1
|
Mujizah EY, Kuwana S, Matsumoto K, Gushiken T, Aoyama N, Ishikawa HO, Sasamura T, Umetsu D, Inaki M, Yamakawa T, Baron M, Matsuno K. Numb Suppresses Notch-Dependent Activation of Enhancer of split during Lateral Inhibition in the Drosophila Embryonic Nervous System. Biomolecules 2024; 14:1062. [PMID: 39334829 PMCID: PMC11429637 DOI: 10.3390/biom14091062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/30/2024] Open
Abstract
The role of Drosophila numb in regulating Notch signaling and neurogenesis has been extensively studied, with a particular focus on its effects on the peripheral nervous system (PNS). Previous studies based on a single loss-of-function allele of numb, numb1, showed an antineurogenic effect on the peripheral nervous system (PNS), which revealed that the wild-type numb suppresses Notch signaling. In the current study, we examined whether this phenotype is consistently observed in loss-of-function mutations of numb. Two more numb alleles, numbEY03840 and numbEY03852, were shown to have an antineurogenic phenotype in the PNS. We also found that introducing a wild-type numb genomic fragment into numb1 homozygotes rescued their antineurogenic phenotype. These results demonstrated that loss-of-function mutations of numb universally induce this phenotype. Many components of Notch signaling are encoded by maternal effect genes, but no maternal effect of numb was observed in this study. The antineurogenic phenotype of numb was found to be dependent on the Enhancer of split (E(spl)), a downstream gene of Notch signaling. We found that the combination of E(spl) homozygous and numb1 homozygous suppressed the neurogenic phenotype of the embryonic central nervous system (CNS) associated with the E(spl) mutation. In the E(spl) allele, genes encoding basic helix-loop-helix proteins, such as m5, m6, m7, and m8, remain. Thus, in the E(spl) allele, derepression of Notch activity by numb mutation can rescue the neurogenic phenotype by increasing the expression of the remaining genes in the E(spl) complex. We also uncovered a role for numb in regulating neuronal projections. Our results further support an important role for numb in the suppression of Notch signaling during embryonic nervous system development.
Collapse
Affiliation(s)
- Elzava Yuslimatin Mujizah
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Satoshi Kuwana
- Graduate School of Arts and Sciences, University of Tokyo, Meguro 153-8902, Japan
| | - Kenjiroo Matsumoto
- Institute for Glyco-Core Research, Gifu University, Gifu 501-1193, Japan
| | - Takuma Gushiken
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Naoki Aoyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | | | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Daiki Umetsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| | - Mikiko Inaki
- School of Science, Graduate School of Science, University of Hyogo, Ako 678-1297, Japan;
| | - Tomoko Yamakawa
- Department of Industrial Engineering, Chemistry, Bioengineering and Environmental Science Course, National Institute of Technology, Ibaraki College, Hitachinaka 312-8508, Japan
| | - Martin Baron
- School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan; (E.Y.M.)
| |
Collapse
|
2
|
Pinot M, Le Borgne R. Spatio-Temporal Regulation of Notch Activation in Asymmetrically Dividing Sensory Organ Precursor Cells in Drosophila melanogaster Epithelium. Cells 2024; 13:1133. [PMID: 38994985 PMCID: PMC11240559 DOI: 10.3390/cells13131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.
Collapse
Affiliation(s)
| | - Roland Le Borgne
- Univ Rennes, Centre National de la Recherche Scientifique UMR 6290, IGDR (Institut de Génétique et Développement de Rennes), F-35000 Rennes, France
| |
Collapse
|
3
|
Liu X, Yam PT, Schlienger S, Cai E, Zhang J, Chen WJ, Torres Gutierrez O, Jimenez Amilburu V, Ramamurthy V, Ting AY, Branon TC, Cayouette M, Gen R, Marks T, Kong JH, Charron F, Ge X. Numb positively regulates Hedgehog signaling at the ciliary pocket. Nat Commun 2024; 15:3365. [PMID: 38664376 PMCID: PMC11045789 DOI: 10.1038/s41467-024-47244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Sabrina Schlienger
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Eva Cai
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | - Wei-Ju Chen
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biology, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Oscar Torres Gutierrez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA
| | | | - Vasanth Ramamurthy
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Alice Y Ting
- Departments of Genetics, of Biology, and by courtesy, of Chemistry, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Tess C Branon
- Departments of Genetics, of Biology, and by courtesy, of Chemistry, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Interline Therapeutics, South San Francisco, CA, USA
| | - Michel Cayouette
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Tessa Marks
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jennifer H Kong
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 0G4, Canada.
- Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
| | - Xuecai Ge
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95340, USA.
| |
Collapse
|
4
|
Camblor-Perujo S, Ozer Yildiz E, Küpper H, Overhoff M, Rastogi S, Bazzi H, Kononenko NL. The AP-2 complex interacts with γ-TuRC and regulates the proliferative capacity of neural progenitors. Life Sci Alliance 2024; 7:e202302029. [PMID: 38086550 PMCID: PMC10716017 DOI: 10.26508/lsa.202302029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Centrosomes are organelles that nucleate microtubules via the activity of gamma-tubulin ring complexes (γ-TuRC). In the developing brain, centrosome integrity is central to the progression of the neural progenitor cell cycle, and its loss leads to microcephaly. We show that NPCs maintain centrosome integrity via the endocytic adaptor protein complex-2 (AP-2). NPCs lacking AP-2 exhibit defects in centrosome formation and mitotic progression, accompanied by DNA damage and accumulation of p53. This function of AP-2 in regulating the proliferative capacity of NPCs is independent of its role in clathrin-mediated endocytosis and is coupled to its association with the GCP2, GCP3, and GCP4 components of γ-TuRC. We find that AP-2 maintains γ-TuRC organization and regulates centrosome function at the level of MT nucleation. Taken together, our data reveal a novel, noncanonical function of AP-2 in regulating the proliferative capacity of NPCs and open new avenues for the identification of novel therapeutic strategies for the treatment of neurodevelopmental and neurodegenerative disorders with AP-2 complex dysfunction.
