1
|
Fanara JJ, Sassi PL, Goenaga J, Hasson E. Genetic basis and repeatability for desiccation resistance in Drosophila melanogaster (Diptera: Drosophilidae). Genetica 2024; 152:1-9. [PMID: 38102503 DOI: 10.1007/s10709-023-00201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.
Collapse
Affiliation(s)
- Juan Jose Fanara
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina.
| | - Paola Lorena Sassi
- Grupo de Ecología Integrativa de Fauna Silvestre, Instituto Argentino de Investigaciones de Zonas Áridas, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Julieta Goenaga
- Quality Control & NIR Scientist, Biomar Group, Aarhus, Denmark
| | - Esteban Hasson
- Laboratorio de Evolución, Departamento de Ecología Genética y Evolución, Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Buenos Aires, Argentina
| |
Collapse
|
2
|
Lee HJ, Hoe HS. Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacol Res 2023; 190:106725. [PMID: 36907286 DOI: 10.1016/j.phrs.2023.106725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Repurposing approved drugs is an emerging therapeutic development strategy for Alzheimer's disease (AD). The CDK4/6 inhibitor abemaciclib mesylate is an FDA-approved drug for breast cancer treatment. However, whether abemaciclib mesylate affects Aβ/tau pathology, neuroinflammation, and Aβ/LPS-mediated cognitive impairment is unknown. In this study, we investigated the effects of abemaciclib mesylate on cognitive function and Aβ/tau pathology and found that abemaciclib mesylate improved spatial and recognition memory by regulating the dendritic spine number and neuroinflammatory responses in 5xFAD mice, an Aβ-overexpressing model of AD. Abemaciclib mesylate also inhibited Aβ accumulation by enhancing the activity and protein levels of the Aβ-degrading enzyme neprilysin and the α-secretase ADAM17 and decreasing the protein level of the γ-secretase PS-1 in young and aged 5xFAD mice. Importantly, abemaciclib mesylate suppressed tau phosphorylation in 5xFAD mice and tau-overexpressing PS19 mice by reducing DYRK1A and/or p-GSK3β levels. In wild-type (WT) mice injected with lipopolysaccharide (LPS), abemaciclib mesylate rescued spatial and recognition memory and restored dendritic spine number. In addition, abemaciclib mesylate downregulated LPS-induced microglial/astrocytic activation and proinflammatory cytokine levels in WT mice. In BV2 microglial cells and primary astrocytes, abemaciclib mesylate suppressed LPS-mediated proinflammatory cytokine levels by downregulating AKT/STAT3 signaling. Taken together, our results support repurposing the anticancer drug, CDK4/6 inhibitor abemaciclib mesylate as a multitarget therapeutic for AD pathologies.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Daegu, the Republic of Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Daegu, the Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, the Republic of Korea.
| |
Collapse
|
3
|
Bhaskar PK, Southard S, Baxter K, Van Doren M. Germline sex determination regulates sex-specific signaling between germline stem cells and their niche. Cell Rep 2022; 39:110620. [PMID: 35385723 PMCID: PMC10462394 DOI: 10.1016/j.celrep.2022.110620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
Establishing germ cell sexual identity is critical for development of male and female germline stem cells (GSCs) and production of sperm or eggs. Germ cells depend on signals from the somatic gonad to determine sex, but in organisms such as flies, mice, and humans, the sex chromosome genotype of the germ cells is also important for germline sexual development. How somatic signals and germ-cell-intrinsic cues combine to regulate germline sex determination is thus a key question. We find that JAK/STAT signaling in the GSC niche promotes male identity in germ cells, in part by activating the chromatin reader Phf7. Further, we find that JAK/STAT signaling is blocked in XX (female) germ cells through the action of the sex determination gene Sex lethal to preserve female identity. Thus, an important function of germline sexual identity is to control how GSCs respond to signals in their niche environment.
Collapse
Affiliation(s)
- Pradeep Kumar Bhaskar
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sheryl Southard
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Kelly Baxter
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Mark Van Doren
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Fang Y, Zong Q, He Z, Liu C, Wang YF. Knockdown of RpL36 in testes impairs spermatogenesis in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:417-430. [PMID: 33734578 DOI: 10.1002/jez.b.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 01/03/2023]
Abstract
Many ribosomal proteins (RPs) not only play essential roles in ribosome biogenesis, but also have "extraribosomal" functions in various cellular processes. RpL36 encodes ribosomal protein L36, a component of the 60S subunit of ribosomes in Drosophila melanogaster. We report here that RpL36 is required for spermatogenesis in D. melanogaster. After showing the evolutionary conservation of RpL36 sequences in animals, we revealed that the RpL36 expression level in fly testes was significantly higher than in ovaries. Knockdown RpL36 in fly testes resulted in a significantly decreased egg hatch rate when these males mated with wild-type females. Furthermore, 76.67% of the RpL36 knockdown fly testes were much smaller in comparison to controls. Immunofluorescence staining exhibited that in the RpL36 knockdown testis hub cell cluster was enlarged, while the number of germ cells, including germ stem cells, was reduced. Knockdown of RpL36 in fly testis caused much fewer or no mature sperms in seminal vesicles. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) signal was stronger in RpL36 knockdown fly testes than in the control testes, but the TUNEL-positive cells could not be stained by Vasa antibody, indicating that apoptotic cells are not germ cells. The percentage of pH3-positive cells among the Vasa-positive cells was significantly reduced. The expression of genes involved in cell death, cell cycle progression, and JAK/STAT signaling pathway was significantly changed by RpL36 knockdown in fly testes. These results suggest that RpL36 plays an important role in spermatogenesis, likely through JAK/STAT pathway, thus resulting in defects in cell-cycle progression and cell death in D. melanogaster testes.
