1
|
Andrieu C, Danesin C, Montigny A, Rey M, Baqué K, Bibonne A, Alfandari D, Theveneau E. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. Differentiation 2025:100836. [PMID: 39828493 DOI: 10.1016/j.diff.2025.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Matrix Metalloproteinases (MMPs) are known for their role in matrix remodeling via their catalytic activities in the extracellular space. Interestingly, these enzymes can also play less expected roles in cell survival, polarity and motility via other substrates (e.g. receptors, chemokines), through an intracellular localization (e.g. the nucleus) or via non-catalytic functions. Most of these unconventional functions are yet to be functionally validated in a physiological context. Here, we used the delamination of the cephalic Neural Crest (NC) cells of the chicken embryo, a well described experimental model of epithelial-mesenchymal transition (EMT), to study the in vivo function of MMP14 (a.k.a MT1-MMP). MMP14 is a transmembrane MMP known for its importance in cell invasion and often associated with poor prognosis in cancer. We found that MMP14 is expressed and required for cephalic NC delamination. More specifically, MMP14 is necessary for the downregulation of Cadherin-6B and a co-inhibition of Cadherin-6B and MMP14 expressions is sufficient to restore NC delamination. Cadherin-6B is normally repressed by Snail2. Surprisingly, in MMP14 knockdown this lack of Cadherin-6B repression occurs in the context of a normal expression and nuclear import of Snail2. We further show that MMP14 is not detected in the nucleus and that Snail2 and MMP14 do not physically interact. These data reveals that a yet to be identified MMP14-dependent signaling event is required for the Snail2-dependent repression of Cadherin-6B. In conclusion, this work provides an in vivo example of atypical regulation of Cadherins by an MMP which emphasizes the importance and diversity of non-canonical functions of MMPs.
Collapse
Affiliation(s)
- Cyril Andrieu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Cathy Danesin
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Audrey Montigny
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Marie Rey
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Klara Baqué
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Anne Bibonne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Dominique Alfandari
- University of Massachusetts Amherst, Dept. of Veterinary and Animal Sciences, Amherst, MA, 01003, USA
| | - Eric Theveneau
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
2
|
Huang Y, Flentke GR, Smith SM. Alcohol induces p53-mediated apoptosis in neural crest by stimulating an AMPK-mediated suppression of TORC1, S6K, and ribosomal biogenesis. Reprod Toxicol 2024; 130:108747. [PMID: 39521100 DOI: 10.1016/j.reprotox.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Prenatal alcohol exposure is a leading cause of permanent neurodevelopmental disability and can feature distinctive craniofacial deficits that partly originate from the apoptotic deletion of craniofacial progenitors, a stem cell lineage called the neural crest (NC). We recently demonstrated that alcohol causes nucleolar stress in NC through its suppression of ribosome biogenesis (RBG) and this suppression is causative in their p53/MDM2-mediated apoptosis. Here, we show that this nucleolar stress originates from alcohol's activation of AMPK, which suppresses TORC1 and the p70/S6K-mediated stimulation of RBG. Alcohol-exposed cells of the pluripotent, primary cranial NC line O9-1 were evaluated with respect to their S6K, TORC1, and AMPK activity. The functional impact of these signals with respect to RBG, p53, and apoptosis were assessed using gain-of-function constructs and small molecule mediators. Alcohol rapidly (<2 hr) increased pAMPK, pTSC2, and pRaptor, and reduced both total and pS6K in NC cells. These changes persisted for at least 12 hr to 18 hr following alcohol exposure. Attenuation of these signals via gain- or loss-of-function approaches that targeted AMPK, S6K, or TORC1 prevented alcohol's suppression of rRNA synthesis and the induction of p53-stimulated apoptosis. We conclude that alcohol induces ribosome dysbiogenesis and activates their p53/MDM2-mediated apoptosis via its activation of pAMPK, which in turn activates TSC2 and Raptor to suppress the TORC1/S6K-mediated promotion of ribosome biogenesis. This represents a novel mechanism underlying alcohol's neurotoxicity and is consistent with findings that TORC1/S6K networks are critical for cranial NC survival.
Collapse
Affiliation(s)
- Yanping Huang
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - George R Flentke
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Susan M Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA; Dept. Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, USA.
| |
Collapse
|
3
|
Huang Y, Flentke GR, Smith SM. Alcohol induces p53-mediated apoptosis in neural crest by stimulating an AMPK-mediated suppression of TORC1, S6K, and ribosomal biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601754. [PMID: 39005448 PMCID: PMC11244973 DOI: 10.1101/2024.07.02.601754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Prenatal alcohol exposure is a leading cause of permanent neurodevelopmental disability and can feature distinctive craniofacial deficits that partly originate from the apoptotic deletion of craniofacial progenitors, a stem cell lineage called the neural crest (NC). We recently demonstrated that alcohol causes nucleolar stress in NC through its suppression of ribosome biogenesis (RBG) and this suppression is causative in their p53/MDM2-mediated apoptosis. Here, we show that this nucleolar stress originates from alcohol's activation of AMPK, which suppresses TORC1 and the p70/S6K-mediated stimulation of RBG. Alcohol-exposed cells of the pluripotent, primary cranial NC line O9-1 were evaluated with respect to their S6K, TORC1, and AMPK activity. The functional impact of these signals with respect to RBG, p53, and apoptosis were assessed using gain-of-function constructs and small molecule mediators. Alcohol rapidly (<2hr) increased pAMPK, pTSC2, and pRaptor, and reduced both total and pS6K in NC cells. These changes persisted for at least 12hr to 18hr following alcohol exposure. Attenuation of these signals via gain- or loss-of-function approaches that targeted AMPK, S6K, or TORC1 prevented alcohol's suppression of rRNA synthesis and the induction of p53-stimulated apoptosis. We conclude that alcohol induces ribosome dysbiogenesis and activates their p53/MDM2-mediated apoptosis via its activation of pAMPK, which in turn activates TSC2 and Raptor to suppress the TORC1/S6K-mediated promotion of ribosome biogenesis. This represents a novel mechanism underlying alcohol's neurotoxicity and is consistent with findings that TORC1/S6K networks are critical for cranial NC survival.
Collapse
|
4
|
Rekler D, Ofek S, Kagan S, Friedlander G, Kalcheim C. Retinoic acid, an essential component of the roof plate organizer, promotes the spatiotemporal segregation of dorsal neural fates. Development 2024; 151:dev202973. [PMID: 39250350 PMCID: PMC11463963 DOI: 10.1242/dev.202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here, we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in ovo inhibition in quail embryos of retinoic acid activity followed by single-cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers, indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their crucial role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes, leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. In summary, the implementation of single-cell RNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.
Collapse
Affiliation(s)
- Dina Rekler
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Shai Ofek
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Sarah Kagan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Campbell CA, Calderon R, Pavani G, Cheng X, Barakat R, Snella E, Liu F, Peng X, Essner JJ, Dorman KS, McGrail M, Gadue P, French DL, Espin-Palazon R. p65 signaling dynamics drive the developmental progression of hematopoietic stem and progenitor cells through cell cycle regulation. Nat Commun 2024; 15:7787. [PMID: 39242546 PMCID: PMC11379711 DOI: 10.1038/s41467-024-51922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Most gene functions have been discovered through phenotypic observations under loss of function experiments that lack temporal control. However, cell signaling relies on limited transcriptional effectors, having to be re-used temporally and spatially within the organism. Despite that, the dynamic nature of signaling pathways have been overlooked due to the difficulty on their assessment, resulting in important bottlenecks. Here, we have utilized the rapid and synchronized developmental transitions occurring within the zebrafish embryo, in conjunction with custom NF-kB reporter embryos driving destabilized fluorophores that report signaling dynamics in real time. We reveal that NF-kB signaling works as a clock that controls the developmental progression of hematopoietic stem and progenitor cells (HSPCs) by two p65 activity waves that inhibit cell cycle. Temporal disruption of each wave results in contrasting phenotypic outcomes: loss of HSPCs due to impaired specification versus proliferative expansion and failure to delaminate from their niche. We also show functional conservation during human hematopoietic development using iPSC models. Our work identifies p65 as a previously unrecognized contributor to cell cycle regulation, revealing why and when pro-inflammatory signaling is required during HSPC development. It highlights the importance of considering and leveraging cell signaling as a temporally dynamic entity.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA.
| | - Rodolfo Calderon
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Radwa Barakat
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Fang Liu
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Xiyu Peng
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Karin S Dorman
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Ventriglia S, Kalcheim C. From neural tube to spinal cord: The dynamic journey of the dorsal neuroepithelium. Dev Biol 2024; 511:26-38. [PMID: 38580174 DOI: 10.1016/j.ydbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.