Collapse
Affiliation(s)
| | - Ebru Ozer Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Hanna Küpper
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Melina Overhoff
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Saumya Rastogi
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, Natural Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Jejina A, Ayala Y, Beuchle D, Höhener T, Dörig RE, Vazquez-Pianzola P, Hernández G, Suter B. Role of BicDR in bristle shaft construction and support of BicD functions. J Cell Sci 2024; 137:jcs261408. [PMID: 38264934 PMCID: PMC10917063 DOI: 10.1242/jcs.261408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors. In the dynein-dynactin-Bicaudal-D transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here, we focus on the role of Drosophila BicD-related (BicDR, CG32137) in the development of the long bristles. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft. BicD and BicDR also support the stable expression and distribution of Rab6 and Spn-F in the bristle shaft, including the distal tip localization of Spn-F, pointing to the role of microtubule-dependent vesicle trafficking for bristle construction. BicDR supports the function of BicD, and we discuss the hypothesis whereby BicDR might transport cargo more locally, with BicD transporting cargo over long distances, such as to the distal tip. We also identified embryonic proteins that interact with BicDR and appear to be BicDR cargo. For one of them, EF1γ (also known as eEF1γ), we show that the encoding gene EF1γ interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), 14080 Tlalpan, Mexico City, Mexico
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Thomas Höhener
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Ruth E. Dörig
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), 14080 Tlalpan, Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
6
|
Jejina A, Ayala Y, Hernández G, Suter B. Role of BicDR in bristle shaft construction, tracheal development, and support of BicD functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545245. [PMID: 37398393 PMCID: PMC10312712 DOI: 10.1101/2023.06.16.545245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins, and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors, which function as multiprotein complexes. In the dynein/dynactin/Bicaudal-D (DDB) transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here we focus on the role of BicD-related (BicDR) and its contribution to microtubule-dependent transport processes. Drosophila BicDR is required for the normal development of bristles and dorsal trunk tracheae. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft and the localization of Spn-F and Rab6 at the distal tip. We show that BicDR supports the function of BicD in bristle development and our results suggest that BicDR transports cargo more locally whereas BicD is more responsible for delivering functional cargo over the long distance to the distal tip. We identified the proteins that interact with BicDR and appear to be BicDR cargo in embryonic tissues. For one of them, EF1γ, we showed that EF1γ genetically interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Switzerland
| |
Collapse
|
7
|
Rajan A, Anhezini L, Rives-Quinto N, Chhabra JY, Neville MC, Larson ED, Goodwin SF, Harrison MM, Lee CY. Low-level repressive histone marks fine-tune gene transcription in neural stem cells. eLife 2023; 12:e86127. [PMID: 37314324 PMCID: PMC10344426 DOI: 10.7554/elife.86127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/15/2023] Open
Abstract
Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Noemi Rives-Quinto
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jay Y Chhabra
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn ArborUnited States
- Rogel Cancer Center, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
8
|
Huang C, Ji C, Wang J. Current thoughts on cellular functions of numb-associated kinases. Mol Biol Rep 2023; 50:4645-4652. [PMID: 37014568 PMCID: PMC10072014 DOI: 10.1007/s11033-023-08372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
Members of the Numb-associated kinase family of serine/threonine kinases play an essential role in many cellular processes, such as endocytosis, autophagy, dendrite morphogenesis, osteoblast differentiation, and the regulation of the Notch pathway. Numb-associated kinases have been relevant to diverse diseases, including neuropathic pain, Parkinson's disease, and prostate cancer. Therefore, they are considered potential therapeutic targets. In addition, it is reported that Numb-associated kinases have been involved in the life cycle of multiple viruses such as hepatitis C virus (HCV), Ebola virus (EBOV), and dengue virus (DENV). Recently, Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten global health. Studies show that Numb-associated kinases are implicated in the infection of SARS-CoV-2 which can be suppressed by Numb-associated kinases inhibitors. Thus, Numb-associated kinases are proposed as potential host targets for broad-spectrum antiviral strategies. We will focus on the recent advances in Numb-associated kinases-related cellular functions and their potential as host targets for viral infections in this review. Questions that remained unknown on the cellular functions of Numb-associated kinases will also be discussed.
Collapse
Affiliation(s)
- Chenxi Huang
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China
| | - Cuicui Ji
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China.
| | - Juan Wang
- Department of Biology, Faculty of Environment and Life, Beijing University of Technology, 100124, Beijing, China.
| |
Collapse
|
9
|
Samanta P, Bhowmik A, Biswas S, Sarkar R, Ghosh R, Pakhira S, Mondal M, Sen S, Saha P, Hajra S. Therapeutic Effectiveness of Anticancer Agents Targeting Different Signaling Molecules Involved in Asymmetric Division of Cancer Stem Cell. Stem Cell Rev Rep 2023:10.1007/s12015-023-10523-3. [PMID: 36952080 DOI: 10.1007/s12015-023-10523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/24/2023]
Abstract
Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.
Collapse
Affiliation(s)
- Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Soummadeep Sen
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
10
|
Ortega-Campos SM, García-Heredia JM. The Multitasker Protein: A Look at the Multiple Capabilities of NUMB. Cells 2023; 12:333. [PMID: 36672267 PMCID: PMC9856935 DOI: 10.3390/cells12020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
NUMB, a plasma membrane-associated protein originally described in Drosophila, is involved in determining cell function and fate during early stages of development. It is secreted asymmetrically in dividing cells, with one daughter cell inheriting NUMB and the other inheriting its antagonist, NOTCH. NUMB has been proposed as a polarizing agent and has multiple functions, including endocytosis and serving as an adaptor in various cellular pathways such as NOTCH, Hedgehog, and the P53-MDM2 axis. Due to its role in maintaining cellular homeostasis, it has been suggested that NUMB may be involved in various human pathologies such as cancer and Alzheimer's disease. Further research on NUMB could aid in understanding disease mechanisms and advancing the field of personalized medicine and the development of new therapies.
Collapse
Affiliation(s)
- Sara M. Ortega-Campos
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
11
|
Loya-López SI, Duran P, Ran D, Calderon-Rivera A, Gomez K, Moutal A, Khanna R. Cell specific regulation of NaV1.7 activity and trafficking in rat nodose ganglia neurons. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100109. [PMID: 36531612 PMCID: PMC9755031 DOI: 10.1016/j.ynpai.2022.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated sodium NaV1.7 channel sets the threshold for electrogenesis. Mutations in the gene encoding human NaV1.7 (SCN9A) cause painful neuropathies or pain insensitivity. In dorsal root ganglion (DRG) neurons, activity and trafficking of NaV1.7 are regulated by the auxiliary collapsin response mediator protein 2 (CRMP2). Specifically, preventing addition of a small ubiquitin-like modifier (SUMO), by the E2 SUMO-conjugating enzyme Ubc9, at lysine-374 (K374) of CRMP2 reduces NaV1.7 channel trafficking and activity. We previously identified a small molecule, designated 194, that prevented CRMP2 SUMOylation by Ubc9 to reduce NaV1.7 surface expression and currents, leading to a reduction in spinal nociceptive transmission, and culminating in normalization of mechanical allodynia in models of neuropathic pain. In this study, we investigated whether NaV1.7 control via CRMP2-SUMOylation is conserved in nodose ganglion (NG) neurons. This study was motivated by our desire to develop 194 as a safe, non-opioid substitute for persistent pain, which led us to wonder how 194 would impact NaV1.7 in NG neurons, which are responsible for driving the cough reflex. We found functioning NaV1.7 channels in NG neurons; however, they were resistant to downregulation via either CRMP2 knockdown or pharmacological inhibition of CRMP2 SUMOylation by 194. CRMP2 SUMOylation and interaction with NaV1.7 was consered in NG neurons but the endocytic machinery was deficient in the endocytic adaptor protein Numb. Overexpression of Numb rescued CRMP2-dependent regulation on NaV1.7, rendering NG neurons sensitive to 194. Altogether, these data point at the existence of cell-specific mechanisms regulating NaV1.7 trafficking.
Collapse
Affiliation(s)
- Santiago I. Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| |
Collapse
|
12
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
13
|
Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021; 14:755686. [PMID: 34916907 PMCID: PMC8670310 DOI: 10.3389/fnmol.2021.755686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.