Collapse
Affiliation(s)
- Yang Fang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Qiong Zong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chen Liu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
5
|
Zhang XJ, Li DD, Xu GF, Chen YQ, Zheng SC. Signal transducer and activator of transcription is involved in the expression regulation of ecdysteroid-induced insulin-like growth factor-like peptide in the pupal wing disc of silkworm, Bombyx mori. INSECT SCIENCE 2020; 27:1186-1197. [PMID: 31724818 DOI: 10.1111/1744-7917.12736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In insects, 20-hydroxyecdysone (20E) and insulin-like growth factor-like peptides (IGFLPs) regulate the development of imaginal discs. However, how IGFLPs are up-regulated to impact the development of the pupal wing disc is still unclear. In this study, we investigated the expression regulation of IGFLP in the pupal wing disc of silkworm, Bombyx mori. We confirmed that B. mori IGFLP (BmIGFLP) was mainly expressed in the pupal wing disc and the expression of BmIGFLP could be significantly induced by 20E. Bioinformatics analysis of BmIGFLP promoter sequence revealed three cis-regulation elements (CREs) of signal transducer and activator of transcription (STAT), which is a key component in the Janus-activated kinase / STAT pathway. Luciferase activity assays showed that two CREs enhanced the transcriptional activity of BmIGFLP. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that BmSTAT proteins in the nuclear extracts of B. mori pupal wing discs and BmN cells could only bind to the STAT CRE3, indicating that STAT CRE3 activated by BmSTAT enhances BmIGFLP expression at pupal stages. Although 20E could not enhance the expression of BmSTAT, 20E enhanced the nucleus translocation of BmSTAT to bind with the STAT CRE3 in the BmIGFLP promoter. The increase of transcriptional activity of the STAT CRE3 by overexpression of BmSTAT and addition of 20E in BmN cells confirmed this result. Taken together, all data indicate that BmSTAT is one of the transcription factors activating 20E-induced BmIGFLP expression in the pupal wing disc.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Dong-Dong Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ya-Qing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
He Y, Wei L, Zhang S, Liu H, Fang F, Li Y. LncRNA PLAC2 Positively Regulates CDK2 to Promote Ovarian Carcinoma Cell Proliferation. Cancer Manag Res 2020; 12:5713-5720. [PMID: 32765074 PMCID: PMC7367733 DOI: 10.2147/cmar.s242781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background PLAC2 has been reported to participate in glioma, but its role in ovarian carcinoma (OC) is unclear. This study investigated the role of lncRNA PLAC2 in OC. Methods A 5-year follow-up study of 64 patients was carried out in Weihai Municipal Hospital after the admission of patients. A total of 64 OC patients were selected from 178 OC patients admitted in the aforementioned hospital from August 2011 to January 2014. Cell transfections, cell cycle analysis, cell proliferation assay and Western blot were carried out during the research. Results The expression levels of PLAC2 and CDK2 were both upregulated in OC and they were positively correlated. During the 5-year follow-up, patients with high levels of PLAC2 and CDK2 showed significantly lower overall survival rate. In OC cells, overexpression of PLAC2 resulted in upregulated, while silencing of PLAC2 resulted in downregulated expression of CDK2. Cell proliferation assay showed that overexpression of PLAC2 resulted in increased, while silencing of PLAC2 resulted in decreased proliferation rate of OC cells. In addition, overexpression of CDK2 attenuated the effects of silencing of PLAC2. Conclusion PLAC2 positively regulates CDK2 to promote OC cell proliferation.
Collapse
Affiliation(s)
- Yuanqi He
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Liqun Wei
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Shihong Zhang
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China.,Department of Gynaecology and Obstetrics, Affiliated Hospital of Beihua University, Jilin City, Jilin Province 132000, People's Republic of China
| | - Haining Liu
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Fang Fang
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| | - Yue Li
- Department of Gynaecology and Obstetrics, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong Province, 264200, People's Republic of China
| |
Collapse
|
7
|
Kimata Y, Leturcq M, Aradhya R. Emerging roles of metazoan cell cycle regulators as coordinators of the cell cycle and differentiation. FEBS Lett 2020; 594:2061-2083. [PMID: 32383482 DOI: 10.1002/1873-3468.13805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023]
Abstract
In multicellular organisms, cell proliferation must be tightly coordinated with other developmental processes to form functional tissues and organs. Despite significant advances in our understanding of how the cell cycle is controlled by conserved cell-cycle regulators (CCRs), how the cell cycle is coordinated with cell differentiation in metazoan organisms and how CCRs contribute to this process remain poorly understood. Here, we review the emerging roles of metazoan CCRs as intracellular proliferation-differentiation coordinators in multicellular organisms. We illustrate how major CCRs regulate cellular events that are required for cell fate acquisition and subsequent differentiation. To this end, CCRs employ diverse mechanisms, some of which are separable from those underpinning the conventional cell-cycle-regulatory functions of CCRs. By controlling cell-type-specific specification/differentiation processes alongside the progression of the cell cycle, CCRs enable spatiotemporal coupling between differentiation and cell proliferation in various developmental contexts in vivo. We discuss the significance and implications of this underappreciated role of metazoan CCRs for development, disease and evolution.
Collapse
Affiliation(s)
- Yuu Kimata
- School of Life Science and Technology, ShanghaiTech University, China
| | - Maïté Leturcq
- School of Life Science and Technology, ShanghaiTech University, China
| | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| |
Collapse
|
8
|
Zhang R, Liu C, Ji Y, Teng L, Guo Y. Neuregulin-1β Plays a Neuroprotective Role by Inhibiting the Cdk5 Signaling Pathway after Cerebral Ischemia-Reperfusion Injury in Rats. J Mol Neurosci 2018; 66:261-272. [PMID: 30206770 DOI: 10.1007/s12031-018-1166-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
This study investigated the effects of neuregulin-1β (NRG1β) after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats to evaluate whether they occur via the cyclin-dependent kinase (Cdk)5 signaling pathway. One hundred adult male Wistar rats were randomly divided into sham, MCAO/R, treatment (NRG1β), inhibitor (roscovitine; Ros), and inhibitor + treatment (Ros + NRG1β) groups. The MCAO/R model was established using the intraluminal thread method. The neurobehavioral function was evaluated by the modified neurological severity score (mNSS). The cerebral infarction volume (CIV) was measured by triphenyl tetrazolium chloride (TTC) staining. Morphological changes were observed by hematoxylin-eosin (HE) staining. The apoptotic cell index (ACI) was detected by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Immunohistochemistry and Western blotting were performed to detect the expression of calpain 1, p35/p25 (regulatory binding partners of Cdk5), Cdk5, and p-Tau in neurons. The neuronal morphology in the MCAO/R, NRG1β, Ros + NRG1β, and Ros groups differed compared to the sham group; the mNSS, CIV, ACI, and the expression of calpain 1, p35/p25, Cdk5, and p-Tau were significantly increased in all four groups (P < 0.05). In the NRG1β, Ros and Ros + NRG1β groups, the neuronal morphology was significantly improved compared to the MCAO/R group, as were the mNSS, CIV, and ACI. The levels of calpain 1, p35/p25, and p-Tau were decreased compared with the MCAO/R group (P < 0.05), while the Cdk5 expression was not significantly different (P > 0.05). NRG1β may exert neuroprotective effects by inhibiting the expression of calpain 1, p35/p25, and p-Tau after cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Rui Zhang
- Department of ICU, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Cui Liu
- Department Traumic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yaqing Ji
- Institute of Integrative Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lei Teng
- Department of Biology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao, 266003, China.