Collapse
Affiliation(s)
- Susanna Ventriglia
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| |
Collapse
|
7
|
Zhao R, Moore EL, Gogol MM, Unruh JR, Yu Z, Scott AR, Wang Y, Rajendran NK, Trainor PA. Identification and characterization of intermediate states in mammalian neural crest cell epithelial to mesenchymal transition and delamination. eLife 2024; 13:RP92844. [PMID: 38873887 PMCID: PMC11178358 DOI: 10.7554/elife.92844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation and delamination is a classic example of developmental EMT. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single-cell RNA sequencing of mouse embryos, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the importance of cell cycle regulation and functional role for the intermediate stage marker Dlc1 in facilitating mammalian cranial NCC delamination and may provide new insights into mechanisms regulating pathological EMP.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Emma L Moore
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Zulin Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Allison R Scott
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Yan Wang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Paul A Trainor
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
8
|
Scarfò R, Randolph LN, Abou Alezz M, El Khoury M, Gersch A, Li ZY, Luff SA, Tavosanis A, Ferrari Ramondo G, Valsoni S, Cascione S, Didelon E, Passerini L, Amodio G, Brandas C, Villa A, Gregori S, Merelli I, Freund JN, Sturgeon CM, Tavian M, Ditadi A. CD32 captures committed haemogenic endothelial cells during human embryonic development. Nat Cell Biol 2024; 26:719-730. [PMID: 38594587 PMCID: PMC11098737 DOI: 10.1038/s41556-024-01403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.
Collapse
Affiliation(s)
- Rebecca Scarfò
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lauren N Randolph
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mahassen El Khoury
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Amélie Gersch
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Zhong-Yin Li
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie A Luff
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Tavosanis
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Ferrari Ramondo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cascione
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Didelon
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Milan, Italy
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
- INSERM U1256-NGERE, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher M Sturgeon
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuela Tavian
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Differentiation 2024; 137:100765. [PMID: 38522217 PMCID: PMC11196158 DOI: 10.1016/j.diff.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state before initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
10
|
Zhao R, Moore EL, Gogol MM, Unruh JR, Yu Z, Scott A, Wang Y, Rajendran NK, Trainor PA. Identification and characterization of intermediate states in mammalian neural crest cell epithelial to mesenchymal transition and delamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564204. [PMID: 37961316 PMCID: PMC10634855 DOI: 10.1101/2023.10.26.564204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in both developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT. Neural crest cells (NCC) are an embryonic progenitor cell population that gives rise to numerous cell types and tissues in vertebrates, and their formation is a classic example of developmental EMT. An important feature of NCC development is their delamination from the neuroepithelium via EMT, following which NCC migrate throughout the embryo and undergo differentiation. NCC delamination shares similar changes in cellular state and structure with cancer cell invasion. However, whether intermediate states also exist during NCC EMT and delamination remains unknown. Through single cell RNA sequencing, we identified intermediate NCC states based on their transcriptional signature and then spatially defined their locations in situ in the dorsolateral neuroepithelium. Our results illustrate the progressive transcriptional and spatial transitions from premigratory to migratory cranial NCC during EMT and delamination. Of note gene expression and trajectory analysis indicate that distinct intermediate populations of NCC delaminate in either S phase or G2/M phase of the cell cycle, and the importance of cell cycle regulation in facilitating mammalian cranial NCC delamination was confirmed through cell cycle inhibition studies. Additionally, transcriptional knockdown revealed a functional role for the intermediate stage marker Dlc1 in regulating NCC delamination and migration. Overall, our work identifying and characterizing the intermediate cellular states, processes, and molecular signals that regulate mammalian NCC EMT and delamination furthers our understanding of developmental EMP and may provide new insights into mechanisms regulating pathological EMP.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emma L. Moore
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Allison Scott
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
Martinez MAQ, Zhao CZ, Moore FEQ, Yee C, Zhang W, Shen K, Martin BL, Matus DQ. Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.16.533034. [PMID: 38370624 PMCID: PMC10871222 DOI: 10.1101/2023.03.16.533034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state, initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (β-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.
Collapse
Affiliation(s)
- Michael A Q Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chris Z Zhao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frances E Q Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
12
|
Li X, Xie R, Luo Y, Shi R, Ling Y, Zhao X, Xu X, Chu W, Wang X. Cooperation of TGF-β and FGF signalling pathways in skin development. Cell Prolif 2023; 56:e13489. [PMID: 37150846 PMCID: PMC10623945 DOI: 10.1111/cpr.13489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The skin is a multi-layered structure composed of the epidermis, dermis and hypodermis. The epidermis originates entirely from the ectoderm, whereas the dermis originates from various germ layers depending on its anatomical location; thus, there are different developmental patterns of the skin. Although the regulatory mechanisms of epidermal formation are well understood, mechanisms regulating dermis development are not clear owing to the complex origin. It has been shown that several morphogenetic pathways regulate dermis development. Of these, transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) signalling pathways are the main modulators regulating skin cell induction, fate decision, migration and differentiation. Recently, the successful generation of human skin by modulating TGF-β and FGF signals further demonstrated the irreplaceable roles of these pathways in skin regeneration. This review provides evidence of the role of TGF-β and FGF signalling pathways in the development of different skin layers, especially the disparate dermis of different body regions. This review also provides new perspectives on the distinct developmental patterns of skin and explores new ideas for clinical applications in the future.
Collapse
Affiliation(s)
- Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Rongfang Xie
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Yilin Luo
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Runlu Shi
- Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Yuanqiang Ling
- Guangzhou Wishing Tree Hair Medical Technology Limited CompanyGuangzhouChina
| | - Xiaojing Zhao
- Guangzhou Wishing Tree Hair Medical Technology Limited CompanyGuangzhouChina
| | - Xuejuan Xu
- Department of EndocrinologyThe First People's Hospital of FoshanFoshanChina
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
13
|
Nekooie Marnany N, Fodil R, Féréol S, Dady A, Depp M, Relaix F, Motterlini R, Foresti R, Duband JL, Dufour S. Glucose oxidation drives trunk neural crest cell development and fate. J Cell Sci 2023; 136:jcs260607. [PMID: 37589341 DOI: 10.1242/jcs.260607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
Bioenergetic metabolism is a key regulator of cellular function and signaling, but how it can instruct the behavior of cells and their fate during embryonic development remains largely unknown. Here, we investigated the role of glucose metabolism in the development of avian trunk neural crest cells (NCCs), a migratory stem cell population of the vertebrate embryo. We uncovered that trunk NCCs display glucose oxidation as a prominent metabolic phenotype, in contrast to what is seen for cranial NCCs, which instead rely on aerobic glycolysis. In addition, only one pathway downstream of glucose uptake is not sufficient for trunk NCC development. Indeed, glycolysis, mitochondrial respiration and the pentose phosphate pathway are all mobilized and integrated for the coordinated execution of diverse cellular programs, epithelial-to-mesenchymal transition, adhesion, locomotion, proliferation and differentiation, through regulation of specific gene expression. In the absence of glucose, the OXPHOS pathway fueled by pyruvate failed to promote trunk NCC adaptation to environmental stiffness, stemness maintenance and fate-decision making. These findings highlight the need for trunk NCCs to make the most of the glucose pathway potential to meet the high metabolic demands appropriate for their development.