Collapse
Affiliation(s)
- María Landínez-Macías
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Olivier Urwyler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
15
|
Cao Y, Liu L, Lin J, Sun P, Guo K, Li S, Li X, Lan ZJ, Wang H, Lei Z. Dysregulation of Notch-FGF signaling axis in germ cells results in cystic dilation of the rete testis in mice. J Cell Commun Signal 2021; 16:75-92. [PMID: 34101112 PMCID: PMC8688682 DOI: 10.1007/s12079-021-00628-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022] Open
Abstract
Numb (Nb) and Numb-like (Nbl) are functionally redundant adaptor proteins that critically regulate cell fate and morphogenesis in a variety of organs. We selectively deleted Nb and Nbl in testicular germ cells by breeding Nb/Nbl floxed mice with a transgenic mouse line Tex101-Cre. The mutant mice developed unilateral or bilateral cystic dilation in the rete testis (RT). Dye trace indicated partial blockages in the testicular hilum. Morphological and immunohistochemical evaluations revealed that the lining epithelium of the cysts possessed similar characteristics of RT epithelium, suggesting that the cyst originated from dilation of the RT lumen. Spermatogenesis and the efferent ducts were unaffected. In comparisons of isolated germ cells from mutants to control mice, the Notch activity considerably increased and the expression of Notch target gene Hey1 significantly elevated. Further studies identified that germ cell Fgf4 expression negatively correlated the Notch activity and demonstrated that blockade of FGF receptors mediated FGF4 signaling induced enlargement of the RT lumen in vitro. The crucial role of the FGF4 signaling in modulation of RT development was verified by the selective germ cell Fgf4 ablation, which displayed a phenotype similar to that of germ cell Nb/Nbl null mutant males. These findings indicate that aberrant over-activation of the Notch signaling in germ cells due to Nb/Nbl abrogation impairs the RT development, which is through the suppressing germ cell Fgf4 expression. The present study uncovers the presence of a lumicrine signal pathway in which secreted/diffusible protein FGF4 produced by germ cells is essential for normal RT development.
Collapse
Affiliation(s)
- Yin Cao
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Lingyun Liu
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Jing Lin
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Penghao Sun
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Kaimin Guo
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Shengqiang Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
- Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Xian Li
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA
| | - Zi-Jian Lan
- Division of Life Sciences, Alltech, Nicholasville, KY, 40356, USA
| | - Hongliang Wang
- Department of Andrology, the First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Zhenmin Lei
- Department of OB/GYN and Women's Health, MDR Building, University of Louisville School of Medicine, 511 South Floyd Street, Louisville, KY, 40292, USA.
| |
Collapse
|
16
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
17
|
Bellec K, Pinot M, Gicquel I, Le Borgne R. The Clathrin adaptor AP-1 and Stratum act in parallel pathways to control Notch activation in Drosophila sensory organ precursors cells. Development 2021; 148:dev191437. [PMID: 33298463 PMCID: PMC7823167 DOI: 10.1242/dev.191437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022]
Abstract
Drosophila sensory organ precursors divide asymmetrically to generate pIIa/pIIb cells, the identity of which relies on activation of Notch at cytokinesis. Although Notch is present apically and basally relative to the midbody at the pIIa-pIIb interface, the basal pool of Notch is reported to be the main contributor for Notch activation in the pIIa cell. Intra-lineage signalling requires appropriate apico-basal targeting of Notch, its ligand Delta and its trafficking partner Sanpodo. We have previously reported that AP-1 and Stratum regulate the trafficking of Notch and Sanpodo from the trans-Golgi network to the basolateral membrane. Loss of AP-1 or Stratum caused mild Notch gain-of-function phenotypes. Here, we report that their concomitant loss results in a penetrant Notch gain-of-function phenotype, indicating that they control parallel pathways. Although unequal partitioning of cell fate determinants and cell polarity were unaffected, we observed increased amounts of signalling-competent Notch as well as Delta and Sanpodo at the apical pIIa-pIIb interface, at the expense of the basal pool of Notch. We propose that AP-1 and Stratum operate in parallel pathways to localize Notch and control where receptor activation takes place.
Collapse
Affiliation(s)
- Karen Bellec
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Mathieu Pinot
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Isabelle Gicquel
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
18
|
Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development. Sci Rep 2020; 10:21731. [PMID: 33303974 PMCID: PMC7729928 DOI: 10.1038/s41598-020-78831-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of Drosophila melanogaster. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of numb or the α-subunit of Adaptor Protein complex-2 enhance dominantly this phenotype while removing a copy of Notch or sanpodo suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.
Collapse
|
19
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
20
|
Xian J, Cheng Y, Qin X, Cao Y, Luo Y, Cao Y. Progress in the research of p53 tumour suppressor activity controlled by Numb in triple-negative breast cancer. J Cell Mol Med 2020; 24:7451-7459. [PMID: 32501652 PMCID: PMC7339219 DOI: 10.1111/jcmm.15366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/16/2019] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
Numb is known as a cell fate determinant as it identifies the direction of cell differentiation via asymmetrical partitioning during mitosis. It is considered as a tumour suppressor, and a frequent loss of Numb expression in breast cancer is noted. Numb forms a tri-complex with p53 and E3 ubiquitin ligase HDM2 (also known as MDM2), thereby preventing the ubiquitination and degradation of p53. In this study, we examined Numb expression in 125 patients with triple-negative breast cancer (TNBC). The results showed that 61 (48.8%) patients presented with a deficient or decreased Numb expression. The percentage of Ki67 > 14% in the retained Numb group was significantly lower than that in the decreased and deficient Numb groups (86.00% vs. 98.40%, P = .0171). This study aimed to detect the expression and migration of Numb, HDM2 and p53 in the membrane, cytoplasmic and nuclear fractions of normal mammary epithelial cell line MCF-10A and basal-like TNBC cell line MDA-MB-231. We obtained the cell fractions to identify changes in these three protein levels after the re-expression of NUMB in the MDA-MB-231 cells and the knocking down of NUMB in the MCF-10A cells. Results showed that Numb regulates p53 levels in the nucleus where the protein levels of Numb are positively correlated with p53 levels, regardless if it is re-expressed in the MDA-MB-231 cells or knocked down in the MCF-10A cells. Moreover, HDM2 was remarkably decreased only in the membrane fraction of NUMB knock-down cells; however, its mRNA levels were increased significantly. Our results reveal a previously unknown molecular mechanism that Numb can migrate into the nucleus and interact with HDM2 and p53.