| |
Collapse
|
9
|
The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis. Nat Commun 2016; 7:10473. [PMID: 26792023 PMCID: PMC4736159 DOI: 10.1038/ncomms10473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell competition has emerged as a mechanism for selecting fit stem cells/progenitors and controlling tumourigenesis. However, little is known about the underlying molecular mechanism. Here we identify Mlf1-adaptor molecule (Madm), a novel tumour suppressor that regulates the competition between germline stem cells (GSCs) and somatic cyst stem cells (CySCs) for niche occupancy. Madm knockdown results in overexpression of the EGF receptor ligand vein (vn), which further activates EGF receptor signalling and integrin expression non-cell autonomously in CySCs to promote their overproliferation and ability to outcompete GSCs for niche occupancy. Conversely, expressing a constitutively activated form of the Drosophila JAK kinase (hopTum−l) promotes Madm nuclear translocation, and suppresses vn and integrin expression in CySCs that allows GSCs to outcompete CySCs for niche occupancy and promotes GSC tumour formation. Tumour suppressor-mediated stem cell competition presented here could be a mechanism of tumour initiation in mammals. Stem cell competition mediates the balance between tissue homeostasis and tumour formation, but how this occurs is unclear. Here, Singh et al. show that the tumour suppressor Mlfl-adaptor molecule regulates the balance between germline stem cell and somatic cyst stem cell growth in the Drosophila testis niche.
Collapse
|
10
|
Shapiro-Kulnane L, Smolko AE, Salz HK. Maintenance of Drosophila germline stem cell sexual identity in oogenesis and tumorigenesis. Development 2015; 142:1073-82. [PMID: 25758221 DOI: 10.1242/dev.116590] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. In Drosophila females, germline stem cells (GSCs) require Sex lethal (Sxl) to exit the stem cell state and to enter the differentiation pathway. Without Sxl GSCs do not differentiate and instead form tumors. Previous studies have shown that these tumors are not caused by a failure in the self-renewal/differentiation switch. Here, we show that Sxl is also necessary for the cell-autonomous maintenance of germ cell female identity and demonstrate that tumors are caused by the acquisition of male characteristics. Germ cells without Sxl protein exhibit a global derepression of testis genes, including Phf7, a male germline sexual identity gene. Phf7 is a key effector of the tumor-forming pathway, as it is both necessary and sufficient for tumor formation. In the absence of Sxl protein, inappropriate Phf7 expression drives tumor formation through a cell-autonomous mechanism that includes sex-inappropriate activation of Jak/Stat signaling. Remarkably, tumor formation requires a novel response to external signals emanating from the GSC niche, highlighting the importance of interactions between mutant cells and the surrounding normal cells that make up the tumor microenvironment. Derepression of testis genes, and inappropriate Phf7 expression, is also observed in germ cell tumors arising from the loss of bag of marbles (bam), demonstrating that maintenance of female sexual identity requires the concerted actions of Sxl and bam. Our work reveals that GSCs must maintain their sexual identity as they are reprogrammed into a differentiated cell, or risk tumorigenesis.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA
| | - Anne Elizabeth Smolko
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA
| | - Helen Karen Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4955, USA
| |
Collapse
|
11
|
Zoranovic T, Grmai L, Bach EA. Regulation of proliferation, cell competition, and cellular growth by the Drosophila JAK-STAT pathway. JAKSTAT 2013; 2:e25408. [PMID: 24069565 PMCID: PMC3772117 DOI: 10.4161/jkst.25408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
The JAK-STAT pathway is a key regulator of tissue size in Drosophila melanogaster. Here we provide an overview of its roles in processes that regulate the size of Drosophila imaginal discs, epithelia of diploid cells that proliferate and acquire specific fates in the larvae and that become functional in the adult. Drosophila has a single JAK and a single STAT gene, which has facilitated genetic dissection of this pathway. Moreover, the sophisticated genetic tools available in flies for clonal growth assays have made Drosophila an ideal organism in which to dissect the multiple roles of the JAK-STAT pathway in growth control. Studies in flies have revealed JAK-STAT pathway activity as a central node for diverse signals that control proliferation and mass accumulation. In addition, recent work has establish a new role for the pathway in cell competition, a process thought to be akin to the early stages of transformation in which more robust cells kill and take the place of less robust ones.
Collapse
Affiliation(s)
- Tamara Zoranovic
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York, NY USA
| | | | | |
Collapse
|
12
|
Abstract
The compound eye of the fruit fly, Drosophila melanogaster, has for decades been used extensively to study a number of critical developmental processes including tissue development, pattern formation, cell fate specification, and planar cell polarity. To a lesser degree it has been used to examine the cell cycle and tissue proliferation. Discovering the mechanisms that balance tissue growth and cell death in developing epithelia has traditionally been the realm of those using the wing disc. However, over the last decade a series of observations has demonstrated that the eye is a suitable and maybe even preferable tissue for studying tissue growth. This review will focus on how growth of the retina is controlled by the genes and pathways that govern the specification of tissue fate, the division of the epithelium into dorsal-ventral compartments, the initiation, and progression of the morphogenetic furrow and the second mitotic wave.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
13
|
Karpowicz P, Perez J, Perrimon N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 2010; 137:4135-45. [PMID: 21098564 DOI: 10.1242/dev.060483] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of the signaling pathways that control the proliferation of stem cells (SCs), and whether they act in a cell or non-cell autonomous manner, is key to our understanding of tissue homeostasis and cancer. In the adult Drosophila midgut, the Jun N-Terminal Kinase (JNK) pathway is activated in damaged enterocyte cells (ECs) following injury. This leads to the production of Upd cytokines from ECs, which in turn activate the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway in Intestinal SCs (ISCs), stimulating their proliferation. In addition, the Hippo pathway has been recently implicated in the regulation of Upd production from the ECs. Here, we show that the Hippo pathway target, Yorkie (Yki), also plays a crucial and cell-autonomous role in ISCs. Activation of Yki in ISCs is sufficient to increase ISC proliferation, a process involving Yki target genes that promote division, survival and the Upd cytokines. We further show that prior to injury, Yki activity is constitutively repressed by the upstream Hippo pathway members Fat and Dachsous (Ds). These findings demonstrate a cell-autonomous role for the Hippo pathway in SCs, and have implications for understanding the role of this pathway in tumorigenesis and cancer stem cells.
