1
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
2
|
Zhang J, Zhang A, Liu J, Xiao X, Huang Y, Zhou W, Chen S, Yu P, Xie Y, Wang S, Chen Z, Zhang J. Prediction model of male reproductive function damage caused by CHOP chemotherapy regimen for non-Hodgkin's lymphoma. BMC Cancer 2024; 24:1391. [PMID: 39533240 PMCID: PMC11559180 DOI: 10.1186/s12885-024-13062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The CHOP combined chemotherapy regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone) is commonly used to treat non-Hodgkin Lymphoma (NHL). While these drugs are effective for cancer treatment, they may have side effects on the reproductive system that are poorly studied. This study used a mouse model to investigate the mechanisms of reproductive function impairment induced by the CHOP regimen and developed a predictive model for assessing reproductive damage with a non-invasive procedure. METHODS From 2022 to 2023, we statistically analyzed the changes of reproductive function of NHL patients before and after receiving CHOP regimen in the First Affiliated Hospital of Xiamen University. The NHL mouse model was established and divided into CHOP treatment group and control group. The weight of testis and epididymis, sperm quality and motility were compared between the two groups. Histopathological examination of testicular tissue was performed to determine pathological changes. ELISA was used to measure the expression of cytokines and cytokine pathways in serum, protein expression was analyzed by immunohistochemistry, and protein and mRNA levels of cytokines and pathways were evaluated by Western blotting and qPCR. Using stepwise regression method to select important factors, a prediction model of reproductive system damage was constructed. RESULTS Fifty-two NHL patients included in the questionnaire showed significant reproductive system damage after CHOP regimen treatment. The weight of testis and epididymis, as well as the number and vitality of sperm in the mouse model treatment group were significantly lower than those in the control group. Serum LH, FSH, estradiol and progesterone levels decreased significantly, while inhibin B levels increased significantly. There was no significant change in testosterone or prolactin levels. Inflammatory markers such as CSF-1, IL-1, IL-6, TGF-β1 and GDNF increased significantly, while the level of SOD1 decreased significantly. Immunohistochemical staining analysis showed that CAMP, Caspase3, CSF-1, GDNF, IL-1, IL-6, PRKACB, TGF-β1 and TXNDC5 were all expressed in spermatocytes, and the expression of therapeutic histones was significantly higher than that of the control group. Western blot analysis further detected the protein expression, and QPCR detected the mRNA content. The results showed that the expression of histone and mRNA in the treatment group was significantly higher than that in the control group. Stepwise regression method determined that estradiol (E2) was the most important variable in the prediction model, and the AUC for predicting reproductive damage was 1. CONCLUSIONS The CHOP regimen induces male reproductive toxicity, potentially mediated through alterations in hormone levels and increased expression of inflammatory cytokines and oxidative stress. Using E2 as the sole predictor in the model accurately predicts the extent of reproductive damage, offering a non-invasive method for detecting reproductive system damage.
Collapse
Affiliation(s)
- Jiabao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, Shanxi Province, 710049, China
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, 361000, China
| | - Aili Zhang
- The School of Clinical Medical, Fujian Medical University, Fuzhou City, Fujian Province, 350108, China
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, 364099, China
| | - Jiaxin Liu
- The Chenggong Hospital Affiliated to Xiamen University, Xiamen City, Fujian Province, 361001, China
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xu Xiao
- School of Information Engineering, Wenzhou Business College, Wenzhou, Zhejiang, 325041, China
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yun Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, 361000, China
| | - Wei Zhou
- The Chenggong Hospital Affiliated to Xiamen University, Xiamen City, Fujian Province, 361001, China
| | - Shenghui Chen
- The Chenggong Hospital Affiliated to Xiamen University, Xiamen City, Fujian Province, 361001, China
| | - Ping Yu
- The Chenggong Hospital Affiliated to Xiamen University, Xiamen City, Fujian Province, 361001, China
| | - Yifeng Xie
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, 361000, China
| | - Sili Wang
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, 361000, China.
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, 364099, China.
| | - Zhan Chen
- The Chenggong Hospital Affiliated to Xiamen University, Xiamen City, Fujian Province, 361001, China.
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an City, Shanxi Province, 710049, China.
| |
Collapse
|
3
|
Ahmed HA, Shaaban AA, Ibrahim TM, Makled MN. G protein-coupled estrogen receptor activation attenuates cisplatin-induced CKD in C57BL/6 mice: An insight into sex-related differences. Food Chem Toxicol 2024; 194:115079. [PMID: 39491767 DOI: 10.1016/j.fct.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) post-cisplatin therapy. This study aims at investigating the potential effect of G1 compound, a GPER agonist, on attenuating cisplatin-induced CKD. To induce CKD in male, intact female, and ovariectomized (OVX) mice, CKD was induced by injecting two cycles of 2.5 mg/kg cisplatin with a 16-day recovery period between cycles). G1 (50 or 100 μg/kg was administered daily for 6 weeks. Severity of renal damage was more pronounced in males than females. Interestingly, OVX resulted in renal damage that is non-significant compared to males and significantly higher than females. G1 improved renal function and blood flow as evidenced by reduction of serum creatinine and elevation of creatinine clearance, NO production, and reduction of ET1. This renoprotective effect could be attributed to its immunomodulatory effect regulated by TGF-β that shifted the balance to favor anti-inflammatory cytokine production (increased IL-10) rather than pro-inflammatory cytokines (decreased Th17 expression). Reduction of TGF-β activation also inhibited epithelial-to-mesenchymal transition that eventually ameliorated CKD development. Antioxidant potential of G1 has been demonstrated by upregulation of Nrf2 and subsequent antioxidant enzymes. These data suggest that G1 could be a promising therapeutic tool to attenuate CP-induced CKD.
Collapse
Affiliation(s)
- Hala A Ahmed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ahmed A Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mirhan N Makled
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
4
|
Expression of estrogen receptors, PELP1, and SRC in human spermatozoa and their associations with semen quality. Hum Cell 2023; 36:554-567. [PMID: 36577884 PMCID: PMC9947025 DOI: 10.1007/s13577-022-00847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Sperm cells are target cells for both estrogens and xenoestrogens. Due to the specific structure of spermatozoa, these hormonal compounds may act on sperm in a non-genomic mechanism only. However, the ESR-mediated signaling pathways are still poorly understood. In this study, we obtained 119 samples from male participants of Caucasian descent who donated semen for standard analysis. We analyzed gene expression of estrogen receptors (ESR1 and ESR2) and their coregulators-proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), and cellular kinase c-Src (SRC). RNA level was established using reverse-transcribed RNA as a template, followed by a polymerase chain reaction. Proteins' presence was confirmed by western blot and immunocytochemistry techniques. "Normal" values of semen parameters were defined as follows: > 32% sperm with progressive motility, > 4% sperm cells with normal morphology, > 15 × 106 sperm per mL, > 58% live spermatozoa and leukocyte amount < 106 cells per mL, according to WHO 2010 reference. Semen parameters that deviated from these "normal" values were labeled as "abnormal". Gene expression ratios revealed significant, moderate, and negative correlations for ESR1/ESR2 and weak, negative ESR2/PELP1 correlations in the subgroup of patients with abnormal values of semen parameters. In addition, SRC/PELP1 was moderately and positively correlated in the subgroup with parameters within the reference values established by WHO 2010. Our study showed that both PELP1 scaffolding protein and SRC kinase might influence semen quality via ESRs. It seems that not the expression of a single gene may affect the sperm quality, but more gene-to-gene mutual ratio. Characterization of estrogen-signaling pathway-related genes' modulated expression in sperm cells could aid in better understanding sperm biology and quality.
Collapse
|
5
|
Polygenic co-expression changes the testis growth, hormone secretion and spermatogenesis to prompt puberty in Hu sheep. Theriogenology 2022; 194:116-125. [DOI: 10.1016/j.theriogenology.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
|
6
|
Chao HH, Wang L, Ma HH, Zhao AH, Xiao HW, Zhang XF. Identification of apoptotic pathways in zearalenone-treated mouse sertoli cells. J Toxicol Sci 2022; 47:257-268. [PMID: 35650142 DOI: 10.2131/jts.47.257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Zearalenone (ZEN), one of the most prevalent non-steroidal oestrogenic mycotoxins, is primarily produced by Fusarium fungi. Due to its toxicity as an oestrogenic compound and wide distribution in feed and foods, the reproductive toxicology of ZEN exposure is of public concern. The aim of the present study was to investigate the effect of ZEN on Sertoli cells to identify apoptotic pathways induced by this compound. We found that ZEN reduced the viability and caused apoptosis in Sertoli cells in vitro. Notably, we observed that such effects were associated with a significant increase in reactive oxygen species (ROS) and the number of cells that showed positive staining for γH2AX and RAD51, enzymes essential for repairing DNA damage. There was a parallel decrease in the expression of occludin and connexin 43, proteins that are present in the testis-blood barrier and gap junctions of Sertoli cells, respectively. Overall, the present study confirms that ZEN exposure can have serious deleterious effects on mammalian Sertoli cells and offers novel insight about its molecular targets in these cells.