Collapse
Affiliation(s)
| | - Redouane Fodil
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Sophie Féréol
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Alwyn Dady
- Laboratoire Gly-CRRET, Université Paris-Est Créteil, 94000 Créteil, France
| | - Marine Depp
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Frederic Relaix
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | | | - Roberta Foresti
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Jean-Loup Duband
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Sylvie Dufour
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| |
Collapse
|
14
|
Candido-Ferreira IL, Lukoseviciute M, Sauka-Spengler T. Multi-layered transcriptional control of cranial neural crest development. Semin Cell Dev Biol 2022; 138:1-14. [PMID: 35941042 DOI: 10.1016/j.semcdb.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is an emblematic population of embryonic stem-like cells with remarkable migratory ability. These distinctive attributes have inspired the curiosity of developmental biologists for over 150 years, however only recently the regulatory mechanisms controlling the complex features of the NC have started to become elucidated at genomic scales. Regulatory control of NC development is achieved through combinatorial transcription factor binding and recruitment of associated transcriptional complexes to distal cis-regulatory elements. Together, they regulate when, where and to what extent transcriptional programmes are actively deployed, ultimately shaping ontogenetic processes. Here, we discuss how transcriptional networks control NC ontogeny, with a special emphasis on the molecular mechanisms underlying specification of the cephalic NC. We also cover emerging properties of transcriptional regulation revealed in diverse developmental systems, such as the role of three-dimensional conformation of chromatin, and how they are involved in the regulation of NC ontogeny. Finally, we highlight how advances in deciphering the NC transcriptional network have afforded new insights into the molecular basis of human diseases.
Collapse
Affiliation(s)
- Ivan L Candido-Ferreira
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Martyna Lukoseviciute
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- University of Oxford, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford OX3 9DS, UK.
| |
Collapse
|
15
|
Alhashem Z, Feldner-Busztin D, Revell C, Alvarez-Garcillan Portillo M, Camargo-Sosa K, Richardson J, Rocha M, Gauert A, Corbeaux T, Milanetto M, Argenton F, Tiso N, Kelsh RN, Prince VE, Bentley K, Linker C. Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLife 2022; 11:e73550. [PMID: 35438077 PMCID: PMC9129880 DOI: 10.7554/elife.73550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice versa, remains largely unknown. We address these questions by combining in silico modelling and in vivo experimentation in the zebrafish trunk neural crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | - Christopher Revell
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
| | | | - Karen Camargo-Sosa
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Joanna Richardson
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Anton Gauert
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Tatianna Corbeaux
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | | | - Natascia Tiso
- Department of Biology, University of PadovaPadovaItaly
| | - Robert N Kelsh
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, The University of ChicagoChicagoUnited States
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
- Department of Informatics, King's College LondonLondonUnited Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| |
Collapse
|
16
|
Rekler D, Kalcheim C. Completion of neural crest cell production and emigration is regulated by retinoic-acid-dependent inhibition of BMP signaling. eLife 2022; 11:72723. [PMID: 35394423 PMCID: PMC8993216 DOI: 10.7554/elife.72723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Production and emigration of neural crest cells is a transient process followed by the emergence of the definitive roof plate. The mechanisms regulating the end of neural crest ontogeny are poorly understood. Whereas early crest development is stimulated by mesoderm-derived retinoic acid, we report that the end of the neural crest period is regulated by retinoic acid synthesized in the dorsal neural tube. Inhibition of retinoic acid signaling in the neural tube prevents the normal upregulation of BMP inhibitors in the nascent roof plate and prolongs the period of BMP responsiveness which otherwise ceases close to roof plate establishment. Consequently, neural crest production and emigration are extended well into the roof plate stage. In turn, extending the activity of neural crest-specific genes inhibits the onset of retinoic acid synthesis in roof plate suggesting a mutual repressive interaction between neural crest and roof plate traits. Although several roof plate-specific genes are normally expressed in the absence of retinoic acid signaling, roof plate and crest markers are co-expressed in single cells and this domain also contains dorsal interneurons. Hence, the cellular and molecular architecture of the roof plate is compromised. Collectively, our results demonstrate that neural tube-derived retinoic acid, via inhibition of BMP signaling, is an essential factor responsible for the end of neural crest generation and the proper segregation of dorsal neural lineages. The division between the central nervous system – formed by the brain and spinal cord – and the peripheral nervous system – which consists of the neurons that sense and relay information to and from the body – takes place early during embryonic development. Initially, the nervous system consists of a tube of cells called the neural tube. From the top region of this tube, some cells change their shape, exit the tube and migrate to different places in the developing body. These cells are called the ‘neural crest’, and they form many different structures, including the peripheral nervous system. Neural crest cells keep leaving the neural tube for a period of time, but after that, the neural tube stops producing them. At this point, the region of the neural tube that had been producing neural crest cells becomes the ‘roof plate’ of the central nervous system, a structure that is essential for the development of specific groups of neurons in the brain and spinal cord. In bird embryos, a protein called bone morphogenetic protein (BMP) is essential for neural crest production because it triggers the migration of these cells away from the neural tube. Before the roof plate is formed, the activity of BMP is blocked by proteins known as BMP inhibitors, which stop more cells from leaving the neural tube. Around the time when neural crest formation stops, another molecule called retinoic acid begins to be synthesized in the top region of the neural tube. Rekler and Kalcheim asked whether retinoic acid is involved in the transition from neural crest to roof plate. To test this hypothesis, Rekler and Kalcheim blocked the activity of retinoic acid in the neural tube of quail embryos at the time when they should stop producing neural crest cells. This resulted in embryos in which the neural tube keeps producing neural crest cells after the roof plate has formed. In these embryos, individual cells in the resulting ‘roof plate’ produced both proteins that are normally only found in neural crest cells, and proteins typically exclusive to the roof plate. This suggests that, in the absence of retinoic acid activity, the segregation of neural crest identity from roof plate identity is compromised. Rekler and Kalcheim also found that, in the embryos where retinoic acid activity had been blocked, the cells in the area where the roof plate should be produced virtually no BMP inhibitors, and exhibited extended BMP activity. This allowed neural crest cells to continue forming and migrating away from the neural tube well after the period when they would stop in a normal embryo. These results indicate that retinoic acid stops the production of neural crest cells by repressing BMP activity in the roof plate of the neural tube. Rekler and Kalcheim’s experiments shed light on the mechanisms that allow the central and peripheral nervous systems to become segregated. This could increase our understanding of the origin of several neurodevelopmental disorders, potentially providing insights into their treatment or prevention. Additionally, the process of neural crest production and exit from the neural tube is highly similar to the process of metastasis in many invasive cancers. Thus, by understanding how the production of neural crest cells is terminated, it may be possible to learn how to prevent malignant cancer cells from spreading through the body.