Collapse
Affiliation(s)
- Phillip Karpowicz
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | |
Collapse
|
14
|
Goncharova EA, Lim PN, Chisolm A, Fogle HW, Taylor JH, Goncharov DA, Eszterhas A, Panettieri RA, Krymskaya VP. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 299:L25-35. [PMID: 20382746 PMCID: PMC2904093 DOI: 10.1152/ajplung.00228.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 04/06/2010] [Indexed: 01/10/2023] Open
Abstract
Severe asthma is characterized by increased airway smooth muscle (ASM) mass due, in part, to ASM cell growth and contractile protein expression associated with increased protein synthesis. Little is known regarding the combined effects of mitogens and interferons on ASM cytosolic protein synthesis. We demonstrate that human ASM mitogens including PDGF, EGF, and thrombin stimulate protein synthesis. Surprisingly, pleiotropic cytokines IFN-beta and IFN-gamma, which inhibit ASM proliferation, also increased cytosolic protein content in ASM cells. Thus IFN-beta alone significantly increased protein synthesis by 1.62 +/- 0.09-fold that was further enhanced by EGF to 2.52 +/- 0.17-fold. IFN-gamma alone also stimulated protein synthesis by 1.91 +/- 0.15-fold; treatment of cells with PDGF, EGF, and thrombin in the presence of IFN-gamma stimulated protein synthesis by 2.24 +/- 0.3-, 1.25 +/- 0.17-, and 2.67 +/- 0.34-fold, respectively, compared with growth factors alone. The mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) inhibition with rapamycin inhibited IFN- and EGF-induced protein synthesis, suggesting that IFN-induced protein synthesis is modulated by mTOR/S6K1 activation. Furthermore, overexpression of tumor suppressor protein tuberous sclerosis complex 2 (TSC2), which is an upstream negative regulator of mTOR/S6K1 signaling, also inhibited mitogen-induced protein synthesis in ASM cells. IFN-beta and IFN-gamma stimulated miR143/145 microRNA expression and increased SM alpha-actin accumulation but had little effect on ASM cell size. In contrast, EGF increased ASM cell size but had little effect on miR143/145 expression. Our data demonstrate that both IFNs and mitogens stimulate protein synthesis but have differential effects on cell size and contractile protein expression and suggest that combined effects of IFNs and mitogens may contribute to ASM cell growth, contractile protein expression, and ASM remodeling in asthma.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy, and Critical Care Division, Airway Biology Initiative, Department of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
van de Hoef DL, Hughes J, Livne-Bar I, Garza D, Konsolaki M, Boulianne GL. Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis 2009; 47:246-60. [PMID: 19241393 DOI: 10.1002/dvg.20485] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gamma-secretase complex is involved in cleaving transmembrane proteins such as Notch and one of the genes targeted in Alzheimer's disease known as amyloid precursor protein (APP). Presenilins function within the catalytic core of gamma-secretase, and mutated forms of presenilins were identified as causative factors in familial Alzheimer's disease. Recent studies show that in addition to Notch and APP, numerous signal transduction pathways are modulated by presenilins, including intracellular calcium signaling. Thus, presenilins appear to have diverse roles. To further understand presenilin function, we searched for Presenilin-interacting genes in Drosophila by performing a genetic modifier screen for enhancers and suppressors of Presenilin-dependent Notch-related phenotypes. We identified 177 modifiers, including known members of the Notch pathway and genes involved in intracellular calcium homeostasis. We further demonstrate that 53 of these modifiers genetically interacted with APP. Characterization of these genes may provide valuable insights into Presenilin function in development and disease.
Collapse
Affiliation(s)
- Diana L van de Hoef
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Bastock R, Strutt D. The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis. Development 2007; 134:3055-64. [PMID: 17652348 PMCID: PMC1991286 DOI: 10.1242/dev.010447] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics.
Collapse
Affiliation(s)
| | - David Strutt
- Corresponding author, , Tel. +44 114 222 2372, Fax. +44 114 276 5413
| |
Collapse
|
17
|
Friedman A, Perrimon N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 2006; 444:230-4. [PMID: 17086199 DOI: 10.1038/nature05280] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 09/22/2006] [Indexed: 11/08/2022]
Abstract
Receptor tyrosine kinase (RTK) signalling through extracellular-signal-regulated kinases (ERKs) has pivotal roles during metazoan development, underlying processes as diverse as fate determination, differentiation, proliferation, survival, migration and growth. Abnormal RTK/ERK signalling has been extensively documented to contribute to developmental disorders and disease, most notably in oncogenic transformation by mutant RTKs or downstream pathway components such as Ras and Raf. Although the core RTK/ERK signalling cassette has been characterized by decades of research using mammalian cell culture and forward genetic screens in model organisms, signal propagation through this pathway is probably regulated by a larger network of moderate, context-specific proteins. The genes encoding these proteins may not have been discovered through traditional screens owing, in particular, to the requirement for visible phenotypes. To obtain a global view of RTK/ERK signalling, we performed an unbiased, RNA interference (RNAi), genome-wide, high-throughput screen in Drosophila cells using a novel, quantitative, cellular assay monitoring ERK activation. Here we show that ERK pathway output integrates a wide array of conserved cellular processes. Further analysis of selected components-in multiple cell types with different RTK ligands and oncogenic stimuli-validates and classifies 331 pathway regulators. The relevance of these genes is highlighted by our isolation of a Ste20-like kinase and a PPM-family phosphatase that seem to regulate RTK/ERK signalling in vivo and in mammalian cells. Novel regulators that modulate specific pathway outputs may be selective targets for drug discovery.