Collapse
Affiliation(s)
- Hu-He Chao
- College of Veterinary medicine, Qingdao Agricultural University, China.,Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, China
| | - Lei Wang
- College of Veterinary medicine, Qingdao Agricultural University, China
| | - Hao-Hai Ma
- College of Veterinary medicine, Qingdao Agricultural University, China
| | | | - Hong-Wei Xiao
- Institute of Animal Husbandry and Veterinary Research, Hubei Academy of Agricultural Sciences, China
| | - Xi-Feng Zhang
- College of Veterinary medicine, Qingdao Agricultural University, China
| |
Collapse
|
7
|
Verderame M, Chianese T, Rosati L, Scudiero R. Molecular and Histological Effects of Glyphosate on Testicular Tissue of the Lizard Podarcis siculus. Int J Mol Sci 2022; 23:4850. [PMID: 35563240 PMCID: PMC9100619 DOI: 10.3390/ijms23094850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The expansion of agriculture produces a steady increase in habitat fragmentation and degradation due to the increased use of pesticides and herbicides. Habitat loss and alteration associated with crop production play an important role in reptile decline, among which lizards are particularly endangered. In this study, we evaluated testicular structure, steroidogenesis, and estrogen receptor expression/localization after three weeks of oral exposure to glyphosate at 0.05 and 0.5 μg/kg body weight every other day in the field lizard Podarcis siculus. Our results show that glyphosate affected testicular morphology, reduced spermatogenesis, altered gap junctions and changed the localization of estrogen receptors in germ cells, increasing their expression; the effects were mostly dose-dependent. The result also demonstrates that glyphosate, at least at these concentrations, did not influence steroidogenesis. Overall, the data indicate that this herbicide can disturb the morphophysiology of the male lizard's reproductive system, with obviously detrimental effects on their reproductive fitness. The effects of glyphosate must be considered biologically relevant and could endanger the reproductive capacity not only of lizards but also of other vertebrates, including humans; a more controlled and less intensive use of glyphosate in areas devoted to crop production would therefore be advisable.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Human, Philosophic and Education Sciences (DISUFF), University of Salerno, 84084 Fisciano, Italy;
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT), 80055 Portici, Italy
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (L.R.)
| |
Collapse
|
8
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
9
|
Using adverse outcome pathways to contextualise (Q)SAR predictions for reproductive toxicity – A case study with aromatase inhibition. Reprod Toxicol 2022; 108:43-55. [DOI: 10.1016/j.reprotox.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
|
10
|
Shi H, Ru X, Pan S, Jiang D, Huang Y, Zhu C, Li G. Transcriptomic analysis of pituitary in female and male spotted scat (Scatophagus argus) after 17β-estradiol injection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 41:100949. [PMID: 34942522 DOI: 10.1016/j.cbd.2021.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Spotted scat (Scatophagus argus) is a popular species of marine fish cultured in China. It shows normal sexual growth dimorphism. Female spotted scat grows quicker and bigger than males. Growth and reproduction are the most important traits in aquaculture. In vertebrates, the pituitary gland occupies an important position in the growth and reproduction axis. Estrogen is involved in regulating growth and reproduction in the pituitary gland in an endocrine fashion. Transcriptome sequencing of the pituitary was performed in female and male fish at 6 h after 17β-estradiol injection (4.0 μg E2/g body weight, BW). Compared with the pituitary of female and male groups, 144 and 64 genes [|log2(fold change)| ≥ 1.0 and false discovery rate (FDR) < 0.05] were significantly differentially expressed in E2-injected females and males, respectively (p < 0.05). Of these, 59 and 48 were up-regulated, and 85 and 16 were down-regulated. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses, DEGs were involved in signal pathways, such as growth, reproduction, oocyte meiosis and steroid biosynthesis. Of these, estrogen affected the expression of some sex steroid synthesis and receptor genes in the pituitary gland through feedback, such as hsd17b7, pgr and cyp19a1b, regulating the reproductive activities. Besides, some growth-related genes, such as gap43, junbb, mstn2 and insm1a responded to estrogen. E2 might affect the expression level of gh mRNA by regulating the expression levels of growth-related genes. Our results provide a theoretical basis for studying the molecular mechanism of growth and reproduction regulation at the pituitary level of spotted scat responded to E2.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
11
|
Rosati L, Falvo S, Chieffi Baccari G, Santillo A, Di Fiore MM. The Aromatase-Estrogen System in the Testes of Non-Mammalian Vertebrates. Animals (Basel) 2021; 11:1763. [PMID: 34204693 PMCID: PMC8231642 DOI: 10.3390/ani11061763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
Estrogens are important physiological regulators of testicular activity in vertebrates. Estrogen levels depend on the activity of P450 aromatase, the enzyme responsible for the irreversible conversion of testosterone into 17β-estradiol. Therefore, P450 aromatase is the key player in the aromatase-estrogen system. The present review offers a comparative overview of P450 aromatase activity in male gonads of amphibians, reptiles, and birds, with a particular emphasis on the functions of the aromatase-estrogen system in these organisms during their developmental and adult stages. The aromatase-estrogen system appears to be crucial for the sex differentiation of gonads in vertebrates. Administration of aromatase inhibitors prior to sexual differentiation of gonads results in the development of males rather than females. In adults, both aromatase and estrogen receptors are expressed in somatic cells, Leydig and Sertoli cells, as well as germ cells, with certain differences among different species. In seasonal breeding species, the aromatase-estrogen system serves as an "on/off" switch for spermatogenesis. In some amphibian and reptilian species, increased estrogen levels in post-reproductive testes are responsible for blocking spermatogenesis, whereas, in some species of birds, estrogens function synergistically with testosterone to promote spermatogenesis. Recent evidence indicates that the production of the aromatase enzyme in excessive amounts reduces the reproductive performance in avian species of commercial interest. The use of aromatase inhibitors to improve fertility has yielded suitable positive results. Therefore, it appears that the role of the aromatase-estrogen system in regulating the testicular activity differs not only among the different classes of vertebrates but also among different species within the same class.
Collapse
Affiliation(s)
- Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80100 Napoli, Italy;
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (G.C.B.); (A.S.)
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (G.C.B.); (A.S.)
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (G.C.B.); (A.S.)
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (G.C.B.); (A.S.)
| |
Collapse
|
12
|
Falvo S, Rosati L, Di Fiore MM, Di Giacomo Russo F, Chieffi Baccari G, Santillo A. Proliferative and Apoptotic Pathways in the Testis of Quail Coturnix coturnix during the Seasonal Reproductive Cycle. Animals (Basel) 2021; 11:ani11061729. [PMID: 34207904 PMCID: PMC8226535 DOI: 10.3390/ani11061729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The quail Coturnix coturnix exhibits an annual cycle of testis size, sexual steroid production, and spermatogenesis. The testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, suggesting that estrogens act in synergy with the androgens for the initiation of spermatogenesis. Therefore, the present study aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasons, with a focus on the molecular pathways activated in both active and regressive quail testes. The results indicated that estrogens participated in the activation of mitotic and meiotic events during the reproductive period by activating the ERK1/2 and Akt-1 pathways. In the non-reproductive period, when the E2/ERα levels are low, ERK1/2 and Akt-1 pathways remain inactive and apoptotic events occur. Our results suggest that the activation or inhibition of these molecular pathways plays a crucial role in the physiological switch “on/off” of the testicular activity in male quail during the seasonal reproductive cycle. Abstract The quail Coturnix coturnix is a seasonal breeding species, with the annual reproductive cycle of its testes comprising an activation phase and a regression phase. Our previous results have proven that the testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, which led us to hypothesize that estrogens and androgens may act synergistically to initiate spermatogenesis. The present study was, therefore, aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasonality, with a focus on the molecular pathways elicited in both active and regressive quail testes. Western blotting and immunohistochemistry analysis revealed that the expression of ERα, which is the predominant form of estrogen receptors in quail testis, was correlated with E2 concentration, suggesting that increased levels of E2-induced ERα could play a key role in the resumption of spermatogenesis during the reproductive period, when both PCNA and SYCP3, the mitotic and meiotic markers, respectively, were also increased. In the reproductive period we also found the activation of the ERK1/2 and Akt-1 kinase pathways and an increase in second messengers cAMP and cGMP levels. In the non-reproductive phase, when the E2/ERα levels were low, the inactivation of ERK1/2 and Akt-1 pathways favored apoptotic events due to an increase in the levels of Bax and cytochrome C, with a consequent regression of the gonad.
Collapse
Affiliation(s)
- Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, 80138 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Federica Di Giacomo Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (S.F.); (M.M.D.F.); (F.D.G.R.); (G.C.B.)
- Correspondence:
| |
Collapse
|
13
|
Characterization of Estrogenic Activity and Site-Specific Accumulation of Bisphenol-A in Epididymal Fat Pad: Interfering Effects on the Endocannabinoid System and Temporal Progression of Germ Cells. Int J Mol Sci 2021; 22:ijms22052540. [PMID: 33802611 PMCID: PMC7961766 DOI: 10.3390/ijms22052540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3β-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell–cell junction genes (i.e., zonula occcludens protein-1, vimentin and β-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.
Collapse
|
14
|
Li X, Yao X, Xie H, Deng M, Gao X, Deng K, Bao Y, Wang Q, Wang F. Effects of SPATA6 on proliferation, apoptosis and steroidogenesis of Hu sheep Leydig cells in vitro. Theriogenology 2021; 166:9-20. [PMID: 33667862 DOI: 10.1016/j.theriogenology.2021.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/19/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023]
Abstract
This study aimed to investigate the expression pattern of spermatogenesis associated protein 6 (SPATA6) in Hu sheep testis and to ascertain the effects of SPATA6 on sheep Leydig cells (LCs) function linked to spermatogenesis. In the present study, we detected a 1970 bp cDNA fragment of SPATA6 included a 1467 bp coding sequence which encoded 487 amino acids. Meanwhile, sheep SPATA6 shared 51.70%-97.41% amino acid sequences with its orthologs compared with other species. In addition, SPATA6 was highly expressed in testis and localized in cytoplasm and nucleus of LCs as well as spermatogenic cells at different stages. Compared to the negative control (NC), SPATA6 interference promoted apoptosis of LCs with the increase of BAX/BCL-2 mRNA and protein levels, while the results of SPATA6 overexpression were on the contrary. Meanwhile, cell cycle was blocked at G2/M phase and CDK1 and CCNB1 were down-regulated after SPATA6 interference. SPATA6 overexpression induced cell cycle transfer G0/G1 into S and G2/M phase with upregulation of CDK1, CDK4, CCND1 and CCND2. Moreover, the secretion of testosterone hormone and the expression of StAR in LCs with SPATA6 overexpression were significantly promoted. Overall, our data suggest that SPATA6 is an important functional molecule of spermatogenesis, via regulating the proliferation, apoptosis and testosterone biosynthesis of Hu sheep LCs. These findings will enhance the understanding of the roles of SPATA6 in sheep spermatogenesis.