Collapse
Affiliation(s)
- Dina Rekler
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
17
|
Zhao R, Trainor PA. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin Cell Dev Biol 2022; 138:54-67. [PMID: 35277330 DOI: 10.1016/j.semcdb.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-defined cellular process that was discovered in chicken embryos and described as "epithelial to mesenchymal transformation" [1]. During EMT, epithelial cells lose their epithelial features and acquire mesenchymal character with migratory potential. EMT has subsequently been shown to be essential for both developmental and pathological processes including embryo morphogenesis, wound healing, tissue fibrosis and cancer [2]. During the past 5 years, interest and study of EMT especially in cancer biology have increased exponentially due to the implied role of EMT in multiple aspects of malignancy such as cell invasion, survival, stemness, metastasis, therapeutic resistance and tumor heterogeneity [3]. Since the process of EMT in embryogenesis and cancer progression shares similar phenotypic changes, core transcription factors and molecular mechanisms, it has been proposed that the initiation and development of carcinoma could be attributed to abnormal activation of EMT factors usually required for normal embryo development. Therefore, developmental EMT mechanisms, whose timing, location, and tissue origin are strictly regulated, could prove useful for uncovering new insights into the phenotypic changes and corresponding gene regulatory control of EMT under pathological conditions. In this review, we initially provide an overview of the phenotypic and molecular mechanisms involved in EMT and discuss the newly emerging concept of epithelial to mesenchymal plasticity (EMP). Then we focus on our current knowledge of a classic developmental EMT event, neural crest cell (NCC) delamination, highlighting key differences in our understanding of NCC EMT between mammalian and non-mammalian species. Lastly, we highlight available tools and future directions to advance our understanding of mammalian NCC EMT.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
18
|
Hong L, Li N, Gasque V, Mehta S, Ye L, Wu Y, Li J, Gewies A, Ruland J, Hirschi KK, Eichmann A, Hendry C, van Dijk D, Mani A. Prdm6 controls heart development by regulating neural crest cell differentiation and migration. JCI Insight 2022; 7:156046. [PMID: 35108221 PMCID: PMC8876496 DOI: 10.1172/jci.insight.156046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms that drive the acquisition of distinct neural crest cell (NCC) fates is still poorly understood. Here, we identified Prdm6 as an epigenetic modifier that temporally and spatially regulates the expression of NCC specifiers and determines the fate of a subset of migrating cardiac NCCs (CNCCs). Using transcriptomic analysis and genetic and fate mapping approaches in transgenic mice, we showed that disruption of Prdm6 was associated with impaired CNCC differentiation, delamination, and migration and led to patent ductus arteriosus (DA) and ventricular noncompaction. Bulk and single-cell RNA-Seq analyses of the DA and CNCCs identified Prdm6 as a regulator of a network of CNCC specification genes, including Wnt1, Tfap2b, and Sox9. Loss of Prdm6 in CNCCs diminished its expression in the pre-epithelial–mesenchymal transition (pre-EMT) cluster, resulting in the retention of NCCs in the dorsal neural tube. This defect was associated with diminished H4K20 monomethylation and G1-S progression and augmented Wnt1 transcript levels in pre-EMT and neural tube clusters, which we showed was the major driver of the impaired CNCC migration. Altogether, these findings revealed Prdm6 as a key regulator of CNCC differentiation and migration and identified Prdm6 and its regulated network as potential targets for the treatment of congenital heart diseases.
Collapse
Affiliation(s)
- Lingjuan Hong
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Na Li
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Victor Gasque
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, United States of America
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - Yinyu Wu
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - Jinyu Li
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | | | | | - Karen K Hirschi
- University of Virginia School of Medicine, Charlottesville, United States of America
| | - Anne Eichmann
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - David van Dijk
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Arya Mani
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| |
Collapse
|
19
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
20
|
Kohrman AQ, Kim-Yip RP, Posfai E. Imaging developmental cell cycles. Biophys J 2021; 120:4149-4161. [PMID: 33964274 PMCID: PMC8516676 DOI: 10.1016/j.bpj.2021.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
The last decade has seen a major expansion in development of live biosensors, the tools needed to genetically encode them into model organisms, and the microscopic techniques used to visualize them. When combined, these offer us powerful tools with which to make fundamental discoveries about complex biological processes. In this review, we summarize the availability of biosensors to visualize an essential cellular process, the cell cycle, and the techniques for single-cell tracking and quantification of these reporters. We also highlight studies investigating the connection of cellular behavior to the cell cycle, particularly through live imaging, and anticipate exciting discoveries with the combination of these technologies in developmental contexts.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
21
|
Zebrafish Cdx4 regulates neural crest cell specification and migratory behaviors in the posterior body. Dev Biol 2021; 480:25-38. [PMID: 34389276 DOI: 10.1016/j.ydbio.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
The neural crest (NC) is a transient multipotent cell population that migrates extensively to produce a remarkable array of vertebrate cell types. NC cell specification progresses in an anterior to posterior fashion, resulting in distinct, axial-restricted subpopulations. The anterior-most, cranial, population of NC is specified as gastrulation concludes and neurulation begins, while more posterior populations become specified as the body elongates. The mechanisms that govern development of the more posterior NC cells remain incompletely understood. Here, we report a key role for zebrafish Cdx4, a homeodomain transcription factor, in the development of posterior NC cells. We demonstrate that cdx4 is expressed in trunk NC cell progenitors, directly binds NC cell-specific enhancers in the NC GRN, and regulates expression of the key NC development gene foxd3 in the posterior body. Moreover, cdx4 mutants show disruptions to the segmental pattern of trunk NC cell migration due to loss of normal leader/follower cell dynamics. Finally, using cell transplantation to generate chimeric specimens, we show that Cdx4 does not function in the paraxial mesoderm-the environment adjacent to which crest migrates-to influence migratory behaviors. We conclude that cdx4 plays a critical, and likely tissue autonomous, role in the establishment of trunk NC migratory behaviors. Together, our results indicate that cdx4 functions as an early NC specifier gene in the posterior body of zebrafish embryos.
Collapse
|
22
|
Zhao X, Le TP, Erhardt S, Findley TO, Wang J. Hippo-Yap Pathway Orchestrates Neural Crest Ontogenesis. Front Cell Dev Biol 2021; 9:706623. [PMID: 34307386 PMCID: PMC8298320 DOI: 10.3389/fcell.2021.706623] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Neural crest (NC) cells are a migratory stem cell population in vertebrate embryogenesis that can give rise to multiple cell types, including osteoblasts, chondrocytes, smooth muscle cells, neurons, glia, and melanocytes, greatly contributing to the development of different tissues and organs. Defects in NC development are implicated in many human diseases, such as numerous syndromes, craniofacial aberration and congenital heart defects. Research on NC development has gained intense interest and made significant progress. Recent studies showed that the Hippo-Yap pathway, a conserved fundamental pathway with key roles in regulation of cell proliferation, survival, and differentiation, is indispensable for normal NC development. However, the roles and mechanisms of the Hippo-Yap pathway in NC development remain largely unknown. In this review, we summarize the key functions of the Hippo-Yap pathway indicated in NC induction, migration, proliferation, survival, and differentiation, as well as the diseases caused by its dysfunction in NC cells. We also discuss emerging current and future studies in the investigation of the Hippo-Yap pathway in NC development.
Collapse
Affiliation(s)
| | | | | | | | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
23
|
Font-Noguera M, Montemurro M, Benassayag C, Monier B, Suzanne M. Getting started for migration: A focus on EMT cellular dynamics and mechanics in developmental models. Cells Dev 2021; 168:203717. [PMID: 34245942 DOI: 10.1016/j.cdev.2021.203717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
The conversion of epithelial cells into mesenchymal ones, through a process known as epithelial-mesenchymal transition (or EMT) is a reversible process involved in critical steps of animal development as early as gastrulation and throughout organogenesis. In pathological conditions such as aggressive cancers, EMT is often associated with increased drug resistance, motility and invasiveness. The characterisation of the upstream signals and main decision takers, such as the EMT-transcription factors, has led to the identification of a core molecular machinery controlling the specification towards EMT. However, the cellular execution steps of this fundamental shift are poorly described, especially in cancerous cells. Here we review our current knowledge regarding the stepwise nature of EMT in model organisms as diverse as sea urchin, Drosophila, zebrafish, mouse or chicken. We focus on the cellular dynamics and mechanics of the transitional stages by which epithelial cells progressively become mesenchymal and leave the epithelium. We gather the currently available pieces of the puzzle, including the overlooked property of EMT cells to produce mechanical forces along their apico-basal axis before detaching from their neighbours. We discuss the interplay between EMT and the surrounding tissue. Finally, we propose a conceptual framework of EMT cell dynamics from the very first hint of epithelial cell reorganisation to the successful exit from the epithelial sheet.