Collapse
Affiliation(s)
- Adam Friedman
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
18
|
Arbouzova NI, Zeidler MP. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 2006; 133:2605-16. [PMID: 16794031 DOI: 10.1242/dev.02411] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High levels of interspecies conservation characterise all signal transduction cascades and demonstrate the significance of these pathways over evolutionary time. Here, we review advances in the field of JAK/STAT signalling, focusing on recent developments in Drosophila. In particular, recent results from genetic and genome-wide RNAi screens, as well as studies into the developmental roles played by this pathway, highlight striking levels of physical and functional conservation in processes such as cellular proliferation, immune responses and stem cell maintenance. These insights underscore the value of model organisms for improving our understanding of this human disease-relevant pathway.
Collapse
Affiliation(s)
- Natalia I Arbouzova
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
19
|
Wikman H, Kettunen E. Regulation of the G1/S phase of the cell cycle and alterations in the RB pathway in human lung cancer. Expert Rev Anticancer Ther 2006; 6:515-30. [PMID: 16613540 DOI: 10.1586/14737140.6.4.515] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retinoblastoma (RB)-Cyclin (CCN)D1-p16 cell cycle pathway has a crucial role in lung tumorigenesis. Impairment of the RB pathway has been shown to occur in almost all lung tumors. A deregulation at any level of this core RB pathway seems to make cells insensitive to the mitogenic signaling that is required for cell cycle progression. To date, almost all participants in this pathway have been shown to be altered to a various degree in lung tumors. Some of the alterations are mutually exclusive, including RB and p16INK4A . In small cell lung cancer, the RB tumor suppressor gene is inactivated in almost 90% of the tumors, whereas in non-small cell lung cancer, the cyclin-dependent kinase (CDK)4 inhibitor p16INK4A is inactivated in 40-60% of the tumors. Many mechanisms may be responsible for activating the RB-Cyclin D1 pathway, including activating (CDK4) and inactivating mutations (p16INK4A ), deletions (RB and p16INK4A ), amplifications (CCND1 and CDK4), silencing methylation (p16INK4A and RB), and hyper-phosphorylation (RB). As some of these alterations, such as p16INK4A methylation, can also be detected in bronchial lavage and serum, they could potentially serve as useful markers for the early detection of lung cancer. This review summarizes recent experiments describing the variable roles of key-player molecules of the RB pathway and different mechanisms by which the RB pathway can be altered in lung cancer.
Collapse
Affiliation(s)
- Harriet Wikman
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf Martinistrasse 52, D-20246 Hamburg, Germany.
| | | |
Collapse
|
20
|
Singh SR, Oh SW, Liu W, Chen X, Zheng Z, Hou SX. Rap-GEF/Rap signaling restricts the formation of supernumerary spermathecae in Drosophila melanogaster. Dev Growth Differ 2006; 48:169-75. [PMID: 16573734 DOI: 10.1111/j.1440-169x.2006.00854.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sperm storage in the female is a key factor for reproductive success in a variety of organisms, including Drosophila melanogaster. The spermathecae (SP) are the Drosophila organs for long-term storage. While wild-type female flies have two SP, occasionally, three or four SP have been observed in mutant flies. However, the molecular mechanism of SP formation is unknown. Here we show that loss of function of a Drosophila Rap-GEF (GEF26) result in an occurrence of the supernumerary SP; females have three SP (varies from 11 to 62% in different allele combinations) instead of the normal two SP. In addition, the Gef26 mutant flies also have ectopic wing veins and extra mechanosensory organs. The supernumerary SP phenotype of the Gef26 mutation can be enhanced by the Drosophila Rap mutations and rescued by overexpressing the cell adhesion molecule DE-cadherin. These data suggest that the Rap-GEF/Rap signaling controls the formation of supernumerary spermathecae through modulating cell adhesion in Drosophila.
Collapse
Affiliation(s)
- Shree R Singh
- Mouse Cancer Genetics Program, National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Mukherjee T, Schäfer U, Zeidler MP. Identification of Drosophila genes modulating Janus kinase/signal transducer and activator of transcription signal transduction. Genetics 2005; 172:1683-97. [PMID: 16387886 PMCID: PMC1456271 DOI: 10.1534/genetics.105.046904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The JAK/STAT pathway was first identified in mammals as a signaling mechanism central to hematopoiesis and has since been shown to exert a wide range of pleiotropic effects on multiple developmental processes. Its inappropriate activation is also implicated in the development of numerous human malignancies, especially those derived from hematopoietic lineages. The JAK/STAT signaling cascade has been conserved through evolution and although the pathway identified in Drosophila has been closely examined, the full complement of genes required to correctly transduce signaling in vivo remains to be identified. We have used a dosage-sensitive dominant eye overgrowth phenotype caused by ectopic activation of the JAK/STAT pathway to screen 2267 independent, newly generated mutagenic P-element insertions. After multiple rounds of retesting, 23 interacting loci that represent genes not previously known to interact with JAK/STAT signaling have been identified. Analysis of these genes has identified three signal transduction pathways, seven potential components of the pathway itself, and six putative downstream pathway target genes. The use of forward genetics to identify loci and reverse genetic approaches to characterize them has allowed us to assemble a collection of genes whose products represent novel components and regulators of this important signal transduction cascade.
Collapse
Affiliation(s)
- Tina Mukherjee
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | |
Collapse
|
22
|
Tilmann C, Kimble J. Cyclin D regulation of a sexually dimorphic asymmetric cell division. Dev Cell 2005; 9:489-99. [PMID: 16198291 PMCID: PMC1513624 DOI: 10.1016/j.devcel.2005.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/15/2005] [Accepted: 09/07/2005] [Indexed: 01/11/2023]
Abstract
The C. elegans somatic gonadal precursor cell (SGP) divides asymmetrically to establish gonad-specific coordinates in both sexes. In addition, the SGP division is sexually dimorphic and initiates sex-specific programs of gonadogenesis. Wnt/MAPK signaling determines the gonadal axes, and the FKH-6 transcription factor specifies the male mode of SGP division. In this paper, we demonstrate that C. elegans cyclin D controls POP-1/TCF asymmetry in the SGP daughters as well as fkh-6 and rnr expression in the SGPs. Although cyclin D mutants have delayed SGP divisions, the cyclin D defects are not mimicked by other methods of retarding the SGP division. We find that EFL-1/E2F has an antagonistic effect on fkh-6 expression and gonadogenesis, which is relieved by cyclin D activity. We propose that cyclin D and other canonical regulators of the G1/S transition coordinate key regulators of axis formation and sex determination with cell cycle progression to achieve the sexually dimorphic SGP asymmetric division.