Collapse
Affiliation(s)
- Xiaodan Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiqiang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Gao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjin Bao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Patrick SM, Aneck-Hahn NH, Van Wyk S, Van Zijl MC, Huma M, de Jager C. Veterinary growth promoters in cattle feedlot runoff: estrogenic activity and potential effects on the rat male reproductive system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13939-13948. [PMID: 32034597 DOI: 10.1007/s11356-020-07966-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
The contribution of veterinary growth promoters (VGP) to the environmental burden of endocrine-disrupting chemicals (EDCs) is largely unknown. At cattle feedlots, the excrement of cattle may contain VGPs, which can contaminate aquatic systems and pose reproductive health risks. The study identifies VGPs used at cattle feedlots in South Africa and confirms associated estrogenic activity in feedlot runoff water. Using a rat model, we investigate the potential reproductive health effects and thyroid function of an environmentally relevant mixture of VGPs. Collected water samples had low levels of selected VGPs, and estrogenic activity was detected in the T47D-KBluc bioassay. Rats exposed to VGP had significant adverse effects on male reproductive health, including shortened anogenital distance, lowered sperm counts, disorganized seminiferous tubules, and thyroid parameters. In conclusion, VGP can contribute to complex environmental EDC mixtures and may adversely affect the reproductive and thyroid health of both humans and wildlife. The varied topography of individual cattle feedlots will govern the rate and extent of effluent runoff, thus continuous monitoring of VGPs in aquatic systems surrounding cattle feedlots is necessary.
Collapse
Affiliation(s)
- Sean Mark Patrick
- University of Pretoria Institute for Sustainable Malaria Control (UP ISMC) and Environmental Chemical Pollution and Health (ECPH) Research Unit, Pretoria, South Africa
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Natalie Hildegard Aneck-Hahn
- University of Pretoria Institute for Sustainable Malaria Control (UP ISMC) and Environmental Chemical Pollution and Health (ECPH) Research Unit, Pretoria, South Africa
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Urology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Susan Van Wyk
- University of Pretoria Institute for Sustainable Malaria Control (UP ISMC) and Environmental Chemical Pollution and Health (ECPH) Research Unit, Pretoria, South Africa
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Magdelena Catherina Van Zijl
- University of Pretoria Institute for Sustainable Malaria Control (UP ISMC) and Environmental Chemical Pollution and Health (ECPH) Research Unit, Pretoria, South Africa
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mampedi Huma
- University of Pretoria Institute for Sustainable Malaria Control (UP ISMC) and Environmental Chemical Pollution and Health (ECPH) Research Unit, Pretoria, South Africa
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Christiaan de Jager
- University of Pretoria Institute for Sustainable Malaria Control (UP ISMC) and Environmental Chemical Pollution and Health (ECPH) Research Unit, Pretoria, South Africa.
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
16
|
Antalikova J, Secova P, Horovska L, Krejcirova R, Simonik O, Jankovicova J, Bartokova M, Tumova L, Manaskova-Postlerova P. Missing Information from the Estrogen Receptor Puzzle: Where Are They Localized in Bull Reproductive Tissues and Spermatozoa? Cells 2020; 9:cells9010183. [PMID: 31936899 PMCID: PMC7016540 DOI: 10.3390/cells9010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 01/10/2023] Open
Abstract
Estrogens are steroid hormones that affect a wide range of physiological functions. The effect of estrogens on male reproductive tissues and sperm cells through specific receptors is essential for sperm development, maturation, and function. Although estrogen receptors (ERs) have been studied in several mammalian species, including humans, they have not yet been described in bull spermatozoa and reproductive tissues. In this study, we analyzed the presence of all types of ERs (ESR1, ESR2, and GPER1) in bull testicular and epididymal tissues and epididymal and ejaculated spermatozoa, and we characterize them here for the first time. We observed different localizations of each type of ER in the sperm head by immunofluorescent microscopy. Additionally, using a selected polyclonal antibody, we found that each type of ER in bull sperm extracts had two isoforms with different molecular masses. The detailed detection of ERs is a prerequisite not only for understanding the effect of estrogen on all reproductive events but also for further studying the negative effect of environmental estrogens (endocrine disruptors) on processes that lead to fertilization.
Collapse
Affiliation(s)
- Jana Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Petra Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lubica Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Romana Krejcirova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Ondrej Simonik
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Jana Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Michaela Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.A.); (P.S.); (L.H.); (J.J.); (M.B.)
| | - Lucie Tumova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
| | - Pavla Manaskova-Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague 6, Czech Republic; (R.K.); (O.S.); (L.T.)
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, v.v.i., BIOCEV, 252 50 Vestec, Czech Republic
- Correspondence: ; Tel.: +420-22438-2934
| |
Collapse
|
17
|
Salama N, Blgozah S. Serum estradiol levels in infertile men with non-obstructive azoospermia. Ther Adv Reprod Health 2020; 14:2633494120928342. [PMID: 32647832 PMCID: PMC7325549 DOI: 10.1177/2633494120928342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To report the different patterns of estradiol levels in infertile men with non-obstructive azoospermia and correlate these levels with their clinical and laboratory findings. MATERIALS AND METHODS A retrospective study was launched, and a retrieval of data for infertile men with non-obstructive azoospermia (n = 166) and fertile controls (n = 40) was performed. The retrieved data included demographics, clinical findings, scrotal duplex, semen analysis, and hormonal assay (testosterone, follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol). RESULTS Our findings showed a wide spectrum of estradiol concentrations. The patients were arranged into three groups (high, normal, and low estradiol groups). The normal estradiol group was the most prevalent (71.1%). Testosterone, gonadotrophins, testicular volumes, and the number of patients with jobs in polluted workplaces showed significant differences among the study groups (p = 0.001, <0.001, <0.001, and 0.004, respectively). Age, body mass index, varicocele prevalence, prolactin, and smoking habits did not show any significant differences among the groups. Obesity was lacking in the low estradiol group, but it had significantly higher prevalence in the normal (p = 0.013) or high group (p = 0.023) compared with the controls. CONCLUSION Serum estradiol, in infertile men with non-obstructive azoospermia, may be present at different levels. It is recommended that estradiol be measured in infertile men with non-obstructive azoospermia when there is an alteration in testosterone concentration, obesity, a polluted workplace occupation, or before trying hormonal therapy. Extended studies are highly recommended to provide a clear clue whether alterations in estradiol concentrations in men with non-obstructive azoospermia are the cause or a consequence of the condition.
Collapse
Affiliation(s)
- Nader Salama
- Department of Urology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Saeed Blgozah
- Department of Urology, Faculty of Medicine, Hadhramout University, P.O. Box 50512-50511, Mukalla, Yemen
| |
Collapse
|
18
|
Skibinska I, Andrusiewicz M, Soin M, Jendraszak M, Urbaniak P, Jedrzejczak P, Kotwicka M. Increased expression of PELP1 in human sperm is correlated with decreased semen quality. Asian J Androl 2019; 20:425-431. [PMID: 29676290 PMCID: PMC6116689 DOI: 10.4103/aja.aja_11_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein involved in both genomic and nongenomic estrogen signal transduction pathways. To date, the role of PELP1 protein has yet to be characterized in human sperm and has not been associated with sperm parameters. To confirm the presence of PELP1 in human sperm, fresh semen samples were obtained from 178 donors. The study was designed to establish both mRNA and protein presence, and protein cellular localization. Additionally, the number of PELP1-positive spermatozoa was analyzed in men with normal and abnormal semen parameters. Sperm parameters were assessed according to the World Health Organization (WHO) 2010 standards. The presence of PELP1 in spermatozoa was investigated using four precise, independent techniques. The qualitative presence of transcripts and protein was assessed using reverse transcription-polymerase chain reaction (RT-PCR) and western blot protocols, respectively. The cellular localization of PELP1 was investigated by immunocytochemistry. Quantitative analysis of PELP1-positive cells was done by flow cytometry. PELP1 mRNA and protein was confirmed in spermatozoa. Immunocytochemical analysis identified the presence of PELP1 in the midpieces of human sperm irrespective of sperm parameters. Becton Dickinson fluorescence-activated cell sorting (FACSCalibur™) analysis revealed a significantly lower number of PELP1-positive cells in males with normal semen parameters versus abnormal samples (42.78% ± 11.77% vs 61.05% ± 21.70%, respectively; P = 0.014). The assessment of PELP1 may be a time-saving method used to obtain information about sperm quality. The results of our study suggest that PEPL1 may be utilized as an indicator of sperm quality; thereby, PELP1 may be an additional biomarker useful in the evaluation of male infertility.