Collapse
Affiliation(s)
- Jie Xian
- School of Basic Medical SciencesMedical University of ChongqingChongqingChina
| | - Yu Cheng
- School of Laboratory MedicineMedical University of ChongqingChongqingChina
| | - Xue Qin
- School of Basic Medical SciencesMedical University of ChongqingChongqingChina
| | - Yijia Cao
- Breast SurgeryChongqing Traditional Chinese Medicine HospitalChongqingChina
| | - Yetao Luo
- School of Public Health and ManagementMedical University of ChongqingChongqingChina
| | - Youde Cao
- School of Basic Medical SciencesMedical University of ChongqingChongqingChina
| |
Collapse
|
21
|
Luo Z, Mu L, Zheng Y, Shen W, Li J, Xu L, Zhong B, Liu Y, Zhou Y. NUMB enhances Notch signaling by repressing ubiquitination of NOTCH1 intracellular domain. J Mol Cell Biol 2020; 12:345-358. [PMID: 31504682 PMCID: PMC7288735 DOI: 10.1093/jmcb/mjz088] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
The release and nuclear translocation of the intracellular domain of Notch receptor (NICD) is the prerequisite for Notch signaling-mediated transcriptional activation. NICD is subjected to various posttranslational modifications including ubiquitination. Here, we surprisingly found that NUMB proteins stabilize the intracellular domain of NOTCH1 receptor (N1ICD) by regulating the ubiquitin-proteasome machinery, which is independent of NUMB's role in modulating endocytosis. BAP1, a deubiquitinating enzyme (DUB), was further identified as a positive N1ICD regulator, and NUMB facilitates the association between N1ICD and BAP1 to stabilize N1ICD. Intriguingly, BAP1 stabilizes N1ICD independent of its DUB activity but relying on the BRCA1-inhibiting function. BAP1 strengthens Notch signaling and maintains stem-like properties of cortical neural progenitor cells. Thus, NUMB enhances Notch signaling by regulating the ubiquitinating activity of the BAP1-BRCA1 complex.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lili Mu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yue Zheng
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Wenchen Shen
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Jiali Li
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Lichao Xu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Bo Zhong
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Yan Zhou
- College of Life Sciences, Renmin Hospital of Wuhan University, Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Heng J, Lv P, Zhang Y, Cheng X, Wang L, Ma D, Liu F. Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol 2020; 18:e3000696. [PMID: 32275659 PMCID: PMC7176290 DOI: 10.1371/journal.pbio.3000696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/22/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that various developmental signals play diverse roles in hematopoietic stem and progenitor cell (HSPC) production; however, how these signaling pathways are orchestrated remains incompletely understood. Here, we report that Rab5c is essential for HSPC specification by endocytic trafficking of Notch and AKT signaling in zebrafish embryos. Rab5c deficiency leads to defects in HSPC production. Mechanistically, Rab5c regulates hemogenic endothelium (HE) specification by endocytic trafficking of Notch ligands and receptor. We further show that the interaction between Rab5c and Appl1 in the endosome is required for the survival of HE in the ventral wall of the dorsal aorta through AKT signaling. Interestingly, Rab5c overactivation can also lead to defects in HSPC production, which is attributed to excessive endolysosomal trafficking inducing Notch signaling defect. Taken together, our findings establish a previously unrecognized role of Rab5c-mediated endocytic trafficking in HSPC development and provide new insights into how spatiotemporal signals are orchestrated to accurately execute cell fate transition. Cell-autonomous Notch signaling regulated by the membrane trafficking protein Rab5c plays an instructive role in hematopoietic stem and progenitor cell specification, while the AKT signaling seems to provide a permissive signal to maintain hemogenic endothelium survival.
Collapse
Affiliation(s)
- Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinjie Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
23
|
Chagas PF, Baroni M, Brassesco MS, Tone LG. Interplay between the RNA binding‐protein Musashi and developmental signaling pathways. J Gene Med 2020; 22:e3136. [DOI: 10.1002/jgm.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Pablo Ferreira Chagas
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Mirella Baroni
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão PretoUniversity of São Paulo Brazil
| | - Luiz Gonzaga Tone
- Department of GeneticsRibeirão Preto Medical School, University of São Paulo Ribeirão Preto São Paulo Brazil
- Department of PediatricsRibeirão Preto Medical School São Paulo
| |
Collapse
|
24
|
Domingos PM, Jenny A, Combie KF, Del Alamo D, Mlodzik M, Steller H, Mollereau B. Regulation of Numb during planar cell polarity establishment in the Drosophila eye. Mech Dev 2019; 160:103583. [PMID: 31678471 DOI: 10.1016/j.mod.2019.103583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
The establishment of planar cell polarity (PCP) in the Drosophila eye requires correct specification of the R3/R4 pair of photoreceptor cells, determined by a Frizzled mediated signaling event that specifies R3 and induces Delta to activate Notch signaling in the neighboring cell, specifying it as R4. Here, we investigated the role of the Notch signaling negative regulator Numb in the specification of R3/R4 fates and PCP establishment in the Drosophila eye. We observed that Numb is transiently upregulated in R3 at the time of R3/R4 specification. This regulation of Numb levels in developing photoreceptors occurs at the post-transcriptional level and is dependent on Dishevelled, an effector of Frizzled signaling, and Lethal Giant Larva. We detected PCP defects in cells homozygous for numb15, but these defects were due to a loss of function mutation in fat (fatQ805⁎) being present in the numb15 chromosome. However, mosaic overexpression of Numb in R4 precursors (only) caused PCP defects and numb loss-of-function alleles had a modifying effect on the defects found in a hypomorphic dishevelled mutation. Our results suggest that Numb levels are upregulated to reinforce the bias of Notch signaling activation in the R3/R4 pair, two post-mitotic cells that are not specified by asymmetric cell division.
Collapse
Affiliation(s)
- Pedro M Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras 2780-157, Portugal; Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA.
| | - Andreas Jenny
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin Building, Room 503, Bronx NY10461, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Keon F Combie
- Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA
| | - David Del Alamo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; European Molecular Biology Organization, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA
| | - Bertrand Mollereau
- Strang Laboratory of Apoptosis and Cancer Research, The Rockefeller University, Box 252, 1230 York Avenue, New York, NY 10065, USA; Université de Lyon, ENSL, UCBL, CNRS, LBMC, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
25
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
26
|
Abdi K, Neves G, Pyun J, Kiziltug E, Ahrens A, Kuo CT. EGFR Signaling Termination via Numb Trafficking in Ependymal Progenitors Controls Postnatal Neurogenic Niche Differentiation. Cell Rep 2019; 28:2012-2022.e4. [PMID: 31433979 PMCID: PMC6768562 DOI: 10.1016/j.celrep.2019.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/02/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Specialized microenvironments, called niches, control adult stem cell proliferation and differentiation. The brain lateral ventricular (LV) neurogenic niche is generated from distinct postnatal radial glial progenitors (pRGPs), giving rise to adult neural stem cells (NSCs) and niche ependymal cells (ECs). Cellular-intrinsic programs govern stem versus supporting cell maturation during adult niche assembly, but how they are differentially initiated within a similar microenvironment remains unknown. Using chemical approaches, we discovered that EGFR signaling powerfully inhibits EC differentiation by suppressing multiciliogenesis. We found that EC pRGPs actively terminated EGF activation through receptor redistribution away from CSF-contacting apical domains and that randomized EGFR membrane targeting blocked EC differentiation. Mechanistically, we uncovered spatiotemporal interactions between EGFR and endocytic adaptor protein Numb. Ca2+-dependent basolateral targeting of Numb is necessary and sufficient for proper EGFR redistribution. These results reveal a previously unknown cellular mechanism for neighboring progenitors to differentially engage environmental signals, initiating adult stem cell niche assembly.