Collapse
Affiliation(s)
- Meritxell Font-Noguera
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
24
|
Rekler D, Kalcheim C. From Neural Crest to Definitive Roof Plate: The Dynamic Behavior of the Dorsal Neural Tube. Int J Mol Sci 2021; 22:3911. [PMID: 33920095 PMCID: PMC8070085 DOI: 10.3390/ijms22083911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 01/11/2023] Open
Abstract
Research on the development of the dorsal neural tube is particularly challenging. In this highly dynamic domain, a temporal transition occurs between early neural crest progenitors that undergo an epithelial-to-mesenchymal transition and exit the neural primordium, and the subsequent roof plate, a resident epithelial group of cells that constitutes the dorsal midline of the central nervous system. Among other functions, the roof plate behaves as an organizing center for the generation of dorsal interneurons. Despite extensive knowledge of the formation, emigration and migration of neural crest progenitors, little is known about the mechanisms leading to the end of neural crest production and the transition into a roof plate stage. Are these two mutually dependent or autonomously regulated processes? Is the generation of roof plate and dorsal interneurons induced by neural tube-derived factors throughout both crest and roof plate stages, respectively, or are there differences in signaling properties and responsiveness as a function of time? In this review, we discuss distinctive characteristics of each population and possible mechanisms leading to the shift between the above cell types.
Collapse
Affiliation(s)
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O.Box 12272, Jerusalem 9112102, Israel;
| |
Collapse
|
25
|
Kondow A, Ohnuma K, Kamei Y, Taniguchi A, Bise R, Sato Y, Yamaguchi H, Nonaka S, Hashimoto K. Light‐sheet microscopy‐based 3D single‐cell tracking reveals a correlation between cell cycle and the start of endoderm cell internalization in early zebrafish development. Dev Growth Differ 2020; 62:495-502. [DOI: 10.1111/dgd.12695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Akiko Kondow
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science Fujita Health University Toyoake Aichi Japan
- Spatiotemporal Regulations Group Exploratory Research Center on Life and Living Systems (ExCELLS) Okazaki Aichi Japan
| | - Kiyoshi Ohnuma
- Department of Bioengineering Nagaoka University of Technology Nagaoka Niigata Japan
- Department of Science of Technology InnovationNagaoka University of Technology Nagaoka Niigata Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology National Institute for Basic Biology Okazaki Aichi Japan
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI) Okazaki Aichi Japan
| | - Atsushi Taniguchi
- Spatiotemporal Regulations Group Exploratory Research Center on Life and Living Systems (ExCELLS) Okazaki Aichi Japan
- Laboratory for Spatiotemporal Regulations National Institute for Basic Biology Okazaki Aichi Japan
| | - Ryoma Bise
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering Kyushu University Fukuoka Fukuoka Japan
| | - Yoichi Sato
- Institute of Industrial Science The University of Tokyo Meguro Tokyo Japan
| | - Hisateru Yamaguchi
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science Fujita Health University Toyoake Aichi Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group Exploratory Research Center on Life and Living Systems (ExCELLS) Okazaki Aichi Japan
- Laboratory for Biothermology National Institute for Basic Biology Okazaki Aichi Japan
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI) Okazaki Aichi Japan
| | - Keiichiro Hashimoto
- Division of Biomedical Polymer Science, Institute for Comprehensive Medical Science Fujita Health University Toyoake Aichi Japan
| |
Collapse
|
26
|
Konagaya Y, Takakura K, Sogabe M, Bisaria A, Liu C, Meyer T, Sehara-Fujisawa A, Matsuda M, Terai K. Intravital imaging reveals cell cycle-dependent myogenic cell migration during muscle regeneration. Cell Cycle 2020; 19:3167-3181. [PMID: 33131406 DOI: 10.1080/15384101.2020.1838779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During muscle regeneration, extracellular signal-regulated kinase (ERK) promotes both proliferation and migration. However, the relationship between proliferation and migration is poorly understood in this context. To elucidate this complex relationship on a physiological level, we established an intravital imaging system for measuring ERK activity, migration speed, and cell-cycle phases in mouse muscle satellite cell-derived myogenic cells. We found that in vivo, ERK is maximally activated in myogenic cells two days after injury, and this is then followed by increases in cell number and motility. With limited effects of ERK activity on migration on an acute timescale, we hypothesized that ERK increases migration speed in the later phase by promoting cell-cycle progression. Our cell-cycle analysis further revealed that in myogenic cells, ERK activity is critical for G1/S transition, and cells migrate more rapidly in S/G2 phase 3 days after injury. Finally, migration speed of myogenic cells was suppressed after CDK1/2-but not CDK1-inhibitor treatment, demonstrating a critical role of CDK2 in myogenic cell migration. Overall, our study demonstrates that in myogenic cells, the ERK-CDK2 axis promotes not only G1/S transition but also migration, thus providing a novel mechanism for efficient muscle regeneration.
Collapse
Affiliation(s)
- Yumi Konagaya
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA.,Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan
| | - Kanako Takakura
- Imaging Platform for Spatio-Temporal Regulation, Graduate School of Medicine, Kyoto University , Kyoto, Japan
| | - Maina Sogabe
- Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Anjali Bisaria
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine , Stanford, CA, USA
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute of Frontier Life and Medical Sciences, Kyoto University , Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University , Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University , Kyoto, Japan
| |
Collapse
|
27
|
Mirea MA, Eckensperger S, Hengstschläger M, Mikula M. Insights into Differentiation of Melanocytes from Human Stem Cells and Their Relevance for Melanoma Treatment. Cancers (Basel) 2020; 12:E2508. [PMID: 32899370 PMCID: PMC7564443 DOI: 10.3390/cancers12092508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved developmental process, it is worthwhile further examining the nature of early developmental steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing the physiologic embryo development in different species or by in vitro studies of melanocytic differentiation originating from embryonic human stem cells. Most importantly, external cues drive progenitor cell differentiation, which can be divided in stages favoring neural crest specification or melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models. Furthermore, we compare developmental mechanisms with processes described to occur during melanoma development. Finally, we suggest differentiation factors as potential co-treatment options for metastatic melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Mario Mikula
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University Vienna, Währingerstrasse 10, 1090 Vienna, Austria; (M.A.M.); (S.E.); (M.H.)
| |
Collapse
|
28
|
Kahane N, Kalcheim C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 2020; 147:dev183996. [PMID: 32345743 PMCID: PMC7272346 DOI: 10.1242/dev.183996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| |
Collapse
|
29
|
Andrieu C, Montigny A, Bibonne A, Despin-Guitard E, Alfandari D, Théveneau E. MMP14 is required for delamination of chick neural crest cells independently of its catalytic activity. Development 2020; 147:dev.183954. [PMID: 32280063 DOI: 10.1242/dev.183954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Matrix metalloproteinases have a broad spectrum of substrates ranging from extracellular matrix components and adhesion molecules to chemokines and growth factors. Despite being mostly secreted, MMPs have been detected in the cytosol, the mitochondria or the nucleus. Although most of the attention is focused on their role in matrix remodeling, the diversity of their substrates and their complex trafficking open the possibility for non-canonical functions. Yet in vivo examples and experimental demonstration of the physiological relevance of such activities are rare. Here, we have used chick neural crest (NC) cells, a highly migratory stem cell population likened to invasive cancer cells, as a model for physiological epithelial-mesenchymal transition (EMT). We demonstrate that MMP14 is required for NC delamination. Interestingly, this role is independent of its cytoplasmic tail and of its catalytic activity. Our in vivo data indicate that, in addition to being a late pro-invasive factor, MMP14 is also likely to be an early player, owing to its role in EMT.