Collapse
Affiliation(s)
- Izabela Skibinska
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Miroslaw Andrusiewicz
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Michal Soin
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Magdalena Jendraszak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Paulina Urbaniak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Piotr Jedrzejczak
- Division of Infertility and Reproductive Endocrinology, Faculty of Medicine I, Poznan University of Medical Sciences, Polna 33, Poznan 60-535, Poland
| | - Malgorzata Kotwicka
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| |
Collapse
|
19
|
Rosati L, Di Fiore MM, Prisco M, Di Giacomo Russo F, Venditti M, Andreuccetti P, Chieffi Baccari G, Santillo A. Seasonal expression and cellular distribution of star and steroidogenic enzymes in quail testis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:198-209. [PMID: 31433565 DOI: 10.1002/jez.b.22896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
Abstract
The quail Coturnix coturnix is a seasonal breeder with a physiological switch on/off of gonadic activity. Photoperiod and temperature are the major environmental factors regulating the spermatogenesis. To more thoroughly comprehend the steroidogenic pathways that govern the seasonal reproductive cycle, we have investigated the localization of StAR protein and steroidogenic enzymes (3β-HSD, 17β-HSD, P450 aromatase, and 5α-Red) as well as androgen and estrogen levels, in the testis of reproductive and nonreproductive quails. We demonstrated that StAR, 3β-HSD, 17β-HSD, P450 aromatase, and 5α-Red were always present in the somatic (Leydig and Sertoli cells) and germ cells (spermatogonia, spermatocytes I and II, spermatids, and spermatozoa). In addition, by western blot analysis, we demonstrated that 17β-HSD, P450 aromatase, and 5α-Red showed the highest expression levels during the reproductive testis compared with nonreproductive one. Accordingly, we also found that during the reproductive phase the highest titres of testosterone, 17β-estradiol, and 5α-dihydrotestosterone are recorded. In conclusion, our findings demonstrated that in C. coturnix: (a) both somatic and germ cells are involved in the local synthesis of sex hormones; (b) 17β-HSD, P450 aromatase, and 5α-Red expressions, as well as testicular androgens and estrogens, increased in reproductive quail testis. This study strongly indicates that the steroidogenic process in quail testis exhibits seasonal changes with the promotion of both androgenic and estrogenic pathways in the reproductive period, suggesting their synergic mechanism in the spermatogenesis regulation.
Collapse
Affiliation(s)
- Luigi Rosati
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marina Prisco
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Federica Di Giacomo Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Piero Andreuccetti
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, Naples, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli studi della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
20
|
Nurliani A, Sasaki M, Budipitojo T, Tsubota T, Suzuki M, Kitamura N. An immunohistochemical study on testicular steroidogenesis in the Sunda porcupine (Hystrix javanica). J Vet Med Sci 2019; 81:1285-1290. [PMID: 31341134 PMCID: PMC6785619 DOI: 10.1292/jvms.19-0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the testes of the Sunda porcupine (Hystrix javanica), the expression of the steroidogenic acute regulatory protein (StAR) and steroidogenic enzymes, such as cytochrome
P450 side chain cleavage (P450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450 17α-hydroxylase (P450c17) and cytochrome P450 aromatase (P450arom), was immunohistochemically
examined to clarify the location of steroidogenesis. In this study, complete spermatogenesis (spermiogenesis) was observed in the testes of the examined Sunda porcupine, and spermatozoa of
the Sunda porcupine had a spatulate sperm head unlike that of rats and mice which has an apical hook. On immunostaining of StAR, P450scc, 3β-HSD, P450c17 and P450arom, immunoreactivity for
all proteins was only detected in the Leydig cells and not observed within the seminiferous tubules, suggesting that the Leydig cells can synthesize both androgen and estrogen from
cholesterol in the Sunda porcupine testes.
Collapse
Affiliation(s)
- Anni Nurliani
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Department of Biology, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, South Kalimantan 70714, Indonesia
| | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Teguh Budipitojo
- Department of Anatomy, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Masatsugu Suzuki
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Zoo and Wildlife Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | - Nobuo Kitamura
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
21
|
Agnese M, Rosati L, Prisco M, Borzacchiello L, Abagnale L, Andreuccetti P. The expression of estrogen receptors during the Mytilus galloprovincialis ovarian cycle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:367-373. [PMID: 31145556 DOI: 10.1002/jez.2272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
The aim of this paper is to assess, by real-time polymerase chain reaction and in situ hybridization, the expression of estrogen receptors ER1 and ER2 during the ovarian cycle of Mytilus galloprovincialis. By considering four phases of the reproductive cycle, that is stasis and previtellogenic stage (Stage 0), early vitellogenesis (Stage I), vitellogenesis (Stage II), full-grown oocyte (Stage III), our investigation demonstrates that the two receptors are differently expressed during the phases investigated of the ovarian cycle: ER1 reaches the highest level at Stage III, whereas ER2 reaches the highest level at Stage II, with ER2 always present at higher levels than ER1. The stage-dependent receptor expression was recorded within oocytes, follicle cells, and adipogranular cells. No ER1 and ER2 messenger RNAs (mRNAs) were found within vesicular cells. It is to be noted that the ER1 and ER2 expression within the growing oocytes, the follicular, and adipogranular cells overlaps with that of the mRNA for vitellogenin in the same cells, strongly suggesting that in Mytilus, as in vertebrates studied so far, the vitellogenin expression is under the control of estrogens.
Collapse
Affiliation(s)
- Marisa Agnese
- Department of Biology, Federico II Naples University, Naples, Italy
| | - Luigi Rosati
- Department of Biology, Federico II Naples University, Naples, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marina Prisco
- Department of Biology, Federico II Naples University, Naples, Italy
| | | | | | | |
Collapse
|
22
|
Zhai J, Geng X, Ding T, Li J, Tang J, Chen D, Cui L, Wang Q. An increase of estrogen receptor α protein level regulates BDE-209-mediated blood-testis barrier disruption during spermatogenesis in F1 mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4801-4820. [PMID: 30565106 DOI: 10.1007/s11356-018-3784-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Deca-bromodiphenyl ether (BDE-209) regulates various aspects of spermatogenesis and male fertility through its effect on estrogen receptor α (ERα), but the underlying mechanism remains unclear. Because molecular mechanisms such as remodeling of the blood-testis barrier (BTB) play crucial roles in spermatogenesis, we investigated the disruptive effects of ERα agonists on the BTB in spermatogenesis. In this study, 0, 300, and 500 mg/kg/day of BDE-209 were administered to pregnant adult mice by oral gavage from gestation day 7 to postnatal day 21. SerW3 cells were treated with methylpiperidino pyrazole (MPP) for 30 min before being treated with 50 μg/mL of BDE-209. BDE-209 increases ERα in time- and dose-dependent manners and decreases formin 1 and BTB-associated protein in F1 male mice. Furthermore, BDE-209 impairs the structure and function of the BTB. Activation of ERα signaling could disrupt the BTB, leading to spermatogenesis dysfunction. The results identified the role of ERα in BTB disruption during spermatogenesis and suggested that BTB disruption occurs because of exposure to BDE-209, which could potentially affect spermatogenesis. In conclusion, Sertoli cells seem to be the primary target of BDE-209 in the perinatal period, and this period constitutes a critical window of susceptibility to BDE-209. Also, the SerW3 cell model may not be a particularly useful cell model for studying the function of the cytoskeleton.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| | - Xiya Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Tao Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jing Tang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Daojun Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Longjiang Cui
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Qizhi Wang
- School of Energy and Environment, Southeast University, Sipailou Rd 2, Nanjing, 210018, China
| |
Collapse
|
23
|
Weber AA, Moreira DP, Melo RMC, Vieira ABC, Bazzoli N, Rizzo E. Stage-specific testicular protein levels of the oestrogen receptors (ERα and ERβ) and Cyp19 and association with oestrogenic contamination in the lambari Astyanax rivularis (Pisces: Characidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34403-34413. [PMID: 30306442 DOI: 10.1007/s11356-018-3392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Oestrogens participate in various biological processes such as oogenesis, vitellogenesis and testicular development, but studies regarding the distribution and protein levels of oestrogen receptors (ERα and ERβ) and aromatase (Cyp19) in testis are rarely investigated in fish species. The aim of the present study was to analyse the expression pattern of ERα, ERβ and Cyp19 in testis of Astyanax rivularis and, in addition, to verify if oestrogenic contamination interferes in the expression levels of these proteins. Quarterly, field samplings were carried out during a reproductive cycle in a stream of the Upper Velhas River with a good conservation status (site S1). In the gonadal maturation peak (June), when ripe stage was most abundant, fish collection was made in three streams: S1, reference site, and S2 and S3, sites contaminated by untreated sewage. The results of immunohistochemistry demonstrated labelling of Cyp19 in Leydig cells and acidophilic granulocytes, but spermatogonia, Sertoli cells, spermatids and spermatozoa were also labelled. ERα was more widely distributed than ERβ being found in all developmental germ cell phases. On the other hand, ERβ was found only in spermatogonia and spermatocytes. During testicular maturation, ELISA levels for Cyp19, ERα and ERβ followed the gonadosomatic index (GSI) with significant higher values in the ripe stage. Regarding to endocrine disruption, the males exposed to domestic sewage presented significant higher expression of Cyp19 and ERα when compared to the non-exposed fish. Together, our results demonstrate expression patterns of Cyp19, ERα and ERβ in the testis of A. rivularis. In addition, we indicate ERα and Cyp19 as sensitive biomarkers for monitoring of oestrogenic contamination in freshwater environments.
Collapse
Affiliation(s)
- André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Augusto Bicalho Cruz Vieira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|
24
|
Porseryd T, Reyhanian Caspillo N, Volkova K, Elabbas L, Källman T, Dinnétz P, Olsson PE, Porsch-Hällström I. Testis transcriptome alterations in zebrafish (Danio rerio) with reduced fertility due to developmental exposure to 17α-ethinyl estradiol. Gen Comp Endocrinol 2018. [PMID: 29526718 DOI: 10.1016/j.ygcen.2018.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
17α-Ethinylestradiol (EE2) is a ubiquitous aquatic contaminant shown to decrease fish fertility at low concentrations, especially in fish exposed during development. The mechanisms of the decreased fertility are not fully understood. In this study, we perform transcriptome analysis by RNA sequencing of testes from zebrafish with previously reported lowered fertility due to exposure to low concentrations of EE2 during development. Fish were exposed to 1.2 and 1.6 ng/L (measured concentration; nominal concentrations 3 and 10 ng/L) of EE2 from fertilization to 80 days of age, followed by 82 days of remediation in clean water. RNA sequencing analysis revealed 249 and 16 genes to be differentially expressed after exposure to 1.2 and 1.6 ng/L, respectively; a larger inter-sample variation was noted in the latter. Expression of 11 genes were altered by both exposures and in the same direction. The coding sequences most affected could be categorized to the putative functions cell signalling, proteolysis, protein metabolic transport and lipid metabolic process. Several homeobox transcription factors involved in development and differentiation showed increased expression in response to EE2 and differential expression of genes related to cell death, differentiation and proliferation was observed. In addition, several genes related to steroid synthesis, testis development and function were differentially expressed. A number of genes associated with spermatogenesis in zebrafish and/or mouse were also found to be differentially expressed. Further, differences in non-coding sequences were observed, among them several differentially expressed miRNA that might contribute to testis gene regulation at post-transcriptional level. This study has generated insights of changes in gene expression that accompany fertility alterations in zebrafish males that persist after developmental exposure to environmental relevant concentrations of EE2 that persist followed by clean water to adulthood. Hopefully, this will generate hypotheses to test in search for mechanistic explanations.