Collapse
Affiliation(s)
- Christopher Tilmann
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
23
|
Baeg GH, Zhou R, Perrimon N. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes Dev 2005; 19:1861-70. [PMID: 16055650 PMCID: PMC1186186 DOI: 10.1101/gad.1320705] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cytokine-activated Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays an important role in the control of a wide variety of biological processes. When misregulated, JAK/STAT signaling is associated with various human diseases, such as immune disorders and tumorigenesis. To gain insights into the mechanisms by which JAK/STAT signaling participates in these diverse biological responses, we carried out a genome-wide RNA interference (RNAi) screen in cultured Drosophila cells. We identified 121 genes whose double-stranded RNA (dsRNA)-mediated knockdowns affected STAT92E activity. Of the 29 positive regulators, 13 are required for the tyrosine phosphorylation of STAT92E. Furthermore, we found that the Drosophila homologs of RanBP3 and RanBP10 are negative regulators of JAK/STAT signaling through their control of nucleocytoplasmic transport of STAT92E. In addition, we identified a key negative regulator of Drosophila JAK/STAT signaling, protein tyrosine phosphatase PTP61F, and showed that it is a transcriptional target of JAK/STAT signaling, thus revealing a novel negative feedback loop. Our study has uncovered many uncharacterized genes required for different steps of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Gyeong-Hun Baeg
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
24
|
Singh SR, Chen X, Hou SX. JAK/STAT signaling regulates tissue outgrowth and male germline stem cell fate in Drosophila. Cell Res 2005; 15:1-5. [PMID: 15686618 DOI: 10.1038/sj.cr.7290255] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction pathways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduction pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regulation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.
Collapse
Affiliation(s)
- Shree Ram Singh
- The Laboratory of Immunobiology,National Institutes of Health, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
25
|
Hernández L, Beà S, Pinyol M, Ott G, Katzenberger T, Rosenwald A, Bosch F, López-Guillermo A, Delabie J, Colomer D, Montserrat E, Campo E. CDK4 and MDM2 gene alterations mainly occur in highly proliferative and aggressive mantle cell lymphomas with wild-type INK4a/ARF locus. Cancer Res 2005; 65:2199-206. [PMID: 15781632 DOI: 10.1158/0008-5472.can-04-1526] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amplification of 12q13 locus occurs in some mantle cell lymphomas (MCL), potentially involving CDK4 and MDM2 genes. To determine the role of these genes in MCL, we have examined their gene status and expression and their relationship to INK4a/ARF and p53 gene aberrations in 69 tumors. Increased CDK4 gene copy number was detected in 4 of 19 (21%) highly proliferative blastoid variants and was associated with mRNA and protein overexpression. Three additional cases showed mRNA overexpression with no structural alterations of the gene. MDM2 gene overexpression was detected in three blastoid tumors (16%) with no relationship to gene copy gains. INK4a/ARF and p53 aberrations were observed in 13 and 12 tumors, respectively. Four of the seven lymphomas with CDK4 aberrations had concurrent inactivation of p53 gene, whereas only one case had a concomitant homozygous deletion of INK4a/ARF. No other gene alterations were found in the three cases with MDM2 overexpression. Patients with INK4a/ARF deletions or simultaneous aberrations of p53 and CDK4 had a significantly shorter median survival (17 months) than patients with isolated alterations of p53, MDM2, or CDK4 (32 months) and patients with no alterations in any of these genes (77 months). The prognostic impact of the concomitant oncogenic alterations of the p14ARF/p53 and p16INK4a/CDK4 pathways was independent of the proliferation of the tumors. These findings indicate that CDK4 and MDM2 gene alterations mainly occur in MCL with a wild-type INK4a/ARF locus and may contribute to the higher proliferation and more aggressive behavior of the tumors.
Collapse
Affiliation(s)
- Luis Hernández
- Department of Pathology and Hematology, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brumby A, Secombe J, Horsfield J, Coombe M, Amin N, Coates D, Saint R, Richardson H. A genetic screen for dominant modifiers of a cyclin E hypomorphic mutation identifies novel regulators of S-phase entry in Drosophila. Genetics 2005; 168:227-51. [PMID: 15454540 PMCID: PMC1448096 DOI: 10.1534/genetics.104.026617] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cyclin E together with its kinase partner Cdk2 is a critical regulator of entry into S phase. To identify novel genes that regulate the G1- to S-phase transition within a whole animal we made use of a hypomorphic cyclin E mutation, DmcycEJP, which results in a rough eye phenotype. We screened the X and third chromosome deficiencies, tested candidate genes, and carried out a genetic screen of 55,000 EMS or X-ray-mutagenized flies for second or third chromosome mutations that dominantly modified the DmcycEJP rough eye phenotype. We have focused on the DmcycEJP suppressors, S(DmcycEJP), to identify novel negative regulators of S-phase entry. There are 18 suppressor gene groups with more than one allele and several genes that are represented by only a single allele. All S(DmcycEJP) tested suppress the DmcycEJP rough eye phenotype by increasing the number of S phases in the postmorphogenetic furrow S-phase band. By testing candidates we have identified several modifier genes from the mutagenic screen as well as from the deficiency screen. DmcycEJP suppressor genes fall into the classes of: (1) chromatin remodeling or transcription factors; (2) signaling pathways; and (3) cytoskeletal, (4) cell adhesion, and (5) cytoarchitectural tumor suppressors. The cytoarchitectural tumor suppressors include scribble, lethal-2-giant-larvae (lgl), and discs-large (dlg), loss of function of which leads to neoplastic tumors and disruption of apical-basal cell polarity. We further explored the genetic interactions of scribble with S(DmcycEJP) genes and show that hypomorphic scribble mutants exhibit genetic interactions with lgl, scab (alphaPS3-integrin--cell adhesion), phyllopod (signaling), dEB1 (microtubule-binding protein--cytoskeletal), and moira (chromatin remodeling). These interactions of the cytoarchitectural suppressor gene, scribble, with cell adhesion, signaling, cytoskeletal, and chromatin remodeling genes, suggest that these genes may act in a common pathway to negatively regulate cyclin E or S-phase entry.