Collapse
Affiliation(s)
- Cyril Andrieu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Audrey Montigny
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Anne Bibonne
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Evangeline Despin-Guitard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric Théveneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| |
Collapse
|
30
|
Kalev-Altman R, Hanael E, Zelinger E, Blum M, Monsonego-Ornan E, Sela-Donenfeld D. Conserved role of matrix metalloproteases 2 and 9 in promoting the migration of neural crest cells in avian and mammalian embryos. FASEB J 2020; 34:5240-5261. [PMID: 32067275 DOI: 10.1096/fj.201901217rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) are a unique embryonic cell population that initially reside at the dorsal neural tube but later migrate in the embryo and differentiate into multiple types of derivatives. To acquire motility, NCCs undergo epithelial-to-mesenchymal transition and invade the surrounding extracellular matrix (ECM). Matrix metalloproteases (MMPs) are a large family of proteases which regulate migration of various embryonic and adult cells via ECM remodeling. The gelatinase's subgroup of MMPs is the most studied one due to its key role in metastasis. As it is composed of only two proteases, MMP2 and MMP9, it is important to understand whether each is indispensable or redundant in its biological function. Here we explored the role of the gelatinases in executing NCC migration, by determining whether MMP2 and/or MMP9 regulate migration across species in singular, combined, or redundant manners. Chick and mouse embryos were utilized to compare expression and activity of both MMPs using genetic and pharmacological approaches in multiple in vivo and ex vivo assays. Both MMPs were found to be expressed and active in mouse and chick NCCs. Inhibition of each MMP was sufficient to prevent NCC migration in both species. Yet, NCC migration was maintained in MMP2-/- or MMP9-/- mouse mutants due to compensation between the gelatinases, but reciprocal pharmacological inhibition in each mutant prevented NCC migration. This study reveals for the first time that both gelatinases are expressed in avian and mammalian NCCs, and demonstrates their fundamental and conserved role in promoting embryonic cell migration.
Collapse
Affiliation(s)
- Rotem Kalev-Altman
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel.,The Institute of Biochemistry and Nutrition, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Erez Hanael
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Einat Zelinger
- Core Facility Unit, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry and Nutrition, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| |
Collapse
|
31
|
Wnt Signaling in Neural Crest Ontogenesis and Oncogenesis. Cells 2019; 8:cells8101173. [PMID: 31569501 PMCID: PMC6829301 DOI: 10.3390/cells8101173] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Neural crest (NC) cells are a temporary population of multipotent stem cells that generate a diverse array of cell types, including craniofacial bone and cartilage, smooth muscle cells, melanocytes, and peripheral neurons and glia during embryonic development. Defective neural crest development can cause severe and common structural birth defects, such as craniofacial anomalies and congenital heart disease. In the early vertebrate embryos, NC cells emerge from the dorsal edge of the neural tube during neurulation and then migrate extensively throughout the anterior-posterior body axis to generate numerous derivatives. Wnt signaling plays essential roles in embryonic development and cancer. This review summarizes current understanding of Wnt signaling in NC cell induction, delamination, migration, multipotency, and fate determination, as well as in NC-derived cancers.
Collapse
|
32
|
Abstract
Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
33
|
Kumar D, Nitzan E, Kalcheim C. YAP promotes neural crest emigration through interactions with BMP and Wnt activities. Cell Commun Signal 2019; 17:69. [PMID: 31228951 PMCID: PMC6589182 DOI: 10.1186/s12964-019-0383-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background Premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition and leave the neural tube as motile cells. Previously, we showed that BMP generates trunk neural crest emigration through canonical Wnt signaling which in turn stimulates G1/S transition. The molecular network underlying this process is, however, not yet completely deciphered. Yes-associated-protein (YAP), an effector of the Hippo pathway, controls various aspects of development including cell proliferation, migration, survival and differentiation. In this study, we examined the possible involvement of YAP in neural crest emigration and its relationship with BMP and Wnt. Methods We implemented avian embryos in which levels of YAP gene activity were either reduced or upregulated by in ovo plasmid electroporation, and monitored effects on neural crest emigration, survival and proliferation. Neural crest-derived sensory neuron and melanocyte development were assessed upon gain of YAP function. Imunohistochemistry was used to assess YAP expression. In addition, the activity of specific signaling pathways including YAP, BMP and Wnt was monitored with specific reporters. Results We find that the Hippo pathway transcriptional co-activator YAP is expressed and is active in premigratory crest of avian embryos. Gain of YAP function stimulates neural crest emigration in vivo, and attenuating YAP inhibits cell exit. This is associated with an accumulation of FoxD3-expressing cells in the dorsal neural tube, with reduced proliferation, and enhanced apoptosis. Furthermore, gain of YAP function inhibits differentiation of Islet-1-positive sensory neurons and augments the number of EdnrB2-positive melanocytes. Using specific in vivo reporters, we show that loss of YAP function in the dorsal neural tube inhibits BMP and Wnt activities whereas gain of YAP function stimulates these pathways. Reciprocally, inhibition of BMP and Wnt signaling by noggin or Xdd1, respectively, downregulates YAP activity. In addition, YAP-dependent stimulation of neural crest emigration is compromised upon inhibition of either BMP or Wnt activities. Together, our results suggest a positive bidirectional cross talk between these pathways. Conclusions Our data show that YAP is necessary for emigration of neural crest progenitors. In addition, they incorporate YAP signaling into a BMP/Wnt-dependent molecular network responsible for emigration of trunk-level neural crest.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
34
|
Wang H, Zhu Y, Chi Y, Dong S. A human embryonic stem cell-based model for benzo[a]pyrene-induced embryotoxicity. Reprod Toxicol 2019; 85:26-33. [DOI: 10.1016/j.reprotox.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
35
|
Abstract
Neural crest cells are the embryonic precursors of most neurons and all glia of the peripheral nervous system, pigment cells, some endocrine components, and connective tissue of the head, face, neck, and heart. Following induction, crest cells undergo an epithelial to mesenchymal transition that enables them to migrate along specific pathways culminating in their phenotypic differentiation. Researching this unique embryonic population has revealed important understandings of basic biological and developmental principles. These principles are likely to assist in clarifying the etiology and help in finding strategies for the treatment of neural crest diseases, collectively termed neurocristopathies. The progress achieved in neural crest research is made feasible thanks to the continuous development of species-specific in vivo and in vitro paradigms and more recently the possibility to produce neural crest cells and specific derivatives from embryonic or induced pluripotent stem cells. All of the above assist us in elucidating mechanisms that regulate neural crest development using state-of-the art cellular, molecular, and imaging approaches.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
36
|
Rajan SG, Gallik KL, Monaghan JR, Uribe RA, Bronner ME, Saxena A. Tracking neural crest cell cycle progression in vivo. Genesis 2018; 56:e23214. [PMID: 29956448 DOI: 10.1002/dvg.23214] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/03/2023]
Abstract
Analysis of cell cycle entry/exit and progression can provide fundamental insights into stem cell propagation, maintenance, and differentiation. The neural crest is a unique stem cell population in vertebrate embryos that undergoes long-distance collective migration and differentiation into a wide variety of derivatives. Using traditional techniques such as immunohistochemistry to track cell cycle changes in such a dynamic population is challenging, as static time points provide an incomplete spatiotemporal picture. In contrast, the fluorescent, ubiquitination-based cell cycle indicator (Fucci) system provides in vivo readouts of cell cycle progression and has been previously adapted for use in zebrafish. The most commonly used Fucci systems are ubiquitously expressed, making tracking of a specific cell population challenging. Therefore, we generated a transgenic zebrafish line, Tg(-4.9sox10:mAG-gmnn(1/100)-2A-mCherry-cdt1(1/190)), in which the Fucci system is specifically expressed in delaminating and migrating neural crest cells. Here, we demonstrate validation of this new tool and its use in live high-resolution tracking of cell cycle progression in the neural crest and derivative populations.