Collapse
Affiliation(s)
- T Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden.
| | - N Reyhanian Caspillo
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - K Volkova
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden; Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - L Elabbas
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - T Källman
- National Bioinformatics Infrastructure Sweden, Uppsala University, 75124 Uppsala, Sweden; Science for Life Laboratory and Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - P Dinnétz
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| | - P-E Olsson
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - I Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, SE-141 89 Huddinge, Sweden
| |
Collapse
|
25
|
Braun BC, Okuyama MW, Müller K, Dehnhard M, Jewgenow K. Steroidogenic enzymes, their products and sex steroid receptors during testis development and spermatogenesis in the domestic cat (Felis catus). J Steroid Biochem Mol Biol 2018; 178:135-149. [PMID: 29196065 DOI: 10.1016/j.jsbmb.2017.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
Abstract
In the present study we comprehensively characterize intratesticular sex steroid production, metabolism and receptors in the domestic cat to elucidate the role of testosterone, estradiol and progesterone in testis development, steroid synthesis and spermatogenesis. There is a great demand for new concepts of fertility control in domestic (feral) cats and wild felids. The acquired knowledge will help to understand the regulation of spermatogenesis in felids, and may reveal new target points for male contraception. Progesterone and androgens are produced throughout all stages of testicular development; their synthesizing enzymes are mainly expressed in Leydig cells, and to a much lesser extent also in tubular cells. Aromatase (CYP19A1), the estrogen synthesizing enzyme, is only present in the tubuli and is first detectable in spermatocytes and round spermatids at puberty. As shown by elevated expression of the enzymes steroid 5-α-reductase type 1 (SRD5A) and aldo-keto-reductase family 1 member C3 (AKR1C3), the capacity to metabolize particular steroids increases during testis development. Apparently, this refers to a decreasing intra-testicular testosterone concentration per mg tissue with increasing testis weight during postpuberty. The increasing potential of sulfation of E2 by estrogen sulfotransferase (SULT1E1) with ongoing development might be responsible for the low level of unconjugated intratesticular estradiol in all stages of development probably due to facilitated excretion of conjugated estrogens. For the first time, expression of the progesterone membrane receptor components 1 and 2 (PGRMC1, PGRMC2) was studied in mammalian testis tissue. Both of these and also the progesterone receptor (PGR) are expressed depending on the developmental stage and cell type, suggesting an important regulatory role of progesterone in the testis. Androgen receptor (AR) is present in almost all cell types except for some spermatogenic cells. The co-localization of aromatase with estrogen receptor alpha (ESR1) in spermatocytes and round spermatids of domestic cat testis indicates an auto-/paracrine function of estrogen in spermatogenesis. In summary, the testis of the domestic cat is an important source of sex steroids. All of them could act within the testis but additionally, at least androgens and estrogens are likely secreted by the testis, partly as conjugated steroids.
Collapse
Affiliation(s)
- Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany.
| | - Minami W Okuyama
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Martin Dehnhard
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| |
Collapse
|
26
|
Liguori G, Pelagalli A, Assisi L, Squillacioti C, Costagliola A, Mirabella N. Effects of orexins on 17β-estradiol synthesis and P450 aromatase modulation in the testis of alpaca (Vicugna pacos). Anim Reprod Sci 2018; 192:313-320. [PMID: 29622348 DOI: 10.1016/j.anireprosci.2018.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
The steroidogenic enzyme P450 aromatase (ARO) has a key role in the conversion of testosterone (T) into estrogens (E), expressed as 17β-estradiol. The presence and localization of this key enzyme have not been described before in the South American camelid alpaca (Vicugna pacos). In our previous studies of the expression and biological effects of orexin A (OxA) and OxB on the alpaca testis demonstrated that OxA, via its specific receptor 1 (OX1R), stimulated T synthesis. In order to extend these findings, we presently explored the presence and localization of ARO in the alpaca male gonad, and the possible correlation between ARO and the orexinergic complex. Western blotting and immunohistochemistry demonstrated the presence of ARO in tissue homogenates and its localization in the tubular and interstitial compartments of the alpaca testis, respectively. The addition of OxA to fresh testicular slices decreased the 17β-estradiol E levels. This effect was annulled by the sequential addition of the selective OX1R antagonist, SB-408124. OxB incubation did not have any effect on the biosynthesis of E. Furthermore, the OxA-mediated down-regulation of E secretion could be ascribed to ARO inhibition by exogenous OxA, as indicated by measurement of ARO activity in tissue slices incubated with OxA. Overall, our findings suggest that locally secreted OxA interacting with OX1R could indirectly inhibit ARO activity, disabling the conversion of T to E, and consequently lowering E biosynthesis and increasing the production of T in mammalian testis.
Collapse
Affiliation(s)
- Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy; Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Loredana Assisi
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 6, 80134 Naples, Italy.
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Via Delpino 1, 80137, Naples, Italy
| |
Collapse
|
27
|
Migliaccio M, Ricci G, Suglia A, Manfrevola F, Mackie K, Fasano S, Pierantoni R, Chioccarelli T, Cobellis G. Analysis of Endocannabinoid System in Rat Testis During the First Spermatogenetic Wave. Front Endocrinol (Lausanne) 2018; 9:269. [PMID: 29896156 PMCID: PMC5986923 DOI: 10.3389/fendo.2018.00269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
Endocannabinoids are lipid mediators, enzymatically synthesized and hydrolyzed, that bind cannabinoid receptors. Together with their receptors and metabolic enzymes, they form the "endocannabinoid system" (ECS). Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the main endocannabinoids studied in testis. In this study, using the first wave of spermatogenesis as an in vivo model to verify the progressive appearance of germ cells in seminiferous tubules [i.e., spermatogonia, spermatocytes, and spermatids], we analyzed the expression of the main enzymes and receptors of ECS in rat testis. In particular, the expression profile of the main enzymes metabolizing AEA and 2-AG as well as the expression of cannabinoid receptors, such as CB1 and CB2, and specific markers of mitotic, meiotic, and post-meiotic germ cell appearance or activities have been analyzed by RT-PCR and appropriately correlated. Our aim was to envisage a relationship between expression of ECS components and temporal profile of germ cell appearance or activity as well as among ECS components. Results show that expression of ECS components is related to germ cell progression. In particular, CB2 and 2-AG appear to be related to mitotic/meiotic stages, while CB1 and AEA appear to be related to spermatogonia stem cells activity and spermatids appearance, respectively. Our data also suggest that a functional interaction among ECS components occurs in the testis. Indeed, in vitro-incubated testis show that AEA-CB2 activity affects negatively monoacylglycerol-lipase levels via upregulation of CB1 suggesting a CB1/CB2-mediated relationship between AEA and 2-AG. Finally, we provide the first evidence that CB1 is present in fetal gonocytes, during mitotic arrest.
Collapse
Affiliation(s)
- Marina Migliaccio
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Laboratorio di Istologia ed Embriologia, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Antonio Suglia
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Silvia Fasano
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Naples, Italy
- *Correspondence: Gilda Cobellis,
| |
Collapse
|
28
|
Anel-López L, Ortega-Ferrusola C, Martínez-Rodríguez C, Álvarez M, Borragán S, Chamorro C, Peña FJ, Anel L, de Paz P. Analysis of seminal plasma from brown bear (Ursus arctos) during the breeding season: Its relationship with testosterone levels. PLoS One 2017; 12:e0181776. [PMID: 28771486 PMCID: PMC5542667 DOI: 10.1371/journal.pone.0181776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP) plays an important role in the motility, viability and maintenance of the fertilizing capacity of mammalian spermatozoa. This study is the first on brown bear (Ursus arctos) SP components, and has two main objectives: 1) to define the SP composition in bear ejaculate and 2) to identify variations in SP composition in relation to high and low levels of testosterone in serum during the breeding season. Forty-eight sperm samples from 30 sexually mature male brown bears (Ursus arctos) were obtained by electroejaculation, and their serum testosterone levels were assessed to sort the animals into 2 groups (high and low testosterone levels, threshold 5 ng/dl). The biochemical and protein compositions of the SP samples were assessed, and sperm motility was analyzed. We found that lactate dehydrogenase was significantly higher in the low-serum-testosterone samples, while concentrations of lipase and Mg+ values were significantly higher in the high-serum-testosterone samples. In contrast, sperm motility did not significantly differ (P>0.05) between the testosterone level groups (total motility: 74.42.8% in the high-level group vs. 77.1±4.7% in the low-level group). A reference digital model was constructed since there is no information for this wild species. To do this, all gel images were added in a binary multidimensional image and thirty-three spots were identified as the most-repeated spots. An analysis of these proteins was done by qualitative equivalency (isoelectric point and molecular weight) with published data for a bull. SP protein composition was compared between bears with high and low serum testosterone, and three proteins (binder of sperm and two enzymes not identified in the reference bull) showed significant (P<0.05) quantitative differences. We conclude that male bears with high or low serum testosterone levels differs only in some properties of their SP, differences in enzyme LDIP2, energy source LACT2, one protein (similar to BSP1) and Mg ion were identified between these two groups. These data may inform the application of SP to improve bear semen extenders.
