in oxidant and antioxidant parameters in the rat liver, as evidenced by significant decreases in glutathione S-transferase activity and glutathione levels, and marked increases in concentrations of thiobarbituric acid reactive substances. Furthermore, TUNEL analysis revealed a significant ~2.7-fold increase in the number of TUNEL-positive liver cells of rats exposed to OTA compared to the control group. The results of this study showed that oxidative stress is at least one of the mechanisms underlying the hepatic toxicity of OTA, and that both necrosis and apoptosis are types of cell death in the hepatic toxicity of this mycotoxin.
Collapse
Affiliation(s)
- S.S. Palabiyik
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Atatürk University, 25240 Erzurum, Turkey
| | - P. Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
| | - N.D. Zeybek
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, 06100 Ankara, Turkey
| | - M. Kızılgun
- Department of Biochemistry, Diskapi Children's Health and Diseases, Hematology, Oncology Training and Research Hospital, 06590 Ankara, Turkey
| | - G. Sahin
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Eastern Mediterranean University, Famagusta T.R. North Cyprus via Mersin 10, Turkey
| | - B. Kocer Giray
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
| |
Collapse
|
41
|
Mercan S, Eren B. Protective role of melatonin supplementation against nicotine-induced liver damage in mouse. Toxicol Ind Health 2012; 29:888-96. [DOI: 10.1177/0748233712446725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was carried out to determine histopathological effects of nicotine, one of the most significant components of tobacco, on mouse liver and ameliorative effect of melatonin on liver damage. A total of 140 mature Swiss Albino mice ( Mus musculus) were divided into four experimental groups: control group, nicotine group, melatonin group and nicotine + melatonin group. Each group was further subdivided into seven groups (five mice each) according to the time of killing (12 h and days 1, 3, 5, 7, 14 and 21 after drug administration). In nicotine and nicotine + melatonin groups, 3 mg/kg of nicotine was injected intraperitoneally every day until killing. The nicotine + melatonin group was additionally injected with 10 mg/kg of melatonin after 30 min of nicotine injection. The melatonin group was injected only with 10 mg/kg of melatonin every day until killing. All the treatments were given 2 h before sunset, when melatonin receptors were active. After the last injection, five mice from each group were killed at 12th hour and on days 1, 3, 5, 7, 14 and 21; the livers were removed for histopathological processing by light microscopy. The histopathological results revealed time-dependent degeneration in the livers of mice in nicotine group. Regenerative changes in the nicotine and melatonin groups were observed when compared with nicotine groups.
Collapse
Affiliation(s)
- Sevcan Mercan
- Department of Biology, Faculty of Arts and Science, Ondokuz Mayıs University, Samsun, Turkey
| | - Banu Eren
- Department of Biology, Faculty of Arts and Science, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
42
|
Abstract
Melatonin, the hormone of darkness and messenger of the photoperiod, is also well known to exhibit strong direct and indirect antioxidant properties. Melatonin has previously been demonstrated to be a powerful organ protective substance in numerous models of injury; these beneficial effects have been attributed to the hormone’s intense radical scavenging capacity. The present report reviews the hepatoprotective potential of the pineal hormone in various models of oxidative stress in vivo, and summarizes the extensive literature showing that melatonin may be a suitable experimental substance to reduce liver damage after sepsis, hemorrhagic shock, ischemia/reperfusion, and in numerous models of toxic liver injury. Melatonin’s influence on hepatic antioxidant enzymes and other potentially relevant pathways, such as nitric oxide signaling, hepatic cytokine and heat shock protein expression, are evaluated. Based on recent literature demonstrating the functional relevance of melatonin receptor activation for hepatic organ protection, this article finally suggests that melatonin receptors could mediate the hepatoprotective actions of melatonin therapy.
