1
|
Asvad SR, Esmaili-Sari A, Behrooz RD, Rajaei F, Valinasab T, Chakraborty P. Comparison of Cd, Cu, Se, and Zn Concentration in the Muscle and Hepatopancreas of Sepia pharaonis and Uroteuthis duvauceli in the North of Persian Gulf (Iran). Biol Trace Elem Res 2024; 202:743-753. [PMID: 37266897 DOI: 10.1007/s12011-023-03712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
The objective of this research was to examine and contrast the levels of cadmium (Cd), copper (Cu), zinc (Zn), and selenium (Se) in the muscle and hepatopancreas tissues of two species, namely pharaoh cuttlefish (Sepia pharaonis) and Indian squid (Uroteuthis duvauceli), from the Persian Gulf. A total of thirty individuals of each species were gathered in January 2009 from the northern waters of the Persian Gulf. The metal concentrations were significantly higher in muscle tissue (p < 0.05) than in other tissues. S. pharaonis had higher metal concentrations than U. duvauceli. In the muscle and hepatopancreas samples of S. pharaonis, the highest mean concentrations were found to be for Zn (58.45 ± 0.96 µg/g dw) and Cu (1541.47 ± 192.15 µg/g dw), respectively. In U. duvauceli, the highest concentration of measured elements was seen for Zn in both muscle (36.52 ± 0.56 µg/g dw) and hepatopancreas (60.94 ± 2.65 µg/g dw). Se had the lowest concentration among the elements measured in both species. There was a negative and significant correlation between Cu and biometrical factors (total body length and weight) in both muscle and hepatopancreas samples of S. pharaonic and only in the muscle samples of U. duvauceli (p < 0.01, R2 = - 052; p < 0.01, R2 = - 0.055). However, there was a strong correlation between Zn and biometrical factors in hepatopancreas samples of both species. The comparison of metal concentrations with standards revealed that only Cd levels in S. pharaonis exceeded the ESFA and WHO standards, whereas other metals were below the standards.
Collapse
Affiliation(s)
- Seyed Reza Asvad
- Department of Environment Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, Nour, Mazandaran, Iran.
| | - Abbas Esmaili-Sari
- Department of Environment Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, Nour, Mazandaran, Iran
| | - Reza Dahmardeh Behrooz
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Sistan, 98615-538, Zabol, Iran.
| | - Fatemeh Rajaei
- Department of Environmental Sciences, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Zanjan, Iran
| | - Touraj Valinasab
- Agricultural Research, Education and Extension Organization, Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change, SRM Institute of Science and Technology, Kancheepuram District603203, Tamil Nadu, Kattankulathur-Chennai, India
| |
Collapse
|
2
|
Ajala M, Ameur WB, Annabi A. First evidence of the utility of cephalopods for biomonitoring program in the field: case of Sepia officinalis south west of Mediterranean Sea (Gulf of Gabes, Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28675-28687. [PMID: 34988792 DOI: 10.1007/s11356-021-17804-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
This study was carried out to determine the concentration of selected heavy metals in common cuttlefish (Sepia officinalis) caught in the south west of Mediterranean Sea (Gulf of Gabes, Tunisia). To reach this objective, cuttlefish samples were collected from each area (Sfax and Djerba) situated along the Gulf of Gabes, and the concentrations of heavy metals (Cu, Zn, Pb, and Cd) were measured in the gills, gonads, digestive glands, and muscles. Sample preparation and quantification of the metals were accomplished via the wet digestion method and atomic absorption spectroscopy. The levels of heavy metals varied significantly among organs and sites. In fact, the population from Sfax (Gargour) shows the highest concentrations of copper, zinc, and lead compared to the population from Djerba. Globally, recorded metal concentrations were within the range or below the levels in similar species from other regions across the world. To our knowledge, this study is the first that interests to the bioaccumulation of metals in this cuttlefish species from the two investigated areas and to the evaluation of their levels in different tissues.