Collapse
Affiliation(s)
- L. Anel-López
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- * E-mail:
| | - C. Ortega-Ferrusola
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
| | - C. Martínez-Rodríguez
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- Molecular Biology (Cell Biology), University of León, León, Spain
| | - M. Álvarez
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
| | | | - C. Chamorro
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- Veterinary Anatomy, University of León, León, Spain
| | - F. J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - L. Anel
- Animal Reproduction and Obstetrics, University of León, Spain
- ITRA-ULE, INDEGSAL, University of León, León, Spain
| | - P. de Paz
- ITRA-ULE, INDEGSAL, University of León, León, Spain
- Molecular Biology (Cell Biology), University of León, León, Spain
| |
Collapse
|
29
|
Lozan E, Shinkaruk S, Al Abed SA, Lamothe V, Potier M, Marighetto A, Schmitter JM, Bennetau-Pelissero C, Buré C. Derivatization-free LC-MS/MS method for estrogen quantification in mouse brain highlights a local metabolic regulation after oral versus subcutaneous administration. Anal Bioanal Chem 2017; 409:5279-5289. [DOI: 10.1007/s00216-017-0473-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/04/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022]
|
30
|
Kotwicka M, Skibinska I, Jendraszak M, Jedrzejczak P. 17β-estradiol modifies human spermatozoa mitochondrial function in vitro. Reprod Biol Endocrinol 2016; 14:50. [PMID: 27565707 PMCID: PMC5002130 DOI: 10.1186/s12958-016-0186-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is assumed that spermatozoa are target cells for estrogens however, the mechanism of their action is not fully understood. The aim of this study was to investigate the influence of 17β-estradiol (E2) on the human spermatozoa mitochondrial function. METHODS The effects on spermatozoa of E2 at final concentrations of 10(-10), 10(-8) and 10(-6) M were studied regarding the following phenomena: (1) kinetics of intracellular free calcium ions changes (using Fluo-3), (2) mitochondrial membrane potential ΔΨm (using JC-1 fluorochrome), (3) production of superoxide anion in mitochondria (using MitoSOX RED dye), (4) spermatozoa vitality (propidium iodide staining) and (5) phosphatidylserine membrane translocation (staining with annexin V marked with fluorescein). RESULTS E2 initiated rapid (within a few seconds) dose dependent increase of intracellular free calcium ions concentration. E2 was changing the mitochondrial membrane potential: 10(-8) M initiated significant increase of percentage of high ΔΨm spermatozoa while the 10(-6) M induced significant decrease of high ΔΨm cells. In spermatozoa stimulated with E2 10(-6) M a significant increase of mitochondrial superoxide anion level was observed. 2 h incubation of spermatozoa with E2 did not alter cells vitality nor stimulated phosphatidylserine membrane translocation, for all three doses. CONCLUSIONS 17β-estradiol affected the human spermatozoa mitochondrial function. E2 in low concentration improved while in high concentration might deteriorate mitochondrial function.
Collapse
Affiliation(s)
- Malgorzata Kotwicka
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Izabela Skibinska
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Magdalena Jendraszak
- Department of Cell Biology, Faculty of Health Sciences, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Jedrzejczak
- Division of Infertility and Reproductive Endocrinology, Faculty of Medicine I, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| |
Collapse
|
31
|
Rosati L, Agnese M, Di Fiore MM, Andreuccetti P, Prisco M. P450 aromatase: a key enzyme in the spermatogenesis of the Italian wall lizard, Podarcis sicula. J Exp Biol 2016; 219:2402-8. [DOI: 10.1242/jeb.135996] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/27/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
P450 aromatase is a key enzyme in steroidogenesis involved in the conversion of testosterone into 17β-estradiol. We investigated the localization and the expression of P450 aromatase in Podarcis sicula testes during the different phases of the reproductive cycle: summer stasis (July–August), early autumnal resumption (September), middle autumnal resumption (October–November), winter stasis (December–February), spring resumption (March–April) and the reproductive period (May–June). Using immunohistochemistry, we demonstrated that the P450 aromatase is always present in somatic and germ cells of P. sicula testis, particularly in spermatids and spermatozoa, except in early autumnal resumption, when P450 aromatase is evident only within Leydig cells. Using real-time PCR and semi-quantitative blot investigations, we also demonstrated that both mRNA and protein were expressed in all phases, with two peaks of expression occurring in summer and in winter stasis. These highest levels of P450 aromatase are in line with the increase of 17β-estradiol, responsible for the spermatogenesis block typical of this species. Differently, in autumnal resumption, the level of P450 aromatase dramatically decreased, along with 17β-estradiol levels, and testosterone titres increased, responsible for the subsequent renewal of spermatogenesis not followed by spermiation. In spring resumption and in the reproductive period we found intermediate P450 aromatase amounts, low levels of 17β-estradiol and the highest testosterone levels determining the resumption of spermatogenesis needed for reproduction. Our results, the first collected in a non-mammalian vertebrate, indicate a role of P450 aromatase in the control of steroidogenesis and spermatogenesis, particularly in spermiogenesis.
Collapse
Affiliation(s)
- Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80134 Naples, Italy
| | - Marisa Agnese
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80134 Naples, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, 81010 Caserta, Italy
| | - Piero Andreuccetti
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80134 Naples, Italy
| | - Marina Prisco
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80134 Naples, Italy
| |
Collapse
|
32
|
Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia. Int J Mol Sci 2016; 17:ijms17071127. [PMID: 27428949 PMCID: PMC4964501 DOI: 10.3390/ijms17071127] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022] Open
Abstract
A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.
Collapse
|
33
|
Santillo A, Falvo S, Chieffi P, Di Fiore MM, Senese R, Chieffi Baccari G. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells. J Cell Physiol 2016; 231:490-5. [PMID: 26189884 DOI: 10.1002/jcp.25095] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/17/2015] [Indexed: 01/10/2023]
Abstract
D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Paolo Chieffi
- Dipartimento di Psicologia, Seconda Università di Napoli, Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta, Italy
| |
Collapse
|
34
|
Retrograde and destination transfer of sex steroid hormones in the spermatic cord vessels of the mature boar (Sus scrofa) in short-daylight and long-daylight periods, as well as vernal and autumnal equinox. Anim Reprod Sci 2016; 164:1-8. [DOI: 10.1016/j.anireprosci.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022]
|
35
|
Metzler-Guillemain C, Victorero G, Lepoivre C, Bergon A, Yammine M, Perrin J, Sari-Minodier I, Boulanger N, Rihet P, Nguyen C. Sperm mRNAs and microRNAs as candidate markers for the impact of toxicants on human spermatogenesis: an application to tobacco smoking. Syst Biol Reprod Med 2015; 61:139-49. [PMID: 25821920 DOI: 10.3109/19396368.2015.1022835] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Spermatozoa contain a complex population of RNAs including messenger RNAs (mRNAs) and small RNAs such as microRNAs (miRNA). It has been reported that these RNAs can be used to understand the mechanisms by which toxicological exposure affects spermatogenesis. The aim of our study was to compare mRNA and miRNA profiles in spermatozoa from eight smokers and eight non-smokers, and search for potential relationships between mRNA and miRNA variation. All men were selected based on their answers to a standard toxic exposure questionnaire, and sperm parameters. Using mRNA and miRNA microarrays, we showed that mRNAs from 15 genes were differentially represented between smokers and non-smokers (p<0.01): five had higher levels and 10 lower levels in the smokers. For the microRNAs, 23 were differentially represented: 16 were higher and seven lower in the smokers (0.004≤p<0.01). Quantitative RT-PCR confirmed the lower levels in smokers compared to non-smokers for hsa-miR-296-5p, hsa-miR-3940, and hsa-miR-520d-3p. Moreover, we observed an inverse relationship between the levels of microRNAs and six potential target mRNAs (B3GAT3, HNRNPL, OASL, ODZ3, CNGB1, and PKD2). Our results indicate that alterations in the level of a small number of microRNAs in response to smoking may contribute to changes in mRNA expression in smokers. We conclude that large-scale analysis of spermatozoa RNAs can be used to help understand the mechanisms by which human spermatogenesis responds to toxic substances including those in tobacco smoke.
Collapse
|
36
|
Li Q, Zhang F, Zhang S, Sheng X, Han X, Weng Q, Yuan Z. Seasonal expression of androgen receptor, aromatase, and estrogen receptor alpha and beta in the testis of the wild ground squirrel (Citellus dauricus Brandt). Eur J Histochem 2015; 59:2456. [PMID: 25820559 PMCID: PMC4378213 DOI: 10.4081/ejh.2015.2456] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/24/2014] [Accepted: 01/02/2015] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate the seasonal expression of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) mRNA and protein by real-time PCR and immunohistochemistry in the wild ground squirrel (WGS) testes. Histologically, all types of spermatogenic cells including mature spermatozoa were identified in the breeding season (April), while spermatogonia and primary spermatocytes were observed in the nonbreeding season (June), and spermatogonia, primary spermatocytes and secondary spermatocytes were found in pre-hibernation (September). AR was present in Leydig cells, peritubular myoid cells and Sertoli cells in the breeding season and pre-hibernation with more intense staining in the breeding season, whereas AR was only found in Leydig cells in the nonbreeding season; P450arom was expressed in Leydig cells, Sertoli cells and germ cells during the breeding season, whereas P450arom was found in Leydig cells and Sertoli cells during pre-hibernation, but P450arom was not present in the nonbreeding season; stronger immunohistochemical signal for ERα was present in Sertoli cells and Leydig cells during the breeding season; ERβ was only expressed in Leydig cells of the breeding season. Consistent with the immunohistochemical results, the mean mRNA level of AR, P450arom, ERα and ERβ were higher in the testes of the breeding season when compared to pre-hibernation and the nonbreeding season. These results suggested that the seasonal changes in spermatogenesis and testicular recrudescence and regression process in WGSs might be correlated with expression levels of AR, P450arom and ERs, and that estrogen and androgen may play an important autocrine/paracrine role to regulate seasonal testicular function.