Collapse
Affiliation(s)
- Sriivatsan G Rajan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607
| | - Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, Massachusetts, 02131
| | - Rosa A Uribe
- Department of Biosciences, Rice University, Houston, Texas, 77005
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607
| |
Collapse
|
37
|
Gouignard N, Andrieu C, Theveneau E. Neural crest delamination and migration: Looking forward to the next 150 years. Genesis 2018; 56:e23107. [PMID: 29675839 DOI: 10.1002/dvg.23107] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/24/2022]
Abstract
Neural crest (NC) cells were described for the first time in 1868 by Wilhelm His. Since then, this amazing population of migratory stem cells has been intensively studied. It took a century to fully unravel their incredible abilities to contribute to nearly every organ of the body. Yet, our understanding of the cell and molecular mechanisms controlling their migration is far from complete. In this review, we summarize the current knowledge on epithelial-mesenchymal transition and collective behavior of NC cells and propose further stops at which the NC train might be calling in the near future.
Collapse
Affiliation(s)
- Nadège Gouignard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Cyril Andrieu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Eric Theveneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
38
|
Gestri G, Bazin-Lopez N, Scholes C, Wilson SW. Cell Behaviors during Closure of the Choroid Fissure in the Developing Eye. Front Cell Neurosci 2018. [PMID: 29515375 PMCID: PMC5826230 DOI: 10.3389/fncel.2018.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coloboma is a defect in the morphogenesis of the eye that is a consequence of failure of choroid fissure fusion. It is among the most common congenital defects in humans and can significantly impact vision. However, very little is known about the cellular mechanisms that regulate choroid fissure closure. Using high-resolution confocal imaging of the zebrafish optic cup, we find that apico-basal polarity is re-modeled in cells lining the fissure in proximal to distal and inner to outer gradients during fusion. This process is accompanied by cell proliferation, displacement of vasculature, and contact between cells lining the choroid fissure and periocular mesenchyme (POM). To investigate the role of POM cells in closure of the fissure, we transplanted optic vesicles onto the yolk, allowing them to develop in a situation where they are depleted of POM. The choroid fissure forms normally in ectopic eyes but fusion fails in this condition, despite timely apposition of the nasal and temporal lips of the retina. This study resolves some of the cell behaviors underlying choroid fissure fusion and supports a role for POM in choroid fissure fusion.
Collapse
Affiliation(s)
- Gaia Gestri
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Naiara Bazin-Lopez
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Clarissa Scholes
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W Wilson
- Division of Biosciences, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
39
|
Kalcheim C. Neural crest emigration: From start to stop. Genesis 2018; 56:e23090. [DOI: 10.1002/dvg.23090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC; Hebrew University of Jerusalem-Hadassah Medical School; Jerusalem 9112102 Israel
| |
Collapse
|
40
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
41
|
Berres ME, Garic A, Flentke GR, Smith SM. Transcriptome Profiling Identifies Ribosome Biogenesis as a Target of Alcohol Teratogenicity and Vulnerability during Early Embryogenesis. PLoS One 2017; 12:e0169351. [PMID: 28046103 PMCID: PMC5207668 DOI: 10.1371/journal.pone.0169351] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 12/15/2016] [Indexed: 01/05/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Individuals with FASD may exhibit a characteristic facial appearance that has diagnostic utility. The mechanism by which alcohol disrupts craniofacial development is incompletely understood, as are the genetic factors that can modify individual alcohol vulnerability. Using an established avian model, we characterized the cranial transcriptome in response to alcohol to inform the mechanism underlying these cells’ vulnerability. Gallus gallus embryos having 3–6 somites were exposed to 52 mM alcohol and the cranial transcriptomes were sequenced thereafter. A total of 3422 genes had significantly differential expression. The KEGG pathways with the greatest enrichment of differentially expressed gene clusters were Ribosome (P = 1.2 x 10−17, 67 genes), Oxidative Phosphorylation (P = 4.8 x 10−12, 60 genes), RNA Polymerase (P = 2.2 x 10−3, 15 genes) and Spliceosome (P = 2.6 x 10−2, 39 genes). The preponderance of transcripts in these pathways were repressed in response to alcohol. These same gene clusters also had the greatest altered representation in our previous comparison of neural crest populations having differential vulnerability to alcohol-induced apoptosis. Comparison of differentially expressed genes in alcohol-exposed (3422) and untreated, alcohol-vulnerable (1201) transcriptomes identified 525 overlapping genes of which 257 have the same direction of transcriptional change. These included 36 ribosomal, 25 oxidative phosphorylation and 7 spliceosome genes. Using a functional approach in zebrafish, partial knockdown of ribosomal proteins zrpl11, zrpl5a, and zrps3a individually heightened vulnerability to alcohol-induced craniofacial deficits and increased apoptosis. In humans, haploinsufficiency of several of the identified ribosomal proteins are causative in craniofacial dysmorphologies such as Treacher Collins Syndrome and Diamond-Blackfan Anemia. This work suggests ribosome biogenesis may be a novel target mediating alcohol’s damage to developing neural crest. Our findings are consistent with observations that gene-environment interactions contribute to vulnerability in FASD.
Collapse
Affiliation(s)
- Mark E. Berres
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ana Garic
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - George R. Flentke
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan M. Smith
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: ,
| |
Collapse
|
42
|
Kohrman AQ, Matus DQ. Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends Cell Biol 2017; 27:12-25. [PMID: 27634432 PMCID: PMC5186408 DOI: 10.1016/j.tcb.2016.08.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/30/2016] [Accepted: 08/10/2016] [Indexed: 12/18/2022]
Abstract
Cell invasion through the basement membrane (BM) occurs during normal embryonic development and is a fundamental feature of cancer metastasis. The underlying cellular and genetic machinery required for invasion has been difficult to identify, due to a lack of adequate in vivo models to accurately examine invasion in single cells at subcellular resolution. Recent evidence has documented a functional link between cell cycle arrest and invasive activity. While cancer progression is traditionally thought of as a disease of uncontrolled cell proliferation, cancer cell dissemination, a critical aspect of metastasis, may require a switch from a proliferative to an invasive state. In this work, we review evidence that BM invasion requires cell cycle arrest and discuss the implications of this concept with regard to limiting the lethality associated with cancer metastasis.
Collapse
Affiliation(s)
- Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
43
|
Shamir ER, Coutinho K, Georgess D, Auer M, Ewald AJ. Twist1-positive epithelial cells retain adhesive and proliferative capacity throughout dissemination. Biol Open 2016; 5:1216-28. [PMID: 27402962 PMCID: PMC5051642 DOI: 10.1242/bio.019703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Dissemination is the process by which cells detach and migrate away from a multicellular tissue. The epithelial-to-mesenchymal transition (EMT) conceptualizes dissemination in a stepwise fashion, with downregulation of E-cadherin leading to loss of intercellular junctions, induction of motility, and then escape from the epithelium. This gain of migratory activity is proposed to be mutually exclusive with proliferation. We previously developed a dissemination assay based on inducible expression of the transcription factor Twist1 and here utilize it to characterize the timing and dynamics of intercellular adhesion, proliferation and migration during dissemination. Surprisingly, Twist1(+) epithelium displayed extensive intercellular junctions, and Twist1(-) luminal epithelial cells could still adhere to disseminating Twist1(+) cells. Although proteolysis and proliferation were both observed throughout dissemination, neither was absolutely required. Finally, Twist1(+) cells exhibited a hybrid migration mode; their morphology and nuclear deformation were characteristic of amoeboid cells, whereas their dynamic protrusive activity, pericellular proteolysis and migration speeds were more typical of mesenchymal cells. Our data reveal that epithelial cells can disseminate while retaining competence to adhere and proliferate.