Collapse
Affiliation(s)
- Khadar Abdi
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Gabriel Neves
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Joon Pyun
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Emre Kiziltug
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Angelica Ahrens
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA; Department of Neurobiology, Duke University, School of Medicine, Durham, NC 27710, USA; Preston Robert Tisch Brain Tumor Center, Duke University, School of Medicine, Durham, NC 27710, USA; Institute for Brain Sciences, Duke University, School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Farah CA, Dunn TW, Hastings MH, Ferguson L, Gao C, Gong K, Sossin WS. A role for Numb in Protein kinase M (PKM)-mediated increase in surface AMPA receptors during facilitation in Aplysia. J Neurochem 2019; 150:366-384. [PMID: 31254393 DOI: 10.1111/jnc.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
There is considerable evidence from both vertebrates and invertebrates that persistently active protein kinases maintain changes in synaptic strength that underlie memory. In the hermaphrodite marine mollusk, Aplysia californica, truncated forms of protein kinase C (PKC) termed protein kinase Ms have been implicated in both intermediate- and long-term facilitation, an increase in synaptic strength between sensory neurons and motor neurons thought to underlie behavioural sensitization in the animal. However, few substrates have been identified as candidates that could mediate this increase in synaptic strength. PKMs have been proposed to maintain synaptic strength through preventing endocytosis of AMPA receptors. Numb is a conserved regulator of endocytosis that is modulated by phosphorylation. We have identified and cloned Aplysia Numb (ApNumb). ApNumb contains three conserved PKC phosphorylation sites and PKMs generated from classical and atypical Aplysia PKCs can phosphorylate ApNumb in vitro and in cells. Over-expression of ApNumb that lacks the conserved PKC phosphorylation sites blocks increases in surface levels of a pHluorin-tagged Aplysia glutamate receptor measured using live imaging after intermediate- or long-term facilitation. Over-expression of this form of ApNumb did not block increases in synaptic strength seen during intermediate-term facilitation, but did block increases in synaptic strength seen during long-term facilitation. There was no effect of over-expression of this form of ApNumb on other putative Numb targets as measured using increases in calcium downstream of neurotrophins or agonists of metabotropic glutamate receptors. These results suggest that in Aplysia neurons, Numb specifically regulates AMPA receptor trafficking and is an attractive candidate for a target of PKMs in long-term maintenance of synaptic strength. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Carole A Farah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tyler W Dunn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Margaret H Hastings
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Larissa Ferguson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cherry Gao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Katrina Gong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Porcheri C, Meisel CT, Mitsiadis T. Multifactorial Contribution of Notch Signaling in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:E1520. [PMID: 30917608 PMCID: PMC6471940 DOI: 10.3390/ijms20061520] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) defines a group of solid tumors originating from the mucosa of the upper aerodigestive tract, pharynx, larynx, mouth, and nasal cavity. It has a metastatic evolution and poor prognosis and is the sixth most common cancer in the world, with 600,000 new cases reported every year. HNSCC heterogeneity and complexity is reflected in a multistep progression, involving crosstalk between several molecular pathways. The Notch pathway is associated with major events supporting cancerogenic evolution: cell proliferation, self-renewal, angiogenesis, and preservation of a pro-oncogenic microenvironment. Additionally, Notch is pivotal in tumor development and plays a dual role acting as both oncogene and tumor suppressor. In this review, we summarize the role of the Notch pathway in HNSCC, with a special focus on its compelling role in major events of tumor initiation and growth.
Collapse
Affiliation(s)
- Cristina Porcheri
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Christian Thomas Meisel
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| | - Thimios Mitsiadis
- University of Zurich, Institute of Oral Biology, Plattenstrasse 11, CH-8032 Zurich, Switzerland.
| |
Collapse
|
29
|
Wei R, Kaneko T, Liu X, Liu H, Li L, Voss C, Liu E, He N, Li SSC. Interactome Mapping Uncovers a General Role for Numb in Protein Kinase Regulation. Mol Cell Proteomics 2018; 17:2216-2228. [PMID: 29217616 PMCID: PMC6210222 DOI: 10.1074/mcp.ra117.000114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/04/2017] [Indexed: 12/24/2022] Open
Abstract
Cellular functions are frequently regulated by protein-protein interactions involving the binding of a modular domain in one protein to a specific peptide sequence in another. This mechanism may be explored to identify binding partners for proteins harboring a peptide-recognition domain. Here we report a proteomic strategy combining peptide and protein microarray screening with biochemical and cellular assays to identify modular domain-mediated protein-protein interactions in a systematic manner. We applied this strategy to Numb, a multi-functional protein containing a phosphotyrosine-binding (PTB) domain. Through the screening of a protein microarray, we identified >100 protein kinases, including both Tyr and Ser/Thr kinases, that could potentially interact with the Numb PTB domain, suggesting a general role for Numb in regulating kinase function. The putative interactions between Numb and several tyrosine kinases were subsequently validated by GST pull-down and/or co-immunoprecipitation assays. Furthermore, using the Oriented Peptide Array Library approach, we defined the specificity of the Numb PTB domain which, in turn, allowed us to predict binding partners for Numb at the genome level. The combination of the protein microarray screening with computer-aided prediction produced the most expansive interactome for Numb to date, implicating Numb in regulating phosphorylation signaling through protein kinases and phosphatases. Not only does the data generated from this study provide an important resource for hypothesis-driven research to further define the function of Numb, the proteomic strategy described herein may be employed to uncover the interactome for other peptide-recognition domains whose consensus motifs are known or can be determined.
Collapse
Affiliation(s)
- Ran Wei
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Tomonori Kaneko
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuguang Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Huadong Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- §Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shanxi, China
| | - Lei Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Courtney Voss
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Eric Liu
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ningning He
- ¶School of Basic Medical Sciences, Qingdao University, Qingdao 266021, Shangdong, China
- ‖College of Pharmacy, Qingdao University, Qingdao 26601, Shangdong, China
| | - Shawn S-C Li
- From the ‡Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada;
- **Department of Oncology and Child Health Research Institute, Western University
| |
Collapse
|
30
|
Allam AH, Charnley M, Russell SM. Context-Specific Mechanisms of Cell Polarity Regulation. J Mol Biol 2018; 430:3457-3471. [PMID: 29886017 DOI: 10.1016/j.jmb.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.