Collapse
Affiliation(s)
- Q Li
- Beijing Forestry University.
| | | | | | | | | | | | | |
Collapse
|
37
|
Local transfer of testosterone and aromatase activity in the spermatic cord in wild boar/pig hybrids in short-daylight and long-daylight periods. Reprod Biol 2014; 14:282-8. [DOI: 10.1016/j.repbio.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/04/2014] [Accepted: 06/30/2014] [Indexed: 11/22/2022]
|
38
|
Samavat J, Natali I, Degl'Innocenti S, Filimberti E, Cantini G, Di Franco A, Danza G, Seghieri G, Lucchese M, Baldi E, Forti G, Luconi M. Acrosome reaction is impaired in spermatozoa of obese men: a preliminary study. Fertil Steril 2014; 102:1274-1281.e2. [PMID: 25226854 DOI: 10.1016/j.fertnstert.2014.07.1248] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare spontaneous (Sp-AR) and P-induced acrosome reaction (AR) in spermatozoa of obese and lean subjects. SETTING Bariatric unit at a university hospital. DESIGN Prospective, observational study. PATIENT(S) Twenty-three obese (mean±SD body mass index [BMI], 44.3±5.9 kg/m2) and 25 age-matched lean (BMI, 24.2±3.0 kg/m2) subjects. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Spontaneous and P-induced AR in spermatozoa of obese and lean subjects. RESULT(S) A statistically significant difference was found between obese and lean cohorts in total T and calculated free T, E2, glycated hemoglobin, and high-density lipoproteins, whereas among the routine semen parameters analyzed, only immotile sperm percentage and ejaculate volume differed significantly. Spermatozoa of obese (n=13) vs. lean men (n=19) showed a higher Sp-AR (17.9%±7.2% vs. 8.3%±4.2%), which resulted in a reduced ability to respond to P evaluated as the AR-after-P-challenge parameter (3.5%±3.2% vs. 17.6%±9.2%). Multivariate analysis adjusted for age revealed a significant correlation between BMI, waist, E2, and glycated hemoglobin with both Sp-AR (age-adjusted r=0.654, r=0.711, r=0.369, and r=0.644, respectively) and AR-after-P-challenge (age-adjusted r=-0.570, r=-0.635, r=-0.507, and r=-0.563, respectively). A significant difference in sperm cholesterol content was reported between obese and lean men (29.8±19.5 vs. 19.1±14.6 ng/μg of proteins). CONCLUSION(S) Sperm AR is impaired in obese men, showing reduced response to P and elevated Sp-AR, associated with altered circulating levels of E2 and sperm cholesterol content.
Collapse
Affiliation(s)
- Jinous Samavat
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Ilaria Natali
- Seminology Laboratory, Azienda USL3 Pistoia, Pistoia, Italy
| | - Selene Degl'Innocenti
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Erminio Filimberti
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessandra Di Franco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giovanna Danza
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giuseppe Seghieri
- Agenzia Regionale Sanità Toscana, Florence, Italy; Accademia Medica Filippo Pacini, Pistoia, Italy
| | - Marcello Lucchese
- Bariatric and Metabolic Surgery, Careggi Hospital, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Elisabetta Baldi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Gianni Forti
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
39
|
Jin JM, Yang WX. Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene 2014; 551:15-25. [PMID: 25168889 DOI: 10.1016/j.gene.2014.08.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.
Collapse
Affiliation(s)
- Jia-Min Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Expression pattern of estrogen receptors α and β and G-protein-coupled estrogen receptor 1 in the human testis. Histochem Cell Biol 2014; 142:421-32. [DOI: 10.1007/s00418-014-1216-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 12/22/2022]
|
41
|
Zhang L, Dong L, Ding S, Qiao P, Wang C, Zhang M, Zhang L, Du Q, Li Y, Tang N, Chang B. Effects of n-butylparaben on steroidogenesis and spermatogenesis through changed E₂ levels in male rat offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:705-717. [PMID: 24607685 DOI: 10.1016/j.etap.2014.01.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/25/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
Parabens are widely used as antibacterial agents, which are concerned recently in the relationship between the use of parabens and reproductive toxicity. So that reassessment of the risk of parabens is needed. In this study, one of parabens, n-butylparaben (n-BP) was orally administered to pregnant Wistar rats (0, 64, 160, 400 and 1000 mg/kg/day) from gestation day (GD) 7 through postnatal day (PND) 21. Reduced anogenital distance (AGD) and delayed preputial separation (PPS) were observed in the male offspring. The weights of the testes were significantly reduced at PND 21-90. The weights of the epididymides were significantly reduced at all monitoring points, except PND 35. Seminal vesicle weights were significantly reduced on PND 21. Serum testosterone (T) was significantly decreased, especially on PND 49. The levels of 17β-estradiol (E2) showed an increase at each of the tested points except on PND 180. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels in the n-BP treated groups were lower on PND 21, 35 and 49 but elevated on PND 90 compared to control levels. n-BP reduced epididymal cauda sperm counts and daily sperm production in a dose-dependent manner; this difference was statistically significant at exposure groups of 400 and 1000 mg/kg/day. The present study strongly suggests that exposure to n-BP in utero and during lactation has adverse effects on the reproductive system in male offspring, with a no observed adverse effect level (NOAEL) of 160 mg/kg/day. To our knowledge, this is the first study that reports increased E2 levels of male rats following n-BP exposure; we suggest that E2 levels may be considered as biomarkers for some endocrine disrupting chemicals (EDCs).
Collapse
Affiliation(s)
- Linyuan Zhang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Xicheng District, Beijing 100050, China.
| | - Li Dong
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Sijin Ding
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Xicheng District, Beijing 100050, China.
| | - Peihuan Qiao
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Xicheng District, Beijing 100050, China.
| | - Chong Wang
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Ming Zhang
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Lixia Zhang
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Qingcheng Du
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Xicheng District, Beijing 100050, China.
| | - Yimin Li
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Ning Tang
- Institute for Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention, No. 7 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| | - Bing Chang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
42
|
Okuyama MW, Shimozuru M, Yanagawa Y, Tsubota T. Changes in the immunolocalization of steroidogenic enzymes and the androgen receptor in raccoon (Procyon lotor) testes in association with the seasons and spermatogenesis. J Reprod Dev 2014; 60:155-61. [PMID: 24531656 PMCID: PMC3999395 DOI: 10.1262/jrd.2013-122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The raccoon is a seasonal breeder with a mating season in the winter. In a previous
study, adult male raccoons exhibited active spermatogenesis with high plasma testosterone
concentrations, in the winter mating season. Maintenance of spermatogenesis generally
requires high testosterone, which is produced by steroidogenic enzymes. However, even in
the summer non-mating season, some males produce spermatozoa actively despite low plasma
testosterone concentrations. To identify the factors that regulate testosterone production
and contribute to differences in spermatogenetic activity in the summer non-mating season,
morphological, histological and endocrinological changes in the testes of wild male
raccoons should be known. In this study, to assess changes in the biosynthesis, metabolism
and reactivity of testosterone, the localization and immunohistochemical staining
intensity of four steroidogenic enzymes (P450scc, P450c17, 3βHSD, P450arom) and the
androgen receptor (AR) were investigated using immunohistochemical methods. P450scc and
P450c17 were detected in testicular tissue throughout the year. Seasonal changes in
testosterone concentration were correlated with 3βHSD expression, suggesting that 3βHSD
may be important in regulating the seasonality of testosterone production in raccoon
testes. Immunostaining of P450arom and AR was detected in testicular tissues that
exhibited active spermatogenesis in the summer, while staining was scarce in
aspermatogenic testes. This suggests that spermatogenesis in the raccoon testis might be
maintained by some mechanism that regulates P450arom expression in synthesizing estradiol
and AR expression in controlling reactivity to testosterone.