Collapse
|
43
|
Ali A, Abdu S, Alansari S. Renoprotective Effect of Date Fruit Extract on Ochratoxin (A) Induced-oxidative Stress in Distal Tubules of Rat: A Light and Electron Microscopic Study. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/krj.2011.13.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
El-Khayat Z, Ezzat AR, Arbid MS, Rasheed WI, Elias TR. Potential Effects of Bee Honey and Propolis Against the Toxicity of Ochratoxin A in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.3889/mjms.1857-5773.2009.0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Madrigal-Santillán E, Morales-González JA, Vargas-Mendoza N, Reyes-Ramírez P, Cruz-Jaime S, Sumaya-Martínez T, Pérez-Pastén R, Madrigal-Bujaidar E. Antigenotoxic studies of different substances to reduce the DNA damage induced by aflatoxin B(1) and ochratoxin A. Toxins (Basel) 2010; 2:738-757. [PMID: 22069607 PMCID: PMC3153197 DOI: 10.3390/toxins2040738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are produced mainly by the mycelial structure of filamentous fungi, or more specifically, molds. These secondary metabolites are synthesized during the end of the exponential growth phase and appear to have no biochemical significance in fungal growth and development. The contamination of foods and feeds with mycotoxins is a significant problem for the adverse effects on humans, animals, and crops that result in illnesses and economic losses. The toxic effect of the ingestion of mycotoxins in humans and animals depends on a number of factors including intake levels, duration of exposure, toxin species, mechanisms of action, metabolism, and defense mechanisms. In general, the consumption of contaminated food and feed with mycotoxin induces to neurotoxic, immunosuppressive, teratogenic, mutagenic, and carcinogenic effect in humans and/or animals. The most significant mycotoxins in terms of public health and agronomic perspective include the aflatoxins, ochratoxin A (OTA), trichothecenes, fumonisins, patulin, and the ergot alkaloids. Due to the detrimental effects of these mycotoxins, several strategies have been developed in order to reduce the risk of exposure. These include the degradation, destruction, inactivation or removal of mycotoxins through chemical, physical and biological methods. However, the results obtained with these methods have not been optimal, because they may change the organoleptic characteristics and nutritional values of food. Another alternative strategy to prevent or reduce the toxic effects of mycotoxins is by applying antimutagenic agents. These substances act according to several extra- or intracellular mechanisms, their main goal being to avoid the interaction of mycotoxins with DNA; as a consequence of their action, these agents would inhibit mutagenesis and carcinogenesis. This article reviews the main strategies used to control AFB(1) and ochratoxin A and contains an analysis of some antigenotoxic substances that reduce the DNA damage caused by these mycotoxins.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (E.M.B.)
| | - José A. Morales-González
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Nancy Vargas-Mendoza
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Patricia Reyes-Ramírez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Sandra Cruz-Jaime
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Teresa Sumaya-Martínez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo., Ex-Hacienda de la Concepción. Tilcuautla. Pachuca de Soto, Hidalgo. CP 42080, México; (J.A.M.); (N.V.); (P.R.); (S.C.); (T.S.)
| | - Ricardo Pérez-Pastén
- Laboratorio de Toxicología Preclínica, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (R.P.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, I.P.N., Av. Wilfrido Massieu. Unidad A. López Mateos. Zacatenco. Col Lindavista. D.F. CP 07738, México; (E.M.B.)
| |
Collapse
|
46
|
Ameliorative effect of emblica officinalis aqueous extract on ochratoxin-induced lipid peroxidation in the kidney and liver of mice. Int J Occup Med Environ Health 2010; 23:63-73. [DOI: 10.2478/v10001-010-0009-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Erol FS, Kaplan M, Tiftikci M, Yakar H, Ozercan I, Ilhan N, Topsakal C. Comparison of the effects of octreotide and melatonin in preventing nerve injury in rats with experimental spinal cord injury. J Clin Neurosci 2008; 15:784-90. [DOI: 10.1016/j.jocn.2007.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 06/01/2007] [Indexed: 11/28/2022]
|
48
|
Palma N, Cinelli S, Sapora O, Wilson SH, Dogliotti E. Ochratoxin A-induced mutagenesis in mammalian cells is consistent with the production of oxidative stress. Chem Res Toxicol 2007; 20:1031-7. [PMID: 17567156 PMCID: PMC2367102 DOI: 10.1021/tx700027j] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin in food and a powerful nephrocarcinogen in rats. The mutagenicity of OTA has been extensively investigated but with conflicting results, thus leaving open the mechanistic question for OTA carcinogenicity. Here, we examined the mutagenicity of OTA by using well-standardized mutation assays such as the hypoxanthine-guanine phosphoribosyltransferase (HPRT) assay in Chinese hamster V79 cells and the thymidine kinase assay in mouse lymphoma LY5178 cells. OTA-induced HPRT mutations were characterized at the molecular level. In V79 cells, OTA produced a dose- and time-related decrease in cell number as a consequence of the transitory cytostatic effect mediated by G2/M cell cycle arrest. In both mutation assays, OTA was weakly mutagenic and this effect was independent of biotransformation. OTA-induced mutations were characterized by point mutations (48%) and a lack of a detectable reverse-transcription polymerase chain reaction product (52%). The pattern of OTA-induced point mutations was similar to that of spontaneous mutants, suggesting that OTA induced an increase of the endogenous oxidative metabolism but not covalent DNA adducts. Our data support a model where OTA is mutagenic via oxidative DNA damage induction.