Collapse
Affiliation(s)
- Amr H Allam
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia.
| | - Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Sarah M Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Department of Pathology, The University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
| |
Collapse
|
31
|
Steinbuck MP, Winandy S. A Review of Notch Processing With New Insights Into Ligand-Independent Notch Signaling in T-Cells. Front Immunol 2018; 9:1230. [PMID: 29910816 PMCID: PMC5992298 DOI: 10.3389/fimmu.2018.01230] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein essential to a wide spectrum of cellular systems, and its deregulation has been linked to a vast number of developmental disorders and malignancies. Regulated Notch function is critical for the generation of T-cells, in which abnormal Notch signaling results in leukemia. Notch activation through trans-activation of the receptor by one of its ligands expressed on adjacent cells has been well defined. In this canonical ligand-dependent pathway, Notch receptor undergoes conformational changes upon ligand engagement, stimulated by a pulling-force on the extracellular fragment of Notch that results from endocytosis of the receptor-bound ligand into the ligand-expressing cell. These conformational changes in the receptor allow for two consecutive proteolytic cleavage events to occur, which release the intracellular region of the receptor into the cytoplasm. It can then travel to the nucleus, where it induces gene transcription. However, there is accumulating evidence that other pathways may induce Notch signaling. A ligand-independent mechanism of Notch activation has been described in which receptor processing is initiated via cell-internal signals. These signals result in the internalization of Notch into endosomal compartments, where chemical changes existing in this microenvironment result in the conformational modifications required for receptor processing. This review will present mechanisms underlying both canonical ligand-dependent and non-canonical ligand-independent Notch activation pathways and discuss the latter in the context of Notch signaling in T-cells.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Susan Winandy
- Immunology Training Program, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
32
|
Chen X, Liu Z, Shan Z, Yao W, Gu A, Wen W. Structural determinants controlling 14-3-3 recruitment to the endocytic adaptor Numb and dissociation of the Numb·α-adaptin complex. J Biol Chem 2018; 293:4149-4158. [PMID: 29382713 DOI: 10.1074/jbc.ra117.000897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Traffic of cargo across membranes helps establish, maintain, and reorganize distinct cellular compartments and is fundamental to many metabolic processes. The cargo-selective endocytic adaptor Numb participates in clathrin-dependent endocytosis by attaching cargoes to the clathrin adaptor α-adaptin. The phosphorylation of Numb at Ser265 and Ser284 recruits the regulatory protein 14-3-3, accompanied by the dissociation of Numb from α-adaptin and Numb's translocation from the cortical membrane to the cytosol. However, the molecular mechanisms underlying the Numb-α-adaptin interaction and its regulation by Numb phosphorylation and 14-3-3 recruitment remain poorly understood. Here, biochemical and structural analyses of the Numb·14-3-3 complex revealed that Numb phosphorylation at both Ser265 and Ser284 is required for Numb's efficient interaction with 14-3-3. We also discovered that an RQFRF motif surrounding Ser265 in Numb functions together with the canonical C-terminal DPF motif, required for Numb's interaction with α-adaptin, to form a stable complex with α-adaptin. Of note, we provide evidence that the phosphorylation-induced binding of 14-3-3 to Numb directly competes with the binding of α-adaptin to Numb. Our findings suggest a potential mechanism governing the dynamic assembly of Numb with α-adaptin or 14-3-3. This dual-site recognition of Numb by α-adaptin may have implications for other α-adaptin targets. We propose that the newly identified α-adaptin-binding site surrounding Ser265 in Numb functions as a triggering mechanism for the dynamic dissociation of the Numb·α-adaptin complex.
Collapse
Affiliation(s)
- Xing Chen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ziheng Liu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zelin Shan
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weiyi Yao
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Aihong Gu
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wenyu Wen
- From the Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
35
|
Endosomal Trafficking During Mitosis and Notch-Dependent Asymmetric Division. ENDOCYTOSIS AND SIGNALING 2018; 57:301-329. [DOI: 10.1007/978-3-319-96704-2_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 644] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
37
|
Intra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells. Curr Biol 2017; 27:2239-2247.e3. [PMID: 28736165 DOI: 10.1016/j.cub.2017.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 01/27/2023]
Abstract
Notch receptors regulate cell fate decisions during embryogenesis and throughout adult life. In many cell lineages, binary fate decisions are mediated by directional Notch signaling between the two sister cells produced by cell division. How Notch signaling is restricted to sister cells after division to regulate intra-lineage decision is poorly understood. More generally, where ligand-dependent activation of Notch occurs at the cell surface is not known, as methods to detect receptor activation in vivo are lacking. In Drosophila pupae, Notch signals during cytokinesis to regulate the intra-lineage pIIa/pIIb decision in the sensory organ lineage. Here, we identify two pools of Notch along the pIIa-pIIb interface, apical and basal to the midbody. Analysis of the dynamics of Notch, Delta, and Neuralized distribution in living pupae suggests that ligand endocytosis and receptor activation occur basal to the midbody. Using selective photo-bleaching of GFP-tagged Notch and photo-tracking of photo-convertible Notch, we show that nuclear Notch is indeed produced by receptors located basal to the midbody. Thus, only a specific subset of receptors, located basal to the midbody, contributes to signaling in pIIa. This is the first in vivo characterization of the pool of Notch contributing to signaling. We propose a simple mechanism of cell fate decision based on intra-lineage signaling: ligands and receptors localize during cytokinesis to the new cell-cell interface, thereby ensuring signaling between sister cells, hence intra-lineage fate decision.
Collapse
|
38
|
Sara phosphorylation state controls the dispatch of endosomes from the central spindle during asymmetric division. Nat Commun 2017; 8:15285. [PMID: 28585564 PMCID: PMC5467175 DOI: 10.1038/ncomms15285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/15/2017] [Indexed: 11/08/2022] Open
Abstract
During asymmetric division, fate assignation in daughter cells is mediated by the partition of determinants from the mother. In the fly sensory organ precursor cell, Notch signalling partitions into the pIIa daughter. Notch and its ligand Delta are endocytosed into Sara endosomes in the mother cell and they are first targeted to the central spindle, where they get distributed asymmetrically to finally be dispatched to pIIa. While the processes of endosomal targeting and asymmetry are starting to be understood, the machineries implicated in the final dispatch to pIIa are unknown. We show that Sara binds the PP1c phosphatase and its regulator Sds22. Sara phosphorylation on three specific sites functions as a switch for the dispatch: if not phosphorylated, endosomes are targeted to the spindle and upon phosphorylation of Sara, endosomes detach from the spindle during pIIa targeting.
Collapse
|
39
|
Sallé J, Gervais L, Boumard B, Stefanutti M, Siudeja K, Bardin AJ. Intrinsic regulation of enteroendocrine fate by Numb. EMBO J 2017; 36:1928-1945. [PMID: 28533229 DOI: 10.15252/embj.201695622] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
How terminal cell fates are specified in dynamically renewing adult tissues is not well understood. Here we explore terminal cell fate establishment during homeostasis using the enteroendocrine cells (EEs) of the adult Drosophila midgut as a paradigm. Our data argue against the existence of local feedback signals, and we identify Numb as an intrinsic regulator of EE fate. Our data further indicate that Numb, with alpha-adaptin, acts upstream or in parallel of known regulators of EE fate to limit Notch signaling, thereby facilitating EE fate acquisition. We find that Numb is regulated in part through its asymmetric and symmetric distribution during stem cell divisions; however, its de novo synthesis is also required during the differentiation of the EE cell. Thus, this work identifies Numb as a crucial factor for cell fate choice in the adult Drosophila intestine. Furthermore, our findings demonstrate that cell-intrinsic control mechanisms of terminal cell fate acquisition can result in a balanced tissue-wide production of terminally differentiated cell types.