Collapse
Affiliation(s)
- Minami W Okuyama
- Laboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | | | | | | |
Collapse
|
43
|
Lee HW, Verlander JW, Handlogten ME, Han KH, Cooke PS, Weiner ID. Expression of the rhesus glycoproteins, ammonia transporter family members, RHCG and RHBG in male reproductive organs. Reproduction 2013; 146:283-96. [PMID: 23904565 DOI: 10.1530/rep-13-0154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rhesus glycoproteins, Rh B glycoprotein (RHBG) and Rh C glycoprotein (RHCG), are recently identified ammonia transporters. Rhcg expression is necessary for normal male fertility, but its specific cellular expression is unknown, and Rhbg has not been reported to be expressed in the male reproductive tract. This study sought to determine the specific cellular expression of Rhcg, to determine whether Rhbg is expressed in the male reproductive tract, and, if so, to determine which cells express Rhbg using real-time RT-PCR, immunoblot analysis, and immunohistochemistry. Both Rhbg and Rhcg were expressed throughout the male reproductive tract. In the testis, high levels of Rhbg were expressed in Leydig cells, and Rhcg was expressed in spermatids during the later stages of their maturation (steps 13-16) in stages I-VIII of the seminiferous epithelium cycle. In the epididymis, basolateral Rhbg was present in narrow cells in the initial segment, in principal cells in the upper corpus, and in clear cells throughout the epididymis. Apical Rhcg immunolabel was present in principal cells in the caput and upper corpus epididymidis and in clear cells in the middle and lower corpus and cauda epididymidis. In the vas deferens, apical Rhcg immunolabel and basolateral Rhbg immunolabel were present in some principal cells and colocalized with H(+)-ATPase immunolabel. We conclude that both Rhbg and Rhcg are highly expressed in specific cells in the male reproductive tract where they can contribute to multiple components of male fertility.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Medicine, University of Florida College of Medicine, P.O. Box 100224, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
44
|
Soares TS, Fernandes SAF, Lima ML, Stumpp T, Schoorlemmer GH, Lazari MFM, Porto CS. Experimental varicocoele in rats affects mechanisms that control expression and function of the androgen receptor. Andrology 2013; 1:670-81. [PMID: 23836701 DOI: 10.1111/j.2047-2927.2013.00103.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 01/24/2023]
Abstract
Varicocoele is an important cause of male infertility. Normal male reproductive function and fertility depends on a delicate balance between androgen receptor (AR) and the classic oestrogen receptors ESR1 (ERα) and ESR2 (ERβ). Using a model of surgically induced varicocoele in rats, this study aimed to investigate the effects of varicocoele on the expression of AR, ESR1, ESR2 and G-protein coupled oestrogen receptor (GPER). Varicocoele did not affect the mRNA and protein expression of ESR1 and ESR2 in both testes. Varicocoele did not affect the mRNA and protein expression of GPER in the right testis, but slightly reduced the mRNA and increased the protein levels in the left testis. Varicocoele did not affect the mRNA for AR, but reduced the protein levels in both testes. A proteomic approach was used in an attempt to find differentially expressed targets with possible correlation with AR downregulation. Varicocoele caused the differential expression of 29 proteins. Six proteins were upregulated, including the receptor for activated C kinase 1 (RACK1), and 23 were downregulated, including dihydrolipoamide dehydrogenase, alpha-enolase and pyrophosphatase 1. Western blot analysis confirmed that varicocoele upregulated the expression of RACK1, a protein involved with tyrosine phosphorylation and regulation of AR transcriptional activity, AR metabolism and dynamics of the blood-testis barrier. In conclusion, this study suggests that varicocoele affects mechanisms that control AR expression and function. This regulation of AR may play an important role in the varicocoele-induced testicular dysfunction. Furthermore, varicocoele downregulates several other proteins in the testis that may be useful markers of spermatozoa function and male infertility.
Collapse
Affiliation(s)
- T S Soares
- Section of Experimental Endocrinology, Department of Pharmacology, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Dasgupta S, Bandyopadhyay M. Neuroprotective mode of action of resveratrol in central nervous system. PHARMANUTRITION 2013. [DOI: 10.1016/j.phanu.2013.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Membrane transporters for sulfated steroids in the human testis--cellular localization, expression pattern and functional analysis. PLoS One 2013; 8:e62638. [PMID: 23667501 PMCID: PMC3648580 DOI: 10.1371/journal.pone.0062638] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/23/2013] [Indexed: 12/11/2022] Open
Abstract
Sulfated steroid hormones are commonly considered to be biologically inactive metabolites, but may be reactivated by the steroid sulfatase into biologically active free steroids, thereby having regulatory function via nuclear androgen and estrogen receptors which are widespread in the testis. However, a prerequisite for this mode of action would be a carrier-mediated import of the hydrophilic steroid sulfate molecules into specific target cells in reproductive tissues such as the testis. In the present study we detected predominant expression of the Sodium-dependent Organic Anion Transporter (SOAT), the Organic Anion Transporting Polypeptide 6A1, and the Organic Solute Carrier Partner 1 in human testis biopsies. All of these showed significantly lower or even absent mRNA expression in severe disorders of spermatogenesis (arrest at the level of spermatocytes or spermatogonia, Sertoli cell only syndrome). Only SOAT was significantly lower expressed in biopsies showing hypospermatogenesis. By use of immunohistochemistry SOAT was localized to germ cells at various stages in human testis biopsies showing normal spermatogenesis. SOAT immunoreactivity was detected in zygotene primary spermatocytes of stage V, pachytene spermatocytes of all stages (I–V), secondary spermatocytes of stage VI, and round spermatids (step 1 and step 2) in stages I and II. Furthermore, SOAT transport function for steroid sulfates was analyzed with a novel liquid chromatography tandem mass spectrometry procedure capable of profiling steroid sulfate molecules from cell lysates. With this technique, the cellular inward-directed SOAT transport was verified for the established substrates dehydroepiandrosterone sulfate and estrone-3-sulfate. Additionally, β-estradiol-3-sulfate and androstenediol-3-sulfate were identified as novel SOAT substrates.
Collapse
|
47
|
Ded L, Sebkova N, Cerna M, Elzeinova F, Dostalova P, Peknicova J, Dvorakova-Hortova K. In vivo exposure to 17β-estradiol triggers premature sperm capacitation in cauda epididymis. Reproduction 2013; 145:255-63. [PMID: 23319664 DOI: 10.1530/rep-12-0472] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estrogens play a crucial role in spermatogenesis and estrogen receptor α knock-out male mice are infertile. It has been demonstrated that estrogens significantly increase the speed of capacitation in vitro; however this may lead to the reduction of reproductive potential due to the decreased ability of these sperm to undergo the acrosome reaction. To date the in vivo effect of estrogens on the ability of sperm to capacitate has not been investigated. Therefore, in this study, we exposed mice (n=24) to 17β-estradiol (E2) at the concentration of 20 ng/ml either during puberty from the fourth to seventh week of age (n=8), or continuously from birth for a period of 12 weeks (n=8) at which age the animals from both groups were killed. The capacitation status of epididymal and testicular sperm was analysed by tyrosine phosphorylation (TyrP) antibody (immunofluorescence and western blot) and chlortetracycline (CTC) assay. According to our results, in vivo exposure to increased E2 concentrations caused premature sperm capacitation in the epididymis. The effect of E2, however, seems reversible because after the termination of the exposure premature epididymal sperm capacitation is decreased in animals treated during puberty. Furthermore the changes in epididymal sperm capacitation status detected by TyrP and CTC positively correlate with plasma levels of E2 and the expression of the estrogen-dependent trefoil factor 1 (Tff1) gene in testicular tissue. Therefore, our data implicate that in vivo exposure to E2 under specific conditions leads to the premature capacitation of mouse sperm in epididymis with a potential negative impact on the sperm reproductive fitness in the female reproductive tract.
Collapse
Affiliation(s)
- Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology, Academy of Sciences of the Czech Republic, v. v. i., Videnska 1083, 142 20 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
48
|
Cacciola G, Chioccarelli T, Fasano S, Pierantoni R, Cobellis G. Estrogens and spermiogenesis: new insights from type 1 cannabinoid receptor knockout mice. Int J Endocrinol 2013; 2013:501350. [PMID: 24324492 PMCID: PMC3845505 DOI: 10.1155/2013/501350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/26/2013] [Indexed: 12/01/2022] Open
Abstract
Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model.
Collapse
Affiliation(s)
- Giovanna Cacciola
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
- *Riccardo Pierantoni:
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
49
|
Role of sex steroid hormones in bacterial-host interactions. BIOMED RESEARCH INTERNATIONAL 2012; 2013:928290. [PMID: 23509808 PMCID: PMC3591248 DOI: 10.1155/2013/928290] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Sex steroid hormones play important physiological roles in reproductive and nonreproductive tissues, including immune cells. These hormones exert their functions by binding to either specific intracellular receptors that act as ligand-dependent transcription factors or membrane receptors that stimulate several signal transduction pathways. The elevated susceptibility of males to bacterial infections can be related to the usually lower immune responses presented in males as compared to females. This dimorphic sex difference is mainly due to the differential modulation of the immune system by sex steroid hormones through the control of proinflammatory and anti-inflammatory cytokines expression, as well as Toll-like receptors (TLRs) expression and antibody production. Besides, sex hormones can also affect the metabolism, growth, or virulence of pathogenic bacteria. In turn, pathogenic, microbiota, and environmental bacteria are able to metabolize and degrade steroid hormones and their related compounds. All these data suggest that sex steroid hormones play a key role in the modulation of bacterial-host interactions.
Collapse
|
50
|
Oliveira RL, Nogueira JC, Mahecha GAB, Oliveira CA. Seasonal variation in estrogen receptor ERα, but not ERβ, androgen receptor and aromatase, in the efferent ductules and epididymis of the big fruit-eating bat Artibeus lituratus. Gen Comp Endocrinol 2012; 179:1-13. [PMID: 22841763 DOI: 10.1016/j.ygcen.2012.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/21/2012] [Accepted: 06/24/2012] [Indexed: 12/17/2022]
Abstract
The efferent ductules (ED) are a major target for estrogens, which act via the estrogen receptors ERα (ESR1) and ERβ (ESR2). ERα has been found in the ED of all species studied so far. However, in the epididymis (EP), the expression of ERα is controversial, as is data about the occurrence of aromatase in the epithelium lining the excurrent ducts. Therefore, to further investigate this estrogen-responsive system, we used a seasonal breeder, the Neotropical bat, Artibeus lituratus, in which testicular expression of androgen (AR) and estrogen (ER) receptors vary with reproductive phase. The localization of aromatase, ERα, ERβ and AR in the ED and EP of A. lituratus was investigated. The results showed that aromatase, AR and ERβ were distributed throughout the excurrent ducts and did not vary during the annual reproductive cycle. Conversely, ERα was detected primarily in the ED epithelium, had marked seasonal variation and was increased during regression, especially in the EP epithelium. The results suggest that ERα may be involved in preparing the male genital tract for recrudescence. Together, the data obtained under natural conditions emphasize that specific segments of the excurrent ducts downstream of the testis are the primary targets for estrogen action via ERα, which is similar to previous findings in animals lacking functional ERα.
Collapse
Affiliation(s)
- Regiana L Oliveira
- Department of Morphology, Universidade Federal de Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | |
Collapse
|