Collapse
Affiliation(s)
- Marwa Ajala
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabès, Tunisia
| | - Walid Ben Ameur
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabès, Tunisia
| | - Ali Annabi
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabès, Tunisia.
| |
Collapse
|
3
|
Doose C, Fadhlaoui M, Morin S, Fortin C. Thorium Exposure Drives Fatty Acid and Metal Transfer from Biofilms to the Grazer Lymnaea sp. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2220-2228. [PMID: 33835522 DOI: 10.1002/etc.5067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Aquatic ecotoxicological risks associated with tetravalent metallic elements such as thorium (Th) are still poorly understood. Periphytic biofilm represents an important food source in aquatic environments; thus, such risks could severely affect nutrient and energy cycling in these ecosystems. The present study investigated the potential for Th to change the fatty acid composition of biofilm communities. Bioaccumulation of Th and fatty acids were measured after 4 wk to 2 exposure conditions: a control (C0) and Th exposure (C10). Some major fatty acids such as C16:1n-7 and docosahexaenoic acid C22:6n-3 differed significantly between control and C10 conditions. To determine if Th can be trophically transferred and to investigate the impacts of nutritional quality changes on primary consumers, common pond snails (Lymnaea sp.) were fed for 4 wk with control and Th-exposed biofilm. Thorium appeared to be trophically transferable to the grazers, although we cannot exclude that part of the Th accumulated by the snails may have been taken from the water through release from the biofilms. The composition of major fatty acids observed in the grazers was also significantly affected, notably by a decrease of total polyunsaturated fatty acids. These results indicate that very low Th concentrations can decrease the nutritional quality of organisms at the base of the food chain. Environ Toxicol Chem 2021;40:2220-2228. © 2021 SETAC.
Collapse
Affiliation(s)
- Caroline Doose
- Institut national de la recherche scientifique, Quebec City, Quebec, Canada
| | - Mariem Fadhlaoui
- Institut national de la recherche scientifique, Quebec City, Quebec, Canada
| | | | - Claude Fortin
- Institut national de la recherche scientifique, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Lischka A, Braid H, Cherel Y, Bolstad K, Lacoue-Labarthe T, Bustamante P. Influence of sexual dimorphism on stable isotopes and trace element concentrations in the greater hooked squid Moroteuthopsis ingens from New Zealand waters. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104976. [PMID: 32662429 DOI: 10.1016/j.marenvres.2020.104976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The Chatham Rise, one of the highest offshore-primary production regions in New Zealand waters, hosts a great abundance and diversity of deep-sea cephalopods including the greater hooked squid, Moroteuthopsis ingens. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, Se, V, and Zn) were assessed in female and male specimens of different size classes (89-563 mm mantle length). Values of δ13C and δ15N were overall higher in females and δ13C was further influenced by size and sex. Both muscular mantle (the largest fraction of the total body mass) and digestive gland (the known main storage organ for Ag, Cd, Cu and Zn in many cephalopods) tissues were analysed. Higher levels of Cd were observed in males than in females. A positive effect was found between size and Hg concentrations, which could be related to the ontogenetic descent of larger specimens into deeper waters, where they are exposed to higher Hg concentrations, and/or dietary shifts toward Hg-enriched prey with increasing size. This study provides trace element data for this abundant and ecologically important species, and further reveals higher trace element concentrations (especially Hg) in M. ingens from the Chatham Rise, compared to specimens from the sub-Antarctic zone.
Collapse
Affiliation(s)
- A Lischka
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142, Auckland, New Zealand.
| | - H Braid
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142, Auckland, New Zealand
| | - Y Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - K Bolstad
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142, Auckland, New Zealand
| | - T Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| |
Collapse
|
5
|
Pankyamma V, Mokam SY, Debbarma J, Rao B M. Effects of microwave vacuum drying and conventional drying methods on the physicochemical and microstructural properties of squid shreds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5778-5783. [PMID: 31162679 DOI: 10.1002/jsfa.9846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Microwave vacuum drying is an innovative technology for drying fruits and vegetables. However, this technology has not been well explored for drying seafood. In the present study, the effects of microwave vacuum drying (MVD), hot air drying (HAD) and sun drying (SD) on the proximate composition, texture, rehydration, color and microstructure of squid shreds were investigated. RESULTS Proximate components of the samples dried by different methods were not significantly different, but the drying time was markedly lower for the MVD technique. The rehydration rate and water absorption index followed the order MVD > HAD > SD. The extent of browning as indicated by the b* value was significantly lower in MVD samples (14.38) compared with HAD (19.47) and SD (21.94) samples. MVD resulted in the lowest values for hardness, springiness and chewiness of both dried and rehydrated squid shreds, while SD recorded the highest values for the same. Scanning electron microscopy (SEM) images of the muscle fiber indicated muscle shrinkage and more toughness in SD samples, whereas Fourier transform infrared (FTIR) spectra revealed a small extent of protein degradation in MVD samples. CONCLUSION The study revealed that higher-quality dried squid shreds can be prepared by microwave vacuum drying in a shorter time compared with the traditional methods of sun drying and hot air drying. Hence microwave vacuum drying can be used as an energy-efficient and time-saving technology to make dried seafood of superior quality. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Viji Pankyamma
- Visakhapatnam Research Centre of Central Institute of Fisheries Technology, Pandurangapuram, Visakhapatnam, India
| | | | - Jesmi Debbarma
- Visakhapatnam Research Centre of Central Institute of Fisheries Technology, Pandurangapuram, Visakhapatnam, India
| | - Madhusudana Rao B
- Visakhapatnam Research Centre of Central Institute of Fisheries Technology, Pandurangapuram, Visakhapatnam, India
| |
Collapse
|
6
|
Gilbert BM, Avenant-Oldewage A. Parasites and pollution: the effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18742-18769. [PMID: 28660518 DOI: 10.1007/s11356-017-9481-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host-parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.