Collapse
Affiliation(s)
- Jérémy Sallé
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Louis Gervais
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Benjamin Boumard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France.,Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Katarzyna Siudeja
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France .,Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| |
Collapse
|
40
|
Ha T, Moon KH, Dai L, Hatakeyama J, Yoon K, Park HS, Kong YY, Shimamura K, Kim JW. The Retinal Pigment Epithelium Is a Notch Signaling Niche in the Mouse Retina. Cell Rep 2017; 19:351-363. [PMID: 28402857 DOI: 10.1016/j.celrep.2017.03.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
Abstract
Notch signaling in neural progenitor cell is triggered by ligands expressed in adjacent cells. To identify the sources of active Notch ligands in the mouse retina, we negatively regulated Notch ligand activity in various neighbors of retinal progenitor cells (RPCs) by eliminating mindbomb E3 ubiquitin protein ligase 1 (Mib1). Mib1-deficient retinal cells failed to induce Notch activation in intra-lineage RPCs, which prematurely differentiated into neurons; however, Mib1 in post-mitotic retinal ganglion cells was not important. Interestingly, Mib1 in the retinal pigment epithelium (RPE) also contributed to Notch activation in adjacent RPCs by supporting the localization of active Notch ligands at RPE-RPC contacts. Combining this RPE-driven Notch signaling and intra-retinal Notch signaling, we propose a model in which one RPC daughter receives extra Notch signals from the RPE to become an RPC, whereas its sister cell receives only a subthreshold level of intra-retinal Notch signal and differentiates into a neuron.
Collapse
Affiliation(s)
- Taejeong Ha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Le Dai
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keejung Yoon
- School of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Young-Yoon Kong
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
41
|
Barnawi R, Al-Khaldi S, Majed Sleiman G, Sarkar A, Al-Dhfyan A, Al-Mohanna F, Ghebeh H, Al-Alwan M. Fascin Is Critical for the Maintenance of Breast Cancer Stem Cell Pool Predominantly via the Activation of the Notch Self-Renewal Pathway. Stem Cells 2016; 34:2799-2813. [DOI: 10.1002/stem.2473] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Rayanah Barnawi
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Samiyah Al-Khaldi
- National Genome Center, King Abdulaziz City for Sciences and Technology; Riyadh Saudi Arabia
| | | | - Abdullah Sarkar
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Abdullah Al-Dhfyan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Falah Al-Mohanna
- Department of Comparative Medicine; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program; King Faisal Specialist Hospital and Research Centre; Riyadh Saudi Arabia
- Collage of Medicine; Al-Faisal University; Riyadh Saudi Arabia
| |
Collapse
|
42
|
Hwang WL, Yang MH. Numb is involved in the non-random segregation of subcellular vesicles in colorectal cancer stem cells. Cell Cycle 2016; 15:2697-703. [PMID: 27580100 DOI: 10.1080/15384101.2016.1218101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The balance between the symmetric and asymmetric division of stem cells governs tissue homeostasis, and the deregulation of this balance initiates tumor formation. Although many functions of Numb have been demonstrated in normal stem cells, the role of Numb in cancer stem cells is relatively unclear. We recently demonstrated that in colorectal cancer stem cells, Numb was suppressed by miR-146a-5p, which resulted in the activation of the Wnt signaling pathway and symmetric template DNA division. Here, we demonstrate that the PKH26-labeled subcellular foci are enriched for endosomal markers such as EEA1 and RAB11. In colorectal cancer stem cells, the PKH-26-labeled vesicles are segregated equally at the first mitotic division; in contrast, they are unequally segregated in parental cells or in cancer stem cells undergoing serum-induced differentiation. The PKH(Bright) progeny of colorectal cancer stem cells harbors a stem cell phenotype, whereas the PKH(Dim) progeny behaves as the differentiating cells. The miR-146a-5p-regulated Numb controls the distribution of PKH26 vesicles. Our results suggest a critical role of Numb in controlling the segregation of subcellular vesicles during division of colorectal cancer stem cells.
Collapse
Affiliation(s)
- Wei-Lun Hwang
- a The Ph.D Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Muh-Hwa Yang
- b Institute of Clinical Medicine, National Yang-Ming University , Taipei , Taiwan.,c Genome Research Center, National Yang-Ming University , Taipei , Taiwan.,d Division of Medical Oncology , Department of Oncology , Taipei Veterans General Hospital , Taipei , Taiwan.,e Genomics Research Center, Academia Sinica , Taipei , Taiwan
| |
Collapse
|
43
|
Shao W, Dong J. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation. Dev Biol 2016; 419:121-131. [PMID: 27475487 DOI: 10.1016/j.ydbio.2016.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
Abstract
Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants.
Collapse
Affiliation(s)
- Wanchen Shao
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA
| | - Juan Dong
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA; Waksman Institute of Microbiology, Rutgers the State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
44
|
Shao X, Liu Y, Yu Q, Ding Z, Qian W, Zhang L, Zhang J, Jiang N, Gui L, Xu Z, Hong Y, Ma Y, Wei Y, Liu X, Jiang C, Zhu M, Li H, Li H. Numb regulates vesicular docking for homotypic fusion of early endosomes via membrane recruitment of Mon1b. Cell Res 2016; 26:593-612. [PMID: 26987402 PMCID: PMC4856763 DOI: 10.1038/cr.2016.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/17/2015] [Accepted: 01/17/2015] [Indexed: 02/05/2023] Open
Abstract
Numb is an endocytic protein that plays crucial roles in diverse cellular processes such as asymmetric cell division, cell migration and differentiation. However, the molecular mechanism by which Numb regulates endocytic trafficking is poorly understood. Here, we demonstrate that Numb is a docking regulator for homotypic fusion of early endosomes (EEs). Numb depletion causes clustered but unfused EEs, which can be rescued by overexpressing cytosolic Numb 65 and Numb 71 but not plasma membrane-attached Numb 66 or Numb 72. Time-lapse analysis reveals that paired vesicles tend to tether but not fuse with each other in the absence of Numb. We further show that Numb binds to another docking regulator, Mon1b, and is required for the recruitment of cytosolic Mon1b to the EE membrane. Consistent with this, deletion of Mon1b causes similar defects in EE fusion. Our study thus identifies a novel mechanism by which Numb regulates endocytic sorting by mediating EE fusion.
Collapse
Affiliation(s)
- Ximing Shao
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yi Liu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Current address: Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Qian Yu
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Ding
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wenyu Qian
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Lei Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianchao Zhang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Nan Jiang
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Current address: Department of Biology, University of Washington, Seattle, Washington, USA
| | - Linfei Gui
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Hong
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yifan Ma
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yanjie Wei
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiaoqing Liu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Changan Jiang
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- West China Developmental & Stem Cell Biology Institute, West China Second University Hospital, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Minyan Zhu
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hongchang Li
- Shenzhen Key Laboratory for Molecular Biology of Neural Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Huashun Li
- SARITEX Center for Stem Cell Engineering Translational Medicine, Shanghai East Hospital, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200123, China
- ATCG Corp, BioBay, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
45
|
A Unique Class of Neural Progenitors in the Drosophila Optic Lobe Generates Both Migrating Neurons and Glia. Cell Rep 2016; 15:774-786. [PMID: 27149843 PMCID: PMC5154769 DOI: 10.1016/j.celrep.2016.03.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/25/2016] [Accepted: 03/15/2016] [Indexed: 02/04/2023] Open
Abstract
How neuronal and glial fates are specified from neural precursor cells is an important question for developmental neurobiologists. We address this question in the Drosophila optic lobe, composed of the lamina, medulla, and lobula complex. We show that two gliogenic regions posterior to the prospective lamina also produce lamina wide-field (Lawf) neurons, which share common progenitors with lamina glia. These progenitors express neither canonical neuroblast nor lamina precursor cell markers. They bifurcate into two sub-lineages in response to Notch signaling, generating lamina glia or Lawf neurons, respectively. The newly born glia and Lawfs then migrate tangentially over substantial distances to reach their target tissue. Thus, Lawf neurogenesis, which includes a common origin with glia, as well as neuronal migration, resembles several aspects of vertebrate neurogenesis.