Collapse
Affiliation(s)
- Eliah R Shamir
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe St, Baltimore, MD 21205, USA
| | - Kester Coutinho
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe St, Baltimore, MD 21205, USA Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS Donner, Berkeley, CA 94720, USA
| | - Dan Georgess
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe St, Baltimore, MD 21205, USA
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS Donner, Berkeley, CA 94720, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration. Cell Rep 2016; 15:2076-88. [PMID: 27210753 PMCID: PMC4893160 DOI: 10.1016/j.celrep.2016.04.067] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 01/27/2016] [Accepted: 04/16/2016] [Indexed: 11/22/2022] Open
Abstract
Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. CNC rely on cell-cell interactions to migrate directionally Leader cells dictate directionality to followers in the trunk NC population Leader and follower identities are acquired before the initiation of migration Leader and follower identities are non-interchangeable during migration
Collapse
|
45
|
He K, Guo X, Liu Y, Li J, Hu Y, Wang D, Song J. TUFM downregulation induces epithelial-mesenchymal transition and invasion in lung cancer cells via a mechanism involving AMPK-GSK3β signaling. Cell Mol Life Sci 2016; 73:2105-21. [PMID: 26781467 PMCID: PMC11108297 DOI: 10.1007/s00018-015-2122-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction and epithelial-to-mesenchymal transition (EMT) play important roles in cancer development and metastasis. However, very little is known about the connection between mitochondrial dysfunction and EMT. Tu translation elongation factor, mitochondrial (TUFM), a key factor in the translational expression of mitochondrial DNA, plays an important role in the control of mitochondrial function. Here, we show that TUFM is downregulated in human cancer tissues. TUFM expression level was positively correlated with that of E-cadherin and decreased significantly during the progression of human lung cancer. TUFM knockdown induced EMT, reduced mitochondrial respiratory chain activity, and increased glycolytic function and the production of reactive oxygen species (ROS). Mechanistically, TUFM knockdown activated AMPK and phosphorylated GSK3β and increased the nuclear accumulation of β-catenin, leading to the induction of EMT and increased migration and metastasis of A549 lung cancer cells. Although TUFM knockdown also induced EMT of MCF7 breast cancer cells, the underlying mechanism appeared somewhat different from that in lung cancer cells. Our work identifies TUFM as a novel regulator of EMT and suggests a molecular link between mitochondrial dysfunction and EMT induction.
Collapse
Affiliation(s)
- Kai He
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xiaojie Guo
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yi Liu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jingsong Li
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Ying Hu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Dongmei Wang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Jianguo Song
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
46
|
Nitzan E, Avraham O, Kahane N, Ofek S, Kumar D, Kalcheim C. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. BMC Biol 2016; 14:23. [PMID: 27012662 PMCID: PMC4806459 DOI: 10.1186/s12915-016-0245-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. RESULTS Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. CONCLUSIONS Together, our data suggest that BMP signaling is important both for NC and RP formation. Given that these two structures develop sequentially, we speculate that the longer exposure of RP progenitors to BMP compared with that of premigratory NC cells may be translated into a higher signaling level in the former. This induces changes in responsiveness to BMP, most likely by downregulating the expression of Alk3 receptors and, consequently, of BMP-dependent downstream transcription factors, which exhibit spatial complementary expression patterns and mutually repress each other to generate alternative fates. This molecular dynamic is likely to account for the transition between the NC and definitive RP stages and thus be responsible for the segregation between central and peripheral lineages during neural development.
Collapse
Affiliation(s)
- Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.,Present Address: Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oshri Avraham
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.,Present address: Department of Genetics, Washington University, St. Louis, MO, USA
| | - Nitza Kahane
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Shai Ofek
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Deepak Kumar
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102,, PO Box 12272,, Israel.
| |
Collapse
|
47
|
Matus DQ, Lohmer LL, Kelley LC, Schindler AJ, Kohrman AQ, Barkoulas M, Zhang W, Chi Q, Sherwood DR. Invasive Cell Fate Requires G1 Cell-Cycle Arrest and Histone Deacetylase-Mediated Changes in Gene Expression. Dev Cell 2016; 35:162-74. [PMID: 26506306 DOI: 10.1016/j.devcel.2015.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Despite critical roles in development and cancer, the mechanisms that specify invasive cellular behavior are poorly understood. Through a screen of transcription factors in Caenorhabditis elegans, we identified G1 cell-cycle arrest as a precisely regulated requirement of the anchor cell (AC) invasion program. We show that the nuclear receptor nhr-67/tlx directs the AC into G1 arrest in part through regulation of the cyclin-dependent kinase inhibitor cki-1. Loss of nhr-67 resulted in non-invasive, mitotic ACs that failed to express matrix metalloproteinases or actin regulators and lack invadopodia, F-actin-rich membrane protrusions that facilitate invasion. We further show that G1 arrest is necessary for the histone deacetylase HDA-1, a key regulator of differentiation, to promote pro-invasive gene expression and invadopodia formation. Together, these results suggest that invasive cell fate requires G1 arrest and that strategies targeting both G1-arrested and actively cycling cells may be needed to halt metastatic cancer.
Collapse
Affiliation(s)
- David Q Matus
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | - Lauren L Lohmer
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Adam J Schindler
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, Imperial College Road SAF Building, London SW7 2AZ, UK
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
48
|
Kalcheim C. Epithelial-Mesenchymal Transitions during Neural Crest and Somite Development. J Clin Med 2015; 5:jcm5010001. [PMID: 26712793 PMCID: PMC4730126 DOI: 10.3390/jcm5010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a central process during embryonic development that affects selected progenitor cells of all three germ layers. In addition to driving the onset of cellular migrations and subsequent tissue morphogenesis, the dynamic conversions of epithelium into mesenchyme and vice-versa are intimately associated with the segregation of homogeneous precursors into distinct fates. The neural crest and somites, progenitors of the peripheral nervous system and of skeletal tissues, respectively, beautifully illustrate the significance of EMT to the above processes. Ongoing studies progressively elucidate the gene networks underlying EMT in each system, highlighting the similarities and differences between them. Knowledge of the mechanistic logic of this normal ontogenetic process should provide important insights to the understanding of pathological conditions such as cancer metastasis, which shares some common molecular themes.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Edmond and Lili Safra Center for Brain Sciences (ELSC), Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel.
| |
Collapse
|
49
|
Stathopoulou A, Natarajan D, Nikolopoulou P, Patmanidi AL, Lygerou Z, Pachnis V, Taraviras S. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Dev Biol 2015; 409:392-405. [PMID: 26658318 DOI: 10.1016/j.ydbio.2015.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022]
Abstract
Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells.
Collapse
Affiliation(s)
| | - Dipa Natarajan
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | | | | | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
50
|
Willems B, Tao S, Yu T, Huysseune A, Witten PE, Winkler C. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish. PLoS One 2015; 10:e0131768. [PMID: 26121341 PMCID: PMC4486457 DOI: 10.1371/journal.pone.0131768] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/05/2015] [Indexed: 12/31/2022] Open
Abstract
During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.
Collapse
Affiliation(s)
- Bernd Willems
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
| | - Shijie Tao
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
| | - Tingsheng Yu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
| | - Ann Huysseune
- Biology Department, Ghent University, Ghent, Belgium
| | | | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|