Collapse
|
7
|
Si YX, Lee J, Cheng JG, Yin SJ, Park YD, Qian GY, Jiang XM. Kinetics for Zinc Ion Induced Sepia Pharaonis Arginine Kinase Inactivation and Aggregation. Protein Pept Lett 2017; 23:508-17. [PMID: 27030550 PMCID: PMC5427814 DOI: 10.2174/0929866523666160331144049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 03/16/2016] [Indexed: 11/22/2022]
Abstract
Arginine kinase is an essential enzyme which is closely related to energy metabolism in marine invertebrates. Arginine kinase provides a significant role in quick response to environmental change and stress. In this study, we simulated a tertiary structure of Sepia pharaonis arginine kinase (SPAK) based on the gene sequence and conducted the molecular dynamics simulations between SPAK and Zn2+. Using these results, the Zn2+ binding sites were predicted and the initial effect of Zn2+ on the SPAK structure was elucidated. Subsequently, the experimental kinetic results were compared with the simulation results. Zn2+ markedly inhibited the activity of SPAK in a manner of non-competitive inhibitions for both arginine and ATP. We also found that Zn2+ binding to SPAK resulted in tertiary conformational change accompanying with the hydrophobic residues exposure. These changes caused SPAK aggregation directly. We screened two protectants, glycine and proline, which effectively prevented SPAK aggregation and recovered the structure and activity. Overall, our study suggested the inhibitory effect of Zn2+ on SPAK and Zn2+ can trigger SPAK aggregation after exposing large extent of hydrophobic surface. The protective effects of glycine and proline against Zn2+ on SPAK folding were also demonstrated.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, P.R China.
| | - Xia-Min Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, P.R. China.
| |
Collapse
|
8
|
Nho EY, Khan N, Choi JY, Kim JS, Park KS, Kim KS. Determination of Toxic Metals in Cephalopods from South Korea. ANAL LETT 2016. [DOI: 10.1080/00032719.2015.1107082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Isani G, Carpenè E. Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules 2014; 4:435-57. [PMID: 24970224 PMCID: PMC4101491 DOI: 10.3390/biom4020435] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/19/2022] Open
Abstract
Metallothioneins (MTs) are ubiquitous low molecular weight cysteine-rich proteins characterized by high affinity for d10 electron configuration metals, including essential (Zn and Cu) and non-essential (Cd and Hg) trace elements. The biological role of these ancient and well-conserved multifunctional proteins has been debated since MTs were first discovered in 1957. Their main hypothesized functions are: (1) homeostasis of Zn and Cu; (2) detoxification of Cd, and Hg; and (3) free radical scavenging. This review will focus on MTs in unconventional animals, those not traditionally studied in veterinary medicine but of increasing interest in this field of research. Living in different environments, these animals represent an incredible source of physiological and biochemical adaptations still partly unexplored. The study of metal-MT interactions is of great interest for clinicians and researchers working in veterinary medicine, food quality and endangered species conservation.
Collapse
Affiliation(s)
- Gloria Isani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, via Tolara di sopra, 50, Ozzano Emilia, Bologna 40064, Italy.
| | - Emilio Carpenè
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, via Tolara di sopra, 50, Ozzano Emilia, Bologna 40064, Italy.
| |
Collapse
|