Collapse
|
46
|
Pham K, Shimoni R, Charnley M, Ludford-Menting MJ, Hawkins ED, Ramsbottom K, Oliaro J, Izon D, Ting SB, Reynolds J, Lythe G, Molina-Paris C, Melichar H, Robey E, Humbert PO, Gu M, Russell SM. Asymmetric cell division during T cell development controls downstream fate. J Cell Biol 2015; 210:933-50. [PMID: 26370500 PMCID: PMC4576854 DOI: 10.1083/jcb.201502053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T cell precursors undergo asymmetric cell division after T cell receptor genomic recombination, with stromal cell cues controlling the differential inheritance of fate determinants Numb and α-Adaptin by the daughters of a dividing DN3a T cell precursor. During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal.
Collapse
Affiliation(s)
- Kim Pham
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Raz Shimoni
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mirren Charnley
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia Industrial Research Institute Swinburne, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Mandy J Ludford-Menting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Edwin D Hawkins
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Kelly Ramsbottom
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Jane Oliaro
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Izon
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Stephen B Ting
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Joseph Reynolds
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Carmen Molina-Paris
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, England, UK
| | - Heather Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Ellen Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Patrick O Humbert
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Min Gu
- Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Sarah M Russell
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia Centre for Micro-Photonics, Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
47
|
Lin YH, Currinn H, Pocha SM, Rothnie A, Wassmer T, Knust E. AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust. J Cell Sci 2015; 128:4538-49. [PMID: 26527400 DOI: 10.1242/jcs.174573] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Maintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing endocytosis by mutation of AP-2 causes expansion of the Crumbs-positive plasma membrane domain and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, knocking down both AP-2 and Stardust leads to the retention of Crumbs on the membrane. This study provides evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface levels of Crumbs, which are essential for maintaining epithelial polarity.
Collapse
Affiliation(s)
- Ya-Huei Lin
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Heather Currinn
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Shirin Meher Pocha
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Alice Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Thomas Wassmer
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
48
|
Mah IK, Soloff R, Hedrick SM, Mariani FV. Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway. Stem Cell Reports 2015; 5:866-880. [PMID: 26527382 PMCID: PMC4649379 DOI: 10.1016/j.stemcr.2015.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
The number of stem/progenitor cells available can profoundly impact tissue homeostasis and the response to injury or disease. Here, we propose that an atypical PKC, Prkci, is a key player in regulating the switch from an expansion to a differentiation/maintenance phase via regulation of Notch, thus linking the polarity pathway with the control of stem cell self-renewal. Prkci is known to influence symmetric cell division in invertebrates; however a definitive role in mammals has not yet emerged. Using a genetic approach, we find that loss of Prkci results in a marked increase in the number of various stem/progenitor cells. The mechanism used likely involves inactivation and symmetric localization of NUMB, leading to the activation of NOTCH1 and its downstream effectors. Inhibition of atypical PKCs may be useful for boosting the production of pluripotent stem cells, multipotent stem cells, or possibly even primordial germ cells by promoting the stem cell/progenitor fate. PRKCi, a polarity protein, regulates expansion of various stem/progenitor cells PRKCi acts in this capacity via a Notch-dependent pathway Thus, PRKCi acts as a link between polarity and stem cell self-renewal Inhibition of aPKCs may be generally useful for expanding progenitor populations
Collapse
Affiliation(s)
- In Kyoung Mah
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA
| | - Rachel Soloff
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Hedrick
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesca V Mariani
- Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA.
| |
Collapse
|
49
|
Martin-Blanco N, Jiménez Teja D, Bretones G, Borroto A, Caraballo M, Screpanti I, León J, Alarcón B, Canelles M. CD3ε recruits Numb to promote TCR degradation. Int Immunol 2015; 28:127-37. [PMID: 26507128 DOI: 10.1093/intimm/dxv060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/15/2015] [Indexed: 01/05/2023] Open
Abstract
Modulation of TCR signaling upon ligand binding is achieved by changes in the equilibrium between TCR degradation, recycling and synthesis; surprisingly, the molecular mechanism of such an important process is not fully understood. Here, we describe the role of a new player in the mediation of TCR degradation: the endocytic adaptor Numb. Our data show that Numb inhibition leads to abnormal intracellular distribution and defective TCR degradation in mature T lymphocytes. In addition, we find that Numb simultaneously binds to both Cbl and a site within CD3ε that overlaps with the Nck binding site. As a result, Cbl couples specifically to the CD3ε chain to mediate TCR degradation. The present study unveils a novel role of Numb that lies at the heart of TCR signaling initiation and termination.
Collapse
Affiliation(s)
- Nadia Martin-Blanco
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Daniel Jiménez Teja
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain
| | - Gabriel Bretones
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Michael Caraballo
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Javier León
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Matilde Canelles
- Instituto de Parasitología y Biomedicina, CSIC, P. T. Ciencias de la Salud, 18100 Granada, Spain
| |
Collapse
|
50
|
A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches. Sci Rep 2015. [PMID: 26205122 PMCID: PMC4513280 DOI: 10.1038/srep12328] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During Drosophila oogenesis, follicle cells sequentially undergo three distinct cell-cycle programs: the mitotic cycle, endocycle, and gene amplification. Notch signaling plays a central role in regulating follicle-cell differentiation and cell-cycle switches; its activation is essential for the mitotic cycle/endocycle (M/E) switch. Cut, a linker between Notch signaling and cell-cycle regulators, is specifically downregulated by Notch during the endocycle stage. To determine how signaling pathways coordinate during the M/E switch and to identify novel genes involved in follicle cell differentiation, we performed an in vivo RNAi screen through induced knockdown of gene expression and examination of Cut expression in follicle cells. We screened 2205 RNAi lines and found 33 genes regulating Cut expression during the M/E switch. These genes were confirmed with the staining of two other Notch signaling downstream factors, Hindsight and Broad, and validated with multiple independent RNAi lines. We applied gene ontology software to find enriched biological meaning and compared our results with other publications to find conserved genes across tissues. Specifically, we found earlier endocycle entry in anterior follicle cells than those in the posterior, identified that the insulin-PI3K pathway participates in the precise M/E switch, and suggested Nejire as a cofactor of Notch signaling during oogenesis.
Collapse
|