Collapse
Affiliation(s)
- Nieves Palma
- Department of Environment and Primary Prevention, Istituto Superiore di Sanita', Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
49
|
Subramanian P, Mirunalini S, Pandi-Perumal SR, Trakht I, Cardinali DP. Melatonin treatment improves the antioxidant status and decreases lipid content in brain and liver of rats. Eur J Pharmacol 2007; 571:116-9. [PMID: 17720153 DOI: 10.1016/j.ejphar.2007.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/25/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
This study examines the effect of a daily administration of melatonin for 45 days at two doses (0.5 and 1.0 mg/kg body wt.) on antioxidant status, lipid peroxidation and lipid profile in the brain and liver in rats. Both doses of melatonin caused a significant decrease in lipid peroxidation and the levels of cholesterol, phospholipids, triglycerides and free fatty acids in the examined tissues. Concomitantly, the treatment with melatonin augmented the activity of the brain and liver antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase as well as increased glutathione levels. These results offer a support to the hypothesis that melatonin in pharmacological amounts effectively reduces oxidative stress and acts as an antihyperlipidemic agent.
Collapse
Affiliation(s)
- Perumal Subramanian
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
50
|
Gagliano N, Donne ID, Torri C, Migliori M, Grizzi F, Milzani A, Filippi C, Annoni G, Colombo P, Costa F, Ceva-Grimaldi G, Bertelli AAE, Giovannini L, Gioia M. Early cytotoxic effects of ochratoxin A in rat liver: a morphological, biochemical and molecular study. Toxicology 2006; 225:214-224. [PMID: 16857307 DOI: 10.1016/j.tox.2006.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/01/2006] [Accepted: 06/06/2006] [Indexed: 11/18/2022]
Abstract
We characterized the overall early effect of chronic ochratoxin A (OTA) treatment on rat liver, analyzing different aspects related to: (i) fibrosis, by measuring collagen content and turnover, and alpha-smooth muscle actin (alphaSMA); (ii) oxidative stress and stress response, by analyzing protein carbonylation, superoxide dismutase (SOD) and heat shock protein (HSP70) gene expression; (iii) the possible tumor promoter effect, evaluating cadherin and connexin (CX) mRNA levels. Light microscopy analysis showed no histological differences in OTA-treated and control (CT) rats. Collagen content, determined by computer analysis of Sirius red-stained liver sections, was similar in both groups. In liver homogenates COL-I, COL-III, TIMP-1 and TGF-beta1 mRNA levels and alphaSMA were unaffected by OTA. Matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 protein levels were also similar in the two groups. Protein carbonylation, a marker of severe oxidative stress, was not evident in the homogenates of OTA-treated livers; superoxide dismutase (SOD) mRNA tended to be lower and HSP70 was strongly down-regulated. OTA reduced E-cadherin and DSC-2 transcription, and down-regulated liver CX26, CX32 and CX43. In conclusion, these in vivo results show that OTA-induced liver injury involves a reduction in the ability to counterbalance oxidative stress, maybe leading to altered gap junction intercellular communication and loss of cell adhesion and polarity. This suggests that mild oxidative damage might be a key factor, in combination with other cytotoxic effects, in triggering the promotion of liver tumors after exposure to OTA.
Collapse
Affiliation(s)
- Nicoletta Gagliano
- Department of Human Morphology-LITA Segrate, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|