Collapse
Affiliation(s)
- Anthony Brumby
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Emmerich J, Meyer CA, de la Cruz AFA, Edgar BA, Lehner CF. Cyclin D does not provide essential Cdk4-independent functions in Drosophila. Genetics 2005; 168:867-75. [PMID: 15514060 PMCID: PMC1448836 DOI: 10.1534/genetics.104.027417] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three mammalian D-type cyclins are thought to promote progression through the G1 phase of the cell cycle as regulatory subunits of cyclin-dependent kinase 4 and 6. In addition, they have been proposed to control the activity of various transcription factors without a partner kinase. Here we describe phenotypic consequences of null mutations in Cyclin D, the single D-type cyclin gene in Drosophila. As previously observed with null mutations in the single Drosophila Cdk4 gene, these mutations do not primarily affect progression through the G1 phase. Moreover, the apparently indistinguishable phenotypes of double (CycD and Cdk4) and single mutants (CycD or Cdk4) argue against major independent functions of Cyclin D and Cdk4. The reduced cellular and organismal growth rates observed in both mutants indicate that Cyclin D-Cdk4 acts as a growth driver.
Collapse
Affiliation(s)
- Jan Emmerich
- Bayreuther Zentrum für Molekulare Biowissenschaften, Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
28
|
Tsai YC, Sun YH. Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development. Genesis 2005; 39:141-53. [PMID: 15170700 DOI: 10.1002/gene.20035] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
unpaired (upd) encodes a ligand for the Jak/STAT signaling pathway in Drosophila. In the second instar and early third larval eye disc, upd is expressed in the center of the posterior margin. upd loss-of-function mutations caused eye size reduction and upd overexpression caused eye enlargement. Upd regulates eye size through the Dome/Jak(Hop)/STAT92 signaling pathway to promote cell proliferation. Interestingly, the effect of Upd is only on cells located anterior to the morphogenetic furrow (MF), but has no effect on the second mitotic wave, which is posterior to MF. Overexpression of upd behind MF can nonautonomously induce cell proliferation up to 20 rows of cells anterior to MF. The G1 cyclin, cycD transcript level was also enhanced anterior to MF. Consistent with the long-range effect, we found that the extracellular Upd protein can be detected over a comparable long range, suggesting that Upd acts directly over a long distance as a signaling molecule.
Collapse
Affiliation(s)
- Yu-Chen Tsai
- Institute of Genetics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
29
|
Abstract
The Janus kinase (Jak) family is one of ten recognized families of non-receptor tyrosine kinases. Mammals have four members of this family, Jak1, Jak2, Jak3 and Tyrosine kinase 2 (Tyk2). Birds, fish and insects also have Jaks. Each protein has a kinase domain and a catalytically inactive pseudo-kinase domain, and they each bind cytokine receptors through amino-terminal FERM (Band-4.1, ezrin, radixin, moesin) domains. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for signaling molecules, especially members of the signal transducer and activator of transcription (Stat) family. Mutations of the Drosophila Jak (Hopscotch) have revealed developmental defects, and constitutive activation of Jaks in flies and humans is associated with leukemia-like syndromes. Through the generation of Jak-deficient cell lines and gene-targeted mice, the essential, nonredundant functions of Jaks in cytokine signaling have been established. Importantly, deficiency of Jak3 is the basis of human autosomal recessive severe combined immunodeficiency (SCID); accordingly, a selective Jak3 inhibitor has been developed, forming a new class of immunosuppressive drugs.
Collapse
Affiliation(s)
- Kunihiro Yamaoka
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pipsa Saharinen
- Molecular and Cancer Biology Laboratory, Biomedicum Helsinki, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Marko Pesu
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vance ET Holt
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olli Silvennoinen
- Institute for Medical Technology, University of Tampere, FIN-33014 Tampere, Finland
- Department of Clinical Microbiology, Tampere University Hospital, FIN-33014 Tampere, Finland
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Chao JL, Tsai YC, Chiu SJ, Sun YH. Localized Notch signal acts through eyg and upd to promote global growth in Drosophila eye. Development 2004; 131:3839-47. [PMID: 15253935 DOI: 10.1242/dev.01258] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Notch (N) signal is activated at the dorsoventral (DV) border of the Drosophila eye disc and is important for growth of the eye disc. In this study, we showed that the Pax protein Eyg is a major effector mediating the growth promotion function of N. eyg transcription is induced by N signaling occurring at the DV border. Like N, eyg controls growth of the eye disc. Loss of N signaling can be compensated by overexpressing eyg, whereas loss of the downstream eyg blocked the function of N signaling. In addition, we showed that N and eyg could induce expression of upd, which encodes the ligand for the Jak/STAT pathway and acts over long distance to promote cell proliferation. Loss of eyg or N can be compensated by overexpressing upd. These results suggest that upd is a major effector mediating the function of eyg and N. The functional link from N to eyg to upd explains how the localized Notch activation can achieve global growth control.
Collapse
Affiliation(s)
- Ju-Lan Chao
- Institute of Genetics, National Yang-Ming University, Taipei 111, Taiwan, Republic of China
| | | | | | | |
Collapse
|
31
|
Abstract
Phosphorylation of target proteins by cyclin D1-Cdk4 requires both substrate docking and kinase activity. In addition to the ability of cyclin D1-Cdk4 to catalyze the phosphorylation of consensus sites within the primary amino acid sequence of a substrate, maximum catalytic activity requires the enzyme complex to anchor at a site remote from the phospho-acceptor site. A novel Cdk4 docking motif has been defined within a stretch of 19 amino acids from the C-terminal domain of the Rb protein that are essential for Cdk4 binding. Mutation or deletion of the docking motif prevents Cdk4-dependent phosphorylation of full-length Rb protein or C-terminal Rb fragments in vitro and in cells, while a peptide encompassing the Cdk4 docking motif specifically inhibits Cdk4-dependent phosphorylation of Rb. Cyclin D1-Cdk4 can overcome the growth-suppressive activity of Rb in both cell cycle progression and colony formation assays; however, while mutants of Rb in which the Cdk4 docking site has been either deleted or mutated retain growth suppressor activity, they are resistant to inactivation by cyclin D1-Cdk4. Finally, binding of Cdk4 to its docking site can inhibit cleavage of exogenous and endogenous Rb in response to distinct apoptotic signals. The Cdk4 docking motif in Rb gives insight into the mechanism by which enzyme specificity is ensured and highlights a role for Cdk4 docking in maintaining the Rb protein in a form that favors cell survival rather than apoptosis.
Collapse
Affiliation(s)
- Maura Wallace
- CRUK Laboratories, University of Dundee Medical School, Dundee DD1 9SY, United Kingdom
| | | |
Collapse
|
32
|
Shcherbata HR, Althauser C, Findley SD, Ruohola-Baker H. The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development 2004; 131:3169-81. [PMID: 15175253 DOI: 10.1242/dev.01172] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch signaling pathway controls the follicle cell mitotic-to-endocycle transition in Drosophila oogenesis by stopping the mitotic cycle and promoting the endocycle. To understand how the Notch pathway coordinates this process, we have identified and performed a functional analysis of genes whose transcription is responsive to the Notch pathway at this transition. These genes include the G2/M regulator Cdc25 phosphatase, String; a regulator of the APC ubiquitination complex Hec/CdhFzr and an inhibitor of the CyclinE/CDK complex, Dacapo. Notch activity leads to downregulation of String and Dacapo, and activation of Fzr. All three genes are independently responsive to Notch. In addition, CdhFzr, an essential gene for endocycles, is sufficient to stop mitotic cycle and promote precocious endocycles when expressed prematurely during mitotic stages. In contrast, overexpression of the growth controller Myc does not induce premature endocycles but accelerates the kinetics of normal endocycles. We also show that Archipelago (Ago), a SCF-regulator is dispensable for mitosis, but crucial for endocycle progression in follicle epithelium. The results support a model in which Notch activity executes the mitotic-to-endocycle switch by regulating all three major cell cycle transitions. Repression of String blocks the M-phase, activation of Fzr allows G1 progression and repression of Dacapo assures entry into the S-phase. This study provides a comprehensive picture of the logic that external signaling pathways may use to control cell cycle transitions by the coordinated regulation of the cell cycle.
Collapse
Affiliation(s)
- Halyna R Shcherbata
- Department of Biochemistry, University of Washington, J591, HSB, Seattle, WA 98195-7350, USA
| | | | | | | |
Collapse
|
33
|
Yu BD, Becker-Hapak M, Snyder EL, Vooijs M, Denicourt C, Dowdy SF. Distinct and nonoverlapping roles for pRB and cyclin D:cyclin-dependent kinases 4/6 activity in melanocyte survival. Proc Natl Acad Sci U S A 2003; 100:14881-6. [PMID: 14630948 PMCID: PMC299840 DOI: 10.1073/pnas.2431391100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Deregulation of the p16INK4a-cyclin D:cyclin-dependent kinases (cdk) 4/6-retinoblastoma (pRB) pathway is a common paradigm in the oncogenic transformation of human cells and suggests that this pathway functions linearly in malignant transformation. However, it is not understood why p16INK4a and cyclin D:cdk4/6 mutations are disproportionately more common than the rare genetic event of RB inactivation in human malignancies such as melanoma. To better understand how these complexes contribute to altered tissue homeostasis, we blocked cdk4/6 activation and acutely inactivated Rb by conditional mutagenesis during mouse hair follicle cycling. Inhibition of cdk4/6 in the skin by subcutaneous administration of a membrane-transducible TAT-p16INK4a protein completely blocked hair follicle growth and differentiation. In contrast, acute disruption of Rb in the skin of homozygous RbLoxP/LoxP mice via subcutaneous administration of TAT-Cre recombinase failed to affect hair growth. However, loss of Rb resulted in severe depigmentation of hair follicles. Further analysis of follicular melanocytes in vivo and in primary cell culture demonstrated that pRB plays a cell-autonomous role in melanocyte survival. Moreover, functional inactivation of all three Rb family members (Rb, p107, and p130) in primary melanocytes by treatment with a transducible TAT-E1A protein did not rescue the apoptotic phenotype. These findings suggest that deregulated cyclin D:cdk4/6 complexes and pRB perform nonoverlapping functions in vivo and provide a cellular mechanism that accounts for the low incidence of RB inactivation in cancers such as melanoma.
Collapse
Affiliation(s)
- Benjamin D Yu
- Howard Hughes Medical Institute, University of California at San Diego School of Medicine, La Jolla, CA 92093-0686, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Mammalian insulin and insulin-like growth factors (IGFs) signal through several receptors with different ligand specificities to regulate metabolism and growth. This regulation is defective in diabetes and in a wide variety of human tumors. Recent analysis in Drosophila melanogaster has revealed that insulin-like molecules (known as DILPs in flies) also control growth and metabolism, but probably do so by signaling through a single insulin receptor (InR). The intracellular signaling molecules regulated by this receptor are highly evolutionarily conserved. Work in flies has helped to dissect the network of InR-regulated intracellular signaling pathways and identify some of the critical players in these pathways and in interacting signaling cascades. Surprisingly, these studies have shown that DILPs control tissue and body growth primarily by regulating cell growth and cell size. Changes in cell growth produced by these molecules may subsequently modulate the rate of cell proliferation in a cell type-specific fashion. At least part of this growth effect is mediated by two small groups of neurons in the Drosophila brain, which secrete DILPs into the circulatory system at levels that are modulated by nutrition. This signaling center is also involved in DILP-dependent control of the fly's rate of development, fertility, and life span. These surprisingly diverse functions of InR signaling, which appear to be conserved in all higher animals, reflect a central role for this pathway in coordinating development, physiology, and properly proportioned growth of the organism in response to its nutritional state. Studies in flies are providing important new insights into the biology of this system, and the identification of novel components in the InR-regulated signaling cascade is already beginning to inform the development of new therapeutic strategies for insulin-linked diseases in the clinic.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | | |
Collapse
|
35
|
Abstract
New work in Drosophila demonstrates that cdk4 loss causes phenotypes similar to the loss of JAK/STAT pathway components. Cdk4 overexpression can bypass requirements for JAK but not STAT. These results demonstrate a new function for Cdk4 and a new mode of STAT activation.
Collapse
Affiliation(s)
- Debra L Silver
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|